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The paper is devoted to an invariance principle for Kemperman's model of oscillating random walk on Z. This result appears as an extension of the invariance principal theorem for classical random walks on Z or reflected random walks on N 0 . Relying on some natural Markov subprocess which takes into account the oscillation of the random walks between Z -and Z + , we first construct an aperiodic sequence of renewal operators acting on a suitable Banach space and then apply a powerful theorem proved by S. Gouëzel.

1 Model and setting

Introduction

Consider two independent sequences of i.i.d. discrete random variables (ξ n ) n≥1 and (ξ ′ n ) n≥1 , defined on a probability space (Ω, F, P) and with respective distributions µ and µ ′ .

For any fixed α ∈ [0, 1], the oscillating random walk X (α) = (X (α) n ) n≥0 is defined recursively by : X (α) 0 = x, where x ∈ Z is fixed, and, for n ≥ 0,

X (α) n+1 =      X (α) n + ξ n if X (α) n ≤ -1, η n if X (α) n = 0, X (α) n + ξ ′ n if X (α) n ≥ 1, (1) 
where η n := B n ξ n + (1 -B n )ξ ′ n and (B n ) n≥0 is a sequence of i.i.d. Bernoulli random variables (independent of (ξ n ) and (ξ ′ n )) with

P[B i = 1] = α = 1 -P[B i = 0].
When we want to emphasize the dependence in µ and µ ′ of this oscillating process, we denote it by X (α) (µ, µ ′ ). This spatially non-homogeneous random walk was first introduced by Kemperman [START_REF] Kemperman | The oscillating random walk, Stoch[END_REF] to model discrete-time diffusion in one dimensional space with three different media Z + and Z -and a barrier {0}. Whenever the process X (α) (µ, µ ′ ) stays on the negative half line, its excursion is directed by the jumps ξ n until it reaches the positive half line; then, it continues being directed by the jumps ξ ′ n until returning in the negative half line and so on. After each visit of the origin, the increment is governed by the distribution of η n , which is a convex combination of µ and µ ′ . Our considering system is referred to as a special case when the barrier is degenerated as a single point; in general context, it may be any determined interval [a, b] ∩ Z which passes through the origin, see [START_REF] Kim | Oscillating random walks with two levels of switching[END_REF] for instance. Another interesting variant has been studied by Madras and Tanny in [START_REF] Madras | Oscillating random walk with a moving boundary[END_REF] dealing with an oscillating random walk with a moving barrier at some constant speed. Although this basically leads to differences in its long-term behaviour compared to (1), we may be able to trace this model back to (1) by using some appropriate translations for its random increments.

In the present paper, we prove an invariant principle for X (α) (µ, µ ′ ) towards the skew Brownian motion (B γ t ) t>0 on R with parameter γ ∈ [0, 1]. The diffusion (B γ t ) t>0 is obtained from the standard Brownian process by independently altering the signs of the excursions away from 0, each excursion being positive with probability γ and negative with probability 1 -γ. By [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], its heat kernel is given by: for any x, y ∈ R and t > 0, p γ t (x, y) := p t (x, y) + (2γ -1) sign(y) p t (0, |x| + |y|), where p t (x, y) = 1 √ 2πt e -(x-y) 2 /2t is the transition density of the Brownian motion. Throughout this paper, we suppose that the following general assumptions always hold: H1 (ξ n ) n≥1 and (ξ ′ n ) n≥1 are independent sequences of i.i.d. Z-valued random variables, with finite variances σ 2 and σ ′2 , respectively. H2 Both distributions µ and µ ′ are centered (i.e. E[ξ n ] = E[ξ ′ n ] = 0).

H3 Both distributions µ and µ ′ are strongly aperiodic on Z, i.e. their supports are not included in b + aZ for any a > 1 and b ∈ {0, . . . , a -1}.

H4 There exists δ > 0 such that E[(ξ + n ) 3+δ ] + E[(ξ ′- n ) 3+δ ] < +∞, where ξ + n := max{0, ξ n } and ξ ′- n := max{0, -ξ ′ n }.

Let us emphasize that, under hypotheses H1, H2 and H3, the oscillating random walk X (α) is irreducible and null recurrent on Z; this property is not stated in [START_REF] Vo | The Oscillating Random Walk on Z[END_REF] and we will detail the argument later (see Property 3.2).

We denote by S = (S n ) n≥1 (resp. S ′ = (S ′ n ) n≥1 ) the random walk defined by S 0 = 0 and S n = ξ 1 + . . . + ξ n for n ≥ 1 (resp. S ′ 0 = 0 and S ′ n = ξ ′ 1 + . . . + ξ ′ n for n ≥ 1). Let (ℓ i ) i≥0 be the sequence of strictly ascending ladder epochs associated with S and defined recursively by ℓ 0 = 0 and, for i ≥ 1,

ℓ i+1 := inf{k > ℓ i | S k > S ℓ i }
(with the convention inf ∅ = +∞). We also consider the sequence of descending ladder epochs (ℓ ′ i ) i≥0 of S ′ , defined as follows, ℓ ′ 0 = 0, and

ℓ ′ i+1 := inf{k > ℓ ′ i | S ′ k < S ′ ℓ ′ i }, for any i ≥ 1. Under hypothesis H2, it holds P[lim sup n→+∞ S n = +∞] = P[lim inf n→+∞ S ′ n = -∞] = 1;
hence, all the random variables ℓ i and ℓ ′ i are P-a.s. finite. In addition, both sequences (ℓ i+1 -ℓ i ) i≥0

and (S ℓ i+1 -S ℓ i ) i≥0 contain i.i.d. random elements with distributions of ℓ 1 and S ℓ 1 , respectively; the same property holds for (ℓ

′ i+1 -ℓ ′ i ) i≥0 and (S ′ ℓ ′ i+1 -S ′ ℓ ′ i ) i≥0 . Consequently, processes (ℓ i ) i≥0 , (S ℓ i ) i≥0 , (ℓ ′ i ) i≥0 and (S ′ ℓ ′ i
) i≥0 are all random walks with i.i.d. increments.

We denote µ + the distribution of S ℓ 1 and U + its potential defined by

U + := n≥0 (µ + ) * n . Similarly µ ′ -denotes the distribution of S ′ ℓ ′ 1 and U ′ -:= n≥0 (µ ′ -) * n .
In particular, the oscillating random walk X (α) visits Z -and Z + infinitely often ; in order to control the excursions inside each of these these two half lines, it is natural to consider the following stopping times τ S (-x), τ S ′ (x) with x ≥ 1, associated with S and S ′ respectively and defined by

τ S (-x) := inf{n ≥ 1 | -x + S n ≥ 0}, and τ S ′ (x) := inf{n ≥ 1 | x + S ′ n ≤ 0}.
In the sequel, we focus on the "ascending renewal function" h a of S and the "descending renewal function" h ′ d of S ′ defined by

h a (x) := U + [0, x] = i≥0 P[S ℓ i ≤ x] if x ≥ 0, 0 otherwise, and 
h ′ d (x) :=    U ′ -[-x, 0] = i≥0 P[S ′ ℓ ′ i ≥ -x] if x ≥ 0, 0 otherwise.
We denote by ȟa the function x → h a (-x), it appears in the definition of the parameter γ below.

Both functions h a and h ′ d are increasing and satisfy h a (x) = O(x) and h ′ d (x) = O(x). They appear crucially in the quantitative estimates of the fluctuations of S and S ′ ; see subsection 2.1 for precise statements.

Let us end this paragraph devoted to the presentation of quantities that play an important role in the rest of the paper.

• By classical results on 1-dimensional random walks [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], under hypotheses H1 and H2,

both constants c = E[S ℓ 1 ] σ √ 2π and c ′ = E[-S ℓ ′ 1 ] σ ′ √ 2π are finite.
• Under hypotheses H1, H2 and H3, the "crossing sub-process" X

C which corresponds to the sign changes of the process X (α) is well defined (see section 3.1) and it is positive recurrent on its unique irreducible class. We denote by ν its unique invariant probability measure on Z.

Main result

From now on, we fix α ∈ [0, 1] and consider the continuous and linearly interpolated version (X nt ) of X (α) , defined by: for any n ≥ 1 and t ∈ (0, 1],

X (α) nt = n i=1 X (α) [nt] + (nt -[nt]) × J [nt]+1 } 1 [ i-1 n , i n [ (t),
where

J [nt]+1 :=      ξ [nt]+1 if X (α) [nt] ≤ -1 η [nt]+1 if X (α) [nt] = 0 ξ ′ [nt]+1 if X (α)
[nt] ≥ 1. We also set

X (α,n) (t) :=        X (α) nt σ √ n if X nt ≤ 0, X (α) nt σ ′ √ n if X nt ≥ 0.
The main result of this paper is the following one.

Theorem 1.1. Assume that hypotheses H1-H4 are satisfied. Then, as n → +∞, the normalized stochastic process

{X (α,n) (t), t ∈ [0, 1]} n≥1 converges weakly in the space of continu- ous function C([0, 1]) to the skew Brownian motion W γ := {W γ (t), t ∈ [0, 1]} with parameter γ = c ′ ν(h ′ d ) cν( ȟa ) + c ′ ν(h ′ d )
.

Let us clarify the value of the parameter γ in two peculiar cases of (1).

• When µ = µ ′ , the chain X (α) is an ordinary random walk on Z directed by the unique type of jumps (ξ n ) n≥1 and the limit diffusion W γ is the Brownian motion. In this case, the parameter γ equals 1 2 since the sequences of ladder heights (S ℓ i ) i≥1 and (-S ′

ℓ ′ i ) i≥1 coincide.
• When µ(x) = µ ′ (-x) for any x ∈ Z, the random walk X (α) is the so-called "anti-symmetric random walk" (or "reflected random walk" as usual), which appears in several works, see for instance [START_REF] Essifi | Return Probabilities for the Reflected Random Walk on N 0[END_REF] and [START_REF] Peigné | On recurrence of reflected random walk on the half-line[END_REF]. By setting ξ n = -ξ ′ n , the behaviour of the chain X (α) on positive and negative half lines, respectively, are mirror images of each other. Hence, we may "glue" them together to get an unifying Markov chain on Z + ∪ {0} receiving {0} as its reflecting boundary. Accordingly, γ = 1 in this case and it matches perfectly with the result in [START_REF] Ngo | Limit theorem for reflected random walks[END_REF], which states that the normalized reflected random walk (constructed as above) converges weakly in C([0, 1]) towards the absolute value of the standard Brownian motion.

• Notice that the limit process W γ does not depend on α ∈ [0, 1]. Henceforth, we fix α and set X (α) = X in order to simplify the notations.

Notations

We set Z := Z + ∪ Z -∪ {0}, N := {1, 2, 3, . . .} and D the closed unit ball in C. Given two positive real sequences a = (a n ) n∈N and b = (b n ) n∈N , we write as usual

• a n ∼ b n if lim n→∞ a n /b n = 1, • a n ≈ b n if lim n→∞ (a n -b n ) = 0, • a n = O(b n ) if lim sup n→∞ a n /b n < +∞, • a n = o(b n ) if lim n→∞ a n /b n = 0, • a ⪯ b if a n ≤ c b n for some constant c > 0, • a ≍ b if 1 c b n ≤ a n ≤ c b n for some constant c ≥ 1.
The paper is organized as follows. In Section 2, we recall some important estimates in the theory of fluctuations of random walks; we introduce in particular the renewal functions associated with 1-dimensional random walks and relative conditional limit theorems. These helpful tools appear in Section 4 to compute the multi-dimensional distribution of the limit process. The center of gravity of the paper is Section 3 where we adapt the approach used in [START_REF] Ngo | Limit theorem for reflected random walks[END_REF] in the case of the reflected random walk (with proper adjustments to derive Corollary 3.6 and to determine the parameter γ later on). The last two sections are devoted to the proof of Theorem 1.1 and the appendix.

Auxiliary results for random walks

In this section, we present some classical results on fluctuations of random walk on Z.

Asymptotic estimates for fluctuations of a random walk

The following statement summarizes classical results on fluctuations of random walks which are used below at various places (for instance, see Proposition 11 in [START_REF] Doney | Local behaviour of first passage probabilities[END_REF], Theorem A in [START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF] 

et al). Recall that c = E[S ℓ 1 ] σ √ 2π and c ′ = E[-S ℓ ′ 1 ] σ ′ √ 2π .
Lemma 2.1. (Asymptotic property) Under assumptions H1-H3, for any x, y ≥ 1, it holds, as n → ∞, a) P[τ S (-x) > n] ∼ 2c ha(x) √ n , and

P[τ S ′ (x) > n] ∼ 2c ′ h ′ d (x) √ n ; b) P[τ S (-x) > n, -x + S n = -y] ∼ 1 σ √ 2π ha(x) h d (y) n 3/2
, and

P[τ S ′ (x) > n, x + S ′ n = y] ∼ 1 σ ′ √ 2π h ′ d (x) h ′ a (y) n 3/2 ;
where h d (resp. h ′ a ) is the descending (resp. ascending) renewal function associated with the random walk S (resp. S ′ ).

c) P[τ S (-x) = n] ∼ c ha(x) n 3/2 , and P[τ S ′ (x) = n] ∼ c ′ h ′ d (x) n 3/2 ; Lemma 2.2. (Upper bound) For any n ≥ 1, it holds a) P[τ S (-x) > n] ⪯ 1+x √ n , and P[τ S ′ (x) > n] ⪯ 1+x √ n ; b) P[τ S (-x) > n, -x + S n = -y] ⪯ (1+x)(1+y) n 3/2
, and

P[τ S ′ (x) > n, x + S ′ n = y] ⪯ (1+x)(1+y) n 3/2 ; c) P[τ S (-x) = n] ⪯ 1+x n 3/2 , and P[τ S ′ (x) = n] ⪯ 1+x n 3/2 .
As a direct consequence of b) in Lemmas 2.1 and 2.2, for any x ≥ 1 and w ≥ 0,

P[τ S (-x) = n, -x + S n = w] ⪯ 1 + x n 3/2 z≥w+1 zµ(z). (2) 
Indeed, for any n ≥ 1,

P[τ S (-x) = n, -x + S n = w] = y≥1 P[τ S (-x) = n, -x + S n-1 = -y, -y + ξ n = w] = y≥1 P[τ S (-x) > n -1, -x + S n-1 = -y, -y + ξ n = w] = y≥1 P[τ S (-x) > n -1, -x + S n-1 = -y]µ(y + w) ⪯ 1 + x n 3/2 y≥1 (1 + y)µ(y + w) ⪯ z≥w+1 zµ(z) < +∞ .
Notice also that, more precisely it holds

P[τ S (-x) = n, -x + S n = w] ∼ h a (x) σ √ 2πn 3/2 y≥1
h d (y)µ(y + w).

Conditional limit theorems

It is worth remarking some necessary limit theorems which are very helpful for us to control the fluctuation of excursions between two consecutive successive crossing times and contribute significantly to reduce the complexity when dealing with multidimensional distribution of these excursions. Now, assume that E[ξ ′ 1 ] = 0 and E[(ξ ′ 1 ) 2 ] < +∞ and let (S ′ (t)) t≥0 be the continuous time process constructed from the sequence (S ′ n ) n≥0 by using the linear interpolation between the values at integer points. By Lemma 2.3 in [START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF], for x ≥ 1, the rescaled process

x + S ′ [nt] σ ′ √ n , t ∈ [0, 1] conditioning on the event [τ S ′ (x)
> n] converges weakly on C([0, 1], R) towards the Brownian meander. In other words, for any bounded Lipschitz continuous function ψ : R → R and any t ∈ (0, 1] and

x ≥ 1, lim n→+∞ E ψ x + S ′ [nt] σ ′ √ n | τ S ′ (x) > [nt] = 1 t +∞ 0 ψ(u)u exp - u 2 2t du. (3) 
Let us also state the Caravena-Chaumont's result about random bridges conditioned to stay positive in the discrete case. Roughly speaking, as n → +∞, for any starting point x ≥ 1 and any ending point y ≥ 1, the random bridge of the random walk S, starting at x, ending at y at time n and conditioned to stay positive until time n, after a linear interpolation and a diffusive rescaling, converges in distribution on C([0, 1], R) towards the normalized Brownian excursion

E + :   S ′ [nt] σ ′ √ n t∈[0,1] | τ S ′ (x) > [nt], S ′ n = y   L -→ E + , as n → +∞.
More precisely, for any x, y ≥ 1, 0 < s < t ≤ 1 and any bounded Lipschitz continuous function ψ : R → R,

lim n→+∞ E ψ x + S ′ [ns] σ ′ √ n | τ S ′ (x) > [nt], x + S ′ [nt] = y = +∞ 0 2ψ(u √ t) exp - u 2 2 s t t-s t u 2 2π s 3 t 3 (t-s) 3 t 3 du. ( 4 
)
3 Crossing times and renewal theory

In order to analyse the asymptotic behavior of the process X , we decompose X n as a sum of successive excursions in Z -or Z + . It is therefore interesting to introduce the sequence C = (C k ) k≥0 of "crossing times", i.e. times at which the process X changes its sign: more precisely, C 0 = 0 and, for any k ≥ 0,

C k+1 :=        inf{n > C k | X C k + (ξ C k +1 +• • • + ξ n ) ≥ 0} if X C k ≤ -1, C k + 1 if X C k = 0, inf{n > C k | X C k + (ξ ′ C k +1 +• • • + ξ ′ n ) ≤ -1} if X C k ≥ 1.
(

) 5 
Under hypothesis H2, the random times C k are P-a.s. finite and form a sequence of finite stopping times with respect to the canonical filtration (σ

(ξ k , ξ ′ k ) | k ≤ n) n≥1 .

On the crossing sub-process X C

We denote X C := (X C k ) k≥0 the crossing sub-process of X , which plays an important role in this paper.

Lemma 3.1. The sub-process X C is a time-homogeneous Markov chain on Z with transition kernel C = (C(x, y)) x,y∈Z given by

C(x, y) =    -x-1 t=0 µ + (y -x -t) U + (t) if x ≤ -1 and y ≥ 0, αµ(y) + (1 -α)µ ′ (y) if x = 0 and y ∈ Z, 0 t=-x+1 µ ′ -(y -x -t) U ′ -(t) if x ≥ 1 and y ≤ 0. (6) 
Proof. The Markov property is obvious from the above definition. Now, we compute C(x, y) for any x ≤ -1 and y ≥ 0 (other cases are similar) as follows.

Noticing that the first crossing time C 1 belongs P-a.s. to the set {ℓ k | k ≥ 1} and that the sequence (S ℓ k ) k≥1 is increasing, we may write

C(x, y) = k≥1 P[x + S ℓ k-1 ≤ -1, x + S ℓ k = y] = k≥1 -x-1 t=0 P[S ℓ k-1 = t] P[S ℓ k -S ℓ k-1 = y -x -t] = -x-1 t=0 P[S ℓ 1 = y -x -t] i≥0 P[S ℓ i = t] = -x-1 t=0 µ + (y -x -t) U + (t).
When H2 holds, the crossing sub-process X C is well defined and it is irreducible, aperiodic and positive recurrent on its unique essential class I C (X 0 ). Notice that this essential class can be a proper subset of Z; it occurs for instance when the support of µ is bounded from above or the one of µ ′ is bounded from below. Nevertheless, it admits a unique invariant probability measure ν supported by I C (X 0 ). Also in [START_REF] Vo | The Oscillating Random Walk on Z[END_REF], the explicit expression of ν is only known when α ∈ {0, 1} and the support of µ (resp. µ ′ ) is included in Z + (resp. in Z -). However, the existence of ν is enough for our purpose regardless of its exact formula. Furthermore, by Theorem 2.2 in [START_REF] Vo | The Oscillating Random Walk on Z[END_REF], under hypothesis H3, the oscillating random walk X is irreducible on Z. It is also important to notice the following property. Property 3.2. Under hypotheses H1-H3, the oscillating random walk is null recurrent. In other words, setting

t 0 := {k ≥ 1 | X k = 0} then it holds P 0 [t 0 < +∞] = 1 and E 0 [t 0 ] = +∞.
Proof. We may choose x 0 , y 0 ≥ 1 s.t. µ(-x 0 ) > 0, µ ′ (y 0 ) > 0 and write for any n ≥ 1,

P 0 [t 0 > n] ≥ P 0 [t 0 > n, ξ 1 = -x 0 ] + P 0 [t 0 > n, ξ ′ 1 = y 0 ] ≥ αµ(-x 0 )P[ℓ 1 > n -1] + (1 -α)µ ′ (y 0 )P[ℓ ′ 1 > n -1]. Hence E 0 [t 0 ] ≥ αµ(-x 0 )(1 + E[ℓ 1 ]) + (1 -α)µ ′ (y 0 )(1 + E[ℓ ′ 1 ]) = +∞.
Another point to insist on here is that any excursion between two consecutive crossing times is uniquely governed by S or S ′ ; thus, all the results obtained in the previous section can be applied. The decomposition technique that exploits this fact is classical and extremely efficient in controlling the varying excursions over time of Markov processes; for example, we use it in the last section to estimate the convergence of finite dimensional distribution. As a direct application, we can prove that the strong law of large numbers still holds for the chain X .

Lemma 3.3. Assume that E[|ξ n |] + E[|ξ ′ n |] < +∞ and E[ξ n ] = E[ξ ′ n ] = 0. Then, it holds lim n→+∞ X n n = 0 P-a.s. Proof. We decompose X n as X n = X n 1 {Xn≥1} + X n 1 {Xn≤-1} .
Let us estimate the first term. For any n ≥ 1, there exists a random integer k(n

) ≥ 0 such that C k(n) ≤ n < C k(n)+1 ; notice that the condition X n ≥ 1 yields X C k(n) ≥ 1. Hence, we get 0 ≤ X n 1 {Xn≥1} n = X C k(n) + S ′ n -S ′ C k(n) n ≤ max{X 0 , ξ C k(n) } n + S ′ n n - S ′ C k(n) C k(n) C k(n) n ≤ max{X 0 , ξ C k(n) } n + S ′ n n + S ′ C k(n) C k(n) .
By the strong law of large numbers, the different terms on the right-hand side above converges P-a.s. to 0; so does

Xn1 {Xn≥1} n
. The second term is treated in the same way.

On aperiodic renewal sequences of operators

Let (Z ⊗N , (P(Z)) ⊗N , X , (P x ) x∈Z , θ) be the canonical space, i.e. the space of trajectories associated with the Markov chain X . For any x ∈ Z, we probability measure P x is the conditional probability with respect to the event [X 0 = x], we denote by E x the corresponding conditional expectation. The operator θ is the classical shift transformation defined by θ((x k ) k≥0 ) = (x k+1 ) k≥0 for any (x k ) k≥0 ∈ Z ⊗N .

In this section, we study the behavior as n → +∞ of the sequence

H n (x, y) = +∞ k=1 P x [C k = n, X n = y],
for any x, y ∈ Z. Since the position at time C k may vary, so that the excursions of X between two successive crossing times are not independent, it thus motivates us to take into account the long-term behaviours of these quantities and express them in terms of operators related to the crossing sub-process X C . For this purpose, we apply a general renewal theorem due to S. Gouëzel [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF]. This theorem relies on the decomposition of the operator C using a sequence of operators (C n ) n≥1 acting on some Banach space and that are not so difficult to deal with.

It is natural in our context to deal with the operators C n = (C n (x, y)) x,y∈Z , n ≥ 1, defined by: for any x, y ∈ Z and any n ≥ 1,

C n (x, y) := P x [C 1 = n, X n = y]. The relation C(x, y) = n≥1 C n (x, y) is straightforward. We also pay attention to the case x = 0, that is C 1 (0, y) = P 0 [X 1 = y] = αµ(y) + (1 -α)µ ′ (y) and C n (0, y) = 0 if n ≥ 2.
For a function φ : Z → C, we formally set

C n φ(x) := y∈Z: xy≤0 C n (x, y)φ(y) = E x [φ(X n ), C 1 = n] if x ∈ Z \ {0}, and C 1 φ(0) = y∈Z C 1 (0, y)φ(y) = E 0 [φ(X 1 )] and C n φ(0) = 0 if n ≥ 2. The quantity C n φ(x)
is well defined for instance when φ ∈ L ∞ (Z). Other Banach spaces can be considered; under moment assumptions, we describe below the action of the C n on a bigger Banach space B δ , more suitable to the situation as explained a little further on.

Notice that C n (x, y) = C n 1 {y} (x) for any x, y ∈ Z, which yields, by induction,

H n (x, y) = +∞ k=1 P x [C k = n, X n = y] = +∞ k=1 j 1 +...+j k =n P x [C 1 = j 1 , C 2 -C 1 = j 2 , . . . , C k -C k-1 = j k , X n = y] = +∞ k=1 j 1 +...+j k =n C j 1 . . . C j k 1 {y} (x). ( 7 
)
As announced above, we apply a result of S. Gouezel, stated in a general framework [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF], that of aperiodic renewal sequence of operator, i. 

(I -C(z)) -1 = k≥0 C(z) k = k≥0 j≥1 C j z j k = n≥0 H n z n with H 0 = I and H n = +∞ k=1 j 1 +...+j k =n C j 1 . . . C j k .
The above identity, called the renewal equation, is of fundamental importance to understand the asymptotics of H n in the non-commutative setting; in particular, the equality ( 7) yields H n (x, y) = H n 1 {y} (x) so that the asymptotic behaviour of (H n (x, y)) n≥1 is related to that of (H n ) n≥1 .

By [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF], if the sequence (C n ) n≥1 satisfies the following additive assumptions

R4(ℓ, β). ∥C n ∥ B ≤ C ℓ(n) n 1+β , R5(ℓ, β). j>n r j ∼ ℓ(n) n β ,
where C > 0, β ∈ (0, 1) and ℓ is a slowly varying function, then the sequence (n

1-β ℓ(n)H n ) n≥1 converges in (L(B), ∥ • ∥ B ) to the operator d β Π, with d β = 1 π sin βπ.
In the next subsection, we introduce some Banach space B = B δ in order to be able to apply this general result.

Spectral property of the transition matrix

C = (C(x, y)) x,y∈Z
The operator C acts on the space L ∞ (Z) of bounded functions on Z. By the following lemma, it satisfies some strong spectral property on this space. Lemma 3.4. Assume H1-H3 hold. Then, the infinite matrix C satisfies the Doeblin condition and therefore, it is a quasi-compact operator on L ∞ (Z), the space of bounded functions on Z. Furthermore, the eigenvalue 1 is simple, with associated eigenvector 1, and the rest of the spectrum is included in a disk of radius < 1.

Proof. Under the above assumptions, the positive random variable S ℓ 1 has finite first moment; hence, by the renewal theorem,

lim t→+∞ U + (t) = 1 E[S ℓ 1 ] > 0.
The above convergence readily implies δ + := inf z∈Z + U + (z) > 0.

Consequently, by [START_REF] Doney | Local behaviour of first passage probabilities[END_REF], for any x ≤ -1 and y ≥ 0,

C(x, y) ≥ µ + (y + 1) U + (-x -1) ≥ δ + µ + (y + 1).
In the same vein, one gets C(x, y) ≥ δ ′ µ ′ -(y -1) for any x ≥ 1 and y ≤ 0 with

δ ′ := inf z∈Z -U ′ -(z) > 0.
Hence, it is easy to show that there exists a probability measure m and δ 0 > 0 s.t. for any x ∈ Z, C(x, .) ≥ δ 0 m(.), which immediately implies the quasi-compactness of C. The control of the peripheral spectrum readily follows.

Thanks to this lemma, we could believe that hypothesis R1 is satisfied by the sequence

(C n ) n≥1 acting on L ∞ (Z) since C(1) = C. Unfortunately, it holds n≥1 |C n | ∞ = +∞. Indeed, it holds |C n | ∞ = sup x∈Z P x [C 1 = n]; now, if we assume for instance x ≤ 1, it holds P x [C 1 = n] = P[τ S (x) = n] with (i) P[τ S (x) = n] = O(1/n), and 
(ii) lim inf n→+∞ nP[τ S (x n ) = n] > 0 when x n ≍ √ n .
(see Lemma 5 and Theorem (B) [START_REF] Eppel | A local limit theorem for first passage time[END_REF]). Consequently

|C n | ∞ ≍ 1/n.
Thus, we have to choose another Banach space B δ . By [START_REF] Chow | Moments of ladder variables for driftless random walks[END_REF], it is clear that

C k+1 = τ S (X C k ) when X C k ≤ -1 and C k+1 = τ S ′ (X C k ) when X C k ≥ 1.
Consequently, the behaviour as n → +∞ of the k th -term P x [C k = n, X n = y] of the sum Σ n (x, y) is closely related to the distributions of τ S and τ S ′ ; in particular, by Lemma 2.1, its dependence on y is expressed in terms of h a (y) and h ′ d (y). This explains why we have to choose a Banach space on which the action of C has "nice" spectral properties -as compacity or quasi-compacity -and also does contain these functions h a and h ′ d . The fact that they are both sublinear leads us to examine the action of C on the space B δ of complex valued functions on Z defined by

B δ := f : Z → C : |f | B δ := sup x∈Z |f (x)| 1 + |x| 1+δ < +∞ , with δ ≥ 0.

By Lemma 2.2 and the fact that h

a (x) = O(x), h ′ d (x) = O(x), the functions h a , h ′ d , h n : x → √ nP[τ S (-x) > n] and h ′ n : x → √ nP[τ S ′ (x) > n] do belong to B δ for any δ ≥ 0; furthermore, applying Lemma 2.1, the sequence (h n ) n≥0 (resp. (h ′ n ) n≥0 ) converges to 2ch a (resp. 2c ′ h ′ d ) in B δ if δ > 0.
This last property is of interest in applying Gouëzel's renewal theorem and for this reason, we assume from now on δ > 0.

Furthermore, the map C acts on B δ as a compact operator whose spectrum can be controlled as follows.

Proposition 3.5. Assume that hypotheses H1-H4 hold. Then, (i) The map C acts on B δ and C(B δ ) ⊂ L ∞ (Z).

(ii) C is a compact operator on B δ with spectral radius ρ B δ = 1 and with the unique and simple dominant eigenvalue 1.

(iii) The rest of the spectrum of C on B δ is contained in a disk of radius < 1.

Consequently, the operator C on B δ may be decomposed as

C = Π + Q
where • Π is the eigenprojector from B δ to C1 corresponding to the eigenvalue 1 and Π(ϕ) = ν(ϕ)1, where ν is the unique C-invariant probability measure on Z;

• the spectral radius of Q on B δ is < 1;

• ΠQ = QΠ = 0. Proof. i) Note that U ′ -(t) = n≥0 P[S ′ ℓ ′ n = t] = P[∃n ≥ 0 : S ′ ℓ ′ n = t] ≤ 1. For any φ ∈ B δ and x ≥ 1, we have |Cφ(x)| ≤ y≤0 0 t=-x+1 µ ′ -(y -x -t) |φ(y)| ≤ |φ| B δ y≤0 (1 + |y| 1+δ ) µ ′ -(-∞, y -1) ≤ |φ| B δ E[|S ′ ℓ ′ 1 ] + E[|S ′ ℓ ′ 1 | 2+δ ] , which is finite if E[(ξ ′- n ) 3+δ
] < +∞ (see [START_REF] Chow | Moments of ladder variables for driftless random walks[END_REF]). Other cases can be estimated in the same way and yield

|Cφ| B δ ≤ |Cφ| ∞ ≤ |φ| B δ E[|S ′ ℓ ′ 1 ] + E[|S ′ ℓ ′ 1 | 2+δ ] < +∞. ( 8 
)
ii) By ( 8), the operator C acts continuously from B δ into L ∞ (Z); since the inclusion map i : L ∞ (Z) → B δ is compact, the operator C is also compact on B δ .

Let us now compute the spectral radius ρ B δ of C. The fact that C is a stochastic matrix yields ρ B δ ≥ 1. To prove ρ B δ ≤ 1, it suffices to show that C has bounded powers on B δ . For any n ≥ 1 and x ∈ Z,

|C n φ(x)| ≤ y∈Z C n-1 (x, y)|Cφ(y)| ≤ |Cφ| ∞ y∈Z C n-1 (x, y) = |Cφ| ∞ .
Together with [START_REF] Essifi | Return Probabilities for the Reflected Random Walk on N 0[END_REF], it implies

|C n φ| B δ ≤ |C n φ| ∞ ≤ |Cφ| ∞ ≤ |φ| B δ E[|S ′ ℓ ′ 1 ] + 1 2 E[|S ′ ℓ ′ 1 | 2+δ ] . Hence ∥C n ∥ B δ ≤ E[|S ′ ℓ ′ 1 ] + E[|S ′ ℓ ′ 1 | 2+δ ] for any n ≥ 1 and ρ B δ = lim n→+∞ ∥C n ∥ 1/n B δ ≤ 1.
Let us now control the peripheral spectrum of C. Let θ ∈ R and ψ ∈ B δ such that Cψ = e iθ ψ. Obviously, the function ψ is bounded and |ψ| ≤ C|ψ|. Consequently, |ψ| ∞ -|ψ| is non-negative and super-harmonic (i.e. C(|ψ| ∞ -|ψ|) ≤ |ψ| ∞ -|ψ|) on the unique irreducible class I C (X 0 ) of X . By the classical denumerable Markov chains theory, it is thus constant on I C (X 0 ) which follows that |ψ| is constant on I C (X 0 ).

Without loss of generality, we may assume |ψ(x)| = 1 for any x ∈ I C (X 0 ), i.e. ψ(x) = e iϕ(x) for some ϕ(x) ∈ R. We may rewrite the equality Cψ = e iθ ψ as

∀x ∈ I C (X 0 ) y∈I C (X 0 ) C(x, y)e i(ϕ(y)-ϕ(x)) = e iθ .
Note that C(x, y) > 0 for all x, y ∈ I C (X 0 ); by convexity, one readily gets e iθ = e i(ϕ(y)-ϕ(x)) for such points x, y. Taking x = y ∈ I C (X 0 ), we thus obtain e iθ = 1.

In particular, the function ψ is harmonic on I C (X 0 ), hence constant on this set, by Liouville's theorem. Furthermore, for any x ∈ Z, it holds C(x, y) > 0 ⇐⇒ y ∈ I C (X 0 ) ; consequently, for any fixed y 0 ∈ I C (X 0 ) and any x ∈ Z,

ψ(x) = Cψ(x) = y∈I C (X 0 ) C(x, y)ψ(y) = ψ(y 0 ).
Therefore, the function ψ is constant on Z.

iii) This is a direct consequence of (ii).

A renewal limit theorem for the sequence of crossing times

The main goal of this part is to prove the following statement.

Proposition 3.6. The sequence (

√ nH n ) n≥1 converges in (L(B δ ), ∥ • ∥ B δ ) to the operator c -1 Π with c = 2π cν( ȟa ) + c ′ ν(h ′ d ) .
In particular, for any x, y ∈ Z,

lim n→+∞ √ nH n (x, y) = ν(y) 2π cν( ȟa ) + c ′ ν(h ′ d )
.

This is a consequence of the fact that (C n ) n≥1 is an aperiodic renewal sequence of operators on B δ satisfying R4 and R5 ( with β = 1/2 and ℓ constant).

The fact that all the C n , n ≥ 1, act on B δ and n≥1 ∥C n ∥ B δ < +∞ is a consequence of the following lemma. Lemma 3.7. Under hypotheses H1-H4, for any n ≥ 1, the operator C n acts on B δ and

∥C n ∥ B δ = O 1 n 3/2 .

Functional limit theorem

Proof. By (2), for any x ≥ 1 and ϕ ∈ B δ ,

|C n ϕ(-x)| ≤ w≥0 P -x [C 1 = n; X n = w] |ϕ(w)| = w≥0 P[τ S (-x) = n, -x + S n = w] |ϕ(w)| ⪯ 1 + x n 3/2 w≥0 z≥w+1 zµ(z) |ϕ(w)| ≤ 1 + x n 3/2 |ϕ| B δ w≥0 (1 + w 1+δ ) z≥w+1 zµ(z) ⪯ z≥1 z 3+δ µ(z) = E[(ξ + 1 ) 3+δ ]
.

Similarly, ii) For any n ≥ 1, it holds ΠC n Π = r n Π with

|C n ϕ(x)| ⪯ 1 + x n 3/2 |ϕ| B δ E[(ξ ′- 1 ) 3+δ ]. Moreover, |C 1 ϕ(0)| ⪯ |ϕ|
r n := ν(C n 1) = x∈Z ν(x)P x [C 1 = n] ≥ 0. iii) j>n r j ∼ 2 cν( ȟa ) + c ′ ν(h ′ d ) √ n as n → +∞.
Proof. i) The argument is close to the one used to prove Proposition 3.5. For any z ∈ D\{1}, the operator C(z) is compact on B δ with spectral radius ρ B δ (z) ≤ 1. We now prove ρ B δ (z) ̸ = 1 by contraposition. Suppose ρ B δ (z) = 1; in other words, there exist θ ∈ R and φ ∈ B δ such that C(z)φ = e iθ φ. Since C is bounded from B δ into L ∞ (Z) and 0 ≤ |φ| ≤ C|φ|, the function |φ| is C-superharmonic, bounded and thus constant on its essential class I C (X 0 ).

Without loss of generality, we can suppose that |φ(x)| = 1 for any x ∈ I C (X 0 ); equivalently, φ(x) = e iϕ(x) for some function ϕ : I C (X 0 ) → R. For any x ∈ I C (X 0 ), we get

C(z)φ(x) = e iθ φ(x) ⇐⇒ n≥1 y∈I C (X 0 )
z n e i(ϕ(y)-ϕ(x

)) P x [C 1 = n; X n = y] = e iθ , with n≥1 y∈I C (X 0 ) P x [C 1 = n; X n = y] = 1
. By convexity, it readily holds z n e i(ϕ(y)-ϕ(x)) = e iθ for all x, y ∈ I C (X 0 ) and n ≥ 1. By taking x = y, we obtain z n = e iθ for all n ≥ 1; consequently z = 1, contradiction.

ii) For any ϕ ∈ B δ and n ≥ 1,

ΠC n Πϕ = ν(ϕ)Π(C n 1) = ν(ϕ)1 z∈Z ν(z)P z [C 1 = n] = r n Π(ϕ) with r n = z∈Z ν(z)P z [C 1 = n] ≥ 0.
iii) On the one hand, by Proposition 3.5, the eigenprojector Π acts on B δ ; thus, since ȟa ∈ B δ , it holds ν( ȟa ) < +∞. On the other hand, the support I C (X 0 ) of ν intersects Z -and the support of ȟa equals Z -; hence ν( ȟa

) > 0. Similarly 0 < ν(h ′ d ) < +∞. Now, let us write j>n r j = j>n x∈Z ν(x)P x [C 1 = j] = x∈Z ν(x)P x [C 1 > n] = x≤-1 ν(x)P[τ S (x) > n] + x≥1 ν(x)P[τ S ′ (x) > n] (since P 0 [C 1 = 1] = 1) ∼ 2c √ n x≤-1 ν(x)h a (-x) + 2c ′ √ n x≥1 ν(x)h ′ d (x) = 2 c ν( ȟa ) + c ′ ν(h ′ d ) √ n .
Finally, combining Lemma 3.7 and Proposition 3.8 iii), we see that conditions R4 and R5 are satisfied with

ℓ = const = 2(c ν( ȟa ) + c ′ ν(h ′ d )) and β = 1/2.
Consequently, by [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF], the sequence (

√ nH n ) n≥1 converges in (L(B δ ), ∥ • ∥ B δ ) to the operator c -1 Π with c = 2π cν( ȟa ) + c ′ ν(h ′ d ) . Formally, one may write [ns]H [ns] -c -1 Π B δ -→ 0, as n → +∞. ( 9 
)
4 Proof of Theorem 1.1

For m ≥ 1, let {φ i : R → R | i = 1, . . . , m} be a sequence of bounded and Lipschitz continuous functions with corresponding Lipschitz coefficients Lip(φ i ). Assume that the time sequence {t i } 1≤i≤m is strictly increasing with values in (0, 1] and t 0 = 0. In this part, we prove that

lim n→+∞ E x m i=1 φ i X (n) (t i ) = R m m i=1 φ i (u i )p γ t i -t i-1 (u i-1 , u i ) du 1 . . . du m with u 0 = 0.
Without loss of generality, we assume σ = σ ′ and x ≥ 1 to reduce unnecessary complexity associated with subcases.

Convergence of the one dimensional distributions

m = 1 We first notice that E x [φ 1 (X (n) (t 1 ))] ≈ E x φ 1 X [nt 1 ] σ √ n since E x [φ 1 (X (n) (t 1 ))] -E x φ 1 X [nt 1 ] σ √ n ≤ Lip(φ 1 ) E x X (n) (t 1 ) - X [nt 1 ] σ √ n ≤ Lip(φ 1 ) E[|ξ [nt 1 ]+1 |] + E[|η [nt 1 ]+1 |] + E[|ξ ′ [nt 1 ]+1 |] σ √ n ,
which tends to 0 as n → +∞. Now, we can decompose

E x φ 1 X [nt 1 ] σ √ n as E x φ 1 X [nt 1 ] σ √ n , X [nt 1 ] = 0 A 0 (n) + E x φ 1 X [nt 1 ] σ √ n , X [nt 1 ] > 0 A + (n) + E x φ 1 X [nt 1 ] σ √ n , X [nt 1 ] < 0 A -(n)
.

The term A 0 (n) tends to 0 as n → +∞ since (X n ) n≥0 is null recurrent. It remains to control the two other terms.

• Estimate of A + (n) A + (n) ≈ [nt 1 ]-1 k 1 =1 ℓ≥1 y≥1 E x φ 1 X [nt 1 ] σ √ n , C ℓ = k 1 , X k 1 = y, y + ξ ′ k 1 +1 > 0, . . . , y + ξ ′ k 1 +1 + . . . + ξ ′ [nt 1 ] > 0 = [nt 1 ]-1 k 1 =1 y≥1 E φ 1 y + ξ ′ k 1 +1 + . . . + ξ ′ [nt 1 ] σ √ n , τ S ′ (y) > [nt 1 ] -k 1 ℓ≥1 P x [C ℓ = k 1 ; X k 1 = y] = [nt 1 ]-1 k 1 =1 y≥1 H k 1 (x, y)E φ 1 y + S ′ [nt 1 ]-k 1 σ √ n , τ S ′ (y) > [nt 1 ] -k 1 .
For any 0 ≤ s 1 ≤ t 1 and n ≥ 1, let f n be the function defined by

f n (s 1 ) := n y≥1 H [ns 1 ] (x, y)E φ 1 y + S ′ [nt 1 ]-[ns 1 ] σ √ n , τ S ′ (y) > [nt 1 ] -[ns 1 ] if 0 ≤ s 1 < [nt 1 ] n and f n (s 1 ) = 0 if [nt 1 ] n ≤ s 1 ≤ t 1 . Hence, A + (n) = t 1 0 f n (s 1 ) ds 1 + O 1 √ n .
The convergence of the term A + (n) as n → +∞ is a consequence of the two following properties:

• for any n ≥ 1,

|f n (s 1 )| ⪯ 1 + |x| s 1 (t 1 -s 1 ) ∈ L 1 ([0, t 1 ]). (10) 
• for any

s 1 ∈ [0, t 1 ], lim n→+∞ f n (s 1 ) = γ π s 1 (t 1 -s 1 ) +∞ 0 φ 1 (z √ t 1 -s 1 )z exp -z 2 2 dz = γ π +∞ 0 φ 1 (u)u exp -u 2 2(t 1 -s 1 ) s 1 (t 1 -s 1 ) 3 du (set u = z √ t 1 -s 1 ). (11) 
Indeed, applying the Lebesgue dominated convergence theorem, we obtain

lim n→+∞ A + (n) = γ π +∞ 0 φ 1 (u)u t 1 0 1 s 1 (t 1 -s 1 ) 3 exp -u 2 2(t 1 -s 1 ) ds 1 du = γ π +∞ 0 φ 1 (u)u 1 t 1 exp -u 2 2t 1 +∞ 0 1 √ s exp -u 2 2t 1 s ds = √ 2πt 1 u du (set s := s 1 t 1 -s 1 ) = γ +∞ 0 φ 1 (u) 2 exp (-u 2 /2t 1 ) √ 2πt 1 du. (12) 
Similarly,

lim n→+∞ A -(n) = (1 -γ) 0 -∞ φ 1 (u) 2 exp (-u 2 /2t 1 ) √ 2πt 1 du. (13) 
Combining ( 12) and ( 13), we thus obtain

lim n→+∞ E x [φ 1 (X (n) t 1 )] = R φ 1 (u)p γ t 1 (0, u)du = R φ1 (u) 2 exp(-u 2 /2t 1 ) √ 2πt 1 du, where φ1 (u) = γφ 1 (u)1 (0,+∞) (u) + (1 -γ)φ 1 (u)1 (-∞,0) (u).
It thus remains to establish [START_REF] Gouëzel | Correlation asymptotics from large deviations in dynamical systems with infinite measure[END_REF] and [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. The first natural idea is to set

ψ n (y) := √ nE φ 1 y + S ′ [nt 1 ]-[ns 1 ] σ √ n , τ S ′ (y) > [nt 1 ] -[ns 1 ]
and to remark that

f n (s 1 ) = √ nH [ns 1 ] (ψ n )(x) with ψ n ∈ B δ .
One can easily check that (ψ n ) n≥0 converges pointwise to some function ψ ∈ B δ but it is much more complicated to prove that this convergence holds in B δ . This can be done when δ ≥ 1 with a strong moment assumption (namely moments of order ≥ 4 for µ ′ ) by using a recent result in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]; unfortunately, such a result does not exist for the Brownian meander, which is useful in the sequel for convergence of multidimensional distributions. This forces us to propose another strategy that we now present.

For this purpose, for any n ≥ 1 and any fixed 0 < s 1 < t 1 , we decompose f n (s 1 ) as f n (s 1 ) = y≥1 a n (y)b n (y), where

a n (y) := nH [ns 1 ] (x, y) P[τ S ′ (y) > [nt 1 ] -[ns 1 ]], b n (y) := E φ 1 y + S ′ [nt 1 ]-[ns 1 ] σ √ n | τ S ′ (y) > [nt 1 ] -[ns 1 ]
and apply the following classical lemma with V = Z + : Let us check that these conditions are satisfied by the families (a n (y)) y≥1 , (b n (y)) y≥1 defined above.

Condition (i). The sum y≥1 a n (y) may be written as

y≥1 a n (y) = 1 + o(n) s 1 (t 1 -s 1 ) [ns 1 ]H [ns 1 ] (h ′ [nt 1 ]-[ns 1 ] )(x). ( 14 
)
On the one hand, the sequence

( [ns 1 ]H [ns 1 ] ) n≥1 converges in (L(B δ ), ∥ • ∥ B δ ) to the operator 1 2π cν( ȟa)+c ′ ν(h ′ d )
Π; on the other hand, the sequence (h

′ [nt 1 ]-[ns 1 ] ) n≥1 converges in B δ to 2c ′ h ′ d .

Hence condition (i) holds with

A = 1 s 1 (t 1 -s 1 ) c ′ ν(h ′ d ) π cν( ȟa ) + c ′ ν(h ′ d ) = γ π s 1 (t 1 -s 1 )
.

Condition (ii). Fix ϵ > 0. We want to find y ϵ ≥ 1 s. 

≤ y≥yϵ a n (y) ⪯ sup n≥1 [ns 1 ]∥H [ns 1 ] ∥ B δ <+∞ sup n≥1 |h ′ [nt 1 ]-[ns 1 ] 1 [yϵ,+∞[ | B δ ⪯ 1 y δ ϵ .
We conclude choosing y ϵ large enough.

Condition (iii). By [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF], it holds with b

= +∞ 0 φ 1 (u)u exp -u 2 2(t 1 -s 1 ) t 1 -s 1 du.

Convergence of the multidimensional distributions

We focus here on the case m = 2; the cases m ≥ 3 is done by induction. We fix 0 < t 1 < t 2 and, for n ≥ 1 given, let κ = κ t 1 be the first crossing time after time [nt 1 ] defined by

κ := min{k > [nt 1 ] : X [nt 1 ] X k ≤ 0}.
As in the case m = 1, it holds

E x [φ 1 (X (n) (t 1 ))φ 2 (X (n) (t 2 ))] ≈ E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n ,
and the right hand side term may be decomposed as

A 0 (n) + A ± 1 (n) + A ± 2 (n), where A 0 (n) := E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n , X [nt 1 ] = 0 , A ± 1 (n) := [nt 2 ] k 2 =[nt 1 ]+1 E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n 1 [κ=k 2 ] 1 [±X [nt 1 ] >0] ,
and

A ± 2 (n) := E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n 1 [κ>[nt 2 ]] 1 [±X [nt 1 ] >0] .
As previously, the term A 0 (n) tends to 0 since (X n ) n≥0 is null recurrent.

• Estimate of A ± 1 (n)

A + 1 (n) ≈ [nt 1 ]-1 k 1 =1 [nt 2 ] k 2 =[nt 1 ]+1 ℓ≥1 y≥1 z≥1 w≤0 E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n , C ℓ = k 1 , X k 1 = y, y + ξ ′ k 1 +1 > 0, . . . +, y + ξ ′ k 1 +1 + . . . + ξ ′ k 2 -2 > 0, y + ξ ′ k 1 +1 + . . . + ξ ′ k 2 -1 = z, y + ξ ′ k 1 +1 + . . . + ξ ′ k 2 = w = [nt 1 ]-1 k 1 =1 [nt 2 ] k 2 =[nt 1 ]+1 ℓ≥1 y≥1 z≥1 w≤0 E x φ 1 y + ξ ′ k 1 +1 + . . . + ξ ′ [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n , C ℓ = k 1 , X k 1 = y, y + ξ ′ k 1 +1 > 0, . . . , y + ξ ′ k 1 +1 + . . . + ξ ′ k 2 -2 > 0, y + ξ ′ k 1 +1 + . . . + ξ ′ k 2 -1 = z P[ξ ′ k 2 = w -z] = [nt 1 ]-1 k 1 =1 y≥1 H k 1 (x, y) [nt 2 ] k 2 =[nt 1 ]+1 z≥1 E φ 1 y + S ′ [nt 1 ]-k 1 σ √ n , τ S ′ (y) > k 2 -k 1 -1, y + S ′ k 2 -k 1 -1 = z w≤0 E w φ 2 X [nt 2 ]-k 2 σ √ n µ ′ (w -z). For any (s 1 , s 2 ) ∈ [0, t 1 ] × [t 1 , t 2 
] and n ≥ 1, let g n be the function defined by

g n (s 1 , s 2 ) = n 2 y≥1 H [ns 1 ] (x, y) z≥1 E φ 1 y + S ′ [nt 1 ]-[ns 1 ] σ √ n , τ S ′ (y) > [ns 2 ] -[ns 1 ] -1, y + S ′ [ns 2 ]-[ns 1 ]-1 = z w≤0 E w φ 2 X [nt 2 ]-[ns 2 ] σ √ n µ ′ (w -z) if 0 ≤ s 1 < [nt 1 ] n and [nt 1 ]+1 n ≤ s 2 ≤ [nt 2 ]
n , and 0 otherwise. Hence,

A + 1 (n) = t 1 0 t 2 t 1 g n (s 1 , s 2 )ds 1 ds 2 + O 1 √ n .
The convergence of the term A + 1 (n) as n → +∞ is a consequence of the two following properties whose proofs are postponed at the end of the present subsection:

• for any n ≥ 1, |g n (s 1 , s 2 )| ⪯ 1 + |x| s 1 (s 2 -s 1 ) 3 ∈ L 1 ([0, t 1 ] × [t 1 , t 2 ]); (15) 
• for any (s 1 , s

2 ) ∈ [0, t 1 ] × [t 1 , t 2 ], lim n→+∞ g n (s 1 , s 2 ) = γ π 2 +∞ 0 +∞ -∞ φ 1 (u) φ2 (v)u 2 e -v 2 2(t 2 -s 2 ) e -u 2 2 (t 1 -s 1 )(s 2 -t 1 ) s 2 -s 1 s 1 (t 1 -s 1 ) 3 (s 2 -t 1 ) 3 (t 2 -s 2 ) dudv. (16) 
Indeed, applying the Lebesgue dominated convergence theorem, we obtain

lim n→+∞ A + 1 (n) = γ π 2 +∞ 0 +∞ -∞ φ 1 (u) φ2 (v) t 1 0 t 2 t 1 e -v 2 2(t 2 -s 2 ) u 2 exp -u 2 2 (t 1 -s 1 )(s 2 -t 1 ) s 2 -s 1 s 1 (t 1 -s 1 ) 3 (s 2 -t 1 ) 3 (t 2 -s 2 ) ds 1 ds 2 dudv = γ π 2 √ 2πt 1 t 1 +∞ 0 +∞ -∞ φ 1 (u) φ2 (v)|u| t 2 t 1 e -u 2 s 2 2t 1 (s 2 -t 1 ) e -v 2 2(t 2 -s 2 ) (t 2 -s 2 )(s 2 -t 1 ) 3 ds 2 dudv = 2γ π t 1 (t 2 -t 1 ) +∞ 0 +∞ -∞ φ 1 (u) φ2 (v)e - u 2 t 2 +v 2 t 1 +2|uv|t 1 t 1 (t 2 -t 1 )
dudv which can be rewritten as

lim n→+∞ A + 1 (n) = 2γ 2 π t 1 (t 2 -t 1 ) +∞ 0 +∞ 0 φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u+v) 2 2(t 2 -t 1 ) dudv + 2γ(1 -γ) π t 1 (t 2 -t 1 ) +∞ 0 0 -∞ φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u-v) 2 2(t 2 -t 1 ) dudv, (17) 
by using the classical integral

+∞ 0 1 √ x exp -λ 1 x - λ 2 x dx = π λ 1 e -2 √ λ 1 λ 2 for any λ 1 > 0 and λ 2 ≥ 0.
The same argument holds for the term A - 1 (n) and yields

lim n→+∞ A - 1 (n) = 2(1 -γ) 2 π t 1 (t 2 -t 1 ) 0 -∞ 0 -∞ φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u+v) 2 2(t 2 -t 1 ) dudv + 2γ(1 -γ) π t 1 (t 2 -t 1 ) 0 -∞ +∞ 0 φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u-v) 2 2(t 2 -t 1 ) dudv. (18) 
• Estimate of A + 2 (n)

A + 2 (n) = [nt 1 ]-1 k=1 ℓ≥1 y≥1 E x φ 1 X [nt 1 ] σ √ n φ 2 X [nt 2 ] σ √ n , C ℓ = k, X k = y, y + ξ ′ k+1 > 0, . . . , y + ξ ′ k+1 + . . . + ξ ′ [nt 1 ] > 0, . . . , y + ξ ′ k+1 + . . . + ξ ′ [nt 2 ] > 0 = [nt 1 ]-1 k=1 y≥1 H k (x, y)E φ 1 y + S ′ [nt 1 ]-k σ √ n φ 2 y + S ′ [nt 2 ]-k σ √ n , τ S ′ (y) > [nt 2 ] -k . σ √ n [nt 2 ] -[nr] √ n | τ S ′ (y) > [nt 2 ] -[nr] = 1 2π(t 2 -t 1 ) +∞ 0 +∞ 0 φ 1 (u)φ 2 (v) √ t 2 -r (t 1 -r) 3 ue -u 2 2(t 1 -r) × e - (u-v) 2 2(t 2 -t 1 ) -e -(u+v) 2 2(t 2 -t 1 )
dudv.

It immediately yields lim

n→+∞ A + 2 (n) = γ π 2π(t 2 -t 1 ) t 1 0 1 2π(t 2 -t 1 ) +∞ 0 +∞ 0 φ 1 (u)φ 2 (v) × √ t 2 -r r(t 2 -r)(t 1 -r) 3 ue -u 2 2(t 1 -r) e - (u-v) 2 2(t 2 -t 1 ) -e -(u+v) 2 2(t 2 -t 1 ) dudv dr = γ π t 1 (t 2 -t 1 ) +∞ 0 +∞ 0 φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u-v) 2 2(t 2 -t 1 ) -e -(u+v) 2 2(t 2 -t 1 ) dudv. (19) 
Analogously, one gets

lim n→+∞ A - 2 (n) = 1 -γ π t 1 (t 2 -t 1 ) 0 -∞ 0 -∞ φ 1 (u)φ 2 (v)e -u 2 2t 1 e - (u-v) 2 2(t 2 -t 1 ) -e - (u+v) 2 2(t 2 -t 1 ) dudv (20) 
Combining ( 17), ( 18), ( 19) and ( 20), we conclude

lim n→+∞ E x φ 1 (X (n) (t 1 ))φ 2 (X (n) (t 2 )) = +∞ -∞ +∞ -∞ φ 1 (u)φ 2 (v)p γ t 1 (0, u)p γ t 2 -t 1 (u, v)dudv.
Proof of properties ( 15) and ( 16)

Following the same strategy as in the one dimensional case, we decompose g n (s 1 , s 2 ) as g n (s 1 , s 2 ) = 

σ √ n | τ S ′ (y) > [ns 2 ] -[ns 1 ] -1, y + S ′ [ns 2 ]-[ns 1 ]-1 = z × E w φ 2 X [nt 2 ]-[ns 2 ] σ √ n .
Properties ( 15) and ( 16) are a direct consequence of Lemma 4.1, applied to the families (a n (y, z, w)) y,z≥1,w≤0 , (b n (y, z, w)) y,z≥1,w≤0 ; it thus sufficies to check that conditions (i), (ii) and (iii) of this lemma are satisfied in this new situation.

Condition (i). The sum y≥1 z≥1 w≤0

a n (y, z, w) may be written as y≥1 z≥1 w≤0

a n (y, z, w) = 1 + o(n) .

s 1 (s 2 -s 1 ) 3 [ns 1 ]H [ns 1 ] (b ′ [ns 2 ]-[ns 1 ] )(x), (21) 
This last right hand side term is < ϵ for sufficiently large y ϵ .

Furthermore, 0 ≤ a n (y, z, w) ⪯ (1 + y)(1 + z)µ ′ (w -z) for any fixed y, z, w and any n ≥ 1; hence, for any 0 ≤ y < y ϵ , it holds z+|w|>t a n (y, z, w) < ϵ if t is large enough since z≥1 zµ ′ (] -∞, -z]) < +∞. This completes the argument. Condition (iii). On the one hand, by [START_REF] Caravenna | An invariance principle for random walk bridges conditioned to stay positive[END_REF] du.

On the other hand, the one dimensional case m = 1 studied above yields, for any w ≤ 0, (ii) For every ϵ > 0 and η > 0, there exist δ ∈ (0, 1) and n ϵ,η ≥ 1 such that 

lim n→+∞ E w φ 2 X [nt 2 ]-[ns 2 ] σ √ n = R φ2 (v) 2 exp -v 2 2(t 2 -s 2 ) 2π(t 2 -s 2 ) dv with φ2 (v) = γφ 2 (v)1 (0,+∞) (v) + (1 -γ)φ 2 (v)1 (-∞,0) (v).
P[ω X (n) (δ) ≥ ϵ] ≤ η,
|S ′ i -S ′ j | . ( 22 
)
We suggest the following figure as a useful illustration of this bound. The condition (ii) immediately follows by ( 22) and ( 23). Hence, we conclude that the sequence {X (n) } n≥1 is tight.

  e. sequences (C n ) n≥1 of operators acting on a Banach space (B, | • | B ) and satisfying the following conditions: • the operators C n , n ≥ 1, act on B and n≥1 ∥C n ∥ B < +∞ (where ∥ • ∥ B denotes the norm on the space L(B) of continuous operators on (B, | • | B )); • the operator C(z) := n≥1 z n C n , defined for any z ∈ D, satisfies R1-C(1) has a simple eigenvalue at 1 (with corresponding eigenprojector Π) and the rest of its spectrum is contained in a disk of radius < 1; R2-for any complex number z ∈ D \ {1}, the spectral radius of C(z) is < 1; R3-for any n ≥ 1, the real number r n defined by ΠC n Π = r n Π is ≥ 0. Condition R2 implies that, for any z ∈ D \ {1}, the operator I -C(z) is invertible on B and
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 38 B δ and C n ϕ(0) = 0 for all n ≥ 2. This completes the proof.Condition R1 coincides with the statement of Proposition 3.5. Similarly, R2 and R3 correspond to assertions i) and ii) of the next proposition. Consequently, (C n ) n≥1 is an aperiodic renewal sequence of operators. Suppose that H1-H4 are satisfied. Then the sequence (C n ) n≥1 holds the following properties i) The spectral radius ρ B δ (z) of C(z) is strictly less than 1 for z ∈ D \ {1}.

Lemma 4 . 1 .

 41 Let V be denumerable and (a n (v)) v∈V , (b n (v)) v∈V be real sequences satisfying(i) a n (v) ≥ 0 for any n ≥ 1, v ∈ V and lim n→+∞ v∈V a n (v) = A,(ii) for any ϵ > 0, there exists a finite set V ϵ ⊂ V s.t. sup n≥1 v / ∈Vϵ a n (v) < ϵ. (iii) lim n→+∞ b n (v) = b for any v ∈ V and sup n≥1,v∈V |b n (v)| < +∞. Then lim n→+∞ v∈V a n (v)b n (v) = Ab.

  y≥1 z≥1 w≤0 a n (y, z, w)b n (y, z, w), wherea n (y, z, w) := n 2 H [ns 1 ] (x, y)P[τ S ′ (y) > [ns 2 ] -[ns 1 ] -1, y + S ′ [ns 2 ]-[ns 1 ]-1 = z] µ ′ (w -z) and b n (y, z, w) :=E φ 1 y + S ′ [nt 1 ]-[ns 1 ]

1 s 1 (s 2 -s 1 ) 3 c

 1123 where we set b ′ k (y) = k 3/2 P[τ S ′ (y) = k].As previously, the sequence( [ns 1 ]H [ns 1 ] ) n≥1 converges in (L(B δ ), ∥ • ∥ B δ ) to the operator 1 2π cν( ȟa)+c ′ ν(h ′ d ) Π; furthermore, the sequence (b ′ [ns 2 ]-[ns 1 ] ) n≥1 converges in B δ to the function c ′ h ′ d .Hence condition (i) holds withA = ′ ν(h ′ d ) 2π cν( ȟa ) + c ′ ν(h ′ d ) = γ 2π s 1 (s 2 -s 1 ) 3 . Condition (ii). Fix ϵ > 0 and y ϵ ≥ 1. As above h ′ k 1 [yϵ,+∞[ , the function b ′ k 1 [yϵ,+∞) belongs to B δ and |b ′ k 1 [yϵ,+∞) | B δ ≤ C 1 y δ ϵ for some constant C 1 > 0. By (21), it follows 0 ≤ y≥yϵ,z≥1,w≤0 a n (y, z, w) ⪯ [ns 1 ]H [ns 1 ] (b ′ [ns 2 ]-[ns 1 ] 1 [yϵ,+∞) )(x), ⪯ sup n≥1 ∥ [ns 1 ]H [ns 1 ] ∥ B δ <+∞ sup n≥1 |b ′ [ns 2 ]-[ns 1 ] 1 [yϵ,+∞) | B δ

4. 3

 3 Tightness of the sequence {X (n) } n≥1 Let us recall the modulus of continuity of a function f : [0, T ] → R is defined by ω f (δ) := sup{|f (t) -f (s)| : t, s ∈ [0, T ] s.t. |t -s| ≤ δ}. By Theorems 7.1 and 7.3 in [2], we have to show that the following conditions hold:(i) For every η > 0, there exist a > 0 and n η ≥ 1 such that P[|X(n) (0)| ≥ a] ≤ η, ∀n ≥ n η .

Figure 1 :

 1 Figure 1: Fluctuation of the normalized oscillating random walk on the time interval [s, t] with its first and last crossing times r 1 and r 2 , respectively.

  t. [yϵ,+∞[ belongs to B δ and |h ′ k 1 [yϵ,+∞[ | B δ ≤ 2C 0

				a n (y) ≤ ϵ for any n ≥ 1. By
				y≥yϵ	
	Lemma 2.2, there exists a constant C 0 > 0 s.t. 0 ≤ h ′ k (y) ≤ C 0 (1 + y) for any y, k ≥ 1; hence,
	for y ≥ y ϵ ,				
	0 ≤ h ′ k (y) ≤ C 0 1 +	y 1+δ y δ ϵ	≤ 2C 0	1 + y 1+δ ϵ y δ	.
	Consequently the function h ′ k 1 y δ ϵ	for any k ≥ 1. By
	(14), it follows				
	0				

  , for any y, z ≥ 1, S ′ (y) > [ns 2 ] -[ns 1 ] -1, y + S ′ [ns 2 ]-[ns 1 ]-1 = z 2π (t 1 -s 1 ) 3 (s 2 -s 1 ) 3 (s 2 -t 1 ) 3 (s 2 -s 1 ) 3 -s 1 ) 3 (s 2 -t 1 ) 3 (s 2 -s 1 ) 3
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  ∀n ≥ n ϵ,η .Proof. Condition (i) is obviously satisfied. Let us now check the condition (ii). Set I n,δ := {(i, j) ∈ N | 1 ≤ i < j ≤ n and |i -j| ≤ nδ} and note that we have

	ω X (n) (δ) ≤	7 min{σ, σ ′ }	√	n	sup

(i,j)∈I n,δ |S i -S j | + sup (i,j)∈I n,δ
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For any n ≥ 1, let g n : r → g n (r) be the real function defined on [0, t 1 ] by

In the same way as above, we set

Sequences (a n (y)) y≥1 and (b n (y)) y≥1 satisfy assumptions of Lemma 4.1. Indeed, the limit of y≥1 a n (y) is given by ( 14) and condition (ii) of this lemma has been checked previously.

Furthermore, by Theorem 3.2 in [START_REF] Bolthausen | On a functional central limit theorem for random walks conditioned to stay positive[END_REF] and Theorems 2.23 and 3.4 in [START_REF] Iglehart | Functional central limit theorems for random walks conditioned to stay positive[END_REF], it holds