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. We define new sets of invariants for these cobordism classes. Using these invariants we find more examples of distinct cobordism classes with distinct exponents.

Introduction

A Brieskorn polynomial is a polynomial of the form

P (z) = z a1 1 + z a2 2 + • • • + z an+1 n+1
with z = (z 1 , z 2 , . . . , z n+1 ), n ≥ 1, where the integers a j ≥ 2, j = 1, 2, . . . , n + 1, are called the exponents. The complex hypersurface in C n+1 defined by P = 0 has an isolated singularity at the origin, which is called a Brieskorn singularity.

To be more precise, let f : (C n+1 , 0) → (C, 0) be a holomorphic function germ with an isolated critical point at the origin. We denote by D 2n+2 ε the closed ball of radius ε > 0 centred at 0 in C n+1 , and by S 2n+1 ε its boundary. According to Milnor [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF], the oriented homeomorphism class of the pair (D 2n+2 ε , f -1 (0) ∩ D 2n+2 ε ) does not depend on the choice of a sufficiently small ε > 0, and by definition it is the topological type of f . The oriented diffeomorphism class of the pair (S 2n+1 ε , K f ), with K f = f -1 (0) ∩ S 2n+1 ε , is the algebraic knot associated with f , where K f is a closed oriented (2n-1)-dimensional manifold. According to Milnor's cone structure theorem [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF], the algebraic knot K f determines the topological type of f . In fact, it is known that the converse also holds. Definition 1.1. An m-dimensional knot, or a m-knot, is a closed oriented mdimensional submanifold of the oriented (m + 2)-dimensional sphere S m+2 . When this submanifold is homeomorphic to a sphere we call this a sperical knot. Two m-knots K 0 and K 1 in S m+2 are said to be cobordant if there exists a properly embedded oriented (m + 1)-dimensional submanifold X of S m+2 × [0, 1] such that (1) X is diffeomorphic to K 0 × [0, 1], and

(2) ∂X = (K 0 × {0}) ∪ (-K 1 × {1}), where -K 1 × {1} denotes the manifold K 1 × {1} with the reversed orientation. A manifold X as above is called a cobordism between K 0 and K 1 (see Fig. 1).

In this paper, we will study the cobordism classes of algebraic knots associated with Brieskorn singularities, we will call such knots Brieskorn knots for short.

r r K0 S m+2 × {0} r r K1 S m+2 × {1} S m+2 × [0, 1] Figure 1. A cobordism between K 0 and K 1
Moreover, our goal is to study these cobordism classes in terms of exponents of the Brieskorn polynomials. In [START_REF] Blanloeil | Cobordism of algebraic knots defined by Brieskorn polynomials[END_REF] we proved that when n equals 1 or 2 Brieskorn knots are cobordant if and only if they have same exponents. Then, we will work with n ≥ 3.

In [START_REF] Blanloeil | A theory of cobordism for non-spherical links[END_REF], for n ≥ 3, necessary and sufficient conditions for two algebraic (2n -1)knots to be cobordant have been obtained in terms of Seifert forms (for the definition of the Seifert form, see §2). However, the computation of the Seifert form of a given algebraic knot is very difficult, and an explicit calculation of a Seifert form is known only for a very limited class of algebraic knots. Furthermore, even if we know the Seifert forms explicitly, it is still difficult to see if given two such forms satisfy the algebraic conditions given in [START_REF] Blanloeil | A theory of cobordism for non-spherical links[END_REF] or not.

When the knots are spherical, the algebraic condition of cobordism becomes much more simple. M. Kervaire [START_REF] Kervaire | Knot cobordism in codimension two[END_REF] and J. Levine [START_REF] Levine | Knot cobordism groups in codimension two[END_REF] proved that spherical knot are cobordant if and only if they have Witt equivalent Seifert forms and J. Levine [START_REF] Levine | Invariants of knot cobordism[END_REF] gave a complete list of invariants for cobordism classes of spherical knots. (for details, see §2).

Recall that cobordism does not necessarily imply isotopy for algebraic knots in general. For details, see the survey article [START_REF] Blanloeil | Cobordism of fibered knots and related topics[END_REF].

In this paper, we first associate some spherical Brieskorn knots to a given Brieskorn knot. Since the set of exponents of such associated spherical knots are very similar to which of the Brieskorn knot, the study of cobordism classes of these spherical Brieskorn knots impose conditions on the exponents' sets of the initial Brieskorn cobordism class.

The paper is organized as follows. In §2 we give some definitions and classical results, then in §3 we give a new set of invariants for cobordism classes of Brieskorn knots.

Throughout the paper we work in the smooth category. All the homology groups are with integer coefficients unless otherwise specified.

Definitions and results on spherical knots cobordism

Let f (z) be a polynomial in C n+1 with an isolated critical point at the origin. We denote by F f the Milnor fiber associated with f , i.e., F f is the closure of a fiber of the Milnor fibration ϕ f :

S 2n+1 ε \ K f → S 1 defined by ϕ f (z) = f (z)/|f (z)|. According to Milnor [12], F f is a compact 2n-dimensional submanifold of S 2n+1 ε ✛ + ✂ ✂ ✍ ★ ✥ ✧ ✦ ★ ✥ ✧ ✦ ξ ✲ ξ + ✲ η ✲ η + ✲ F Figure 2.
Computing a Seifert matrix for the trefoil knot which is homotopy equivalent to the bouquet of a finite number of copies of the n-dimensional sphere. The Seifert form

L f : H n (F f ) × H n (F f ) → Z associated with f is defined by L f (α, β) = lk(a + , b),
where a and b are n-cycles representing α and β in H n (F f ) respectively, a + is the n-cycle in S 2n+1 ε obtained by pushing a into the positive normal direction of F f , and lk denotes the linking number of n-cycles in S 2n+1 ε . See Fig. 2 for a picture of cycles necessary to compute the trefoil knot's Seifert from. It is known that the isomorphism class of the Seifert form is a topological invariant of f . Furthermore, two algebraic knots K f and K g associated with polynomials f and g in C n+1 , respectively, with isolated critical points at the origin are isotopic in S 2n+1 ε if and only if their Seifert forms L f and L g are isomorphic, provided that n ≥ 3.

In fact, algebraic knots are simple fibered knots as follows. We say that an oriented m-knot K is fibered if there exists a smooth fibration φ : S m+2 \ K → S 1 and a trivialization τ :

N K → K × D 2 of a closed tubular neighborhood N K of K in S m+2 such that φ| NK \K coincides with π • τ | NK \K , where π : K × (D 2 \ {0}) → S 1
is the composition of the projection to the second factor and the obvious projection D 2 \ {0} → S 1 . Note that then the closure of each fiber of φ in S m+2 is a compact (m + 1)-dimensional oriented manifold whose boundary coincides with K. We shall often call the closure of each fiber simply a fiber. Moreover, for m = 2n -1 ≥ 1 we say that a fibered (2n -1)-knot K is simple if each fiber of φ is (n -1)-connected and K is (n -2)-connected. For details we refer the reader to [START_REF] Blanloeil | Cobordism of fibered knots and related topics[END_REF]. Note that two simple fibered (2n -1)-knots are isotopic if and only if they have isomorphic Seifert forms, provided n ≥ 3 (see [START_REF] Durfee | Fibered knots and algebraic singularities[END_REF][START_REF] Kato | A classification of simple spinnable structures on a 1-connected Alexander manifold[END_REF]).

Definition 2.1. Two bilinear forms L i : G i × G i → Z, i = 0, 1, defined on free abelian groups G i of finite ranks are said to be Witt equivalent if there exists a direct summand M of G 0 ⊕ G 1 such that (L 0 ⊕ (-L 1 ))(x, y) = 0 for all x, y ∈ M and twice the rank of M is equal to the rank of G 0 ⊕ G 1 . In this case, M is called a metabolizer.

2.1.

Characterization of spherical Brieskorn knots. We refer to [START_REF] Brieskorn | Beispiele zue Diffenrentialtopologie von Singularitaten[END_REF] for the results of this subsection, the reader may consult the book [START_REF] Dimca | Singularities and topology of hypersurfaces[END_REF] for detailed proofs as well.

Let P (z) = z a1 1 + z a2 2 + • • • + z an+1 n+1
be a Brieskorn polynomial, we associate to this polynomial a graph G P . This graph has n + 1 vertices labeled by the letters a 1 , . . . , a n+1 , and two vertices a i and a j are connected with and edge if and only if gcd(a i , a j ) is strictly greater to 1. We denote by C ev,P the connected component of G P wich contain all odd exponents ; remark that C ev,P may contain some odd labeled vertices as well. We say that C ev,P fulfills conditionC if it contains an odd number of vertices and gcd(a i , a j ) = 2 for any two distinct points a i and a j in C ev,P .

Theorem 2.2 ([4]

). Let n ≥ 3. The Brieskorn knot associated to P is spherical if and only if the graph G P contains at least two isolated points or an isolated point which is odd and the component C ev,P fulfills conditionC.

Let K P be the Brieskorn knot associated to the Brieskorn polynomial

P (z) = z a1 1 + z a2 2 + • • • + z an+1 n+1
. Set p and q be two distinct prime numbers such that for all i = 1, . . . , n + 1 we have gcd(p, a i ) = gcd(q, a i ) = gcd(p, q) = 1. Then we define the following polynomial

P p,q (z) = z a1 1 + z a2 2 + • • • + z an+1 n+1 + z p n+2 + z q n+3 .
According to Theorem 2.2 and h-cobordism theorem [START_REF] Smale | On the structure of 5-manifolds[END_REF], the Brieskorn knot K Pp,q is spherical. Note that K P and K Pp,q are respectively of dimension 2n + 1 and 2n + 3.

Levine's complete invariant set of cobordant isometric structures.

We refer to [START_REF] Levine | Invariants of knot cobordism[END_REF] for all results of this subsection.

In order to study C n the cobordism group ok knotted n-dimensional spheres in codimension two, J. Levine introduced isometric structures <, >, T where <, > is a non degenerate symmetric bilinear form on a finite dimensional vector space V over Q, and T is an isometry of V . Recall that the group law of C n is the connected sum ; two such knots K 0 and K 1 are cobordant if the oriented connected sum K 0 # -K 1 is null-cobordant, i.e. cobordant to the trivial embedding, and this only happens when the associated Seifert forms are Witt-equivalent.

Following [START_REF] Levine | Invariants of knot cobordism[END_REF], an isometric structure <, >, T is null-cobordant when V contains a totally isotropic subspace, invariant under T , of half dimension of V . Moreover, two isometric structures <, >, T and <, > ′ , T ′ are cobordant if the orthogonal sum <, >, T ⊥ -<, > ′ , T ′ is null-cobordant. As in the case of spherical knots, this equivalence relation gives an abelian group of cobordism classes of isometric structures.

Let ∆ T (t) be the characteristic polynomial of T . Levine proved that the group of cobordism classes of isometric structures <, >, T satisfying ∆ T (1)∆ T (-1) = 0 is isomorphic to the Witt-equivalence group of matrices A satisfying (A -t A)(A + t A) is non-singular. With this isomorphism we associate the isometric structure A + t A, -A -1 t A to a square matrix A over Q such that (A -t A)(A + t A) is non-singular. This isomorphism allows to study Witt-equivalence of matrices in terms of cobordism classes of isometric structures.

Let <, >, T an isometric over Q. Let Λ = Q[t, t -1 ] be the ring of Laurent polynomials over Q. We consider V the vector space on which <, > and T are defined as a Λ-module, defining the action of t by T . Let ∆ T (t) = r i=1 λ i (t) ei be the factorisation of ∆ T (t) with irreducible factors over Q. To each irreducible factor λ i we define V λi = Ker λ i (t) N for N a large integer, such a V λi is called a primary component of V . Moreover, V is the direct

sum V = r i=1 V λi .
Let λ(t) be a symmetric 1 irreducible factor of ∆ T , then Levine defined

(1) ε λ <, >, T equals to the exponent of λ(t) in ∆ T (t) mod 2.

(2) σ λ <, >, T equals to the signature of the restriction of <, > to V λ over R.

(

) µ λ <, >, T = -1, -1 r(r+3 2 det(<, >), -1 r S <, > 3 
where <, > is of rank 2r, the Hilbert symbol for <, > over R is denoted by , and S <, > is the Hasse symbol over Q We have the following theorem.

Theorem 2.3 ([11]

). Two isometric sturctures α and β are in the same cobordism class if and only if ε λ (α) = ε λ (β), σ λ (α) = σ λ (β) and µ λ (α) = µ λ (β) for all λ(t) for which these invariants are defined.

Results

3.1.

Cobordism classes of Brieskorn knots. First, we prove the following proposition.

Proposition 3.1. Let K P and K Q be two Brieskorn knots associated with two polynomials P and Q with n+1 variables. If there exists two distinct prime numbers p and q such that the spherical Brieskorn knots K Pp,q and K Qp,q are not cobordant, then K P and K Q are not cobordant.

Proof. Since the polynomial P p,q is obtained from P by adding a two variables polynomial of the form z p i + z q i+1 , then according to K. Sakamoto [START_REF] Sakamoto | The Seifert matrices of Milnor fiberings defined by holomorphic functions[END_REF] we know that the Seifert form of the Brieskorn knot K Pp,q is obtained by the tensor product of the Seifert form of K P with a square matrix A p,q . By Durfee [START_REF] Durfee | Fibered knots and algebraic singularities[END_REF] we know that A p,q is a matrix with only 0 and ±1 coefficents which are only determined by p and q.

If two Brieskorn knots K P and K Q are cobordant, then they have witt-equivalent Seifert forms A KP and A KQ defined on Z-modules G P and G Q . Let M , a submodule of G P ⊕ G Q , be a metabolizer for A KP ⊕ -A KQ and let d be the dimension of the square matrix A p,q . Then the submodule

d i=1 M i of d i=1 G P,i ⊕ G Q,i , where M i is a copy of M and G P,i ⊕ G Q,i is a copy of G P ⊕ G Q , is a metabolizer for A KP ⊗ A p,q ⊕ -A KQ ⊗ A p,q .
Hence the two Seifert forms A KP ⊗ A p,q and A KQ ⊗ A p,q are Witt-equivalent. Since the Brieskorn knots K Pp,q and K Qp,q are spherical, we know that they are cobordant. We have proved the proposition by contraposition. are cobordant if and only if the Brieskorn knots K P+ and K Q+ associated to the polynomials

P + (z) = z 2 n+2 + n+1 j=1 z aj j and Q + (z) = z 2 n+2 + n+1 j=1 z bj j are cobordant.
Proof. According to [START_REF] Sakamoto | The Seifert matrices of Milnor fiberings defined by holomorphic functions[END_REF] the knots K P and K P+ have same Seifert forms and the same is true for K Q and K Q+ . Since the cobordism class of fibered knots is completely determined by the algebraic cobordism class of its Seifert form (see [START_REF] Blanloeil | A theory of cobordism for non-spherical links[END_REF]) we have that K P and K Q have algebraically cobordant Seifert forms if and only if the same holds for K P+ and K Q+ . Then, the Brieskorn knots K P and K Q are cobordant if and only if the Brieskorn knots K P+ and K Q+ are cobordant.

Recall that if A is a Seifert matrix of a Brieskorn knots K P associated with a Brieskorn polynomial

P (z) = z a1 1 +z a2 2 +• • •+z an+1 n+1
, then its Alexander polynomials is defined by ∆ K (t) = det t A + (-1) n t A . Since Brieskorn knots are fibered knots, we know that the Alexander polynomial is the characteristic polynomial of the monodromy. Proof. By the monodromy theorem proved by E. Brieskorn [START_REF] Brieskorn | Die Monodromie der isolierten Singularitäten von Hyperflächen[END_REF] the Alexander polynomial of Brieskron knots are some products of cyclotomic polynomials. Moreover, Alexander polynomials of Brieskorn knots has been computed by F. Pham [START_REF] Pham | Formules de Picard-Lefschetz généralisées et ramification des intégrales[END_REF] and E. Brieskorn [START_REF] Brieskorn | Beispiele zue Diffenrentialtopologie von Singularitaten[END_REF]. More precisely, let P be the polynomial P (z) = 

∆ KP (t) = 0<i k <a k t -ζ i1 a1 . • • • .ζ in an ( * )
where ζ a k = e 2πi a k . Let K P and K Q be two Brieskorn knots with distinct irreducible factors in their Alexander polynomial, then they have roots aver C which are distinct. The Brieskorn knots K Pp,q and K Qp,q are defined with the same integers p and q which are distinct prime numbers and both are coprime with all exponents of P and Q. Then, according to ( * ) the Alexander polynomials of K Pp,q and K Qp,q have distinct irreducible factors since the do not have the same complex roots. Moreover, proposition 2.2 implies that K Pp,q and K Qp,q are spherical Brieskorn knots.

According to [START_REF] Durfee | Fibered knots and algebraic singularities[END_REF], if A is the Seifert form associated to the Milnor fibration, then its intersection form is defined by the relation S = A + (-1) n t A and its monodromy is defined by the relation h = (-1) n-1 A -1 t A. Moreover by proposition 3.2 one can suppose that (-1) n = 1. Hence we have that S, h is an isometric structure on H n (F, Q) where F is the Milnor fiber of the isolated singularity at 0 of a Brieskorn polynomial, S is the intersection form and h is the monodromy. On top of that, up to invertible element, the characteristic polynomial of h is the Alexander polynomial defined using the Seifert form which is a product of symmetric cyclotomic polynomials.

Finally, according to theorem 2.3, the two spherical Brieskorn knots K Pp,q and K Qp,q cannot be cobordant since they do not have the same list of invariants.

In [START_REF] Blanloeil | Cobordism of algebraic knots defined by Brieskorn polynomials[END_REF] we proved that cobordant Brieskorn knots must have same exponents, up to order, provided no exponent is a multiple of another one. Now, we have the following result which is an immediate corollary of proposition 3.4.

Corollary 3.5. Let K P and K Q be the Brieskorn knots associated to the polynomials

P (z) = n+1 j=1 z aj j and Q(z) = n+1 j=1 z bj j .
Let P P and P Q be the sets of distinct irreducible factors of each polynomial P and Q. If P P =P Q , then the knots K P and K Q are not cobordant.

Proof. Set ζ a k = e 2πi a k , as before we have the following factorizations

∆ KP (t) = 0<i k <a k t -ζ i1 a1 . • • • .ζ in an and ∆ KQ (t) = 0<i k <b k t -ζ i1 b1 . • • • .ζ in bn .
When P P =P Q the polynomials ∆ KP and ∆ KQ admit distinct complex roots.

Hence they do not have the same irreducible factors over Q. By proposition 3.4 the knots K P and K Q are not cobordant.

In the following, for each Brieskorn knot, we will define a list of integers which only depends on its exponents. Since these integers are related to the factorization of the Alexander polynomial of as a product of cyclotomic polynomials, then we will get an invariant of cobordism classes of Brieskorn knots.

In the following, when α and β are two integers, we denote by α ∧ β the greatest common divisor of α and β and we denote by [α, β] the lowest common multiple of α and β.

Let k and d be two integers. Set µ k (d) be the greatest divisor of k ∧ d which is coprime with k k∧d . Then, we associate to the couple of integer (k, d) a set of integers defined as follows , for all distinct prime numbers p and q which are both coprime to each a 1 , . . . , a n+1 we define the set Ξ KP ,p,q as follows.

Ψ k (d) =        [k,d] l , if l is a divisor of k µ k (d) k∧d \ {k} if µ k (d) ≤ 2 [k,d] l , if l is a divisor of k µ k (d)
(1) Ξ 0 KP ,p,q = {pq} (2) for i = 1 to n + 1 we set Ξ i KP ,p,q = Ψ αj (a i ) | α j ∈ Ξ i-1 KP ,p,q

(3) Ξ KP ,p,q = Ξ n+1 KP ,p,q

We will prove that Ξ KP ,p,q is invariant in a cobordism class of Brieskorn knots.

Proposition 3.7. Let K P be a Brieskorn knot associated with the polynomial

P (z) = n+1 j=1 z aj j .
Let p and q be two distinct prime numbers which are both coprime to a 1 , . . . , a n+1 , then the set of integers Ξ KP ,p,q is an invariant of its cobordism class Proof. When P (z) is a Brieskorn polynomial with z = (z 1 , z 2 , . . . , z n+1 ) and n ≥ 1 ; I. Savel'ev [START_REF] Savel'ev | Cyclotomic polynomials and singularities of complex hypersurfaces (Russian) Uspekhi Mat. Nauk[END_REF] compute the Alexander polynomial of Q(z, z n+2 ) = P (z) + z d n+2 where d is an integer. Let Φ n (t) be the n-th cyclotomic polynomial. If the Alexander polynomial of P (z) is

∆ P (t) = N l=1 Φ k l (t) τ l , with τ l > 0, then ∆ Q (t) = N l=1 ν|λ k l ,d Φ [k l ,d] ν (t) ϕ(µ k l (d)) Φ k l (t) τ l (⋆)
where λ k l ,d = dµ k l (d) k l ∧d . We see that {Φ k1 , . . . , Φ kN } is the set of irreducible factors of ∆ P (t) and Φ Ψα j (d) | α j ∈ {k 1 , . . . , k N } is the set of irreducible factors of ∆ Q (t).

According to [START_REF] Brieskorn | Beispiele zue Diffenrentialtopologie von Singularitaten[END_REF], the Alexander polynomial of the Brieskorn knot K x p +y q is ∆ p,q (t) = (t pq r -1) r (t -1) (t p -1)(t q -1) where r = p ∧ q. If p and q are distinct prime numbers, then we have

∆ p,q (t) = Φ pq (t)Φ p (t)Φ q (t)Φ 1 (t) 2 Φ p (t)Φ q (t)Φ 1 (t) 2 = Φ pq (t).
When µ k l (d) ≤ 2, then ϕ(µ k l (d)) equals 1 and Φ k l is no longer a factor of ∆ Q in (⋆). Hence Ξ KP ,p,q is the set of irreducible factors of ∆ Pp,q . According to proposition 3.4, when p and q are two distinct prime numbers which are both coprime to each a 1 , . . . , a n+1 , the set Ξ KP ,p,q is an invariant of the cobordism class of K P .

Remark 3.8. The last proposition is just a reformulation of proposition 3.4. But it gives a computable list of integers which is an invariant of the cobordism class of a Brieskorn knot.

3.2.

Examples. Recall that Alexander polynomials of cobordant knots must satisfy a Fox-Milnor relation. In [START_REF] Blanloeil | Cobordism of fibered knots and related topics[END_REF] we only use this property to determine if knots cannot be cobordant. Moreover, in the same paper, example 3. Hence, the polynomials ∆ K f and ∆ Kg have not the same set of complex roots. By proposition 3.4 we see that in this case the Brieskorn knots K f and K g are not cobordant.

3.3. Conjecture. We found more examples of Brieskorn knots for which distinct exponents imply distinct cobordism classes. Moreover, according to proposition 3.7 it seems difficult to find examples of Brieskorn knots which are cobordant and have distinct exponents up to order. Hence, we formulate the following conjecture.

Conjecture 3.9. The Brieskorn knots associated to the polynomials Remark that if this conjecture is true, then the multiplicity of a Brieskorn knot will be an invariant of its cobordism class.

P (z) =

Proposition 3 . 2 .

 32 The Brieskorn knots K P and K Q associated to the polynomials e., such that λ(t) = ±t deg(λ) λ(t -1 ).

Remark 3 . 3 .Proposition 3 . 4 .

 3334 The knots K P and K P+ have same Seifert forms, hence they have same Alexander polynomials. The set of irreducible factors of the Alexander polynomial over Q of a Brieskorn knot is an invariant of its cobordism class.

  Brieskorn gave the following factorization over C for the alexander polynomial of the Brieskorn knots K P
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 36 When K P is a Brieskorn knot associated with the polynomialP (z) =n+1 j=1 z aj j

3 n- 3 + z 6 n- 2 + z 6 n- 1 + z 6 n + z 6 n+1
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  and only if a j = b j , j = 1, 2, . . . , n + 1, up to order.