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Unselfish Coded Caching Can Yield Unbounded
Gains Over Selfish Caching

Federico Brunero and Petros Elia , Member, IEEE

Abstract— The original coded caching scenario assumes a con-
tent library that is of interest to all receiving users. In a realistic
scenario though, the users may have diverging interests which
may intersect to various degrees. What happens for example if
each file is of potential interest to, say, 40% of the users and each
user has potential interest in 40% of the library? In this work,
we investigate the so-called symmetrically selfish coded caching
scenario, where each user only makes requests from a subset
of the library that defines its own file demand set (FDS), each
user caches selfishly only contents from its own FDS, and where
the different FDSs symmetrically overlap to some extent. In the
context of various traditional prefetching scenarios (prior to the
emergence of coded caching), selfish approaches were known to
be potentially very effective. On the other hand — with the
exception of some notable works — little is known about selfish
coded caching. We here present a new information-theoretic
converse that proves, in a general setting of symmetric FDS
structures, that selfish coded caching, despite enjoying a much
larger local caching gain and a much smaller set of possible
demands, introduces an unbounded load increase compared to
the unselfish case. In particular, in the K-user broadcast channel
where each user stores a fraction γ of the library, where each
file (class) is of interest to α users, and where any one specific
file is of interest to a fraction δ of users, the optimal coding gain
of symmetrically selfish caching is at least (K − α)γ + 1 times
smaller than in the unselfish scenario. This allows us to draw
the powerful conclusion that the optimal selfish coding gain is
upper bounded by 1/(1 − δ), and thus does not scale with K .
These derived limits are shown to be exact for different types of
demands. In the end, this work provides, in a unified manner,
the strong conclusion that selfish caching can cause unbounded
performance deterioration in coded caching systems.

Index Terms— Coded caching, file popularity, index coding,
information-theoretic converse, selfish caching.

I. INTRODUCTION

THE vast increase of network traffic has sparked con-
siderable interest in finding new techniques that reduce
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the communication load. Toward this, caching has been tra-
ditionally used to bring contents closer to their destinations,
consequently reducing the volume of the communication
problem during peak hours [1]. A key ingredient in using
caches has commonly been the exploitation of the fact that
some contents/files are more popular than others, and thus
are generally to be allocated more cache space [2], [3]. This
inevitably introduces the consideration that different users
may have different file preferences, which in turn brings to
the fore the concept of selfish caching where simply users
cache independently and selfishly only contents that they are
interested in potentially consuming themselves [4]–[7]. In the
traditional prefetching scenario where emphasis is based heav-
ily on bringing relevant content closer to each user, this idea
of selfish caching brought about performance improvements
[8], [9] in the form of higher local caching gains for each
user.

A completely different utilization of caching was witnessed
with the advent of coded caching [10], whose focus is more on
leveraging storage capabilities in order to reduce interference.
Depending on the network topology, this coded variant can
be a more powerful approach than traditional prefetching,
because it employs caching not only to change the volume of
the communication problem, but also to change the structure
of the problem itself, simply by changing the interference
patterns. Coded caching has been rightfully credited with being
able to transform memory into data rates, and has consequently
sparked a flurry of research on a variety of topics such as on
the interplay between caching and PHY [11]–[21], caching
and privacy [22]–[24], on information-theoretic converses
[25], [26], on the critical bottleneck of subpacketization
[27]–[31], and a variety of other scenarios [32]–[40].

In trying to fuse the traditional caching techniques with
coded caching, a variety of works has naturally sought to
explore coded caching in the presence of files with different
popularity. This is an area of active research that has produced
several interesting and insightful results [41]–[51] that focus
on the scenario where the file popularity profiles are identical
for every user.

A. Heterogeneous User Profiles and Selfish Coded Caching

On the other hand, we are just beginning to explore the
connection between coded caching and selfish caching, where
by selfish caching we generally refer to caching schemes
in which each user caches only contents that meet its own
individual preferences and objectives.
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Recent works have sought to explore this connection. For
example, in the context of coded caching with users having
heterogeneous content preferences, the recent work in [52]
took a game theoretic perspective to analyze the performance
of coded caching when it accounts for this heterogeneity.
Employing interesting analysis, this work revealed gains from
taking this heterogeneity into consideration, where these gains
were naturally a function of the structure of the user prefer-
ences. Furthermore, the work in [4] analyzed the peak load
of three different coded caching schemes that account for the
user preferences, and again revealed occasional performance
gains that are similarly dependent on the structure of these
preferences. Related analysis appears in [5], now for the
average load of these same schemes in [4].

On the other hand, the work in [6] focused on finding
instances where unselfish coded caching outperforms selfish
designs. This work nicely considered the performance of
selfish coded caching in the context of heterogeneous file
demand sets, cleverly employing bounds to show that, for the
case of K = 2 users and 3 files, unselfish designs strictly
outperform selfish designs in terms of communication load,
albeit only by a factor of 14%. In addition, the notable work
in [7] established the optimal average load — under the
assumption of selfish and uncoded prefetching — for the case
of K = 2 users and a variety of overlaps between the two
users’ profiles, also providing explicit prefetching schemes of
a selfish nature. To the best of our understanding, the above
constitutes the extent of works on selfish coded caching.

B. An Adversarial Interplay Between Coded Caching and
Selfish Caching

Our motivation to understand the interplay between coded
caching and selfish caching comes not only from the fact
that coded caching systems may indeed need to operate under
some selfish legacy constraints,1 but also mainly from the fact
that there exists an interesting “adversarial” interplay between
coded caching and selfish prefetching. To understand this a
bit better, we recall that the main idea of coded caching is
that it multicasts at any given time a linear combination of
different contents desired by different users. This implies that
any one receiver associated to a multicast message must be
able to find in its cache all the undesired contents (subfiles) of
that multicast message. This is achieved in [10] by means
of a highly structured and coordinated content placement
phase, where each user caches a small fraction of every file
of a common library. This relationship between undesired
and cached contents deteriorates when using selfish caching,
simply because each receiver selfishly opts — based on its
own preferences — to not cache some of these undesired files.
However, these same undesired files may eventually appear as
interference at that selfish receiver who will now not be able to
“cache-out” this interference. At the same time though, such

1Here, we can think of a scenario where a server delivers — via a bottleneck
link — content to caches, whose purpose is to bring content closer to the
end user via dedicated non-interfering links. In such scenario, the delivery to
the caches would benefit from a coded caching design, while the subsequent
delivery from the caches would benefit from a selfish placement since the
caches may target groups of users with potentially dissimilar interests.

selfish caching allows for a much more targeted placement of
files such that each user can cache more of what it actually
wants. Furthermore, such selfish scenario would correspond to
a substantially smaller set of possible demands, which could
conceivably be exploited to reduce the load.

To better understand the main challenge of the problem, let
us consider the following simple scenario with K = 3 users
and a library L = {A, B, C} of N = 3 files. Let us
now assume that user 1 is only interested in files from the
file demand set F1 = {A, B}, user 2 only from the set
F2 = {A, C}, and user 3 only from F3 = {B, C}. We know
from [25] that the Maddah-Ali and Niesen (MAN) scheme
in [10] guarantees the smallest worst-case load (under uncoded
placement) during the delivery phase if each user caches a
proper fraction M/N of each file, where M represents the
memory (in number of files) that each user is equipped with.
However, if we know in advance the sets F1, F2 and F3,
do we need each user to cache also from files that are not of
interest to minimize the number of bits to be transmitted? Is
it convenient or disadvantageous to have each user k cache
selfishly only from files in Fk? What are the effects of selfish
caching on coded caching?

C. Main Contributions

To understand this interplay between coded caching and
selfish caching, we first propose a new selfish model which
aims to calibrate the selfishness effect, by calibrating the
degree of separation between the interests of the different
users. Our so-called symmetric file demand set (FDS) structure
not only aims to encapsulate this aspect of intersection of
interests, but is also designed to reflect and accentuate the
aforementioned adversarial relationship between the selfish
placement and the ability to encode across users as one would
expect in the coded caching setting.

Then, for the aforementioned symmetric FDS struc-
ture, we employ index coding arguments to derive an
information-theoretic converse (lower bound) on the opti-
mal worst-case communication load under the assumption
of uncoded and selfish placement. This bound proves that
unselfish coded caching can far outperform selfish coded
caching. Indeed, the bound makes clear the fact that, while,
as noted, selfish caching implies a much smaller set of
possible demands (cf. Defintion 2) as well as allows for a
much more targeted placement of contents, these benefits will
come, in our symmetric setting, at a heavy cost of fewer
multicasting opportunities and a substantial loss in coding
gain. The main contribution of our work is this information-
theoretic converse, which allows us to draw the powerful
conclusion that selfish coded caching can be, under some
assumptions, rather detrimental.

This same converse offers some interesting insights on
coding designs for selfish coded caching. While our converse
now reveals that such designs, even if they are optimally
constructed, would essentially never be able to provide good
performance, these designs do pose an exceptionally inter-
esting and challenging coding problem, which we address
partially by providing, for a class of demands, achievable



Fig. 1. A server with access to a library of N files is connected through an
error-free unit-capacity shared link to K users, each having a cache of size
equal to M files.

schemes whose performance matches the expression of the
converse.

Remark 1: We wish to highlight that the focus of the
paper — which is to understand the effects of selfish caching
policies — does not capture problems that arise from having
a mismatch between the set of cached files and the set of
demanded files.2 Such problems remain, to date, open.

D. Paper Outline

The rest of the paper is organized as follows. The system
model is presented in Section II, where Section II-B offers a
small motivating example that can help the reader appreciate
the dynamics of selfish coded caching. Then, Section III
presents the information-theoretic converse, whose proof in
Section IV is followed by a clarifying example. The proposed
selfish coded caching placement is presented in Section V
and so are the delivery designs for some sets of demands.
Additional optimal schemes are presented in Section VI for
other sets of demands. Section VII concludes the paper, while
some of the proofs are relegated in the appendices.

E. Notation

We denote by Z
+ the set of positive integers. For n ∈ Z

+,
we define [n] := {1, 2, . . . , n}. If a, b ∈ Z

+ such that
a < b, then [a : b] := {a, a + 1, . . . , b − 1, b}. For sets we
use calligraphic symbols, whereas for vectors we use bold
symbols. Given a finite set A, we denote by |A| its cardinality.
We use

(
n
k

)
to denote the binomial coefficient n!

k!(n−k)! and
we let

(
n
k

)
= 0 whenever n < 0, k < 0 or n < k. We use

the ⊕ symbol to denote the bitwise XOR operation. For
u = (u1, . . . , uK) being a permutation of the set [K], we use
u : [K] → [K] to denote the function which takes as input an
element from [K] and outputs its index position in u.

II. SYSTEM MODEL

Similarly to the original scenario in [10], we consider the
centralized caching scenario (cf. Fig. 1) where one central

2We can have such mismatch when, for example, each user caches only from
a subset of files, but then requests content from the entire library, or when
each user caches from the entire library but only requests files from a limited
subset of this library.

server has access to a library L containing N files of B bits
each. This server is connected to K users through a shared
error-free broadcast channel, and each user is equipped with
a cache of size M files or, equivalently, MB bits.

During the placement phase, the server fills the caches of the
users according to a caching policy without knowing the future
requests. During the delivery phase, when the users simultane-
ously reveal their demands, the server sends coded messages
over the shared link to deliver the missing information to each
user. Assuming that in the delivery phase each user demands
simultaneously one file, the worst-case communication load R
is defined as the total number of transmitted bits, normalized
by the file size B, that can guarantee delivery of all requested
files in the worst-case scenario. The optimal communication
load R� is then formally defined as

R�(M) := inf{R : (M, R) is achievable} (1)

where the tuple (M, R) is said to be achievable if there
exists a caching-and-delivery scheme which guarantees, for
any possible demand, a load R.

For the original coded caching scenario in [10] — where
every file is of potential interest to each user — the load takes
the form

RMAN(t) =

(
K

t+1

)(
K
t

) =
K − t

t + 1
=

K(1 − γ)
Kγ + 1

, ∀t ∈ [0 : K]

(2)

where t := KM/N = Kγ is the so-called cache redundancy
and γ := M/N is the fraction of the library that each user
is able to store. This performance was proven in [25] (see
also [26]) to be optimal under the assumption of uncoded
cache placement. The above reveals a speedup factor of
t+1 over the case of uncoded delivery. This speedup factor is
a result of being able to serve any (t+1)-tuple of users with a
multicast message, which can generally happen if we are able
to store bits of each file to any possible t-tuple of caches. This
symmetry will naturally be disrupted once selfish placement
is imposed.

A. The Symmetric (K, α, f ) FDS Structure

To capture the interplay between coded caching and selfish
caching, we propose an FDS structure that allows us to
calibrate the degree of separation between the interests of
the different users. To better understand this structure and
generally to better understand the concept of an FDS, let us
briefly consider a simplified toy example.

Example 1: Consider a downlink scenario with K = 3 users
and a library L = {A, B, C, D, E, F} of N = 6 files.3 Let
us now assume that user 1 is only interested in potentially
consuming files from the file demand set F1 = {A, B, C, D},
user 2 only from the set F2 = {A, B, E, F}, and user 3 only
from F3 = {C, D, E, F}. In this setting, each user is inter-
ested in a fraction 2/3 of the library, so for example user 1 has
no interest in ever consuming the files in L \ F1 = {E, F}.

3Such files can be movies, different episodes of a TV show, YouTube videos,
etc.



Similarly, each file is of interest to the same fraction 2/3 of
users, so for example file A is only of interest to user 1 and
user 2.

For such a setting, we wish to understand the performance
of selfish coded caching where each user caches only contents
from its own FDS. We proceed with the formal definition of
the FDS structure. We note that below an FDS will be defined
as a collection of file classes, rather than just a collection of
files. This allows for more generality and we believe it also
better reflects how user preferences are often categorized.

Definition 1 (The Symmetric (K, α, f) FDS Structure): For
α ∈ [K] and for f ∈ Z

+, the symmetric (K, α, f) FDS
structure assumes an N -file library L = {WS : S ⊆
[K], |S| = α} to be a collection of disjoint file classes
WS = {Wi,S : i ∈ [f ]}, with each class WS consisting of
f different files. In this setting, each user k ∈ [K] has a file
demand set

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} (3)

which describes the files this user is potentially interested in.
As the above says, the library is split into C =

(
K
α

)
disjoint

classes of files, corresponding to a total of N = fC = f
(
K
α

)
files. The above also says that each user k is interested in
its own FDS Fk of |F| = |Fk| = f

(
K−1
α−1

)
files. There are

K FDSs, one for each user, and each file class is identified
by an α-tuple S that tells us which α users are interested
in this class.4 Finally, we note that α = 1 corresponds to the
trivial scenario where there is no intersection between the user
interests, while α = K corresponds to the traditional unselfish
scenario where a common library of N = f files5 is of interest
to every user.

In this context, selfish caching places the constraint that
each user k can only cache from its own FDS Fk. Thus, one
key aspect of such selfish caching is that it brings about an
increase of the effective normalized cache size for each user.
Indeed, whereas in the unselfish scenario each user can cache
a fraction

γ =
M

N
=

t

K
(4)

of each file of possible interest, in the selfish scenario this
fraction is elevated to a larger

γα :=
M

|F| =
t

α
= γ

K

α
(5)

which in turn implies a larger local caching gain.
Deviating from standard notation practices, we will use the

double-index notation Wfk,Dk
to denote the file requested

by user k. Consequently, to describe the entire demand set,
we will now be needing two vectors d = (D1, . . . ,DK) and
f = (f1, . . . , fK).

The above structure nicely lets us calibrate the fraction

|F|
N

=
f
(
K−1
α−1

)
f
(
K
α

) =
α

K
(6)

4In other words, each file belongs to α FDSs. In particular, each file in
class WS is of interest to the α users in S . Hence, if S � k, then the f
files in WS are in Fk and are thus of interest to user k. Finally, under our
simplifying assumption that each user has its own FDS, α also describes the
number of users interested in any one specific file.

5In this case we assume f ≥ K .

TABLE I

IMPORTANT PARAMETERS FOR THE SYMMETRIC
(K, α, f) FDS STRUCTURE

of the total library that each user is interested in. The imposed
symmetry also yields a fraction δ := α/K of users interested
in any one specific file.

The following two examples can help familiarize the reader
with the notation.

Example 2 (The Symmetric (4, 2, 1) FDS Structure): Let
us consider the (K, α, f) = (4, 2, 1) structure which has
C =

(
K
α

)
= 6 file classes W12,W13,W14,W23,W24,W34,

where6 each class consists of f = 1 file. This corresponds to
a library L = {W1,12, W1,13, W1,14, W1,23, W1,24, W1,34} of
N = 6 files. In the above, W1,12 simply represents the first
(and, in this case, the only) file in class W12. The K = 4
FDSs take the form

F1 = {W1,12, W1,13, W1,14} (7)

F2 = {W1,12, W1,23, W1,24} (8)

F3 = {W1,13, W1,23, W1,34} (9)

F4 = {W1,14, W1,24, W1,34} (10)

where we recall that, for each file W1,S , the label S represents
the FDSs the file belongs to. For example, file W1,23 belongs
to F2 and F3, and is thus of interest to user 2 and user 3.
Finally we see that each user is interested in a fraction
|F|/N = 0.5 of the library, i.e., in 50% of the library, and
that each file is of interest to a fraction δ = α/K = 0.5 of
the users.

Example 3 (The Symmetric (4, 3, 2) FDS Structure): Let us
consider the (K, α, f) = (4, 3, 2) structure which has C =(
K
α

)
= 4 classes W123,W124,W134,W234 and N = 8 files:

W1,123 and W2,123 from class W123, then W1,124 and W2,124

from class W124, and so on. The K FDSs take the form

F1 = {W123,W124,W134} (11)

F2 = {W123,W124,W234} (12)

F3 = {W123,W134,W234} (13)

F4 = {W124,W134,W234} (14)

where we see that each FDS consists of 2 × 3 = 6 files.
For example, user 1 is interested in the files contained in the

6We will often omit braces and commas when indicating sets, such that for
example W{1,2} may be written as W12.



FDS F1 = {W1,123, W2,123, W1,124, W2,124, W1,134, W2,134},
user 2 is interested in the files contained in the FDS F2 =
{W1,123, W2,123, W1,124, W2,124, W1,234, W2,234}, and so on.
By calculating |F|/N = α/K = 3/4, we can verify that each
user is interested in 75% of the library, and each file is of
interest to 75% of the users.

The FDS structure automatically implies restrictions in the
set of possible demand vectors. For instance, going back
to Example 3, any demand with d = (234, 123, 123, 234) is
not valid, because {1} /∈ D1 = {2, 3, 4}, i.e., because file
Wf1,234 is not in F1 and thus would never be demanded
by user 1. On the other hand, any demand with d =
(124, 123, 123, 234) is valid because k ∈ Dk for each k ∈ [K].

The set of valid demands as well as placement constraints
that define selfish coded caching are now stated below.

Definition 2 (Selfish Coded Caching With Uncoded Place-
ment): In selfish coded caching, a demand defined by the
vectors d = (D1, . . . ,DK) and f = (f1, . . . , fK) is said to
be valid if and only if

k ∈ Dk, ∀k ∈ [K]. (15)

Further, a cache placement is uncoded if the bits of the files
are simply copied within the caches of the users and is selfish
when it guarantees that a subfile of Wi,S can be cached at
user k only if k ∈ S.

Remark 2: We acknowledge that the aforementioned sym-
metric FDS structure can be more restrictive than the (very
few) existing FDS structures in the literature. For instance, the
works in [4], [5] considered the FDS structure where each file
is of interest to either groups of users or all users in the system.
Nevertheless, our aim is to explore the effect of selfish caching,
and what we show is that an important and general instance
of selfish caching, embodied by the considered symmetric
FDS structure, yields unbounded performance deterioration
compared to the unconstrained (unselfish) case. Hence, this
instance allows us to provide, in a unified manner, the main
contribution of our work, which is the clear conclusion that
indeed selfish caching can be unboundedly detrimental. The
symmetric FDS structure serves as a proving step toward
deriving this conclusion. At the same time, this same chosen
FDS structure captures core principles of realistic file demand
sets, like for example the amount of intersection between
different such sets, where this intersection can be calibrated at
will by the parameter α.

B. Understanding the Dynamics of Selfish Coded Caching
With an Example for the (K, α, f ) = (5, 4, 1) Structure

Let us consider a small motivating example that can help
the reader appreciate the dynamics of symmetrically selfish
coded caching. We will first suggest a selfish cache placement
scheme that will be justified in Section V, and we will then
present the delivery and decoding process for a class of
valid circular demands. The corresponding load that will be
achieved here will in fact be matched by the converse of the
next section, consequently proving that in our example our
delivery is optimal and the converse tight.

We here consider the (K, α, f) = (5, 4, 1) scenario, where
each cache is of size M = 2 corresponding to the case

of t = 2. In our scenario there are C =
(
K
α

)
= 5 file

classes W1234,W1235,W1245,W1345,W2345, and a total of
N = fC = 5 library files. For simplicity, we will exploit the
fact that f = 1 by slightly abusing notation such that, in this
early example only, the library of N = 5 files will be denoted
as L = {W1234, W1235, W1245, W1345, W2345}. At this point,
the 5 FDSs take the form

F1 = {W1234, W1235, W1245, W1345} (16)

F2 = {W1234, W1235, W1245, W2345} (17)

F3 = {W1234, W1235, W1345, W2345} (18)

F4 = {W1234, W1245, W1345, W2345} (19)

F5 = {W1235, W1245, W1345, W2345}. (20)

1) Placement: The cache placement will follow a selfish
adaptation of the MAN scheme. First each file is split into(
α
t

)
=
(
4
2

)
= 6 non-overlapping subfiles as

W1234 = {W1234,12, W1234,13, W1234,14,

W1234,23, W1234,24, W1234,34} (21)

W1235 = {W1235,12, W1235,13, W1235,15,

W1235,23, W1235,25, W1235,35} (22)

W1245 = {W1245,12, W1245,14, W1245,15,

W1245,24, W1245,25, W1245,45} (23)

W1345 = {W1345,13, W1345,14, W1345,15,

W1345,34, W1345,35, W1345,45} (24)

W2345 = {W2345,23, W2345,24, W2345,25,

W2345,34, W2345,35, W2345,45} (25)

and then the cache Zk of each user k ∈ [5] is filled as

Zk = {WS,T : S ⊆ [5], |S| = 4, T ⊆ S, |T | = 2, k ∈ T }.
(26)

For example, user 1 would have to cache parts only from files
{W1234, W1235, W1245, W1345} in order to abide by the selfish
constraint, and then, to abide by the cache size constraint,
user 1 would cache subfiles labeled by {12, 13, 14}. Similarly,
user 2 would cache only from {W1234, W1235, W1245, W2345},
and only the subfiles labeled by {12, 23, 24}, and so on.

2) Delivery: The delivery takes place as soon as the
requests of the users are revealed. Consider the demand d1 =
(1234, 2345, 1345, 1245, 1235). A schematic of this demand is
given by means of the graph in Fig. 2. This graph, which we
refer to as the FDS request graph, is a directed graph where
each vertex is a user and where there is an edge from user
k1 to user k2 if WDk1

∈ Fk2 . This graph represents at a high
level, for each given demand vector d, the interplay between
the users’ interests.

As a consequence of the aforementioned cache placement,
each user does not cache (and consequently desires) a total of(
α−1

t

)
=
(
3
2

)
= 3 subfiles for its demanded file. Hence, given

the demand d1, the desired subfiles are given as follows.
• User 1 desires the subfiles W1234,23, W1234,24 and

W1234,34.
• User 2 desires the subfiles W2345,34, W2345,35 and

W2345,45.



Fig. 2. FDS request graph for the (K, α, f) = (5, 4, 1) FDS structure and
the demand d1 = (1234, 2345, 1345, 1245, 1235).

• User 3 desires the subfiles W1345,14, W1345,15 and
W1345,45.

• User 4 desires the subfiles W1245,12, W1245,15 and
W1245,25.

• User 5 desires the subfiles W1235,12, W1235,13 and
W1235,23.

One key aspect for achieving optimality is the utilization of
specifically structured linear combinations of multicast mes-
sages, where this structure accepts the following interesting
interpretation. These linear combinations effectively allow
multicast messages to be used not only to deliver desired
content to users, but also to deliver undesired content that can
be used as side information to “bridge” the gaps left by the
selfish placement. In essence, each transmission now delivers
desired content while also disseminating side information that
can be used to create cliques. To see this, let us consider the
following sequence of XORs

X1 = W1345,14 ⊕ W1234,24 ⊕ W1245,12 (27)

X2 = W2345,35 ⊕ W1235,13 ⊕ W1345,15 (28)

X3 = W1345,14 ⊕ W2345,35 ⊕ W1234,23 (29)

X4 = W1234,34 ⊕ W1245,15 (30)

X5 = W2345,45 ⊕ W1235,12 (31)

X6 = W2345,34 ⊕ W1245,25 (32)

X7 = W1345,45 ⊕ W1235,23 (33)

transmitted one after the other. Recalling that each file is split
into 6 non-overlapping subfiles, we know that each XOR has
size |Xi| = B/6 for each i ∈ [7].

By using its own cache, each user can now decode its own
desired content as follows.

• User 1 can recover its desired subfiles from X1, X2 ⊕
X3 and X4.

• User 2 can recover its desired subfiles from X1 ⊕ X3,
X5 and X6.

• User 3 can recover its desired subfiles from X2, X3

and X7.
• User 4 can recover its desired subfiles from X1, X4

and X6.
• User 5 can recover its desired subfiles from X2, X5

and X7.

Fig. 3. FDS request graph for the (K, α, f) = (5, 4, 1) FDS structure and
the demand d = (1234, 2345, 1235, 1245, 1345).

For example, in the above, user 1 needs W2345,35 to correctly
decode its desired W1234,23 from X3, whereas user 2 needs
W1345,14 to correctly decode W2345,35 always from X3. The
act of “passing” subfiles W2345,35 and W1345,14 to user 1 and
user 2 with X2 and X1, respectively, allows the creation
of a clique between user 1, user 2 and user 3. This clique
is exploited by creating the XOR X3. The corresponding
communication load is equal to R(t = 2) = |X |/B = 7/6,
which will be met by the converse.

We wish to point out that, intuitively, the set of multicast
messages above is constructed around the idea that each
transmission serves not only to deliver desired content, but
also, at the same time, to form cliques that will be exploited
in future transmissions. Indeed, in the above we chose t+1 =
3 pivotal users (i.e., user 1, user 2 and user 3) which represent
an almost complete clique in the side information graph of
the induced index coding problem. All the effort consisted
then in trying to “deliver” side information7 to “bridge” the
gaps left by the selfish placement, while delivering desired
content to users. This was done in X1 and X2, where the
subfiles W1345,14 and W2345,35 were carefully “delivered” to
user 2 and user 1, respectively, without interfering with users
to which X1 and X2 are delivering desired information. This
interpretation related to the creation of cliques is a crucial part
of the dynamics of the problem that we are considering.

Now, let us consider the demand vector given by d2 =
(1234, 2345, 1235, 1245, 1345) with its corresponding FDS
request graph that is shown in Fig. 3. Since the graphs in Fig. 2
and in Fig. 3 are non-isomorphic,8 the demand d2 accepts
a different delivery solution9 than that for demand d1. Such
phenomenon does not happen in the standard coded caching
scenario, where indeed each demand would result in the same

7Notice that we use “deliver” in quotes when referring to undesired subfiles
because users do not need to actually decode subfiles which are not desired.
Indeed, as explained above, it is more a matter of aligning interference, so that
users can directly take linear combinations of the multicast messages to cancel
out interference terms. Still, the interpretation related to the creation of cliques
can give insights on how to construct multicast messages.

8This can be concluded by noticing that the graph in Fig. 2 contains
5 bidirectional edges, whereas the graph in Fig. 3 has 6 bidirectional edges.

9Having two non-isomorphic problems here implies that the delivery for the
second problem cannot be derived from that of the first problem by a simple
relabeling of the users.



Fig. 4. FDS request graph for any demand in the standard (unselfish) MAN
scenario with K = 5 users and N = 5 files labeled as Wi with i ∈ [5].
In this case the demand is identified by the vector f = (f1, f2, f3, f4, f5),
where user k ∈ [5] requests file Wfk

. This graph is complete. Hence, here
the ability to create cliques of subfiles is only limited by t, and is not affected
at all by the specific demand.

FDS request graph (cf. Fig. 4), which is always complete.10

In such an unselfish scenario where each file is assumed to
be of interest to all users, every user in the FDS request
graph is connected to every other user, independently of the
requested files. Hence, in the unselfish scenario, having a
fixed FDS request graph for every demand allows for an
identical delivery procedure for any demand. This seems to be
a crucial differentiating aspect between selfish and unselfish
coded caching.

III. CONVERSE BOUND FOR SELFISH CODED CACHING

WITH UNCODED PLACEMENT

Let us recall that each user is interested in its own FDS, and
that each FDS only represents a fraction |F|/N of the library.
In the general unselfish scenario, a portion (1−|F|/N) of each
user’s cache would be filled with content that would never
be requested by that user. Such a non-selfish scheme would
relinquish local caching gain for the benefit of being able
to encode across all combinations of users. Under the basic
clique-based approach in the MAN scheme, we are presented
with a trade-off between local caching gain and coding gain,
where the latter seems to be more desirable. Are there though
other coding techniques that manage to harvest an abundance
of coding opportunities, which are usually associated to the
standard coded caching approach, exploiting the existence of
a more targeted set of demands, while capitalizing on the
increased local caching gain brought about by a selfish variant?
If not, then what is the amount of coding gain that can be
harvested while maintaining selfish caching? These are the
questions addressed by our information-theoretic converse that
lower bounds the optimal worst-case load assuming uncoded
and selfish cache placement.

A. Theorem Statement

The converse bound employs the index coding techniques
of [25] that proved the optimality of the MAN scheme under

10A complete graph is a graph where every node is connected to every other
node.

the constraint of uncoded cache placement. Our main chal-
lenge will be to account for the presence of different profiles
of interest, adapting consequently the index coding approach
to reflect the (K, α, f) FDS structure proposed in the previous
section. The converse bound presented here shows that adding
the selfish cache placement constraint implies a higher optimal
communication load compared to the unselfish scenario. The
result is stated in the following theorem. We recall that
γα = γK/α is the effective normalized cache size, and
that t = Kγ = αγα is the cache redundancy. We also recall
that Kγ + 1 is the optimal coding gain for the unselfish
scenario.

Theorem 1 (Converse Bound for Selfish Coded Caching
Under Uncoded Prefetching): Under the assumption of
uncoded and selfish cache placement, and given the (K, α, f)
FDS structure, the optimal worst-case communication load R�

is lower bounded by RLB which is a piece-wise linear curve
with corner points

(M, RLB) =

(
t
N

K
,

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) )
, ∀t ∈ [0 : α]

(34)

corresponding to

RLB =
K(1 − γα)
Kγ + 1

[
(K − α)γ + 1

]
. (35)

Proof: We provide the proof of the converse
in Section IV-A. In Section IV-B we also present an
example that aims to help the reader better understand the
construction of the outer bound.

B. Comments on the Converse Bound

The bound reveals some interesting insights. Before dis-
cussing these insights, let us quickly recall that, in our sce-
nario, the integer value t is upper bounded by α, since any
t ≥ α would imply zero communication load.

1) Comparison With MAN: The following compares, for
any f , the optimal load R�(t) of selfish coded caching with
that of the unselfish (MAN) scenario.11

Corollary 1.1: Given the symmetric (K, α, f) FDS struc-
ture and α ∈ [K − 1], the converse reveals that

R�(t)
RMAN(t)

≥ 1, ∀t ∈ [0 : α − 1] (36)

R�(t)
RMAN(t)

> 1, ∀t ∈ (0 : α − 1) (37)

which says that, in the non-trivial range t ∈ [0 : α−1], selfish
coded caching is not better than unselfish coded caching,
which instead, in the non-extremal points of t and under
uncoded placement, strictly outperforms any implementation
of selfish coded caching. When α = K and f ≥ K , the
converse expression naturally matches that of unselfish coded
caching.

Proof: The proof can be found in Appendix A, while a
graphical comparison can be found in Fig. 5.

11The comparison between the selfish and unselfish scenarios is made easy
by the fact that the t values (i.e., the integer points corresponding to the
memory-axis of the memory-load trade-off) in the two scenarios coincide.



Fig. 5. Comparison between selfish and unselfish caching for the (20, 12, f)
FDS structure.

2) Selfish Local Caching Gain and Coding Gain: We recall
that, in the presence of a relatively small α, selfish caching
implies a sizeable increase in the effective normalized cache
size γα = γK/α, which in turn implies a much larger local
caching gain.

On the other hand, the converse reveals that a smaller α
implies a substantial reduction in the coding gain offered by
selfish coded caching. To compare coding gains, we first recall
that the coding gain in the original unselfish scenario takes the
form

RU

RMAN
= Kγ + 1 (38)

where RU = K(1 − γ) is the load for uncoded delivery.
As previously stated, this coding gain Kγ + 1 describes the
speedup factor over the uncoded case. To reflect this same
speedup in the selfish scenario, we must consider that the
corresponding load in the uncoded scenario takes the form
RU,selfish = K(1−γα). With this in place, the converse reveals
that the optimal coding gain of selfish coded caching is upper
bounded as

G� ≤ RU,selfish

RLB
=

Kγ + 1
(K − α)γ + 1

(39)

where the value

D := (K − α)γ + 1 (40)

represents the guaranteed deterioration in the coding gain
when we choose to cache selfishly. Indeed, if we consider
the non-trivial range α ∈ [2 : K − 1], we have D > 1 and
consequently G < Kγ + 1 for γ > 0. We can see that —
for fixed K and γ — this deterioration D increases with
decreasing α, reflecting the fact that the closer the (K, α, f)
FDS structure is to the standard MAN scenario, the smaller
this deterioration D is.

An important observation though is that the coding gain of
selfish coded caching does not scale with K . This is described
in the following corollary.

Fig. 6. Plot of different coding gains G for varying values of K and α for
the (K, α, f) FDS structure when γ = 1/20.

Corollary 1.2: For any fixed ratio δ = α/K < 1 the coding
gain of selfish caching does not scale as K increases, and it
is instead bounded as

G� <
1

1 − δ
. (41)

Proof: The proof can be found in Appendix B.
We can see in Fig. 6 the comparison between different

coding gains for varying values of K and α when the
normalized cache size γ is fixed. As mentioned, smaller
values of α correspond to much smaller coding gains.
As stated in Corollary 1.2, each curve is upper bounded12 by
1/(1 − δ).

Remark 3: At this point, we ought to point out that
our choice of having a fully symmetric FDS structure may
indeed be an overly penalizing condition. However, this choice
exemplifies the mechanisms and effects that come about when
selfishness is considered. This same choice nicely offers a crisp
method for calibrating the intersection between the interests
of the different users, taking us from a scenario where the
intersection is minimal, to scenarios ever closer to the original
MAN setting where the interests are identical. As suggested
before, this FDS structure is a sufficient proving step for
drawing, in a unified manner, the conclusion that indeed selfish
coded caching can be quite detrimental.

IV. PROOF OF THE MAIN INFORMATION-THEORETIC

CONVERSE IN THEOREM 1

The derivation of the converse makes extensive use of the
connection between caching and index coding. This connec-
tion was made in [10] and was successfully used in [25] to
derive the optimal performance of the unselfish scenario.

We quickly recall that an index coding problem
[53]–[56] consists of a server wishing to deliver N � inde-
pendent messages to K � users via a basic bottleneck link.

12When α = 1 it naturally holds that G� = 1, since in such case uncoded
delivery is optimal.



Each user k ∈ [K �] has its own desired message set Mk ⊆
[N �], and has knowledge of its own side information set
Ak ⊆ [N �]. Let Mi be the message i in the set [N �]. Then,
the index coding problem is typically described by its side
information graph in the form of a directed graph, where
each vertex is a message and where there is an edge from
Mi to Mj if Mi is in the side information set of the user
requesting Mj . The derivation of our converse will use the
following well-known result from [57, Corollary 1].

Lemma 1 ( [57, Corollary 1]): In an index coding problem
with N � messages Mi for i ∈ [N �], the minimum number of
transmitted bits ρ is bounded as

ρ ≥
∑
i∈J

|Mi| (42)

for any acyclic subgraph J of the problem’s side information
graph.

Before proceeding with the main proof, we also recall that
under the (K, α, f) FDS structure we have L = {WS : S ⊆
[K], |S| = α}, where WS = {Wi,S : i ∈ [f ]} is a class of
files. We further recall that there are C =

(
K
α

)
classes of files

and N = fC = f
(
K
α

)
files. Additionally, we recall that the

FDS of each user k ∈ [K] is given by

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} (43)

that each file has size B bits, and that each user is equipped
with a cache of size MB bits. Finally, let us remember that
we are interested in the non-trivial range13 α ∈ [2 : K − 1]
and in the range M ∈

[
0 : f

(
K−1
α−1

)]
simply because having

M = |Fk| = f
(
K−1
α−1

)
implies R� (|F|) = 0 as a consequence

of each user being able to store the entirety of its FDS.

A. Main Proof

The first step toward the converse consists of splitting each
file in a generic manner into a maximum of 2|S| = 2α disjoint
subfiles as

Wi,S = {Wi,S,T : T ⊆ S}, ∀S ⊆ [K] : |S| = α, ∀i ∈ [f ]
(44)

where Wi,S,T is the subfile of Wi,S cached exactly and only
by users in T . As already mentioned in Defintion 2, splitting
each file in this way satisfies the selfish cache placement
constraint, since T ⊆ S and WS ∈ Fk for each k ∈ S.

1) Constructing the Index Coding Problem: We now pro-
ceed by making the connection to index coding. Hence, let us
consider the index coding problem with K � = K users and
N � = K2α−1 messages, such that for any demand, identified
by the vectors d = (D1, . . . ,DK) and f = (f1, . . . , fK),
the desired message set and the side information set are
respectively given by

Mk = {Wfk,Dk,T : T ⊆ Dk, k /∈ T } (45)

13When α = 1 the proof is trivial, since for such case we have only two
integer points corresponding to t ∈ {0, 1}: when t = 0 the load is equal
to K , and when t = 1 each user has enough memory to cache entirely its
own FDS and the load is equal to 0. Then, the case α = K and f ≥ K
is equivalent to the standard (unselfish) MAN scenario, which was already
considered in [25].

Ak = {Wi,S,T : i ∈ [f ],S ⊆ [K], |S| = α, T ⊆ S, k ∈ T }
(46)

for each user k ∈ [K]. For this setting the side information
graph takes the form of a directed graph where each subfile
represents a vertex, and where there is a connection from (the
node corresponding to) Wfk1 ,Dk1 ,T1 to Wfk2 ,Dk2 ,T2 if and only
if Wfk1 ,Dk1 ,T1 ∈ Ak2 , i.e., if and only if k2 ∈ T1. To apply
Theorem 1, we are interested in acyclic sets of vertices J in
such side information graph. In the spirit of [25], we know
that the set⋃

k∈[K]

⋃
T ⊆(([K]\{u1,...,uk})∩Duk

)

{
Wfuk

,Duk
,T
}

(47)

does not contain any directed cycle14 for any demand (d, f )
and any vector u, where u = (u1, . . . , uK) is a permutation
of the users in [K]. Consequently, applying Theorem 1 yields
the following lower bound

BR� ≥
∑

k∈[K]

∑
T ⊆(([K]\{u1,...,uk})∩Duk

)

∣∣∣Wfuk
,Duk

,T

∣∣∣ . (48)

2) Selection of Distinct Demands: Now we wish to create
several lower bounds as the one in (48) considering differ-
ent user permutations u, and considering a subset of user
demands — each determined by the tuple (d, f ) with d =
(D1, . . . ,DK) and f = (f1, . . . , fK). Our aim is to even-
tually average these bounds in order to obtain an analytically
tractable lower bound on the optimal communication load. For
C being the set of properly selected demands described further
below and U(d,f) being the set of selected user permutations
for each demand (d, f ) in C, we seek to characterize the
expression given by

BR�
∑

(d,f)∈C
|U(d,f)| ≥

∑
(d,f)∈C

∑
u∈U(d,f)

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣Wfuk
,Duk

,T

∣∣∣ .
(49)

Notice that the goal of carefully selecting the demand set C and
the permutation set U(d,f) is twofold. The first is to provide the
symmetry that will allow us to simplify (49) into a meaningful
expression, and the second is to force the bound to be as tight
as possible.15

Toward this, we proceed to select C to contain circular
demands, as these are defined as follows.

Definition 3 (Circular Demands): A demand defined by
the vectors d = (D1, . . . ,DK) and f = (f1, . . . , fK) is
said to be a circular demand if there exists a permutation

14Notice that [25, Lemma 1] considers in fact T ⊆ ([K] \ {u1, . . . , uk})
and not T ⊆ (([K] \ {u1, . . . , uk})∩Duk ). However, the latter is a subset
of the former, and thus the lemma still holds.

15We wish to stress that constructing the converse using the demand set
C and the permutation set U(d,f ) for each (d, f) ∈ C does not mean that
the converse is the tightest nor that the demands C are part of the worst-case
demand set.



û = (û1, . . . , ûK) of the set of users [K] such that16

Wfûk
,Dûk

∈
k+α−1⋂
i=k+1

{Fûi} (50)

for each k ∈ [K]. This simply means that the demand reflects
a circular pattern if ∪k+α−1

i=k+1 {ûi} = Dûk
\ {ûk} for each

k ∈ [K].
Example 4: Consider the (6, 4, f) FDS structure. An exam-

ple of circular demand is given by the demand with vec-
tors d = (1234, 2345, 3456, 1456, 1256, 1236) and f =
(f1, f2, f3, f4, f5, f6). Indeed, the condition ∪k+α−1

i=k+1 {ûi} =
Dûk

\ {ûk} is satisfied for each k ∈ [6] with the vector
û = (1, 2, 3, 4, 5, 6). This same condition is also satisfied by
all K circular shifts of û = (1, 2, 3, 4, 5, 6).

This new definition allows us to describe the sets C and
U(d,f) as

C := {(d, f ) : the demand (d, f ) is circular} (51)

U(d,f) := {K circular shifts of the vector û associated

to a given (d, f) ∈ C}. (52)

These sets will generally yield larger acyclic subgraphs17

in (47) that can be used to increase the RHS in (48), and
to provide a better lower bound on R�.

Remark 4: We wish to point out that the careful selec-
tion of the demand set C and permutation set U(d,f) for
each (d, f ) ∈ C is a pivotal difference with respect to the
index coding based approaches that followed [25]. Indeed,
if one develops a converse bound using all possible valid
demands and user permutations following the exact same
procedure in [25], then the resulting bound is looser than
the one presented here. As a consequence, finding the good
set of demands and permutations becomes the key to obtain-
ing a tighter bound while keeping the problem analytically
tractable.

3) Counting the Selected Demands: Our goal now is to
simplify (49) into a more meaningful expression. We start
by counting how many circular demands there are. To do so,
we observe that there is a one-to-one correspondence between
one circular demand (d, f) ∈ C and the corresponding set
U(d,f) of permutations of users. This is easy to see, and the
intuition is as follows. A demand is said to be circular if there
exists a particular ordering of users such that the property
in (50) is satisfied. Such ordering is described by the vector
û and is clearly preserved under any circular shift of such
vector. Consequently evaluating |C| is equivalent to counting
the vectors û, since each of them corresponds to a distinct
circular demand.

Let us focus on user k ∈ [K]. Counting the total number
of circular demands where user k requests the file Wfk,Dk

is equivalent to counting the total number of vectors û such
that ∪k+α−1

i=k+1 {ûi} = Dk \ {k} and ∪K+k−1
i=k+α {ûi} = [K] \ Dk.

Recalling that we imply i mod K whenever i > K , we see

16We imply i mod K whenever i > K .
17This is based on the following observation. Throughout various examples,

such demands generally yielded the largest bounds compared to other classes
of demands.

that there are (α−1)!(K−α)!fK−1 such vectors. Then, if we
recall that user k can request a total of f

(
K−1
α−1

)
files, we see

that the total number of circular demands is equal to

|C| = f

(
K − 1
α − 1

)
(α−1)!(K−α)!fK−1 = fK(K−1)!. (53)

Furthermore, since |U(d,f)| = K for each circular demand,
we can see that there is a total of

∑
(d,f)∈C |U(d,f)| = fKK!

lower bounds — as the one in (48) — created for the
expression in (49).

4) Constructing the Optimization Problem: We will seek
to simplify the expression in (49), and then to minimize the
new simplified expression, in order to lower bound the optimal
worst-case load R�. Toward simplifying, we first count how
many times each subfile Wi,S,T appears in (49), where i ∈ [f ],
S ⊆ [K] with |S| = α, T ⊆ S and |T | = t. For this purpose,
we make use of the following lemma.

Lemma 2: Let û = (û1, . . . , ûK) be a permutation of the
elements in [K], let U be the set composed of the K circular
shifts of the vector û, and let k1, k2 ∈ [K] such that k1 
= k2.
Consider

� :=

∣∣∣∣∣∣
û(k2)⋃

i=û(k1)+1

{ûi}

∣∣∣∣∣∣ (54)

where we assume i mod K whenever i > K . Then, there is
a total of (K − �) vectors u ∈ U such that k1 appears before
k2 in the vector u.

Proof: The proof is reported in Appendix C.
Let us focus on subfile Wi,S,T . We start by considering all

circular demands (d, f) ∈ C such that fk1 = i and Dk1 = S
for some k1 ∈ S and T ⊆ (S \ {k1}) with |T | = t. For
each of these circular demands we have a vector û of ordered
users and we select as user permutations the vectors in the set
U(d,f). Considering how the acyclic set of vertices in (47) is
built, it is clear that Wi,S,T appears in (49) whenever all the
elements in T appear after k1 in u ∈ U(d,f). By Lemma 2,
we know that this happens a total of (K − �) times, where

� = max
j∈T

∣∣∣∣∣∣
û(j)⋃

i=û(k1)+1

{ûi}

∣∣∣∣∣∣ . (55)

Notice that the above maximization is required since our aim
is to count — for any given û, and thus for a given circular
demand — how many times all the elements in T appear
after18 k1 when considering all the user permutations in U(d,f).

Recalling that |T | = t, we observe that � ∈ [t : α − 1].
To see this, we note that the minimum value of � is t when
k1 and all the elements in T are in consecutive positions in the
vector û. Additionally, we also note that the maximum value
of � is (α − 1), because T ⊆ (S \ {k1}) and all the (α − 1)
elements in S\{k1} are immediately after k1 in û (and any of
its circular shifts in U(d,f)). This is because we are considering
circular demands where user k1 requests for the file class
Dk1 = S. Hence, when we consider all possible values of �,

18Indeed, recalling that we build acyclic subgraphs as in (47), the subfile
Wfk1 ,Dk1 ,T appears in (49) only when all elements in T are after k1 in the
vector u ∈ U(d,f ) and the maximization is needed to count in how many of
such user permutations it happens to have all the elements in T after k1.



the subfile Wi,S,T is counted a total of
∑α−1

�=t a�(K−�) times
in (49) when we focus on circular demands with fk1 = i and
Dk1 = S. The term

a� := t!(α − 1 − t)!(K − α)!
(

� − 1
t − 1

)
fK−1 (56)

counts the total number of vectors û (and consequently
of circular demands) for which fk1 = i, Dk1 = S and

maxj∈T

∣∣∣⋃û(j)
i=û(k1)+1{ûi}

∣∣∣ = �. Since the same reasoning
applies whenever the file Wi,S,T is requested by any of the
other (α − 1 − t) users in S \ {T , k1}, namely, when fk = i
and Dk for every k ∈ (S \ {T , k1}), we can conclude that
the subfile Wi,S,T appears a total of (α− t)

∑α−1
�=t a�(K − �)

times in (49) when we consider all circular demands in C.
Moreover, the same reasoning applies to any other subfile.
Hence, the expression in (49) simplifies as

R� ≥ 1
B
∑

(d,f)∈C |U(d,f)|
∑

(d,f)∈C

∑
u∈U(d,f)

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣Wfuk
,Duk

,T

∣∣∣ (57)

=
1

BfKK!

∑
(d,f)∈C

∑
u∈U(d,f)

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣Wfuk
,Duk

,T

∣∣∣ (58)

=
α∑

t=0

f(t)xt (59)

where we define

ct :=
(α − t)
fKK!

α−1∑
�=t

a�(K − �) (60)

f(t) := Nct (61)

0 ≤ xt :=
∑

S⊆[K]:|S|=α

∑
T ⊆S:|T |=t

∑
i∈[f ]

|Wi,S,T |
NB

. (62)

At this point, we seek to lower bound the minimum
worst-case load R�(t) by lower bounding the solution to the
following optimization problem

min
x

α∑
t=0

f(t)xt (63a)

subject to
α∑

t=0

xt = 1 (63b)

α∑
t=0

txt ≤
KM

N
(63c)

where (63b) and (63c) correspond to the file size constraint
and the cumulative cache size constraint, respectively.

5) Simplifying and Lower Bounding the Solution to the
Optimization Problem: Before proceeding to solve the opti-
mization problem, we wish to further simplify the coefficients
ct and thus also f(t). Indeed, this coefficient ct can be
rewritten as

ct =
1

N
(
α
t

) α−1∑
�=t

(
� − 1
t − 1

)
(K − �) (64)

recalling that N = f
(
K
α

)
. Then, we can write

ct =
1

N
(
α
t

) α−1∑
�=t

(
� − 1
t − 1

)
(K − �) (65)

=
1

N
(
α
t

) (K

α−1∑
�=t

(
� − 1
t − 1

)
−

α−1∑
�=t

�

(
� − 1
t − 1

))
(66)

=
1

N
(
α
t

) (K

α−2∑
�=t−1

(
�

t − 1

)
− t

α−1∑
�=t

(
�

t

))
(67)

=
K
(
α−1

t

)
− t
(

α
t+1

)
N
(
α
t

) (68)

=

(
α

t+1

)
+ (K − α)

(
α−1

t

)
N
(
α
t

) (69)

where (68) uses the well-known hockey-stick identity which
states that

n∑
i=k

(
i

k

)
=
(

n + 1
k + 1

)
, ∀n, k ∈ N, n ≥ k. (70)

At this point, we can rewrite f(t) as

f(t) =

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) . (71)

Now, since the auxiliary variable xt can be considered as
a probability mass function, the optimization problem in (63)
can be seen as the minimization of E[f(t)]. Moreover, the
following holds.

Lemma 3: The function f(t) is convex and is strictly
decreasing for increasing values of t.

Proof: The proof is reported in Appendix D.
Taking advantage of Lemma 3, we can write E[f(t)] ≥

f(E[t]) using Jensen’s inequality. Then, since f(t) is strictly
decreasing with increasing t ∈ [0 : α], we can further
write f(E[t]) ≥ f(KM/N) taking advantage of the fact that
E[t] is upper bounded as in (63c). Consequently, E[f(t)] ≥
f(KM/N), and thus for t = KM/N the converse bound is
a piece-wise linear curve with corner points

(M, RLB) =

(
t
N

K
,

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) )
, ∀t ∈ [0 : α].

(72)

Thus, RLB takes the form

RLB =

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) (73)

=
α − t

1 + t
+ (K − α)

(
1 − t

α

)
(74)

=
α(1 − γα)
1 + Kγ

+ K(1 − γα) − α(1 − γα) (75)

= K(1 − γα)
[
1 +

α

K(1 + Kγ)
− α

K

]
(76)

=
K(1 − γα)
1 + Kγ

[
1 + Kγ +

α

K
− α

K
(1 + Kγ)

]
(77)

=
K(1 − γα)
1 + Kγ

[
(K − α)γ + 1

]
(78)

which completes the proof.



B. A Detailed Example for the Converse Bound

We present here in detail an example that can help the
reader better understand the construction of the converse
bound.

Let us consider the (6, 4, 1) FDS structure which involves
a file library L = {W1,S : S ⊆ [6], |S| = 4} consisting of
C =

(
K
α

)
=
(
6
4

)
= 15 classes of files. Since there is only

f = 1 file per class, there is a total of N = fC = 15 files,
so in this example we make no distinction between files and
classes of files. Thus, for simplicity, we will here refer to file
W1,S directly as WS , which means that each file is entirely
described by a 4-tuple S ⊆ [6], and each demand instance is
entirely defined by the d = (D1, . . . ,DK) vector only. The
FDS of each user k ∈ [6] is given by

Fk = {WS : S ⊆ [6], |S| = 4, k ∈ S} (79)

and it consists of f
(
K−1
α−1

)
= 10 files. Hence, this example

considers M ∈ [0 : 10], simply because having M ≥ 10
implies that each user can preemptively cache the entirety of
its FDS, which in turn implies R� (|F|) = 0.

We start by assuming the most general uncoded and selfish
cache placement where each file WS is split into a total of
2|S| = 2α = 16 disjoint subfiles as

WS = {WS,T : T ⊆ S}, ∀S ⊆ [6] : |S| = 4 (80)

where we recall that WS,T is the subfile of WS cached by the
users in T , and where we recall that the selfishness condition
is guaranteed by forcing T ⊆ S.

1) Constructing the Index Coding Problem: For any given
demand d = (D1, . . . ,DK) where user k asks for WDk

,
we consider the index coding problem with K � = K = 6 users
and N � = K2α−1 = 48 messages, where each user k ∈ [6]
has a desired message set

Mk = {WDk,T : T ⊆ Dk, k /∈ T } (81)

and a side information set

Ak = {WS,T : S ⊆ [K], |S| = α, T ⊆ S, k ∈ T }. (82)

The side information graph of this index coding problem
is the directed graph where each desired subfile represents
a graph vertex and where a connection exists from vertex
WDk1 ,T1 to WDk2 ,T2 if and only if WDk1 ,T1 ∈ Ak2 . To now
create an acyclic subgraph of the above graph, we recall from
[25, Lemma 1] that the set⋃

k∈[K]

⋃
T ⊆(([K]\{u1,...,uk})∩Duk

)

{
WDuk

,T
}

(83)

does not contain any directed cycle for any demand d and
user permutation u. This, together with Theorem 1, implies
that

BR� ≥
∑

k∈[K]

∑
T ⊆(([K]\{u1,...,uk})∩Duk

)

∣∣∣WDuk
,T

∣∣∣ . (84)

2) Selection of Distinct Demands: To render the above
bound meaningful, we need to carefully select a set of
demands that will eventually help us symmetrize the problem
as well as render the bound tighter. Toward this, we create
several lower bounds as the one in (84), one for each cho-
sen demand and user permutation. Our desired symmetry is
achieved by considering only the set of circular demands C
and, for each d ∈ C, the user permutations in Ud, where
this last set simply contains the K circular shifts of the
vector û associated to each circular demand. For example,
in our (6, 4, 1) FDS scenario, one such circular demand is
d = (1234, 2345, 3456, 1456, 1256, 1236), because it satisfies
the condition ∪k+α−1

i=k+1 {ûi} = Dûk
\ {ûk} for each k ∈ [6]

with the vector û = (1, 2, 3, 4, 5, 6). This same condition is
also satisfied by all K circular shifts of û = (1, 2, 3, 4, 5, 6).
For this demand d = (1234, 2345, 3456, 1456, 1256, 1236),
we will consequently construct 6 bounds as in (84).

By averaging all such bounds, a new lower bound on R�

appears in the following form

BR�
∑
d∈C

|Ud| ≥
∑
d∈C

∑
u∈Ud

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣WDuk
,T

∣∣∣ . (85)

3) Counting the Selected Demands: To simplify the above,
we proceed to count the total number of circular demands. Let
us focus without loss of generality on user 1 and also on those
circular demands where user 1 requests the file WS such that
S = D1 = {1, 2, 3, 4}. We can see that there exists a total of
(α − 1)!(K − α)! = 12 circular demands with this D1. If we
consider û1 = 1 without loss of generality, such demands are
all those associated to a vector û where ∪α

i=2{ûi} = D1 \
{1} = {2, 3, 4} and ∪K

i=α+1{ûi} = [K] \ D1 = {5, 6}. Given
that user 1 can ask for a file among a total of |F1| =

(
K−1
α−1

)
=

10 files, we can conclude that the total number of such circular
demands is equal to |C| = |F1|(α − 1)!(K − 1)! = 120. For
each such demand we can build K index coding bounds, one
for each of the K circular shifts corresponding to the vector
û, consequently resulting in a total of

∑
d∈C |Ud| = 720 lower

bounds — as the one in (84) — being used for the expression
in (85).

4) Constructing the Optimization Problem: Let us keep our
focus on user 1 and again on those circular demands where
user 1 requests the file WS with S = {1, 2, 3, 4} = D1. Since
there is a one-to-one correspondence between the (α−1)!(K−
α)! = 12 circular demands and the set of K circular shifts of
the ordered vector of users û, then — assuming without loss of
generality that û1 = 1 — the vectors û for all the 12 demands
take the form

û1 = (1, 2, 3, 4, 5, 6) û7 = (1, 2, 3, 4, 6, 5) (86)

û2 = (1, 3, 2, 4, 5, 6) û8 = (1, 3, 2, 4, 6, 5) (87)

û3 = (1, 3, 4, 2, 5, 6) û9 = (1, 3, 4, 2, 6, 5) (88)

û4 = (1, 4, 3, 2, 5, 6) û10 = (1, 4, 3, 2, 6, 5) (89)

û5 = (1, 4, 2, 3, 5, 6) û11 = (1, 4, 2, 3, 6, 5) (90)

û6 = (1, 2, 4, 3, 5, 6) û12 = (1, 2, 4, 3, 6, 5). (91)



The above one-to-one correspondence means that each vec-
tor û above corresponds to a circular demand with D1 =
{1, 2, 3, 4}. For example, vector û1 corresponds to the demand
d1 = (1234, 2345, 3456, 1456, 1256, 1236). In addition, for
each vector û, we consider as user permutations the K circular
shifts of û. For instance, when we consider the circular
demand associated to the vector û1, the user permutations
are given by the following set

Ud1 = {(1, 2, 3, 4, 5, 6), (2, 3, 4, 5, 6, 1), (3, 4, 5, 6, 1, 2),
(4, 5, 6, 1, 2, 3), (5, 6, 1, 2, 3, 4), (6, 1, 2, 3, 4, 5)}.

(92)

Consider the subfile WS,T with T ⊆ (S \ {1}) and |T | = t.
Following the same line of reasoning as in Section IV-A, and
taking advantage of Lemma 2 as well as focusing on circular
demands with D1 = S = {1, 2, 3, 4}, we see that this subfile
is counted (K − �) times when we consider the K circular
shifts of each û, where

� = max
j∈T

∣∣∣∣∣∣
û(j)⋃
i=2

{ûi}

∣∣∣∣∣∣ (93)

and where we again used that û(1) = 1. For example,
consider û4 = (1, 4, 3, 2, 5, 6) and the subfile WS,24. Since

� = maxj∈T

∣∣∣⋃û(j)
i=2 {ûi}

∣∣∣ = û(2) − û(1) = 3, the subfile

WS,24 is counted a total of (K − �) = 3 times across the K
circular shifts of û4.

Considering that � ∈ [t : α − 1] = [t : 3], as already
explained in the general description of the main proof of the
converse, we see that each subfile WS,T with |T | = t and
T ⊆ (S \ {1}) is counted a total of

∑3
�=t a�(K − �) times

in (85) when going over the circular demands having D1 =
S = {1, 2, 3, 4}. The term

a� = t!(α − 1 − t)!(K − α)!
(

� − 1
t − 1

)
= t!(3 − t)!2!

(
� − 1
t − 1

)
(94)

counts the total number of vectors û (and consequently the
number of circular demands d ∈ C) corresponding to D1 =
{1, 2, 3, 4} and maxj∈T

∣∣∣⋃û(j)
i=2 {ûi}

∣∣∣ = �. Since the same

reasoning applies whenever the file WS is requested by any
other of the (α−1−t) users in S\{T , 1}, we can see that each

subfile WS,T appears (4 − t)
∑3

�=t a�(K − �) times in (85)
when we consider all circular demands in C. Similarly, the
same reasoning applies to any other file in L. Consequently,
the expression in (85) simplifies as

R� ≥ 1
B
∑

d∈C |Ud|
∑
d∈C

∑
u∈Ud

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣WDuk
,T

∣∣∣ (95)

=
1

720B

∑
d∈C

∑
u∈Ud

∑
k∈[K]∑

T ⊆(([K]\{u1,...,uk})∩Duk
)

∣∣∣WDuk
,T

∣∣∣ (96)

=
α∑

t=0

f(t)xt (97)

where we define

ct :=
(4 − t)

720

α−1∑
�=t

a�(K − �) (98)

f(t) := Nct (99)

0 ≤ xt :=
∑

S⊆[K]:|S|=α

∑
T ⊆S:|T |=t

|WS,T |
NB

. (100)

At this point we can formulate the optimization problem as
in (63) and lower bound its solution to obtain the converse.

5) Lower Bounding the Solution to the Optimization Prob-
lem: Since the variable xt can be interpreted as a probability
mass function and since — as we recall from Lemma 3 —
the coefficients f(t) represent a strictly decreasing convex
sequence, we can conclude that the optimization problem can
be easily lower bounded by using Jensen’s inequality and the
cumulative cache size constraint. As shown in Section IV-A,
the coefficients can be rewritten in the following form

f(t) =

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) (101)

so we can obtain that the converse bound is a piece-wise

linear curve with corner points

(
t 5
2 ,

( 4
t+1)+2(3

t)
(4

t)

)
for every

t ∈ [0 : 4].

V. THE EXACT MEMORY-LOAD TRADE-OFF

FOR α-DEMANDS

We will here draw insights from the converse to establish
a general cache placement policy, and then a delivery scheme
that applies to a specific set of so-called α-Demands. For these
demands and for the specific placement policy, the scheme will
be proven optimal with the use of an additional converse.

We start by noticing that the converse in Theorem 1 can be
decomposed as

RLB(t) =

(
α

t+1

)(
α
t

) +
(K − α)

(
α−1

t

)(
α
t

) (102)

with the first term R1(t) := ( α
t+1)
(α

t)
= α(1−γα)

1+αγα
bringing to mind

a smaller MAN placement-and-delivery (unselfish) problem
with α users, a common library, and normalized cache size

γα, and with the second term R2(t) :=
(K−α)(α−1

t )
(α

t)
= (K −

α)(1 − γα) bringing to mind uncoded delivery to (K − α)
users. Let us exploit this observation to suggest a placement.

A. Cache Placement

As noted, we can think of the R1(t) term as representing
the optimal load in a “smaller” α-MAN problem with α users
that are known in advance to be interested in a common class
of files and thus benefit from the corresponding α-user MAN
placement. If each user — as is the case in our setting —
can allocate a fraction γα for each file of potential interest,
then a MAN placement implies that each user stores a total of



fγα files.19 Here, in our effort to provide a placement method,
we must account for the fact that there is a total of

(
K
α

)
such

“smaller” MAN problems, because there are C =
(
K
α

)
file

classes. Let us now recall that each user appears in a total
of
(
K−1
α−1

)
such smaller problems, since there are

(
K−1
α−1

)
file

classes that each user is interested in. Our placement must
account for the possibility of each user participating in any
such smaller problem. This requires each user to store fγα

files per class of interest, and thus requires a total storage
capacity of γαf

(
K−1
α−1

)
= M , which, as we see, nicely satisfies

the cache size constraint. This reasoning justifies the cache
placement procedure that we present below.

In our proposed uncoded and selfish cache placement
method, based on the same combinatorial argument of the
MAN scheme, each user k proceeds to cache only from Fk.
The placement begins by splitting each file into

(
α
t

)
non-

overlapping subfiles as

Wi,S = {Wi,S,T : T ⊆ S, |T | = t} (103)

for each S ⊆ [K] such that |S| = α and for each i ∈ [f ],
and then is completed by filling the cache Zk of each user
k ∈ [K] as

Zk = {Wi,S,T : i ∈ [f ],S ⊆ [K], |S| = α, T ⊆ S,

|T | = t, k ∈ T }. (104)

Each cache stores
(
α−1
t−1

)
subfiles for each file in its FDS,

so abiding by the cache size constraint

|F|
(

α − 1
t − 1

)
B(
α
t

) = f

(
K − 1
α − 1

)
t

α
B = MB. (105)

Remark 5: Unfortunately, the above reasoning does not
immediately reflect — at least not to us — a universal
delivery solution for any set of demands. To the best of our
understanding, our cache placement introduces the need to
resolve a large number of non-isomorphic index coding prob-
lems. Nevertheless, the careful interpretation of the converse
allowed us to suggest a general selfish cache placement policy.
Similarly, it also allows us to identify a well-defined class of
demands, as we can see below.

B. Delivery Scheme for the Set of α-Demands

We now present the delivery method for the following class
of demands.

Definition 4 (α-Demands): Considering the (K, α, f) FDS
structure with f ≥ α, the demand defined by the vectors d =
(D1, . . . ,DK) and f = (f1, . . . , fK) is an α-demand if and
only if there exists at least one set of users K ⊆ [K] such that
|K| = α, fk1 
= fk2 for any k1 
= k2 with k1, k2 ∈ K and
Dk = K for all k ∈ K.

Such demands can exist only if f ≥ α. Indeed, if we have
at least α files per class, then we can have distinct demands
where there exists at least one set of α users requesting distinct
files, all belonging to the same file class.

Let Rα,c denote the worst-case load when only α-demands
are considered, and when the cache placement in Section V-A

19Recall that f is the total number of files in this common class of files.

is adopted. We are now ready to provide the exact character-
ization of optimal such load R�

α,c.
Proposition 1 (The Exact Memory-Load Trade-Off for

α-Demands Under the Presented Symmetric Placement):
Assuming the selfish and uncoded cache placement presented
in Section V-A, the optimal worst-case communication load
R�

α,c for the (K, α, f) FDS structure and α-Demands is a
piece-wise linear curve with corner points

(M, R�
α,c) =

(
t
N

K
,

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) )
, ∀t ∈ [0 : α]

(106)

again corresponding to

R�
α,c =

K(1 − γα)
Kγ + 1

[
(K − α)γ + 1

]
. (107)

Proof: The proof of the converse is reported in Appen-
dix E, whereas the proof of the achievability is reported below
in Section V-C.

C. Achievability Proof of Proposition 1

By definition, any α-demand has at least one set of α users
requesting distinct files from the same file class. If we denote
by K one of such sets, it holds that Dk = K for all k ∈ K
and fk1 
= fk2 for all k1 
= k2 with k1, k2 ∈ K. Consider
user k ∈ K. According to the cache placement procedure in
Section V-A, this user does not have in its cache any subfile
Wfk,K,T where T ⊆ K, |T | = t and k /∈ T . If we focus on
this set K of α users only, we can automatically construct the
following sequence of multicast messages

XK =

(⊕
k∈S

Wfk,K,S\{k} : S ⊆ K, |S| = t + 1

)
. (108)

For the remaining (K − α) users in [K] \ K, we consider the
following sequence

X[K]\K = (Wfk,Dk,T : k ∈ ([K] \ K), k /∈ T ) (109)

of uncoded transmissions. Then, the transmitter delivers the
concatenated X = (XK, X[K]\K), inducing a load

|X |
B

=
|XK| + |X[K]\K|

B
=

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) (110)

which implies that R�
α,c(t) ≤ ( α

t+1)+(K−α)(α−1
t )

(α
t)

for all

t ∈ [0 : α].
Remark 6: As a testament to the additional usefulness of

the converse developed here, we point out that the above
achievable scheme is developed as a direct outcome of a
meticulous inspection of the expression of the bound itself.

D. Example of the Achievable Scheme

Consider the (K, α, f) = (5, 3, 3) FDS structure. We have
C =

(
K
α

)
=
(
5
3

)
= 10 classes of files with a total of N =

fC = 30 files. The FDS structure is given by

F1 = {W123,W124,W125,W134,W135,W145} (111)



F2 = {W123,W124,W125,W234,W235,W245} (112)

F3 = {W123,W134,W135,W234,W235,W345} (113)

F4 = {W124,W134,W145,W234,W245,W345} (114)

F5 = {W125,W135,W145,W235,W245,W345} (115)

where WS = {W1,S , W2,S , W3,S} for each triplet S ⊆ [5].
Let us consider the scenario of t = 2. In this case, each file
is split as

Wi,123 = {Wi,123,12, Wi,123,13, Wi,123,23} (116)

Wi,124 = {Wi,124,12, Wi,124,14, Wi,124,24} (117)

Wi,125 = {Wi,125,12, Wi,125,15, Wi,125,25} (118)

Wi,134 = {Wi,134,13, Wi,134,14, Wi,134,34} (119)

Wi,135 = {Wi,135,13, Wi,135,15, Wi,135,35} (120)

Wi,145 = {Wi,145,14, Wi,145,15, Wi,145,45} (121)

Wi,234 = {Wi,234,23, Wi,234,24, Wi,234,34} (122)

Wi,235 = {Wi,235,23, Wi,235,25, Wi,235,35} (123)

Wi,245 = {Wi,245,24, Wi,245,25, Wi,245,45} (124)

Wi,345 = {Wi,345,34, Wi,345,35, Wi,345,45} (125)

for all i ∈ [3].
Consider the demand defined by f = (1, 2, 3, 1, 1) and d =

(123, 123, 123, 124, 125). This is an α-demand because there
exists a set K of α users all requesting distinct files belonging
to the same file class K. Here, this set is K = {1, 2, 3}.

In accordance to the described selfish and uncoded cache
placement, each user desires a total of

(
α−1

t

)
subfiles which

are not in its cache. In this case, each user simply desires(
2
2

)
= 1 subfile. The delivery of these subfiles involves the

following MAN XOR

X123 =

(⊕
k∈S

Wfk,K,S\{k} : S ⊆ K, |S| = t + 1

)
(126)

= (W1,123,23 ⊕ W2,123,13 ⊕ W3,123,12) (127)

and then the following two uncoded transmissions

X45 = (W1,124,12, W1,125,12) (128)

that serve the users outside K. Given that the subpacketization
is
(
α
t

)
=
(
3
2

)
= 3, the transmitted signal X = (X123, X45)

induces a communication load of Rα,c(2) = |X |/B = 1
which matches the corresponding optimal R�

α,c(2) from
Theorem 1.

VI. ADDITIONAL OPTIMAL SCHEMES FOR

CIRCULAR DEMANDS

We here present schemes that optimally deliver circular
demands. We will do so for the (5, 4, f) FDS structure with
t ∈ {2, 3}, and for the (6, 5, f) FDS structure with t = 3.
The optimal schemes assume the selfish and uncoded cache
placement described in Section V-A. We prove optimality
simply by showing that the load provided by the proposed
achievable schemes matches the converse bound in Theorem 1.

Fig. 7. FDS request graph for a generic circular demand identified by
the vector û = (û1, û2, û3, û4, û5) and the (K, α, f) = (5, 4, f) FDS
structure.

This suffices because, as we might recall, the construction of
the converse employed only circular demands.20

A. Circular Demands and the (5, 4, f ) FDS Structure

The scheme presented here is a generalization, for any circu-
lar demand, of the example in Section II-B. For the considered
(K, α, f) = (5, 4, f) structure, we know that there are C =(
K
α

)
= 5 file classes W1234,W1235,W1245,W1345,W2345,

corresponding to N = fC = 5f files. The 5 FDSs take the
form

F1 = {W1234,W1235,W1245,W1345} (129)

F2 = {W1234,W1235,W1245,W2345} (130)

F3 = {W1234,W1235,W1345,W2345} (131)

F4 = {W1234,W1245,W1345,W2345} (132)

F5 = {W1235,W1245,W1345,W2345} (133)

where we recall that WS = {Wi,S : i ∈ [f ]}. The scheme
works for any value of f ∈ Z

+, and for any circular
demand. Such general circular demand is identified by the
vector û = (û1, û2, û3, û4, û5) that must satisfy the property
(cf. Defintion 3) that ∪k+3

i=k+1{ûi} = Dûk
\ {ûk} for each

k ∈ [5]. The FDS request graph of such generic circular
demand is shown in Fig. 7. Notice that, as expected, this is
not a complete graph.

Before presenting the schemes, we wish to point out the
key novelty and the general idea. As already mentioned in
the example in Section II-B, the crucial aspect consists of
designing multicast messages that not only deliver messages
themselves, but where also their linear combinations can be
used by the users to correctly decode requested subfiles.
Hence, the idea here is to find an efficient way to align
interference, such that users can cache-out interference terms

20We wish to point out that the fact that the converse is matched when
considering some instances of circular demands does not necessarily imply
that the converse is exactly matched in general nor that circular demands are
worst-case demands.



by simply XORing some of the received messages. The pivotal
aspect of this approach is the ability of choosing the users that
will have to take linear combinations of messages to cancel
interference and correctly decode the requested subfiles.

1) The Case of t = 2: According to the cache placement
in Section V-A, each file is split into

(
α
t

)
=
(
4
2

)
= 6 non-

overlapping subfiles as

Wi,1234 = {Wi,1234,12, Wi,1234,13, Wi,1234,14,

Wi,1234,23, Wi,1234,24, Wi,1234,34} (134)

Wi,1235 = {Wi,1235,12, Wi,1235,13, Wi,1235,15,

Wi,1235,23, Wi,1235,25, Wi,1235,35} (135)

Wi,1245 = {Wi,1245,12, Wi,1245,14, Wi,1245,15,

Wi,1245,24, Wi,1245,25, Wi,1245,45} (136)

Wi,1345 = {Wi,1345,13, Wi,1345,14, Wi,1345,15,

Wi,1345,34, Wi,1345,35, Wi,1345,45} (137)

Wi,2345 = {Wi,2345,23, Wi,2345,24, Wi,2345,25,

Wi,2345,34, Wi,2345,35, Wi,2345,45} (138)

for each i ∈ [f ]. Considering then that the cache content of
each user k ∈ [5] is filled as

Zk = {Wi,S,T : i ∈ [f ],S ⊆ [5], |S| = 4, T ⊆ S,

|T | = 2, k ∈ T } (139)

it can be easily seen that each user desires a total of
(
α−1

t

)
=(

3
2

)
= 3 subfiles, each of size B/6 bits. Recalling that

the vector of ordered users û = (û1, û2, û3, û4, û5) satisfies
Dûk

= ∪k+3
i=k {ûi} for each k ∈ [5], we conclude that the

subfiles desired by each user are the following.
• User û1. The subfiles desired are Wfû1 ,Dû1 ,{û2,û3},

Wfû1 ,Dû1 ,{û2,û4} and Wfû1 ,Dû1 ,{û3,û4}.
• User û2. The subfiles desired are Wfû2 ,Dû2 ,{û3,û4},

Wfû2 ,Dû2 ,{û3,û5} and Wfû2 ,Dû2 ,{û4,û5}.
• User û3. The subfiles desired are Wfû3 ,Dû3 ,{û1,û4},

Wfû3 ,Dû3 ,{û1,û5} and Wfû3 ,Dû3 ,{û4,û5}.
• User û4. The subfiles desired are Wfû4 ,Dû4 ,{û1,û2},

Wfû4 ,Dû4 ,{û1,û5} and Wfû4 ,Dû4 ,{û2,û5}.
• User û5. The subfiles desired are Wfû5 ,Dû5 ,{û1,û2},

Wfû5 ,Dû5 ,{û1,û3} and Wfû5 ,Dû5 ,{û2,û3}.
These subfiles are delivered by the following sequence of
XORs

X1 = Wfû1 ,Dû1 ,{û2,û3} ⊕ Wfû2 ,Dû2 ,{û3,û5}

⊕ Wfû3 ,Dû3 ,{û1,û4} (140)

X2 = Wfû3 ,Dû3 ,{û1,û4} ⊕ Wfû1 ,Dû1 ,{û2,û4}

⊕ Wfû4 ,Dû4 ,{û1,û2} (141)

X3 = Wfû2 ,Dû2 ,{û3,û5} ⊕ Wfû5 ,Dû5 ,{û1,û3}

⊕ Wfû3 ,Dû3 ,{û1,û5} (142)

X4 = Wfû1 ,Dû1 ,{û3,û4} ⊕ Wfû4 ,Dû4 ,{û1,û5} (143)

X5 = Wfû2 ,Dû2 ,{û3,û4} ⊕ Wfû4 ,Dû4 ,{û2,û5} (144)

X6 = Wfû2 ,Dû2 ,{û4,û5} ⊕ Wfû5 ,Dû5 ,{û1,û2} (145)

X7 = Wfû3 ,Dû3 ,{û4,û5} ⊕ Wfû5 ,Dû5 ,{û2,û3} (146)

after which each user k ∈ [5] can employ its own cache content
Zk to decode as follows.

• User û1 recovers its desired subfiles from X1 ⊕ X3,
X2 and X4.

• User û2 recovers its desired subfiles from X1 ⊕ X2,
X5 and X6.

• User û3 recovers its desired subfiles from X1, X3 and X7.
• User û4 recovers its desired subfiles from X2, X4 and X5.
• User û5 recovers its desired subfiles from X3, X6 and X7.

Given that |Xi| = B/6 for each i ∈ [7], and given that there
are 7 transmissions, we have a load of R(2) = |X |/B = 7/6.
Since then RLB(2) = 7/6, we can conclude that the converse
is tight.

2) The Case of t = 3: In this case each file is split into(
4
3

)
= 4 non-overlapping subfiles as

Wi,1234 = {Wi,1234,123, Wi,1234,124, Wi,1234,134, Wi,1234,234}
(147)

Wi,1235 = {Wi,1235,123, Wi,1235,125, Wi,1235,135, Wi,1235,235}
(148)

Wi,1245 = {Wi,1245,124, Wi,1245,125, Wi,1245,145, Wi,1245,245}
(149)

Wi,1345 = {Wi,1345,134, Wi,1345,135, Wi,1345,145, Wi,1345,345}
(150)

Wi,2345 = {Wi,2345,234, Wi,2345,235, Wi,2345,245, Wi,2345,345}
(151)

for each i ∈ [f ]. Each user then desires
(
3
3

)
= 1 subfile of size

B/4. More precisely, always considering the general circular
demands identified by the vector û, the desired subfiles are
given as follows.

• User û1 desires Wfû1 ,Dû1 ,{û2,û3,û4}.
• User û2 desires Wfû2 ,Dû2 ,{û3,û4,û5}.
• User û3 desires Wfû3 ,Dû3 ,{û1,û4,û5}.
• User û4 desires Wfû4 ,Dû4 ,{û1,û2,û5}.
• User û5 desires Wfû5 ,Dû5 ,{û1,û2,û3}.

After transmitting the following two XORs

X1 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕ Wfû2 ,Dû2 ,{û3,û4,û5}

⊕ Wfû4 ,Dû4 ,{û1,û2,û5} (152)

X2 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕ Wfû3 ,Dû3 ,{û1,û4,û5}

⊕ Wfû5 ,Dû5 ,{û1,û2,û3} (153)

each user can decode as follows.
• User û1 and user û3 recover their desired subfiles

from X2.
• User û2 and user û4 recover their desired subfiles

from X1.
• User û5 recovers its desired subfile from X1 ⊕ X2.

Recalling that |X1| = |X2| = B/4, the 2 transmissions
correspond to a communication load R(3) = |X |/B =
1/2 which matches the converse RLB(3) = 1/2. This means
that the scheme is optimal among all the caching-and-delivery
schemes that deliver circular demands.

B. Circular Demands and the (6, 5, f ) FDS Structure

In this setting we consider the (K, α, f) = (6, 5, f)
structure, where there is a total of C = 6 classes of files



Fig. 8. FDS request graph for a generic circular demand identified by the
vector û = (û1, û2, û3, û4, û5, û6) and the (K, α, f) = (6, 5, f) FDS
structure.

W12345,W12346,W12356,W12456,W13456,W23456 and there
are N = fC = 6f files. The 6 FDSs take the form

F1 = {W12345,W12346,W12356,W12456,W13456} (154)

F2 = {W12345,W12346,W12356,W12456,W23456} (155)

F3 = {W12345,W12346,W12356,W13456,W23456} (156)

F4 = {W12345,W12346,W12456,W13456,W23456} (157)

F5 = {W12345,W12356,W12456,W13456,W23456} (158)

F6 = {W12346,W12356,W12456,W13456,W23456} (159)

where WS = {Wi,S : i ∈ [f ]}. As in the previous case,
we here provide a scheme for any f ∈ Z

+ and any circular
demand. Each such circular demand is identified by a vector
û = (û1, û2, û3, û4, û5, û6), and it induces the FDS request
graph in Fig. 8. The optimal scheme is provided for the case
t = 3.

According to the cache placement in Section V-A, each file
is split into

(
α
t

)
=
(
5
3

)
= 10 non-overlapping subfiles as

Wi,S = {Wi,S,T : T ⊆ S, |T | = 3} (160)

for each S ⊆ [6] such that |S| = 5 and for each i ∈ [f ], where
each subfile has size B/10. For example, the file Wi,12345 is
split into 10 non-overlapping subfiles labeled as Wi,12345,T for
each T ∈ {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}.
We recall that the set T represents the users which the subfile
Wi,12345,T is exactly and uniquely cached at. If we consider
a generic circular demand, each user misses

(
α−1

t

)
=
(
4
3

)
=

4 subfiles given by the following.
• The subfiles Wfû1 ,Dû1 ,{û2,û3,û4}, Wfû1 ,Dû1 ,{û2,û3,û5},

Wfû1 ,Dû1 ,{û2,û4,û5} and Wfû1 ,Dû1 ,{û3,û4,û5} are desired
by user û1.

• The subfiles Wfû2 ,Dû2 ,{û3,û4,û5}, Wfû2 ,Dû2 ,{û3,û4,û6},
Wfû2 ,Dû2 ,{û3,û5,û6} and Wfû2 ,Dû2 ,{û4,û5,û6} are desired
by user û2

• The subfiles Wfû3 ,Dû3 ,{û1,û4,û5}, Wfû3 ,Dû3 ,{û1,û4,û6},
Wfû3 ,Dû3 ,{û1,û5,û6} and Wfû3 ,Dû3 ,{û4,û5,û6} are desired
by user û3.

• The subfiles Wfû4 ,Dû4 ,{û1,û2,û5}, Wfû4 ,Dû4 ,{û1,û2,û6},
Wfû4 ,Dû4 ,{û1,û5,û6} and Wfû4 ,Dû4 ,{û2,û5,û6} are desired
by user û4.

• The subfiles Wfû5 ,Dû5 ,{û1,û2,û3}, Wfû5 ,Dû5 ,{û1,û2,û6},
Wfû5 ,Dû5 ,{û1,û3,û6} and Wfû5 ,Dû5 ,{û2,û3,û6} are desired
by user û5.

• The subfiles Wfû6 ,Dû6 ,{û1,û2,û3}, Wfû6 ,Dû6 ,{û1,û2,û4},
Wfû6 ,Dû6 ,{û1,û3,û4} and Wfû6 ,Dû6 ,{û2,û3,û4} are desired
by user û6.

If we consider the following linear combinations of subfiles

X1 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕ Wfû2 ,Dû2 ,{û4,û5,û6}

⊕ Wfû4 ,Dû4 ,{û2,û5,û6} (161)

X2 = Wfû4 ,Dû4 ,{û1,û5,û6} ⊕ Wfû1 ,Dû1 ,{û2,û3,û5}

⊕ Wfû5 ,Dû5 ,{û1,û2,û3} (162)

X3 = Wfû1 ,Dû1 ,{û2,û3,û4} ⊕ Wfû4 ,Dû4 ,{û1,û5,û6}

⊕ Wfû6 ,Dû6 ,{û1,û3,û4} ⊕ Wfû3 ,Dû3 ,{û1,û4,û6} (163)

X4 = Wfû2 ,Dû2 ,{û3,û4,û5} ⊕ Wfû3 ,Dû3 ,{û1,û5,û6}

⊕ Wfû5 ,Dû5 ,{û1,û3,û6} (164)

X5 = Wfû5 ,Dû5 ,{û1,û2,û6} ⊕ Wfû2 ,Dû2 ,{û3,û4,û6}

⊕ Wfû6 ,Dû6 ,{û2,û3,û4} (165)

X6 = Wfû2 ,Dû2 ,{û3,û4,û5} ⊕ Wfû5 ,Dû5 ,{û1,û2,û6}

⊕ Wfû1 ,Dû1 ,{û2,û4,û5} ⊕ Wfû4 ,Dû4 ,{û1,û2,û5} (166)

X7 = Wfû3 ,Dû3 ,{û4,û5,û6} ⊕ Wfû4 ,Dû4 ,{û1,û2,û6}

⊕ Wfû6 ,Dû6 ,{û1,û2,û4} (167)

X8 = Wfû6 ,Dû6 ,{û1,û2,û3} ⊕ Wfû3 ,Dû3 ,{û1,û4,û5}

⊕ Wfû1 ,Dû1 ,{û3,û4,û5} (168)

X9 = Wfû3 ,Dû3 ,{û4,û5,û6} ⊕ Wfû6 ,Dû6 ,{û1,û2,û3}

⊕ Wfû2 ,Dû2 ,{û3,û5,û6} ⊕ Wfû5 ,Dû5 ,{û2,û3,û6} (169)

and we denote by X = (Xi : i ∈ [9]) the concatenated
message sent by the central server, then each user can correctly
decode its desired subfiles as follows.

• User û1 recovers its desired subfiles from X2, X3, X4 ⊕
X6 and X8.

• User û2 recovers its desired subfiles from X1, X5, X6 and
X7 ⊕ X9.

• User û3 recovers its desired subfiles from X2 ⊕X3, X4,
X8 and X9.

• User û4 recovers its desired subfiles from X1, X3, X5 ⊕
X6 and X7.

• User û5 recovers its desired subfiles from X2, X4, X6 and
X8 ⊕ X9.

• User û6 recovers its desired subfiles from X1 ⊕X3, X5,
X7 and X9.

The delivery procedure is slightly more involved with respect
to the previous FDS structure, but is based as before on the
idea of carefully aligning interference. Indeed, the messages
Xi are carefully designed in such a way that also their linear
combinations can be useful to some users. An equivalent
interpretation of this fact is related to the previously mentioned
creation of cliques. Consider for example the XOR X3.
User 1 and user 4 can directly cache-out interference to
correctly decode their desired subfiles, while user 3 and
user 6 miss in their cache — due to the selfish cache



placement — some interfering messages appearing in the
XOR X3. Such interfering (and consequently undesired) mes-
sages are “delivered” to21 both user 3 and user 6 by means
of XORs X2 and X1, so allowing them to decode the desired
subfiles from X3. We can see here that with X3 we are able
serve the clique composed by user 1, user 4, user 3 and
user 6, by carefully “passing” some undesired (and not cached)
information to the last two users. A similar reasoning applies
to the XORs X6 and X9, both of which are useful to 4 users
simultaneously.

The communication load is equal to R(3) = |X |/B =
9/10 and it matches the converse RLB(3) = 9/10. Hence,
the converse here is tight.

VII. CONCLUSION

In this work, we investigated the effects that selfish caching
can have on the optimal worst-case communication load in the
coded caching framework. The proposed FDS structure seeks
to capture the degree of intersection between the interests of
the different users. While somewhat restrictive, the proposed
structure was designed to bring to the fore and accentuate
the adversarial relationship between coded caching and selfish
caching, and by doing so, to allow us to provide insight on
the nature of this adversarial relationship.

This insight is provided with the introduction here of a new
information-theoretic converse on the minimum worst-case
communication load by means of index coding arguments. For
the specific proposed broad FDS structure, the converse bound
definitively resolves the question of whether selfish caching
is beneficial or not. Indeed, the converse reveals that any
non-zero load brought about by symmetrically selfish caching
is always (with the exception of the extreme points of t)
strictly worse than the optimal load guaranteed in the unselfish
scenario. The rationale behind this is that, despite the sizeable
increase of local caching gain brought about by the very
targeted placement of selfish caching, and despite a very
restricted set of demands, the loss in multicasting opportunities
is too severe. In fact, what the converse shows is that this
damage is so prominent that — for any fixed (or decreasing)
ratio δ = α/K < 1 — the coding gain does not scale with K ,
and is in fact bounded above by 1/(1−δ). In other words, even
if there is, for example, a 99% symmetric intersection between
the interests of the users (meaning, even if the users have
interest in almost the same content), the coding gain will not
scale as K increases. The above solidifies our conclusion that,
for some powerful instances of FDS structures, selfish caching
can be indeed very detrimental for the overall performance.
While our FDS structure may be somewhat restrictive, the
fact that this structure captures crucial elements of the selfish
problem allows us to draw the conclusion that one must be
cautious when considering selfish policies.

In light of the above, there are several interesting research
directions. Firstly, one possibility is to study new, less restric-
tive FDS structures. One of the very few examples of FDS

21We recall that we use “deliver” in quotes when referring to undesired
subfiles because users do not actually decode undesired subfiles, but rather
they take linear combinations of the multicast messages to cancel out
interference terms.

structures that can be defined for any number of users K can
be found in [4], [58]. Secondly, it would be interesting to
explore the performance effect22 of FDS symmetry in selfish
approaches, and to search for FDS structures that benefit well
from selfish coded schemes. This brings about the natural
question of understanding when FDS structures can gain the
most from selfish schemes. Clearly, a remaining challenge is
to provide optimal schemes for any set of demands, either for
the proposed or for another FDS structure.

APPENDIX A
PROOF OF COROLLARY 1.1

Recalling that RMAN(t) =
(

K
t+1

)
/
(
K
t

)
as well as recalling

the load expression for RLB(t) in Theorem 1, we have that

R�(t)
RMAN(t)

≥ RLB(t)
RMAN(t)

(170)

=

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) (
K
t

)(
K

t+1

) (171)

=

(
α

t+1

)(
α
t

) (1 + (K − α)
t + 1

α

) (
K
t

)(
K

t+1

) (172)

=
α − t

K − t

(
K(1 + t) − αt

α

)
(173)

= 1 +
t(K − α)(α − 1 − t)

α(K − t)︸ ︷︷ ︸
≥0

(174)

where the second term in the last expression is equal to 0 either
when α ∈ [K − 1] for t ∈ {0, α − 1}, or when α = K and
f ≥ K for any t. This concludes the proof.

APPENDIX B
PROOF OF COROLLARY 1.2

We know that the optimal coding gain is upper bounded as

G� ≤ t + 1
1 + t(K − α)/K

= Ḡ(t). (175)

It can be easily verified that Ḡ��(t) < 0 for t ≥ 0, which means
that Ḡ(t) is concave for positive values of t. Then, we can see
that Ḡ(0) = 1, whereas

lim
t→∞

Ḡ(t) =
K

K − α
> 1 (176)

for any α ∈ [K−1]. Consequently, Ḡ(t) < K/(K−α), which
means that G� < 1/(1− δ) for any δ = α/K . This concludes
the proof.

22Considering for example the work in [4], the authors proposed therein a
more lenient FDS structure, where each file is of interest to either groups of
users or all users in the system. First of all, such setting represents an example
of how the degree of separation among the users’ interests is not concentrated
in one single α value, since the model in [4] considers somehow two values
α1 and α2, where α1 = K relates to the part of library which is of interest
to all users, while α2 = 1 relates to the subset of files which are of interest
to disjoint (groups of) users. Second, for the FDS structure in [4] the authors
proposed a selfish coded scheme (there referred to as Scheme 2) which can
outperform the standard MAN scheme for some non-trivial memory points
under some system parameters. Similarly, selfish policies were shown to be
quite effective also for some instances of the system model in [58]. Hence,
there exist FDS structures which can benefit from selfish policies when coded
caching is adopted.



APPENDIX C
PROOF OF LEMMA 2

Let û = (û1, . . . , ûK) be a permutation of the elements
in [K]. Consider k1, k2 ∈ [K] such that k1 
= k2. Assume
without loss of generality that û(k1) < û(k2) ≤ K , in which
case � = û(k2) − û(k1). Denoting by U the set containing
the K circular shifts of the vector û, we see that there are
� vectors u ∈ U such that k2 appears before k1 in u. These
cases correspond to the vectors u ∈ U where we have in the
first position of u either the element k2, or any one of the
(� − 1) elements between û(k1) and û(k2) in the vector û.
As a consequence, the total number of vectors u ∈ U such
that k1 appears before k2 is equal to (K − �). This concludes
the proof.

APPENDIX D
PROOF OF LEMMA 3

The convexity of f(t) can be easily shown by verifying that
the second derivative f ��(t) with respect to t is strictly positive
for t ≥ 0. Indeed, we have

f(t) =

(
α

t+1

)
+ (K − α)

(
α−1

t

)(
α
t

) (177)

=
α − t

1 + t
+ (K − α)

(
1 − t

α

)
(178)

f �(t) = − 1 + α

(1 + t)2
− (K − α)

α
(179)

f ��(t) =
2(1 + α)
(1 + t)3

> 0 (180)

where f �(t) denotes the first derivative. Then, since t ∈ [0 :
α], we can evaluate f(0) = K and f(α) = 0, showing that
f(0) > f(α). Hence, since f(t) is convex, it has to be also
strictly decreasing for t ∈ [0 : α], otherwise the convexity
property would be violated. This concludes the proof.

APPENDIX E
CONVERSE PROOF OF PROPOSITION 1

While the achievable expression matches exactly the con-
verse expression RLB, this latter converse cannot be used
to prove the optimality of R�

α,c, because RLB bounds the
optimal worst-case communication load. As there is no a
priori guarantee that the α-demands are part of the worst-case
demands, we will here derive another bound that focuses on
α-demands to prove that the achievable performance is indeed
optimal.

Following the same line of reasoning as in Section IV-A,
we apply again the index coding lower bound in Theorem 1,
with the only difference being that now the cache placement is
fixed. The corresponding index coding problem has K � = K
users and N � = K

(
α−1

t

)
messages, where

(
α−1

t

)
is the total

number of subfiles desired by each user for a fixed value of
t ∈ [0 : α]. The desired message set and the side information
set are respectively given by

Mk = {Wfk,Dk,T : T ⊆ Dk, |T | = t, k /∈ T } (181)

Ak = {Wi,S,T : i ∈ [f ],S ⊆ [K], |S| = α, T ⊆ S,

|T | = t, k ∈ T } (182)

for all k ∈ [K]. In the corresponding side information graph,
an edge exists from Wfk1 ,Dk1 ,T1 to Wfk2 ,Dk2 ,T2 if and only
if Wfk1 ,Dk1 ,T1 ∈ Ak2 .

Since we are considering a converse bound on the optimal
communication load under a specific cache placement and
under a specific set of demands, it suffices to find a single

α-demand such that R�
α,c(t) ≥ ( α

t+1)+(K−α)(α−1
t )

(α
t)

. Toward

this, consider the α-demand where K is a set of α users
that request distinct files from the file class K, and where
the remaining users in [K]\K request distinct files so that the
set of vertices

J1 =
⋃

k∈([K]\K)

⋃
T ⊆(Dk\{k}):|T |=t

{Wfk,Dk,T } (183)

is acyclic. Then, such set contains a total of (K − α)
(

α−1
t

)
subfiles, which means that |J1| = (K − α)

(
α−1

t

)
B

(α
t)

. Indeed,

we can see that there exist α-demands for which J1 is acyclic.
For instance, if we assume Dk = S ∪ {k} for every k ∈
([K] \K) for some S ⊆ K such that |S| = α− 1, then the set
J1 is acyclic.

Consider now the set of users in K. Take any permutation
of users u = (u1, . . . , uα) with uk ∈ K for all k ∈ [α]. Then,
since Dk = K for all k ∈ K, the set of vertices

J2 =
⋃

k∈[α]

⋃
T ⊆(K\{u1,...,uk}):|T |=t

{Wfuk
,K,T } (184)

is acyclic for any permutation u (see [25, Lemma 1]). It can
be easily seen that such set contains a total of

(
α−1

t

)
+(

α−2
t

)
+ · · · +

(
t
t

)
=
(

α
t+1

)
subfiles, so |J2| =

(
α

t+1

)
B

(α
t)

.

Due to the fact that Dk = K for all k ∈ K, there is no edge
connecting any vertex in J2 to any vertex in J1, and thus also
the set J1 ∪ J2 is acyclic. At this point, applying Theorem 1
with respect to the acyclic set J1 ∪ J2, we get

BR�
α,c ≥

∑
k∈([K]\K)

∑
T ⊆(Dk\{k}):|T |=t

|Wfk,Dk,T |

+
∑

k∈[α]

∑
T ⊆(K\{u1,...,uk}):|T |=t

∣∣∣Wfuk
,K,T

∣∣∣ (185)

= |J1| + |J2| (186)

= (K − α)
(

α − 1
t

)
B(
α
t

) +
(

α

t + 1

)
B(
α
t

) (187)

which means that R�
α,c(t) ≥ ( α

t+1)+(K−α)(α−1
t )

(α
t)

. This con-

cludes the proof.
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