Potential for the introduction of soybean into crop rotations in the Normandy region

Ayerdi Gotor A., Bernard P-Y., Bressan M., Trinsoutrot-Gattin I., Marraccini E.

1. Introduction

- A. Crop diversification with grain legumes
- B. Soybean as an innovative crop in Northern regions
- C. Aim of the research

2. Potential for soybean-based cropping systems (SB-CS) in Normandy region

- A. Normandy region
- **B.** General framework
- **C.** Soybean insertion in crop rotations
- D. Parcels favorable for soybean insertion
- E. Factors affecting the variability of gross margin in the new SB-CS

3. Discussion and conclusion

Introduction

- Increased demand on vegetal proteins, to substitute meat
- Willing to reduce the use of chemicals
- High cost of synthesis fertilizers
- Wish to have a more sustainable agriculture

6
rg/10.1038/s41467-022-32464
a-analysis based
)

Received: 7 February 2022
Accepted: 1 August 2022

Soybean has been object of research in Northern Europe for its potential

- Highest protein content
- Well know in the food chain
- ▲ But with issues (GMO, allergies...)

Science of The Total Environment Volume 767, 1 May 2021, 144903

The potential for soybean to diversify the production of plant-based protein in the UK

Kevin Coleman ^a A 🖾, Andrew P. Whitmore ^a, Kirsty L. Hassall ^b, Ian Shield ^a, Mikhail A. Semenov ^c, Achim Dobermann ^{d, 1}, Yoann Bourhis ^a, Aryena Eskandary ^a, Alice E. Milne ^a

in silico Plants Vol. 3, No. 1, pp. 1–13 doi:10.1093/insilicoplants/diab008 Advance Access publication 04 February 2021 Special Issue: Linking Crop/Plant Models and Genetics Original Article

Evaluation of soybean (*Glycine max* L.) adaptation to northern European regions under different agro-climatic scenarios

Guénolé Boulch^{*,§}, Chloé Elmerich, Amina Djemel and Bastien Lange[§]

Contents lists available at ScienceDirect European Journal of Agronomy

European Journal of Agronomy 133 (2022) 126415

Check for updates

Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe

Kathleen Karges ^{a,*}, Sonoko D. Bellingrath-Kimura ^{a,b}, Christine A. Watson ^{c,d}, Frederick L. Stoddard ^e, Mosab Halwani ^a, Moritz Reckling ^{a,c}

¹ Labaia Gener for Agricultard Landsage Reserv), 15074 Mätokhorg, Genany ⁵ Deparamet of Agronomy and Crop Saines, Humbold-University of Beilin, 14198 Beilin, Germany ⁶ Deparamet of Nor Productors Ecology, Swedish University of Agricultural Saines, 750 07 Uppada, Sweden ⁶ Sociand's Raral College (SICU), Crahemone Rana, Aberdeen AB21 PM, University Of Uppada, Sweden ⁶ Sociand's Raral College (SICU), Crahemone Rana, Aberdeen AB21 PM, University Agricultural Saines, 750 07 Uppada, Sweden ⁶ Deparamet of Agricultural Sainese, Visiko Fine Saines, Concerne and Hadrich Saturation of Sustainability Science, University of Helavick, 00014 Helavick, Finland

Identify the potential production of soybean in a region

- ✓ Adapt the methodology proposed in Marraccini et al 2020 to another region/crops
- Identify the most suitable cropping systems for soybean introduction

Asses the potential soybean yield

Article

An Innovative Land Suitability Method to Assess the Potential for the Introduction of a New Crop at a Regional Level

Elisa Marraccini ¹,*¹, Alicia Ayerdi Gotor ², Olivier Scheurer ³ and Christine Leclercq ¹

Potential for soybean-based cropping systems in Normandy

Case study Normandy region

From DRAAF Normandie, 2020

From Cantat et al., 2018 on the basis of Météo-France data

General framework

UniLaSalle Institut Polytechnique

Adapted from Marraccini et al., 2020

Soybean insertion in crop rotations

-Highest potential in less diversified or having cereals after cereals

-Few surface already including grain legumes

-Eure, Seine Maritime and Orne as the regions having the highest agronomic potential

Fields favorable for soybean insertion soil & crop rotations

films

-Eure represents 50% of the potential surface

-At the regional level, there is a potential for soybean on 220 kha

Factors affecting the variability of gross margin in the new SB-CS

3.3 2,2 R1 – 4939 ha ± 1.1 t/ha ± 1,2 t/ha CLAYEY SILTY LOAM \rightarrow Continuous cereals or poorly diversified crop rotations are 1255 € / ha 1164 € / ha more favorable for soybean in soil having a lowest potential 1026 € / ha 1371€/ha R2 – 4290 ha SILTY LOAM CLAYEY \rightarrow Poor convenience in crop rotations diversified and having 1790 € / ha 1530 € / ha contract crops 1340 € / ha 1278 € / ha \rightarrow Impact of input prices

Unila

Discussion and conclusion

The adaptation of the methodology is feasible in other region, attention should be paid for the soil data available.

- Seine Maritime and Eure departments are the more favorable to produce soybean in Normandy
 - → First experimental sites in 2020 & 2021 are mainly in those regions
 → Yields modelled match with those harvested
- Ongoing application of the same method to other grain legumes (pea, faba bean...)

Thank you for your attention

Martin, Philippe; Rabenandrasana, Nadège; Poméon, Thomas; Serard, Philippe, 2021, "RPG Explorer Crop successions France 2007-2014, 2007-2019, 2015-2019", <u>https://doi.org/10.15454/XH84QB</u>

