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An easy control of the artificial numerical

viscosity to get discrete entropy inequalities
when approximating hyperbolic systems of

conservation laws

Christophe Berthon, Arnaud Duran and Khaled Saleh

Abstract When considering the numerical approximation of weak solutions of sys-

tems of conservation laws, the derivation of discrete entropy inequalities are, in

general, very difficult to obtain. In the present work, we present a suitable control

of the numerical artificial viscosity in order to recover the expected discrete entropy

inequalities. Moreover, the artificial viscosity control turns out to be very easy and

the resulting numerical implementation is very convenient.

1 Main motivations

The present work is devoted to the numerical approximation of the weak solutions

of hyperbolic systems made of N ≥ 1 conservation laws in the form

∂tw + ∂x f (w) = 0, x ∈ R, t > 0, (1)

where w ∈ RN stands for the unknown vector and f : RN → RN denotes the flux

function. According to some physical restriction, the solution may be imposed to

belong to an invariant admissible domain Ω ⊂ RN , so that we have w ∈ Ω. The

model is complemented with an initial data w(x, t = 0) = w0(x)where w0 : R→ RN

is given.

Since the system (1) is assumed to be hyperbolic, in a finite time the solution

may contain discontinuities. Such discontinuities are governed by the well-known
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Rankine-Hugoniot relations (for instance, see [12]). Unfortunately, by only adopting

theses relations, the uniqueness of the solution is lost. In order to rule out nonphysical

discontinuities, the system is endowed with entropy inequalities given by

∂tη(w) + ∂xG(w) ≤ 0, (2)

where η : Ω→ R is a convex function, called the entropy function, and G : Ω→ R

is the entropy flux function such that t∇w f (w) = t∇wη(w)∇wG(w). A solution of

(1) is said entropy satisfying if the entropy inequalities (2) are verified for all entropy

pairs (η,G).

Now, let us consider the numerical approximation of w. To address such an issue,

we first introduce a discretization of the space by adopting a uniform mesh made of

cells (xi−1/2, xi+1/2) of constant size ∆x > 0 so that xi+1/2 = xi−1/2+∆x for all i in Z.

We denote xi = (xi−1/2 + xi+1/2)/2 for i in Z. Concerning the time discretization, we

fix tn+1
= tn + ∆t with ∆t > 0 the time increment restricted according to a suitable

CFL condition (for instance, see [12]).

At time tn, we consider an approximation of the solution given by a piecewise

constant function as follows:

w∆(x, t
n) = w

n
i if x ∈ (xi−1/2, xi+1/2). (3)

In order to evolve with respect to time this approximation, the updated states

(wn+1
i

)i∈Z are evaluated by the following numerical scheme:

w
n+1
i = w

n
i −
∆t

∆x

(
f∆(w

n
i ,w

n
i+1) − f∆(w

n
i−1,w

n
i )
)
, (4)

where f∆(wL,wR) is the numerical flux function. From now on, we underline that

this numerical flux function must satisfy f∆(w,w) = f (w) for consistency reasons.

During the fifty last years, numerous works were devoted to propose relevant

formulas to define f∆(wL,wR). Of course, it is not possible to give an exhaustive

list of the numerical methods available to approximate the weak solutions of (1),

but the reader is referred to [12, 3] for an overview of some well-known numerical

techniques.

For stability reasons, the scheme (4) is complemented with a CFL condition (for

instance, see [12, 3]) to restrict the time step by ∆t
∆x
Λ ≤ 1

2
, whereΛ ≥ 0 is determined

according to the numerical flux function definition.

At this level, according to the celebrated Lax-Wendroff Theorem [7], we may

expect a convergence of w∆(x, t
n) to a weak solution w(x, t) of system (1) as ∆t and

∆x tend to zero. In order to avoid some possible nonphysical solutions, the scheme

must be enriched with discrete entropy inequalities. As a consequence, the updated

states (wn+1
i

)i∈Z, given by (4), must satisfy the following estimation:

η(wn+1
i ) − η(wn

i ) +
∆t

∆x

(
G∆(w

n
i ,w

n
i+1) − G∆(w

n
i−1,w

n
i )
)
≤ 0, (5)
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where G∆(wL,wR) denotes the numerical entropy flux function. From now on, we

underline that this numerical flux function must satisfy G∆(w,w) = G(w) for all w

in Ω.

If the discrete entropy inequalities (5) are satisfied by all entropy pairs (η,G), the

scheme is said entropy stable or entropy preserving. The establishment of (5) may

be very difficult to obtain as soon as N > 1. The Godunov scheme [4] or the HLL

scheme [5] are known to be entropy preserving. Next, considering the isentropic

gas dynamics or the Euler model, some schemes such as the HLLC scheme [13] or

the Suliciu relaxation scheme [1] are also proved to be entropy preserving. But, in

general, the proof of (5) is not reachable or, eventually, is violated. For instance, the

Roe scheme [8] or the VF-Roe scheme [2] are known to be entropy violating and

suitable entropy fixes must be adopted (for instance, see [6]).

In this paper, we introduce a simple extension of the artificial viscosity technique

[9, 11] in order to easily recover the required entropy stability given by (5). In the next

section, we propose a reformulation of the artificial viscosity within the framework

of Godunov-type schemes. In Section 3, we give a direct control of the artificial

viscosity to get (5) for a given entropy pair. The last section is devoted to illustrate

the relevance of the suggested numerical procedure.

2 Godunov-type scheme with artificial viscosity

In order to enforce the required entropy stability, we introduce artificial viscosity

into the scheme (4). As a consequence, the improved numerical method of interest

now reads

w
n+1
i = w

n
i −
∆t

∆x

(
f∆(w

n
i ,w

n
i+1) − f∆(w

n
i−1,w

n
i )
)
+

γ

2

∆t

∆x

(
w
n
i+1 − 2wn

i + w
n
i−1

)
, (6)

where γ ≥ 0 is a parameter to govern the artificial viscosity.

Now, we propose to reformulate (6) as a Godunov-type scheme. For this purpose,

we introduce the following approximate Riemann solver:

wR

( x

t
;wL,wR

)
=




wL if x < −(Λ + γ)t,

w̄L if − (Λ + γ)t < x < −Λt,

w
⋆

L if − Λt < x < 0,

w
⋆

R if 0 < x < Λt,

w̄R if Λt < x < (Λ + γ)t,

wR if x > (Λ + γ)t,

(7)

where we have set
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w̄L = wL +
1

2
(wR − wL) =

1

2
(wL + wR), w̄R = wR −

1

2
(wR − wL) =

1

2
(wL + wR),

w
⋆

L = wL −
1

Λ
( f∆(wL,wR) − f (wL)) , w

⋆

R = wR +
1

Λ
( f∆(wL,wR) − f (wR)) .

(8)

To simplify the notations, we set w̄ = w̄L = w̄R. Next, equipped with this approximate

Riemann solver, we evolve the approximate solution (3) in times as follows:

w∆(x, t
n
+ t) = wR

( x − xi+1/2

t
;wn

i ,w
n
i+1

)
for (x, t) ∈ [xi, xi+1) × (0,∆t),

where ∆t is restricted by
∆t

∆x
(Λ + γ) ≤

1

2
. (9)

Such a time evolution coincides to a juxtaposition of approximate Riemann solvers

wR stated at each interface xi+1/2. Because of the CFL condition (9), two successive

approximate Riemann solvers never interact. After a straightforward computation,

we notice that the updated states wn+1
i

, given by (6), reformulate as follows:

w
n+1
i =

1

∆x

∫ xi+1/2

xi−1/2

w∆(x, t
n
+ ∆t)dx,

=

1

∆x

∫
∆x/2

0

wR

( x

∆t
;wn

i−1,w
n
i

)
dx +

1

∆x

∫ 0

−∆x/2

wR

( x

∆t
;wn

i ,w
n
i+1

)
dx,

(10)

Because of the Godunov-type reformulation, we are now able to control the artifi-

cial viscosity, parameterized by γ, in order to obtain the expected discrete entropy

inequality (5).

3 Discrete entropy inequality

To establish the required entropy stability (5), we first recall a result stated by Harten,

Lax and van Leer in [5]. In fact, this statement gives a local sufficient condition,

interface per interface, that implies (5). The reader is referred to [5] for a proof.

Lemma 1 (Harten, Lax and van Leer [5])

Let wL and wR be given in Ω. Assume that the approximate Riemann solver

satisfies

1

∆x

∫
∆x/2

−∆x/2

η
(
wR

( x

∆t
;wL,wR

))
dx ≤

1

2
(η(wL) + η(wR)) −

∆t

∆x
(G(wR) − G(wL)) ,

(11)

for a given entropy pair (η,G). Then, the Godunov-type scheme (10) satisfies a

discrete entropy inequality (5) where the numerical entropy flux function reads as
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follows:

G∆(wL,wR) = G(wR) −
∆x

2∆t
η(wR) +

1

∆x

∫
∆x/2

0

η
(
wR

( x

∆t
;wL,wR

))
dx.

From now on, let us underline that, as soon as the approximate Riemann solver is

given by (7), the numerical entropy flux function rewrites

G∆(wL,wR) = G(wR) + Λη(w
⋆

R) + (Λ + γ)(η(w̄) − η(wR)).

Now, arguing Lemma 1, it is sufficient to satisfy (11) to obtain (5). After a

straightforward computation, the inequality (11) reads as follows:

E0 + γD ≤ 0, (12)

where we have set

E0 = Λ
(
η(w⋆

L) + η(w
⋆

R) − η(wL) − η(wR)
)
+ (G(wR) − G(wL)) , (13)

D = 2η(w̄) − η(wL) − η(wR). (14)

Let us emphasize that E0 coincides with the entropy dissipation rate for the initial

scheme (4) when the artificial viscosity γ vanishes. Of course E0 turns out to be

negative as long as the scheme (4) is entropy preserving. But E0 may become positive

for an entropy violating scheme. Next, since η is a convex function, we immediately

get D ≤ 0 with equality to zero if and only if wL = wR.

Moreover, we remark that neither E0 nor D depend on γ. As a consequence, as

soon as D , 0, it is possible to fix γ ≥ 0 large enough such that the local entropy

inequality (12) holds.

Lemma 2 Let wL and wR be given inΩ. Then there exists γ ≥ 0 such that (12) holds.

Moreover, assume that the matrix ∇2
wη(w) is positive definite then γ is bounded.

Proof The existence of γ ≥ 0 is obvious. Now, we establish that γ is bounded in a

neighborhood, denoted V, of wL = wR. Indeed, since D vanishes only into V, γ

is immediately bounded far away from V. First, we give the expansion with respect

of w̄ of D, given by (14), in V. A direct evaluation gives D = O(‖ wR − wL ‖2)

with optimal order since ∇2
wη(w̄) is positive definite. Because of the convexity of η,

never this quantity vanishes in V as long as wL , wR. Concerning the expansion of

E0, we first introduce

w
HLL

=

1

2
(wL + wR) −

1

2Λ
( f (wR) − f (wL)).

Following [5], we have 2η(wHLL) ≤ η(wL)+η(wR)−G(wR)+G(wL), with equality

if and only if wL = wR. Then we obtain E0/Λ ≤ η(w⋆

L
) + η(w⋆

R
) − 2η(wHLL). Next,

we notice that w⋆

L
+w

⋆

R
= 2wHLL , then we have η(w⋆

L
)+ η(w⋆

R
) − 2η(wHLL) = O(‖

wR − wL ‖2), with equality to zero if and only if wL = wR. As a consequence, we
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Table 1 Evaluation of L1-norm of the positive part of the entropy budget.

Cells ϕ1 ϕ2 ϕ3

100 1.05291E-6 4.40092E-7 1.48806E-6

800 5.53458E-8 2.30603E-8 7.90713E-8

1600 3.42990E-8 1.42867E-8 4.90515E-8

12800 8.27230E-9 3.44473E-8 1.18418E-8

102400 1.23514E-9 5.14317E-9 1.76836E-9

have E0 = O(‖ wL − wL ‖2) once again with optimal order since ∇2
wη(w

HLL) is

positive definite. It results γ = O(1) and the proof is achieved. �

4 Numerical results

To illustrate the procedure we adopt the Euler model, defined by w =
t (ρ, ρu,E)

and f (w) = t (ρu, ρu2
+ p, (E + p)u), where p is defined by the usual perfect gas law

[12] with adiabatic coefficient fixed equal to 1.4. Here, the entropy function is given

by η(w) = ρϕ(p/ρ1.4), where ϕ is a smooth function which satisfies the restrictions

determined in [10].

In Fig 1, we display the numerical results obtained when simulating a Rie-

mann problem with initial data given by w0(x) =
t (1,0,2.5) if x < 0 and

w0(x) =
t (0.125,0,0.025) if x > 0. The adopted initial scheme is given by the

VF-Roe method [2], known to be entropy violating. Then, we notice a nonphysical

shock wave at the sonic point within the rarefaction. Next, we introduce the nu-

merical artificial viscosity governed by γ fixed according to (12). We remark that

the entropy violating shock wave no longer remains. In addition, Fig 1 displays the

values of γ versus time. As expected, γ is bounded.

To conclude this numerical experiment, let us underline that the control of the

artificial viscosity is performed according to a single entropy pair. Here, we have

adopted the entropy defined with ϕ1(θ) = ln(θ). As a consequence, a natural question

arising concerns the behavior of the other entropies. In Tab 1, we present the value

of L1-norm of the positive part of the entropy budget, defined as the left hand side

of inequality (5), obtained for two other entropies defined by ϕ2(θ) = −θ1/2.4 and

ϕ3(θ) = θ
−2/1.4 when considering the original VF-Roe scheme. Since we expect

negative entropy dissipation rate, the value of the positive part must be zero. With

the original VF-Roe scheme, we get positive values of the entropy dissipation rate

(see Tab 1) while we obtain values less than 10−16 with the derived single entropy

preserving scheme.
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