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Main motivations

The present work is devoted to the numerical approximation of the weak solutions of hyperbolic systems made of N ≥ 1 conservation laws in the form

∂ t w + ∂ x f (w) = 0, x ∈ R, t > 0, (1) 
where w ∈ R N stands for the unknown vector and f : R N → R N denotes the flux function. According to some physical restriction, the solution may be imposed to belong to an invariant admissible domain Ω ⊂ R N , so that we have w ∈ Ω. The model is complemented with an initial data w(x, t = 0) = w 0 (x) where w 0 : R → R N is given.

Since the system (1) is assumed to be hyperbolic, in a finite time the solution may contain discontinuities. Such discontinuities are governed by the well-known Christophe Berthon Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France, e-mail: christophe.berthon@univ-nantes.fr Arnaud Duran and Khaled Saleh Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France e-mail: duran@math.univ-lyon1.fr and e-mail: saleh@math.univ-lyon1.fr Rankine-Hugoniot relations (for instance, see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]). Unfortunately, by only adopting theses relations, the uniqueness of the solution is lost. In order to rule out nonphysical discontinuities, the system is endowed with entropy inequalities given by

∂ t η(w) + ∂ x G(w) ≤ 0, (2) 
where η : Ω → R is a convex function, called the entropy function, and G : Ω → R is the entropy flux function such that t ∇ w f (w) = t ∇ w η(w)∇ w G(w). A solution of ( 1) is said entropy satisfying if the entropy inequalities (2) are verified for all entropy pairs (η, G). Now, let us consider the numerical approximation of w. To address such an issue, we first introduce a discretization of the space by adopting a uniform mesh made of cells (x i-1/2 , x i+1/2 ) of constant size ∆x > 0 so that x i+1/2 = x i-1/2 + ∆x for all i in Z. We denote x i = (x i-1/2 + x i+1/2 )/2 for i in Z. Concerning the time discretization, we fix t n+1 = t n + ∆t with ∆t > 0 the time increment restricted according to a suitable CFL condition (for instance, see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]).

At time t n , we consider an approximation of the solution given by a piecewise constant function as follows:

w ∆ (x, t n ) = w n i if x ∈ (x i-1/2 , x i+1/2 ). (3) 
In order to evolve with respect to time this approximation, the updated states (w n+1 i ) i ∈Z are evaluated by the following numerical scheme:

w n+1 i = w n i - ∆t ∆x f ∆ (w n i , w n i+1 ) -f ∆ (w n i-1 , w n i ) , (4) 
where f ∆ (w L , w R ) is the numerical flux function. From now on, we underline that this numerical flux function must satisfy f ∆ (w, w) = f (w) for consistency reasons.

During the fifty last years, numerous works were devoted to propose relevant formulas to define f ∆ (w L , w R ). Of course, it is not possible to give an exhaustive list of the numerical methods available to approximate the weak solutions of (1), but the reader is referred to [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] for an overview of some well-known numerical techniques.

For stability reasons, the scheme (4) is complemented with a CFL condition (for instance, see [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]) to restrict the time step by ∆t ∆x Λ ≤ 1 2 , where Λ ≥ 0 is determined according to the numerical flux function definition.

At this level, according to the celebrated Lax-Wendroff Theorem [START_REF] Lax | Systems of conservation laws[END_REF], we may expect a convergence of w ∆ (x, t n ) to a weak solution w(x, t) of system (1) as ∆t and ∆x tend to zero. In order to avoid some possible nonphysical solutions, the scheme must be enriched with discrete entropy inequalities. As a consequence, the updated states (w n+1 i ) i ∈Z , given by ( 4), must satisfy the following estimation:

η(w n+1 i ) -η(w n i ) + ∆t ∆x G ∆ (w n i , w n i+1 ) -G ∆ (w n i-1 , w n i ) ≤ 0, (5) 
where G ∆ (w L , w R ) denotes the numerical entropy flux function. From now on, we underline that this numerical flux function must satisfy G ∆ (w, w) = G(w) for all w in Ω.

If the discrete entropy inequalities [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] are satisfied by all entropy pairs (η, G), the scheme is said entropy stable or entropy preserving. The establishment of ( 5) may be very difficult to obtain as soon as N > 1. The Godunov scheme [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF] or the HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] are known to be entropy preserving. Next, considering the isentropic gas dynamics or the Euler model, some schemes such as the HLLC scheme [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] or the Suliciu relaxation scheme [START_REF] Chalons | Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction[END_REF] are also proved to be entropy preserving. But, in general, the proof of ( 5) is not reachable or, eventually, is violated. For instance, the Roe scheme [START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF] or the VF-Roe scheme [START_REF] Gallouët | Some recent finite volume schemes to compute Euler equations using real gas EOS[END_REF] are known to be entropy violating and suitable entropy fixes must be adopted (for instance, see [START_REF] Helluy | A simple parameter-free entropy correction for approximate Riemann solvers[END_REF]).

In this paper, we introduce a simple extension of the artificial viscosity technique [START_REF] Tadmor | Numerical viscosity and the entropy condition for conservative difference schemes[END_REF][START_REF] Tadmor | Entropy stable schemes. Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues[END_REF] in order to easily recover the required entropy stability given by ( 5). In the next section, we propose a reformulation of the artificial viscosity within the framework of Godunov-type schemes. In Section 3, we give a direct control of the artificial viscosity to get (5) for a given entropy pair. The last section is devoted to illustrate the relevance of the suggested numerical procedure.

Godunov-type scheme with artificial viscosity

In order to enforce the required entropy stability, we introduce artificial viscosity into the scheme (4). As a consequence, the improved numerical method of interest now reads

w n+1 i = w n i - ∆t ∆x f ∆ (w n i , w n i+1 ) -f ∆ (w n i-1 , w n i ) + γ 2 ∆t ∆x w n i+1 -2w n i + w n i-1 , (6) 
where γ ≥ 0 is a parameter to govern the artificial viscosity. Now, we propose to reformulate (6) as a Godunov-type scheme. For this purpose, we introduce the following approximate Riemann solver:

w R x t ; w L , w R =                        w L if x < -(Λ + γ)t, wL if -(Λ + γ)t < x < -Λt, w ⋆ L if -Λt < x < 0, w ⋆ R if 0 < x < Λt, wR if Λt < x < (Λ + γ)t, w R if x > (Λ + γ)t, (7) 
where we have set

wL = w L + 1 2 (w R -w L ) = 1 2 (w L + w R ), wR = w R - 1 2 (w R -w L ) = 1 2 (w L + w R ), w ⋆ L = w L - 1 Λ ( f ∆ (w L , w R ) -f (w L )) , w ⋆ R = w R + 1 Λ ( f ∆ (w L , w R ) -f (w R )) . (8) 
To simplify the notations, we set w = wL = wR . Next, equipped with this approximate Riemann solver, we evolve the approximate solution (3) in times as follows:

w ∆ (x, t n + t) = w R x -x i+1/2 t ; w n i , w n i+1 for (x, t) ∈ [x i , x i+1 ) × (0, ∆t),
where ∆t is restricted by

∆t ∆x (Λ + γ) ≤ 1 2 . ( 9 
)
Such a time evolution coincides to a juxtaposition of approximate Riemann solvers w R stated at each interface x i+1/2 . Because of the CFL condition ( 9), two successive approximate Riemann solvers never interact. After a straightforward computation, we notice that the updated states w n+1 i , given by ( 6), reformulate as follows:

w n+1 i = 1 ∆x ∫ x i+1/2 x i-1/2 w ∆ (x, t n + ∆t)dx, = 1 ∆x ∫ ∆x/2 0 w R x ∆t ; w n i-1 , w n i dx + 1 ∆x ∫ 0 -∆x/2 w R x ∆t ; w n i , w n i+1 dx, (10) 
Because of the Godunov-type reformulation, we are now able to control the artificial viscosity, parameterized by γ, order to obtain the expected discrete entropy inequality (5).

Discrete entropy inequality

To establish the required entropy stability (5), we first recall a result stated by Harten, Lax and van Leer in [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF]. In fact, this statement gives a local sufficient condition, interface per interface, that implies [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF]. The reader is referred to [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] for a proof.

Lemma 1 (Harten, Lax and van Leer [5])

Let w L and w R be given in Ω. Assume that the approximate Riemann solver satisfies

1 ∆x ∫ ∆x/2 -∆x/2 η w R x ∆t ; w L , w R dx ≤ 1 2 (η(w L ) + η(w R )) - ∆t ∆x (G(w R ) -G(w L )) , (11 
) for a given entropy pair (η, G). Then, the Godunov-type scheme [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF] satisfies a discrete entropy inequality [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] where the numerical entropy flux function reads as follows:

G ∆ (w L , w R ) = G(w R ) - ∆x 2∆t η(w R ) + 1 ∆x ∫ ∆x/2 0 η w R x ∆t ; w L , w R dx.
From now on, let us underline that, as soon as the approximate Riemann solver is given by ( 7), the numerical entropy flux function rewrites

G ∆ (w L , w R ) = G(w R ) + Λη(w ⋆ R ) + (Λ + γ)(η( w) -η(w R )).
Now, arguing Lemma 1, it is sufficient to satisfy [START_REF] Tadmor | Entropy stable schemes. Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues[END_REF] to obtain [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF]. After a straightforward computation, the inequality ( 11) reads as follows:

E 0 + γD ≤ 0, ( 12 
)
where we have set

E 0 = Λ η(w ⋆ L ) + η(w ⋆ R ) -η(w L ) -η(w R ) + (G(w R ) -G(w L )) , ( 13 
) D = 2η( w) -η(w L ) -η(w R ). ( 14 
)
Let us emphasize that E 0 coincides with the entropy dissipation rate for the initial scheme (4) when the artificial viscosity γ vanishes. Of course E 0 turns out to be negative as long as the scheme ( 4) is entropy preserving. But E 0 may become positive for an entropy violating scheme. Next, since η is a convex function, we immediately get D ≤ 0 with equality to zero if and only if w L = w R . Moreover, we remark that neither E 0 nor D depend on γ. As a consequence, as soon as D 0, it is possible to fix γ ≥ 0 large enough such that the local entropy inequality (12) holds.

Lemma 2 Let w L and w R be given in Ω. Then there exists γ ≥ 0 such that [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] holds. Moreover, assume that the matrix ∇ 2 w η(w) is positive definite then γ is bounded. Proof The existence of γ ≥ 0 is obvious. Now, we establish that γ is bounded in a neighborhood, denoted V, of w L = w R . Indeed, since D vanishes only into V, γ is immediately bounded far away from V. First, we give the expansion with respect of w of D, given by ( 14), in V. A direct evaluation gives D = O( w Rw L 2 ) with optimal order since ∇ 2 w η( w) is positive definite. Because of the convexity of η, never this quantity vanishes in V as long as w L w R . Concerning the expansion of E 0 , we first introduce

w H LL = 1 2 (w L + w R ) - 1 2Λ ( f (w R ) -f (w L )).
Following [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], we have 2η(w

H LL ) ≤ η(w L ) + η(w R ) -G(w R ) + G(w L ), with equality if and only if w L = w R . Then we obtain E 0 /Λ ≤ η(w ⋆ L ) + η(w ⋆ R ) -2η(w H LL ). Next, we notice that w ⋆ L + w ⋆ R = 2w H LL , then we have η(w ⋆ L ) + η(w ⋆ R ) -2η(w H LL ) = O( w R -w L
2 ), with equality to zero if and only if w L = w R . As a consequence, we 

Numerical results

To illustrate the procedure we adopt the Euler model, defined by w = t (ρ, ρu, E) and f (w) = t (ρu, ρu 2 + p, (E + p)u), where p is defined by the usual perfect gas law [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] with adiabatic coefficient fixed equal to 1.4. Here, the entropy function is given by η(w) = ρϕ(p/ρ 1.4 ), where ϕ is a smooth function which satisfies the restrictions determined in [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF].

In Fig 1, we display the numerical results obtained when simulating a Riemann problem with initial data given by w 0 (x) = t (1, 0, 2.5) if x < 0 and w 0 (x) = t (0.125, 0, 0.025) if x > 0. The adopted initial scheme is given by the VF-Roe method [START_REF] Gallouët | Some recent finite volume schemes to compute Euler equations using real gas EOS[END_REF], known to be entropy violating. Then, we notice a nonphysical shock wave at the sonic point within the rarefaction. Next, we introduce the numerical artificial viscosity governed by γ fixed according to [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF]. We remark that the entropy violating shock wave no longer remains. In addition, Fig 1 displays the values of γ versus time. As expected, γ is bounded.

To conclude this numerical experiment, let us underline that the control of the artificial viscosity is performed according to a single entropy pair. Here, we have adopted the entropy defined with ϕ 1 (θ) = ln(θ). As a consequence, a natural question arising concerns the behavior of the other entropies. In Tab 1, we present the value of L 1 -norm of the positive part of the entropy budget, defined as the left hand side of inequality [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF], obtained for two other entropies defined by ϕ 2 (θ) = -θ 1/2.4 and ϕ 3 (θ) = θ -2/1.4 when considering the original VF-Roe scheme. Since we expect negative entropy dissipation rate, the value of the positive part must be zero. With the original VF-Roe scheme, we get positive values of the entropy dissipation rate (see Tab 1) while we obtain values less than 10 -16 with the derived single entropy preserving scheme. 

Fig. 1

 1 Fig.1Riemann solution for the density ρ, the velicity u, the pressure pand volution of γ.

Table 1

 1 Evaluation of L 1 -norm of the positive part of the entropy budget. = O( w Lw L 2 ) once again with optimal order since ∇ 2 w η(w H LL ) is positive definite. It results γ = O(1) and the proof is achieved.

	Cells	ϕ 1	ϕ 2	ϕ 3
	100	1.05291E-6	4.40092E-7	1.48806E-6
	800	5.53458E-8	2.30603E-8	7.90713E-8
	1600	3.42990E-8	1.42867E-8	4.90515E-8
	12800	8.27230E-9	3.44473E-8	1.18418E-8
	102400	1.23514E-9	5.14317E-9	1.76836E-9
	have E 0