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Topology Optimization for Magnetic Circuits with
Continuous Adjoint Method in 3D

November 12, 2024

Abstract

• Purpose: The aim of this article is to present a new approach to optimizing the design of 3D
magnetic circuits. This approach is based on topology optimization, where derivative cal-
culations are performed using the continuous adjoint method. Thus, the continuous adjoint
method for magnetostatics has to be developed in 3D and has to be combined with penaliza-
tion, filtering and homotopy approaches in order to provide an efficient optimization code.

• Design/methodology/approach: In order to provide this new topology optimization code, we
start from 2D-magnetostatic results to perform the sensitivity analysis, and this approach is
extended to 3D. From this sensitivity analysis, the continuous adjoint method is derived
to compute the gradient of an objective function of a 3D topological optimization design
problem. From this result, this design problem is discretized and can then be solved by
finite element software. Thus, by adding the Solid Isotropic Material with Penalization
(SIMP) penalization approach and developing a homotopy-based optimization algorithm,
we provide an interesting means for designing 3D magnetic circuits.

• Findings: In this paper, we present the 3D continuous adjoint method for magnetostatic
problems involving an objective least-squares function. Based on 2D results, we provide
new theoretical results for developing sensitivity analysis in 3D taking into account different
parameters including the ferromagnetic material, the current density and the magnetization.
Then, by discretizing, filtering and penalizing using SIMP approaches, a topology optimiza-
tion code has been derived to address only the ferromagnetic material parameters. Based
on this efficient gradient computation method, we develop a homotopy-based optimization
algorithm for solving large-scale 3D design problems.

• Originality/value: In this paper, we propose an approach based on topology optimization
to solve 3D magnetostatic design problems when an objective least-squares function is in-
volved. This approach is based on the continuous adjoint method we have derived for 3D
magnetostatic design problems. The effectiveness of this topology optimization code is
demonstrated by solving the design of a 3D magnetic circuit with up to 100,000 design
variables.

Keywords: Topology Optimization, Adjoint Method, Sensitivity Analysis, Magnetostatic In-
verse Problem.

1 Introduction
Topology optimization was first introduced to design 2D mechanical structures, (Allaire 2007,
Bendsøe & Sigmund 2003, Sigmund 2007); as for example, to design the inside mechanical
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structures of airplane wings, (Aage, Andreassen, Lazarov & Sigmund 2017). Among differ-
ent topology optimization approaches, the main interesting ones for solving large problems, are
based on continuous relaxations of the binary variables which are used to show whether a cell
is air or material. Thus, local descent based algorithms can be efficiently used to solve these
large-scale problems. During the optimization process, the intermediate points have to be pe-
nalized in order to enforce local optimization solvers to converge to binary solutions represent-
ing for example air or material. Bendsoe et al. have introduced the well-known Solid Isotropic
Material with Penalization (SIMP) approach and various penalization schemes can be found in
(Bendsøe & Sigmund 2003, Bendsøe & Sigmund 1999, Sanogo & Messine 2018, Gauthey, Gangl
& Hassan 2021). It is worth noting that SIMP-based methods are widely used in professional
solvers, as for example OptiStruct of Altair company. Because local search solvers are based
on gradient descent steps, the computations of the derivative has to be very efficient. Thus adjoint
methods were developed to provide the gradient of a function which depends on expensive com-
putations based numerical simulations, (Allaire 2007, Bendsøe & Sigmund 2003, Sigmund 2007).

More recently, new codes were implemented to solve 3D design problems in mechanics
mainly based on voxels (boxes which are extensions of the 2D-pixel). The most famous result
was obtained by Aage et al. in (Aage et al. 2017) who designed a 3D airplane wing for Boeing
with a billion of voxels. This result was obtained in 5 days using a parallel code based on SIMP,
adjoint method and a local search algorithm.

From approaches in mechanics, some studies were done to solve topology optimization design
problems in electromagnetism dealing with Maxwell equations. Specially in magnetostatics, to
solve these kinds of problems, the adjoint method has also been developed, (Sanogo, Messine,
Henaux & Vilamot 2014, Youness & Messine 2019b, Gauthey et al. 2021, Gauthey, Hassan, Mes-
sine & Gillon 2023). In (Sanogo 2016), magnetic circuits were designed in such a way. More
recently the nonlinearity of ferromagnetic material has been taken into account in (Youness &
Messine 2019a) and (Gauthey et al. 2021). Moreover, some new material schemes also called
penalization schemes were introduced for this SIMP method dedicated to problems in magneto-
statics, (Sanogo & Messine 2018, Gauthey et al. 2021). A recent survey paper present and discuss
about all the conventional approaches developed in order to solve topology optimization design
problems in electromagnetism, (Lucchini, Torchio, Cirimele, Alotto & Paolo 2022). This paper
emphasizes on the intrinsic advantages and limits of all these approaches, (Lucchini et al. 2022).

As far as we know, topology optimization using continuous adjoint methods in magneto-
statics has only been developed for 2D design problems. Nevertheless, note that in (Seebacher,
Kaltenbacher, Wein & Lehmann 2021), a first recent study to design 3D-magnetic circuit is done
but using a discrete adjoint method associated with SIMP approach. This adjoint method needs to
first discretize the problem by a finite element methods and then, the adjoint problem can be quite
directly derived. In the continuous approach that we developed in this work, the adjoint method is
directly applied to the continuous formulation of the problem and therefore, it is not directly linked
to the used discretization numerical method. Some other works deal also with electromagnetic de-
sign in 3D but they are based on topological derivative methods which are derived from shape op-
timization, (Masmoudi, Pommier & Samet 2005, Gangl & Sturm 2021). In this paper, we extend
the topology optimization with adjoint method for 3D design problems in magnetostatics with the
assumption that the ferromagnetic materials are linear. Note that, this could not be a big issue
to extend the 3D-adjoint method including the non-linearity of ferromagnetic materials as it is
shown in recent works for the 2D case, (Youness & Messine 2019a, Gauthey et al. 2021). Indeed,
instead to solve a linear system, we will have to solve a nonlinear one and as shown in (Gauthey
et al. 2021), that will multiply by about 7 the total CPU-times. Moreover, another limitation of
this paper is that we focus on topology optimization to address design problems of a unique ma-
terial. This also could be extended following recent works in 2D, (Gauthey et al. 2021, Cherrière,
Laurent, Hlioui, Louf, Duysinx, Geuzaine, Ben Ahmed, Gabsi & Fernández 2022).

In Section 2, topology optimization with continuous adjoint method is recalled for 2D design
problems in magnetostatics. Section 3 is dedicated to the extension to 3D design problems with a
new theoretical formulation of the gradient based on the continuous adjoint method. In Section 4,
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we detail our algorithmic approach to solve topology optimization problems using SIMP tech-
niques. Section 5 is dedicated to the gradient verification (by comparing it to the finite difference
technique) and to numerical tests to design a 3D magnetic circuit. Section 6 concludes.

2 Problem description
In this work, Ω represents the whole studied domain. Within Ω, ΩV represents the variable domain
in which the matter can be added or removed. This matter can be permanent magnet in ΩV (M),
coils with current in ΩV (J) or ferromagnetic material in ΩV (νr). ΩT represents the target domain
in which a particular magnetic flux density B0 has to be imposed playing with the matter in ΩV .
In this work ΩV (M), ΩV (J) and ΩV (νr) have to be disconnected.

The topology optimization problem is defined as follows:

• The objective function is the squared error in a target zone ΩT between an imposed mag-
netic flux density B0 and the magnetic flux density B obtained with respect to the magnetic
sources and the material distributions in all the domain Ω. Note that B has to be computed
by solving Maxwell magnetostatic equations.

• The design variables are magnetic sources (active material) such as ferromagnetic material,
coil with current density and permanent magnets. The associated variables for all the vari-
able domains ΩV are the distribution of relative reluctivity νr, current density J (in the 3
directions (x, y, z)) and magnetization M (in the 3 directions (x, y, z)). Hence, we define a
global variable p as:

p : ΩV −→ R7

(x, y, z)T 7−→ p(x, y, z) = (p1, · · · , p7)T

Where p = (νr, Jx, Jy, Jz,Mx,My,Mz)
T and we define the three following functions:

νr(p) = νr, J(p) = (Jx, Jy, Jz)
T and M(p) = (Mx,My,Mz)

T .

Note that, p is defined in the whole domain Ω, p is fixed on Ω \ ΩV and is variable on ΩV .

Therefore, the optimization problem that we addressed, is the following:

min
p

Fo(p) =
∫
ΩT

|| B(A(p))− B0 ||2 dΩ, (1)

where A corresponds to the magnetic potential vector obtained by solving the Maxwell equations.
In this work, the constitutive law of the magnetic materials is supposed to be linear in order

to simplify the computations in 3D; some extensions to the non-linear case can be done from
(Gauthey et al. 2021) and (Youness & Messine 2019a).

Hence, considering the linear case, we have:

H = νB − M (2)

Where ν = ν0νr is the magnetic reluctivity of the material, ν0 is the air reluctivity and νr is the
relative reluctivity of the material.

In different points of domain Ω, we have for p:

• For air: νr = 1, M = 0 and J = 0 in the 3 directions.

• For ferromagnetic material: νr is a constant depending on the material (in this paper, νr =
1

1000 ), M = 0 and J = 0 in the 3 directions.

• For permanent magnets: νr = 1, M is a constant bounded vector in 3D and J = 0 in the 3
directions.

• For coils: νr = 1, M = 0 and J is a constant bounded vector in 3D.
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Because p is extended on the whole domain Ω, in Ω\ΩV (with ΩV = ΩV (νr)∪ΩV (M)∪ΩV (J)),
p is fixed and cannot change during the optimization process. Thus, in Ω \ ΩV , p can be air, a
ferromagnetic material, a permanent magnet or a coil. In the variable domain ΩV , p is variable
and can be air or a ferromagnetic material if (x, y, z)T belongs to ΩV (νr), air or a permanent
magnet if (x, y, z)T belongs to ΩV (M) and air or a coil if (x, y, z)T belongs to ΩV (J).

The Maxwell-Ampere equation ∇×H = J becomes, using the constitutive law of the material
described in equation (2) and the existence of the potential vector A such that B = ∇× A:

−∇× [ν0νr(p)B(A(p))− M(p)] + J(p) = 0, in Ω. (3)

Equation (3) is called, in this paper, the primal problem. Note that B(.) is the curl operator ∇×(.)
which is also denoted by B(A) = curl(A). The Dirichlet condition A × n = 0 is imposed on the
domain boundary ∂Ω, where n is the normal vector (this hypothesis is relevant because the border
of the domain Ω is far from the zone of interest ΩT ).

The partial derivative ∂Fo
∂pi

is calculated using the adjoint method. Hence, from equations (1)
and (3), the optimization problem (1) can be equivalently formulated as:

(P)



min
p,A

F (p,A) =
∫
ΩT

|| B(A)− B0 ||2 dΩ

uc
−∇× [ν0νr(p)B(A)− M(p)] + J(p) = 0 in Ω,
with A × n = 0 in ∂Ω
p ∈ P := {p ∈ (L∞(Ω))7 : pmin

i ≤ pi ≤ pmax
i , i = 1, · · · , 7}

(4)

Where pmin and pmax are the lower and upper bounds of the variable p. Note that in (P), the
variables p and A are separated and linked by the constraint which is the Maxwell equation.
Moreover if p satisfies the Maxwell constraint, then Fo(p) = F (p,A) and therefore, for such a
point p:

∂Fo

∂pi
(p) =

∂F

∂pi
(p,A).

3 Sensitivity analysis from 2D to 3D
Efficient optimization codes are based on computations of the derivatives. These derivatives can
be obtained with evaluations of the objective function considering small variations of the variable
p. This defines the well-known finite difference method. However, all these evaluations require
to solve Maxwell equations using a numerical solver. Hence, because it depends directly to the
number of variables, the finite difference technique is extremely expensive.

Thus, adjoint methods has been developed in order to compute the derivatives with more
efficiency. It was first developed in mechanics (Allaire 2007, Bendsøe & Sigmund 2003), then
extended to 2D magnetostatics (Sanogo 2016, Sanogo et al. 2014) and to 2D electrical machines
(Gauthey et al. 2021, Cherrière et al. 2022).

Thus, in the first subsection 3.1, the 2D magnetosatic continuous adjoint method is recalled.
In the following subsection 3.2, the continuous adjoint method is extended to the 3D-case.

3.1 Sensitivity analysis in 2D
Generally, due to symmetries and invariances along one direction, 3D magnetostatic problems can
be simplified in 2D problems.

Considering the Cartesian coordinates in 3D: (x, y, z) and an invariance following z, the mag-
netic flux density can be reduced to B = (Bx, By)

T . Furthermore:

• The potential vector is a scalar:

A = (0, 0, A(x, y)) ≡ A(x, y)
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• The magnetic density flux is a 2D vector:

B(A) = curl(A) = (∂yA,−∂xA, 0) ≡ (∂yA,−∂xA)

• The boundary condition is reduced to A = 0 on the boundary domain ∂Ω.

In order to solve problem (P), it is necessary to compute the derivative of the function Fo with
respect to the design variable p. The sensitivity calculation in 2D is summarized below (for more
details see (Sanogo 2016) and (Sanogo et al. 2014)):

• For problem (P), the Lagrangian function L is introduced as follows:

L (p, A, λ) = F (p, A) +
∫
Ω
λµ0 [−∇× (ν0νr(p)B(A)− M(p)) + J(p)] dΩ,

where the equality constraint is multiplied by the Lagrangian multiplier λ which is a scalar
function. λ belongs to H1

0 (Ω) (a standard Sobolev space) with the same properties as A.
Note that, the equality constraint of (P) is also multiplied by µ0 (the void permeability =
1
ν0

) in order to ensure the homogeneity considering the physical units in the summed terms.
Note that this Lagrangian formulation is in 2D, with A a scalar function, M a vector (in
2D), J is also a scalar (in direction z) and the curl operator in 2D is scalar ∇× (vx, vy)

T =
∂xvy − ∂yvx.

• Using the Green formula in 2D, we obtain:

∂B
∂A

(A) = B(.),

and the continuous adjoint problem in 2D is:

∇× [νB(λ)− Ma1ΩT
] = 0, in Ω, (5)

with 1ΩT
is the indicator function, defined by:

1ΩT
(x) =

{
1 if x ∈ ΩT

0 if x ∈ Ω \ ΩT

where λ is named the adjoint variable and Ma = 2
µ0
(Bx − B0x, By − B0y)

T can be un-
derstood as a permanent magnet in ΩT . This adjoint problem is therefore equivalent to a
magnetostatic problem with only one source Ma.
Note that, the computation of Ma depends on the value of the field B = (Bx, By)

T in ΩT

which must be previously calculated by solving the primal problem defined by equation (3).

• From the equality ∂Fo(p)
∂pi

= ∂L
∂pi

(p, A(p), λ) which is verified for any couple (p, A) satis-
fying the constraint (3), the sensitivity formula is obtained by deriving the Lagrangien L
with respect to the design variable p:

∂Fo(p)
∂pi

=

∫
Ω
µ0

[
λ
∂J(p)
∂pi

+ B(λ).
∂M(p)
∂pi

− ν0
∂νr(p)
∂pi

B(λ).B(A)
]
dΩ, (6)

for each component pi of p; only p1 = νr, p4 = Jz, p5 = Mx and p6 = My are used in this
2D problem.
Note that in the sensitivity formula (6), A and λ are solutions of equations (3) and (5),
respectively.

Equations (3) and (5) can be solved by the finite element method whose weak formulation is
written as: ∫

Ω
νB(X).B(ϕ)dΩ−

∫
Ω

M.B(ϕ)dΩ−
∫
Ω
JϕdΩ = 0, (7)
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where ϕ is a test function of H1
0 (Ω).

For example, in order to solve the primal problem of designing a simple magnetic circuit with
only a coil, a ferromagnetic material and no permanent magnet, we just have to take X = A,
M = 0 and the only source is the current J . Considering the same example, the adjoint problem
is derived from equation (7) by taking X = λ, J = 0 and the only source is M = Ma.

In a 2D problem, equation (7) can be simplified, such as:∫
Ω
ν∇X.∇ϕ dΩ−

∫
Ω

(
−My

Mx

)
.∇ϕ dΩ−

∫
Ω
Jϕ dΩ = 0, ∀ϕ ∈ H1

0 (Ω). (8)

3.2 Sensitivity analysis and continuous adjoint method in 3D
In this subsection, we detail the steps to compute the sensitivity of the objective function Fo with
respect to the design variable pi for a 3D problem. Note that in 3D, the potential vector and the
magnetic flux density have non zero-components, and then,

• The potential vector is:

A = (Ax(x, y, z), Ay(x, y, z), Az(x, y, z))

• The magnetic flux density is:

B(A) = curl(A) = (∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx)
T

• The boundary condition is A × n = 0 on the boundary domain ∂Ω.

The following theorem is dedicated to the computations in 3D of the partial derivatives of the
original function Fo.

Theorem 1. The expression in 3D of the sensitivity of Fo with respect to each component pi of p
is:

∂Fo(p)
∂pi

=

∫
Ω
µ0

(
λλλ.

∂J(p)
∂pi

+ B(λλλ).
∂M(p)
∂pi

− ν0
∂νr(p)
∂pi

B(λλλ).B(A)
)
dΩ, (9)

where B(λλλ) is obtained by solving the following continuous adjoint problem:

∇× [Ma1ΩT
− νB(λλλ)] = 0, (10)

with Ma which is the adjoint magnetization defined as follows:

Ma =
2

µ0


Bx −B0x

By −B0y

Bz −B0z

 ,

with B = (Bx, By, Bz)
T which is the magnetic flux density.

Note that equation (10) is the adjoint problem in 3D. It is equivalent to a magnetostatic prob-
lem where Ma is the only source. This problem has to be solved numericaly in order to provide λλλ
and B(λλλ).

Proof. The proof of Theorem 1 is based on the following 3 steps:

1. Construction of the Lagrangian function by considering the formulation of problem (P).

2. Determination of the continuous adjoint problem from the Karush-Khun-Tucker theorem.

3. Computation of the topological sensitivity.
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Note that, in 3D, we work in the following Sobolev spaces:

H(curl,Ω) =
{

w ∈ L2(Ω), curl(w) ∈ L2(Ω)
}
,

H0(curl,Ω) = {w ∈ H(curl,Ω),with w × n = 0 in ∂Ω} ,

because we will need to integrate the vectors A, λλλ, curl(A) and curl(λλλ) in Ω. L∞(Ω) is the space
of bounded vector functions on Ω.

1. Construction of the Lagrangian function:
The Lagrangian function L is defined as the addition of the objective function and the sum
of the equal constraints multiplied by a Lagrange multiplier λλλ:

L (p,A,λλλ) = F (p,A) +

∫
Ω
λλλ.µ0 [−∇× (ν0νr(p)B(A)− M(p)) + J(p)] dΩ,

where (p,A,λλλ) ∈ L∞(Ω)×H0(curl,Ω)×H0(curl,Ω) and µ0 =
1
ν0

the void permeability.
The equality constraint of (P) is multiplied by µ0 (the void permeability = 1

ν0
) in order to

ensure homogeneity considering the physical units in the summed terms. By using Green

formula in 3D:

−
∫
Ω

v.(∇× u)dΩ = −
∫
Ω
(∇× v).udΩ+

∫
∂Ω

v × n.ud∂Ω

and by taking: v = µ0λλλ and u = νB(A)− M, we obtain:∫
Ω
λλλ.µ0 [−∇× (νB(A)− M) + J] dΩ =

∫
Ω
µ0λλλ.JdΩ

−
∫
Ω
µ0curl(λλλ).(νB(A)− M)dΩ

+

∫
∂Ω

µ0(λλλ× n).(νB(A)− M)d∂Ω.

Because λλλ ∈ H0(curl,Ω),λλλ× n = 0 in ∂Ω, hence we have:∫
Ω
λλλ.µ0 [−∇× (νB(A)− M) + J] dΩ =

∫
Ω
µ0λλλ.JdΩ−

∫
Ω
µ0B(λλλ).(νB(A)− M)dΩ

=

∫
Ω
µ0 [λλλ.J − νB(λλλ).B(A) + B(λλλ).M] dΩ.

Finally, the Lagrangian function is:

L (p,A,λλλ) =

∫
ΩT

|| B(A)− B0 ||2 dΩ

+

∫
Ω
µ0 [λλλ.J(p)− ν(p)B(λλλ).B(A) + B(λλλ).M(p)] dΩ. (11)

2. Determination of the continuous adjoint problem:
The directional derivative of a function f : E → F in u in the direction h with
(u, h) ∈ E2 is defined by:

Dhf(u) = lim
t→0

f(u+ th)− f(u)

t
.

If E is an euclidean vector space, and f is a real-valued differentiable application, then we
can use the gradient of f to express the directional derivative:

Dhf(u) =< ∇f(u) | h > .
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In order to determine the adjoint system, we use the necessary optimality conditions at the
first order of the Karush-Kuhn-Tucker (KKT) theorem. Thus, the directional derivative of
L in A in any direction φφφ must satisfy:

<
∂L (p,A,λλλ)

∂A
| φφφ >= 0, ∀φφφ ∈ H0(rot,Ω). (12)

By considering a function f defined by:

L (p,A,λλλ) =

∫
Ω
f(p,A,λλλ)dΩ, (13)

where,

f(p,A,λλλ) =|| B(A)− B0 ||2 1ΩT
+ µ0 [λλλ.J(p)− ν(p)B(λλλ).B(A) + B(λλλ).M(p)] .

By developing the expression of the Lagrangian (13), and using the linearity property of
integrals, we obtain:

<
∂L (p,A,λλλ)

∂A
| φφφ > = lim

t→0

L (p,A + tφφφ,λλλ)− L (p,A,λλλ)

t

= lim
t→0

∫
Ω f(p,A + tφφφ,λλλ)dΩ−

∫
Ω f(p,A,λλλ)dΩ

t

=

∫
Ω
lim
t→0

f(p,A + tφφφ,λλλ)− f(p,A,λλλ)

t
dΩ

=

∫
Ω
Dφφφf(A)dΩ

=

∫
Ω
< ∇Af | φφφ > dΩ

=

∫
Ω

∂f

∂Ax
φx +

∂f

∂Ay
φy +

∂f

∂Az
φzdΩ.

Using the derivation of compound functions, for each of the partial derivatives, where A.

denotes Ax, Ay or Az , then we have:

∂f

∂A.
=

∂

∂A.

[
|| B(A)− B0 ||2 1ΩT

+ µ0 [λλλ.J − νB(λλλ).B(A) + B(λλλ).M]
]

=
∂

∂B(A)
(|| B(A)− B0 ||2 1ΩT

).
∂B(A)

∂A.
− µ0νB(λλλ).

∂B(A)

∂A.

= Ba.
∂B(A)

∂A.
1ΩT

− µ0νB(λλλ).
∂B(A)

∂A.

=
[
Ba1ΩT

− µ0νB(λλλ)
]
.
∂B(A)

∂A.
,

with:

Ba = 2


Bx −B0x

By −B0y

Bz −B0z

 .

Thus, we obtain:

<
∂L (p,A,λλλ)

∂A
| φφφ >=

∫
Ω
[Ba1ΩT

− µ0νB(λλλ)] .
[
φx

∂B(A)

∂Ax
+ φy

∂B(A)

∂Ay
+ φz

∂B(A)

∂Az

]
dΩ.

(14)
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Expanding the term with partial derivatives according to the components of A, we obtain:[
φx

∂B(A)

∂Ax
+ φy

∂B(A)

∂Ay
+ φz

∂B(A)

∂Az

]
= JB(A)φφφ

= DφφφB(A).

Where JB(A) is the Jacobian matrix of the function B with respect to A. For each element
A = (Ax, Ay, Az)

T ∈ R3 it is associated B(A) = (Bx(A), By(A), Bz(A))T ∈ R3.

Using the definition of the directional derivative and the linearity of the curl operator, we
have:

DφφφB(A) = B(φφφ). (15)

From equation (14) and using equation (15), we have:∫
Ω
[Ba1ΩT

− µ0νB(λλλ)].B(φφφ)dΩ = 0.

By applying the Green formula in 3D, we obtain:∫
Ω
φφφ.∇× [Ba1ΩT

− µ0νB(λλλ)]dΩ+

∫
∂Ω

(φφφ× n).[Ba1ΩT
− µ0νB(λλλ)]d∂Ω = 0. (16)

Because φφφ ∈ H0(curl,Ω),φφφ× n = 0 on ∂Ω, we have:∫
Ω
φφφ.∇× [Ba1ΩT

− µ0νB(λλλ)]dΩ = 0, ∀φφφ ∈ H0(rot,Ω).

Using Corollary 2.2.2 in (Allaire & Alouges 2015) on elements of L2(Ω):

∇× [Ba1ΩT
− µ0νB(λλλ)] = 0.

By multiplying the above equation by 1
µ0

, we find the following expression of the adjoint
problem:

∇× [Ma1ΩT
− νB(λλλ)] = 0,

where Ma represents the adjoint magnetization as defined in the Theorem 1.

3. Computation of the sensitivity of the problem:
From the independence of the variables p, A and λλλ, in the definition of the Lagrangian
function L , and using the property of derivation under the integral, we obtain:

∂L (p,A,λλλ)

∂pi
=

∫
Ω
µ0

[
λλλ.

∂J(p)
∂pi

+ B(λλλ).
∂M(p)
∂pi

− ν0
∂νr(p)
∂pi

B(λλλ).B(A)
]
dΩ. (17)

For each couple (p,A) satisfying constraint (3), we have Fo(p) = L (p,A(p),λλλ). Thus,
using the chain rule theorem, we obtain:

∂Fo(p)
∂pi

=
∂L (p,A(p),λλλ)

∂pi
+

∂L (p,A(p),λλλ)
∂A

.
∂A(p)
∂pi

. (18)

Note that ∂L (p,A(p),λλλ)
∂A = 0 because of the stationarity of the Lagrangian function in A,

hence, we have:

∂Fo(p)
∂pi

=

∫
Ω
µ0

[
λλλ.

∂J(p)
∂pi

+ B(λλλ).
∂M(p)
∂pi

− ν0
∂νr(p)
∂pi

B(λλλ).B(A)
]
dΩ

for each component pi of p.
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From Theorem 1, we obtain directly (using the derivative with respect to p1 = νr) the follow-
ing corollary:

Corollary 2. The expression of the sensitivity with respect to ν is in 3D given by:

∂Fo(νr)

∂νr
= −

∫
Ω

B(λλλ).B(A)dΩ. (19)

Where B(λλλ) is obtained by solving the continuous adjoint problem provided by equation (10) in
Theorem 1.

The weak formulation for those kind of 3D magnetostatic problem is:∫
Ω
νB(X).B(φφφ)dΩ−

∫
Ω

M.B(φφφ)dΩ−
∫
Ω

J.φφφ dΩ = 0, (20)

where φφφ is a test function of H0(rot,Ω) to define the weak formulation in the finite element
method.

Hence, by taking a simple magnetic circuit with only one coil, one ferromagnetic material part
and no permanent magnet, we have to take X = A, M = 0 and the only source is the current J.
Moreover, the adjoint problem is provided by taking X = λλλ, J = 0 and the only source is now
M = Ma.

It should be noticed that in the 3D case, it is necessary to add a gauge condition, in order to
ensure the uniqueness of the solution using finite element method; this has to be done directly
inside the 3D-finite element method solver.

4 Topology optimization algorithm
In Section 3, a way to compute efficiently the derivative of the function Fo is derived in Theorem 1
for 3D problems, these formulas are provided in continuous spaces. In this work, those formulas
are solved numerically using finite element method. This involves discretization steps where
the entire domain is discretized into small tetrahedral elements. The variables of the associated
topology problem could be directly the tetrahedral elements in the variable domain ΩV but they
can also be defined by other cells, as for example hyperrectangles.

It remains a last difficulty. In some cases, the variables are discrete. Indeed, p1 = νr represents
the relative reluctivity in a point (x, y, z)T ∈ ΩV . For a specific ferromagnetic material, p1 can
only takes two discrete values: νr = νmax

r = ν0 if we put air at (x, y, z)T or νr = νmin
r if we put

material at (x, y, z)T . Note that, the other six parameters are continuous and can be directly used
in a standard optimization code based on gradient descent steps.

In the next sub-section, the main method to deal with this issue is recalled. This is the well-
known SIMP method (Bendsøe & Sigmund 2003, Bendsøe & Sigmund 1999, Sanogo & Messine
2018, Gauthey et al. 2021). In sub-section 4.2, our optimization code based on the SIMP method
is provided and explained.

4.1 Penalization with material density method - SIMP
Focusing on the parameter p1 which is discrete, we apply the SIMP method that is recalled in the
following; for details see, (Sanogo & Messine 2018, Gauthey et al. 2021). This SIMP method
could be applied in the same way on other parameters pi, i = 2 · · · 7 if necessary. Here, the
other parameters pi, i = 2, · · · , 7 are fixed; note, that those remaining parameters are continuous
and can be taken into account directly (without the use of SIMP) and hence, the main difficulty
concerns the parameter p1 which is discrete.
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The discrete parameter p1 is relaxed and becomes continuous between its two previous discrete
values pmin

1 and pmax
1 . This introduces composite materials between pmin

1 = νmin
r and pmax

1 =
νmax
r . This involves a magnetic structure which is generally not manufacturable. Hence, to prevent

the appearance of these intermediate values, we penalize them introducing a density variable ρ
belonging to [0,1] and linked to the design variable p1 via a material interpolation scheme g such
that, at a point x of ΩV , one obtains: g(ρ(x, y, z)) = p1(x, y, z) with g(0) = pmin

1 = νmin
r and

g(1) = pmax
1 = νmax

r .

In the literature, there are several choices of interpolation functions g, that influences the final
result of topology optimization, (Bendsøe & Sigmund 1999, Bendsøe & Sigmund 2003, Sanogo
& Messine 2018, Gauthey et al. 2021, Lucchini et al. 2022). In this work, plenty penalization
approaches were tested, however we present only results coming from the use of the polynomial
interpolation scheme, as defined in (Bendsøe & Sigmund 1999):

p1 = g(ρ) = pmin
1 + (pmax

1 − pmin
1 )ρn, (21)

where n > 0 is a penalty parameter. When the penalization parameter n is high, we enforce the
solution to be discrete close to p1 ∈

{
pmin
1 , pmax

1

}
. The main difficulty with this scheme is that it

is not symmetrical and hence it favors materials with low values of ρ.
Therefore, the new variable of problem (P) is now the material density ρ and then, using

the chain rule theorem and from Theorem 1 in the case where p1 = νr, the new sensitivity with
respect to ρ becomes:

∂Fo

∂ρ
= −

∫
Ω

∂g

∂ρ
B(λλλ).B(A)dΩ (22)

4.2 Optimization algorithm
In order to solve equation 22, the domain ΩV is discretized into N cells ΩVi , each of which
contains matter or not, according to the value of the density ρi ∈ [0, 1], i = 1, · · · , N in ΩVi .
Then, by denoting ρρρ = (ρ1, · · · , ρN )T , we can write the density variable ρ in all space as follows:

ρ =

N∑
i=1

ρi1ΩVi
+ ρΩ\ΩV

1Ω\ΩV
(23)

with ρΩ\ΩV
equals 1 in areas with ferromagnetic material and 0 in areas without ferromagnetic

material outside the variable domain ΩV .
Hence, using again the chain rule theorem and Theorem 1 in the case where p1 = νr, the sensi-
tivity with respect to each element ρi of ρρρ becomes:

∂Fo

∂ρi
= −

∫
ΩVi

∂g

∂ρ
B(λλλ).B(A)dΩ. (24)

In order to solve problem (P), the optimization algorithm needs the following information:

• The objective function and sensitivity calculation (see equation (24)).

• The constraints which are only the lower and upper bounds of the material density: ρρρ ∈
[0, 1]N .

• The constraint imposed by the Maxwell equations is indirectly taken into account using the
finite element method.

Our algorithm can be summarized in Fig. 1. Like any local optimization algorithm based on
gradient descent, this optimization module starts from a starting point denoted by ρρρ[0], build a
sequence of points ρρρ[k] and ends to ρρρopt. Then, this point ρρρopt is analyzed because this solution is
not necessarily discrete (does not belong necessarily to the set {0, 1}N ). Hence, a test is added to
check if ρρρopt is close to one of its two limits 0 or 1 with an imposed tolerance tol. If the tolerance
tol is satisfied, the solution provided is ρρρopt, otherwise the new starting point is updated by doing
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ρρρ[0] = ρρρopt) and by increasing the penalty parameter. This makes it possible to converge slowly
but strongly to efficient design solutions. Indeed, by directly penalizing with a big parameter n,
the optimization module converges to a local minimum which is very far from those obtained
using our homotopy algorithm.

Figure 1: SIMP based topology optimization algorithm. (Source: figure created by authors)

4.3 Filtering technique

If we consider the expression of the derivative of Fo with respect to each element of ρρρ, shown
in equation (24), the final solution has generally checkerboard patterns, (Sigmund 2007). In
order to make the solution more manufacturable, a regularization method must be added. Thus,
in this work, a sensitivity filtering method has been used, (Sigmund 2007). The latter consists
in modifying the values of the sensitivity of the cost function at each iteration through a spatial
filter whose goal is to weight the value of the sensitivity in a target element by the value of its
neighboring elements. In this work, several sensitivity filters have been tested, (Sigmund 2007,
Sigmund & Maute 2013, Lucchini et al. 2022). For our problem the bi-lateral sensitivity filter,
defined in (Sigmund 2007), provided the most efficient discrete solutions and so, the expression
of the sensitivity with respect to an element e is replaced by:

∂Fo

∂ρe
=

∑
i∈Ne

wiew(
∂Fo
∂ρi

)vi
∂Fo
∂ρi∑

i∈Ne
wiew(

∂Fo
∂ρi

)vi
(25)

the sensibility weights are computed as follows:

w(
∂Fo

∂ρi
) = exp

−1

2

(
∂Fo
∂ρi

− ∂Fo
∂ρe

σr

)2
 and σr ∈]0, 1].

Moreover, σr is fixed at 0.5, and the distance weighting wie is equal to max(0, rmine − dist(i, e)).
The following parameters are defined in this work such as:

• vi is the volume of the element i.
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• dist(i, e) is the distance between the center of the element i and the center of the element e.

• rmine = δhe; with δ ∈ R∗
+ and he is the greatest distance between the points constituting

the element e (Euclidean norm of the difference between the coordinates of the most distant
nodes of the element e).

• The set of neighbors of the element e is defined as follows: Ne = {i | dist(i, e) ≤ rmine}.

Thus, in this section an efficient topology optimization algorithm based on adjoint methods
and SIMP penalization technique is provided. Moreover, our methodology tends to provide more
regularized solution close to manufacturable ones.

5 Numerical verifications on a 3D magnetic circuit
The aim of this section is to validate our methodology on a U-shaped magnetic circuit. This
allows us to verify that the computation of the gradient based on our theoretical results (mainly
Theorem 1 and Corollary 2) is close to the one obtained using the finite difference method. In
a last sub-section, we address a design problem with a large number of variables (over 100,000
design variables).

5.1 Description of the design problems and numerical simulations
We consider here a simple magnetic circuit shown in Fig. 2 with one coil and two distinct variable
zones which can be air or ferromagnetic materials. For this magnetic circuit, the design variable
p1 is the relative reluctivity νr which varies between the minimum value pmin

1 = νmin
r = 1/1000

(corresponding to ferromagnetic material) and the maximum value pmax
1 = νmax

r = 1 (corre-
sponding to air).

Figure 2: 3D magnetic circuit design problem. (Source: figure created by authors)

For this example, the magnetic circuit can be divided into 4 parts, as follows:

• A U-shaped ferromagnetic part which defines the fixed part of the magnetic circuit. It is
represented in white on Fig. 2. Its dimensions are 105mm×40mm×15mm, the thickness
of the bottom hyperrectangle containing the coil is 10mm and the thickness of the both
sides of the U-shaped circuit is 15mm.

• A coil which is represented in yellow on Fig. 2. It is made up from 2 bottom and top bars of
15mm×0.4mm×5mm and 2 lateral bars of 10mm×0.4mm×5mm which are linked by
4 curved bars. This coil is crossed by a current density of 40A/mm2. This current density
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is high for a real-life coil but the main idea here is to create a magnetic field in the target
zone in order to validate our method whatever the origin of this field.

• Two design variable zones which are hyperrectangles of size 30mm × 15mm × 15mm
which are represented in grey on Fig. 2. Each of these two parts is discretized into small
variable cells that contain air or ferromagnetic material.

• One target zone which is represented in black on Fig. 2. It is bisected into small cubes of
size 1mm into 3 lines, which are centered in the air gap between the two variable regions.

In order to solve the primal problem (3) and the adjoint problem (17), we use a finite element
method solver which is GetDP software, (Dular & Geuzaine n.d.). To use GetDP, it is necessary
to specify some elements of our problems: the Sobolev space, the weak formulation of the prob-
lem with the boundary conditions, the Jacobian and the type of numerical integration. GetDP
is based on the mesher Gmsh, (Geuzaine & Remacle 2009, Remacle & Geuzaine n.d.) and the
mesh of a domain owns some great importance because this involves the accuracy obtained on
the solution versus the calculation time; so a previous study has been done to obtain efficiently a
good accuracy on the solutions.

To solve intances based on this U-shape circuit, we can use two distinct meshes, as follows:

• For the calculation of magnetic flux density: we use a tetrahedral mesh in Ω. In order to
ensure the accuracy of numerical values, this tetrahedral mesh is made on the whole study
area Ω using Gmsh but is finer in ΩT . Note that, a sufficiently accurate mesh has to be taken
in all Ω in order to obtain a convergence on the computations of the flux density in ΩT .

• For the optimization cell variables: we can discretize the variable area ΩV (grey area on
Fig. 2) into small hyperrectangle cells. Each cell represents a variable. Another possibility
is to take the tetrahedral elements inside ΩV , obtained from a finite element mesh, directly
as variables.

Remark 1. In order to validate the derivative, ΩV is divided into 128 hyperectangles (4× 4× 4
in each side). This involves that the objective function Fo depends on 128 variables. Hence, the
128 partial derivatives based on our adjoint method were compared to those computed using a
standard finite difference method for a material-filled configuration. The maximum value of the
relative percentage difference between the two methods is less than 0.03%. We remark that the
maximal errors are mainly concentrated in cell variables close to the corners of the hyperrect-
angles because the evaluation of the magnetic flux density is more difficult in these zones (even
for fine meshes). Therefore, according to those numerical results, the continuous adjoint method
as it is defined in Theorem 1 (without taking into account the SIMP penalization technique), is
validated and thus, it can be used to provide efficient information about the gradient that will be
used in topology optimization algorithms.

Remark 2. The adjoint method provides an adjoint problem which has the same difficulty to be
solved than the primal problem (here the PDE Maxwell equation in magnetostatics). Thus, to
perform the gradient of a function depending on N design variables by using a finite difference
method, we need to solve N + 1 times the original PDE problem vs the resolution of 2 PDE
problems for the adjoint method (the primal and the adjoint PDE problems). Note that using the
adjoint method, the computation of the gradient is independent of the number of design variables.

5.2 Design problem with a large number of variables

In this subsection, the goal is to solve problem (P) on the magnetic circuit described in subsec-
tion 5.1 by considering a large number of design variables. In order to achieve that, the tetra-
hedrons of the finite element mesh in the variable zone ΩV are taken as cell variables of the
optimization design. This yields 106,801 design variables; note that the simulation problem owns
192,855 meshes, and remark that the variable region owns thinner meshes.
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In this design example, the target magnetic flux density B0 is a field carried only along the z
direction with a Gaussian shape according to the coordinate x:

B0 =


0

0

B0z(x)

 =


0

0

Ae−
(x−x0)

2

2σ2

 ,

where σ = 10−2 is the standard deviation of the Gaussian, A = 4 × 10−3 is a constant equal
to the peak value of the Gaussian, and x0 is the place in space where the peak is reached. Note
that these kinds of imposed magnetic flux densities can be found in many applications, as for
example for designing Hall effect thrusters, (Sanogo 2016, Sanogo & Messine 2018, Sanogo
et al. 2014, Youness & Messine 2019b, Youness & Messine 2019a).

The choice of the penalty parameter n is very difficult because, if n is very large at the be-
ginning, this leads to converge to a local minimum which will be not so interesting. Thus, we
carry out a continuation process consisting in progressively increasing the penalization degree
from n = 1 to n = 100. In this work, we take n ∈ {1, 2, 3, 4, 10, 20, 100}. Note that, for a fixed
value of n the optimization module stops either if the maximum number of iterations 200 (400 for
n = 1) is reached or if the stopping criteria is ∥ρρρ[k+1] − ρρρ[k]∥∞ ≤ 10−4 is satisfied.

In this paper, we choose to use the solver MMA (Method of Moving Asymptots), (Svanberg
1987); MMA is a nonlinear optimization code with a MatLab implemantation in opensource. MMA
is a local search based algorithm and hence, a starting point has to be given. At each iteration
of MMA, a convex approximation of the problem (P) is computed. These approximations are
mainly based on the gradients at the current iteration but also on some information of previous
iterations. The approximated convex optimization problem is then solved and yields a unique
optimal solution which becomes the new point at this iteration. Note that MMA can take into
account constraints. Here, problem (P) has only bound constraints.

Increasing the penalty degree n, makes it possible to enforce our method to converge slowly
but with more trust to a very efficient (local) optimal design which is close to be manufacturable.
In Table 1, we provide all the intermediate numerical results obtained at each disctinct steps of
our homotopy algorithm (see Fig. 1). Note that the termination test is always the maximal number
of iterations, providing so, optimized solution but not local optimal ones. We can remark that
even if the values of the objective function decrease during the iterations, it is not the same for the
number of intermediate values. Indeed, this number decreases until n = 10 and then increases
a bit, see the fourth column of Table 1. Moreover, note that for the three optimizations, the final
number of iterations is 1600 corresponding to a CPU-time of about 1 day of computations on a
server (DELL server with 64GB of memory and with an Intel(R) Xeon(R) Gold 5218R
CPU of 2.1GHz and 40 processors). We also note that the three optimizations carried out with or
without the filter technique and using two distinct starting points lead to the same design solution
with only a few pixels difference. The optimization without the filter brings the checkboarder
effect into play, (Lucchini et al. 2022). Moreover, we also remark that the value of the objective
function on the non-filtered solution is greater than the value of the filtered one. Hence, we think
that this is due to the fact that using a filtering technique, the realizable domain is reduced and
thus, in our design case, the optimization solver converges to a more interesting local minimum;
i.e., it seems that without the use of a filtering technique, the algorithm stops too prematurely to
a local minimum less interesting than the filtered one. In addition, we remark that on our design
problem the starting point has not a big impact on the so obtained local solutions.

Thus, the best optimized design of the magnetic circuit, that we obtained so far, is presented
in Fig. 3. This optimized design corresponds to the solution obtained at iteration 200 with the
penalization parameter n = 100 when the starting point is full of air. Note that this solution is
not close to be entirely discrete and several variables do not respect a tolerance about 5% of pmin

1

and pmax
1 . Indeed, 11566 variables from 106801 are in ]pmin

1 +5%,pmax
1 − 5%[ which represents

10.8% of all the cell variables. Remark that those intermediate cell variables which have different
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% intermediate
n #its (=[k]) CPU-time densities Fo(ρ)

νr ∈]pmin
1 +5%,pmax

1 − 5%[ (×10−2)
Filt. Filt. No Filt. Filt. Filt. No Filt. Filt. Filt. No Filt.
air full full air full full air full full

1 400 6h06 9h06 6h13 48.3% 32.9% 65.3% 19.6 4.59 4.37
2 200 3h03 4h06 3h00 30.3% 15.1% 18.6% 2.22 3.78 2.92
3 200 3h03 4h07 3h00 14.7% 10.3% 31.4% 1.62 2.81 2.34
4 200 3h03 3h35 3h00 7.34% 7.69% 7.80% 1.47 2.39 2.08

10 200 3h05 3h04 3h00 3.68% 3.34% 1.13% 1.36 2.08 2.10
20 200 3h05 3h04 3h00 4.63% 6.20% 1.01% 1.32 1.85 2.05

100 200 3h05 3h04 3h05 10.8% 12.4% 3.85% 1.28 1.58 2.19

Table 1: Numerical results using algorithm Fig. 1 to solve a 3D-design problem with over 100, 000
variables, for three optimizations: i) in blue, filter technique with a starting point corresponding to
air everywhere; ii) in red, filter technique with a starting from a point corresponding to full material
distribution; iii) in black, without using the filter technique with a starting point corresponding to full
material distribution.

colors between blue (ferromagnetic material) and red (air) in Fig. 3 are in the border between the
ferromagnetic material and air in the variable zone ΩV . These difficulties are intrinsic in the use
of SIMP approaches even if the penalization degree is high.

Figure 3: Topological optimization solution before post processing. (Source: figure created by au-
thors)

Remark 3. In order to obtain a circuit closer to be manufacturable, we could enforce the interme-
diate values of the reluctivity to be ferromagnetic material or air as follows: for νr > νmax

r +νmin
r

2

we take νr := νmax
r , and for νr <

νmax
r +νmin

r
2 we take νr := νmin

r .

Finally in Fig. 4, in ΩT the reference magnetic flux density B0 and the magnetic flux density
B, computed from the best optimzed design, are plotted. Note that, B1,B2 and B3 correspond
respectively to the magnetic flux density B at the three bars of the target area ΩT from the bottom
to the top, see Fig. 2.
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Figure 4: Comparison in ΩT between the components of the imposed flux density B0 and the cal-
culated flux density B in the three bars of ΩT yielding the three density flux B1,B2 and B3, and a
carthography of the flux density B of the solution design. (Source: figure created by authors)

In Fig. 4, it is shown that the components x and y of the flux density B are almost null (less
than 10−5) as asked. Moreover, note that the component z of B in the three bars are very close to
the desired Gaussian function represented by the blue curve, see Fig. 4. These results shows that
we are very close to obtain the asked flux density B0 and thus, that we are also close to a global
optimal design solution with our best optimized design obtained so far.

6 Conclusion
In this paper, we have extended 2D-topology optimization methods in magnetostatics based on
continuous adjoint and SIMP approches to the 3D case. Hence, some new theoretical results
concerning efficient ways to compute derivative based on the adjoint method are provided for
magnetostatic design problems in 3D. From this theorectical results, a quite new optimization
algorithm is developed based on homotopy approaches to penalize more and more the continu-
ous relaxation of the original discrete problem in order to enforce the convergence to a discrete
solution (air or ferromagnetic material).

In a last part of the paper, numerical validations show that the gap between the gradients
computed with adjoint method or with the finite difference technique is less than 0.03% for our
design 3D problem in magnetostatics. Finally, our topology optimisation solver is efficiently used
to solve a 3D-magnetic circuit design problem which owns up to 100,000 cell-variables.

It should be noticed that in 3D, simulation times and numerical efforts are much greater than
for 2D resolutions. This limits the possibilities for numerical explorations in 3D. However, some
extensions of this work could focus on developing this method to take into account the non-
linearity of materials, the consideration of several physics (mechanical and magnetostatic) and
other variable regions such as magnets or coils. Thus, the theory presented in this paper could
be directly used to make a code capable of solving 3D multi-material design problems. Based
on theoretical results in 2D, the non-linearity of materials and the consideration of mechanical
constraints could be envisaged.
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