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Abstract

In this paper a 3D-topology optimization method in electromagnetism is introduced to design
3D-magnetic circuits. Some new theoretical results are provided to deal with 3D design cases
in order to compute the derivatives using the adjoint method. Moreover, an homothopy algorith-
mic optimization approach is developed based on SIMP to enforce the convergence to discrete
solutions close to be manufacturable. This new approach is applied and validated to design a
3D-magnetic circuit with close to 20000 variables.

Keywords: Topology Optimization, Adjoint Method, Sensitivity Analysis, Magnetostatic in-
verse problem

1 Introduction
Topology optimization was introduced since 2000 to design 2D mechanical structures, [2, 5,

17, 13]; as for example, to design the inside mechanical structures of airplane wings, [1]. Among
different topology optimization approaches [18], the main interesting ones to solve large prob-
lems are based on continuous relaxations of the binary variables which are used to show if a cell
is air or material. Thus, local descent based algorithms can be efficiently used to solve these
large problems. During the optimization process, the intermediate points have to be penalized in
order to enforce local optimization solvers to converge to binary solutions representing for ex-
ample air or materials. Bendsoe et al. have introduced different approaches to perform SIMP
method [5, 4, 15, 9]. Note SIMP method is largely used in professional solvers, as for exam-
ple OptiStruct of Altair company. Because local search solvers are based on gradient descent
steps, the computations of the derivative has to be very efficient. Thus adjoint methods were devel-
oped to provide the gradient of a function which depends on expensive simulation computations,
[2, 5, 17].

More recently, new codes were implemented to solve 3D design problems in mechanic mainly
based on voxels (boxes which are extensions of the 2D-pixel). The most famous result was ob-
tained by Sigmud et al. in [1] who designed a 3D airplane wing for Boeing with a billion of
voxels. This result was obtained in 5 days using a parallel code based on SIMP, adjoint method
and local search algorithm.
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†LAPLACE-CNRS, Toulouse-INP, ENSEEIHT, University of Toulouse and Deeper Pulse, Toulouse
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From 2010, some studies were done to solve topology optimization design problems in elec-
tromagnetism, dealing with Maxwell equations. To solve these kinds of problems, the adjoint
method has also been developed, [16, 21, 9]. In [14], magnetic circuits were designed in such a
way. More recently the nonlinearity of ferromagnetic material has been taken into account in [20]
and [9]. Moreover, some new material schemes also called penalization schemes were introduced
for this SIMP method dedicated to problems in electromagnetism, [15, 9].

As far as we know, topology optimization using adjoint methods in electromagnetism has
only been developed for 2D design problems. In this paper, we extend the topology optimization
with adjoint method for 3D design problems in electromagnetism with the assumption that the
ferromagnetic materials are linear. Some extensions to the nonlinear case could be quite directly
done from [20, 9]. Moreover, topology optimization problems in electromagnetism using multi-
materials are addressed in [9, 6].

In Section 2, topology optimization with adjoint method is recalled for 2D design problems
in electromagnetism. Section 3 is dedicated to the extension to 3D design problems with a new
theoretical formulation of the gradient. In Section 4, we detail our algorithmic approach to solve
topology optimization problems using SIMP techniques. Section 5 is dedicated to the gradient
validation (by comparing it to the finite difference technique) and dedicated to numerical tests to
design a 3D magnetic circuit. Section 6 concludes.

2 Problem description
In this work, Ω represents the whole studied domain. Within Ω, ΩV represents the variable domain
in which the matter can be added or removed. This matter can be permanent magnet in ΩV (M),
coils with current in ΩV (J) or ferromagnetic material in ΩV (νr). ΩT represents the target domain
in which a particular magnetic flux density B0 has to be imposed playing with the matter in
ΩV . Fig. 1 shows these different domains. In this work ΩV (M), ΩV (J) and ΩV (νr) have to be
disconnected.

Figure 1: Subdivision of the domain for topology optimization: ΩT is the target area and ΩV (νr),
ΩV (M), ΩV (J) are the design variable areas.

The topology optimization problem is defined as follows:

• The objective function is the squared error in a target zone ΩT between an imposed mag-
netic flux density B0 and the magnetic flux density B obtained with respect to the magnetic
sources and the material distributions in all the domain Ω. Note that B has to be computed
by solving magnetostatic Maxwell equations.

• The design variables are magnetic sources (active material) such as ferromagnetic material,
coil with current density and permanent magnets. The associated variables for all the vari-
able domains ΩV are the distribution of relative reluctivity νr, current density J (in the 3
directions (x, y, z)) and magnetization M (in the 3 directions (x, y, z)). Hence, we define a
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global variable p as:

p : ΩV −→ R7

(x, y, z)T 7−→ p(x, y, z) = (p1, · · · , p7)T

Where p = (νr, Jx, Jy, Jz,Mx,My,Mz)
T and we define the three following functions:

νr(p) = νr, J(p) = (Jx, Jy, Jz)
T and M(p) = (Mx,My,Mz)

T .

Note that, p is defined in the whole domain Ω, p is fixed on Ω \ ΩV and variable on ΩV .

Therefore, the optimization problem we addressed is the following:

min
p
Fo(p) =

∫
ΩT

|| B(A(p))− B0 ||2 dΩ, (1)

where A corresponds to the magnetic potential vector obtained by solving the Maxwell equations.
In this work, the constitutive law of the magnetic materials is supposed to be linear in order to

simplify the computations in 3D; some extensions to the non-linear case can be done from [9].
Hence, considering the linear case, we have:

H = νB−M (2)

Where ν = ν0νr is the magnetic reluctivity of the material, ν0 is the air reluctivity and νr is the
relative reluctivity of the material.

In different points of domain Ω, we have for p:

• For air: νr = 1, M = 0 and J = 0 in the 3 directions.

• For ferromagnetic material: νr is a contant depending on the material (in this paper, νr =
1

1000 ), M = 0 and J = 0 in the 3 directions.

• For permanent magnets: νr = 1, M is a constant bounded vector in 3D and J = 0 in the 3
directions.

• For coils: νr = 1, M = 0 and J is a constant bounded vector in 3D.

Because p is extended on the whole domain Ω, in Ω\ΩV (with ΩV = ΩV (νr)∪ΩV (M)∪ΩV (J)),
p is fixed and cannot change during the optimization process. Thus, in Ω \ ΩV , p can be air, a
ferromagnetic material, a permanent magnet or a coil. In the variable domain ΩV , p is variable
and can be air or a ferromagnetic material if (x, y, z)T belongs to ΩV (νr), air or a permanent
magnet if (x, y, z)T belongs to ΩV (M) and air or a coil if (x, y, z)T belongs to ΩV (J).

The Maxwell-Ampere equation∇×H = J becomes, using the constitutive law of the material
described in equation (2) and the existence of the potential vector A such that B = ∇× A:

−∇× [ν0νr(p)B(A(p))−M(p)] + J(p) = 0, in Ω. (3)

Equation (3) is called, in this paper, the primal problem. Note that B(.) is the rotational operator
∇× (.) which is also denoted by B(A) = curl(A). The Dirichlet condition A×n = 0 is imposed
on the domain boundary ∂Ω, where n is the normal vector (this hypothesis is relevant because the
border of the domain Ω is far from the zone of interest ΩT ), as shown in Fig. 1.

The partial derivative ∂Fo
∂pi

is calculated using the adjoint method. Hence, from equations (1)
and (3), the optimization problem (1) can be equivalently formulated as:

(P)



min
p,A

F (p,A) =
∫

ΩT
|| B(A)− B0 ||2 dΩ

uc
−∇× [ν0νr(p)B(A)−M(p)] + J(p) = 0 in Ω,
with A× n = 0 in ∂Ω
p ∈P := {p ∈ (L∞(Ω))7 : pmin

i ≤ pi ≤ pmax
i , i = 1, · · · , 7}

(4)

Where pmin and pmax are the lower and upper bounds of the variable p. Note that in (P), the
variables p and A are separated and linked by the constraint which is the Maxwell equation.
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Moreover if p satisfies the Maxwell constraint, then Fo(p) = F (p,A) and therefore, for such a
point p:

∂Fo
∂pi

(p) =
∂F

∂pi
(p,A)

.

3 Sensibility analysis from 2D to 3D
Efficient optimization codes are based on computations of the derivatives. These derivatives can
be obtained with evaluations of the objective function considering small variations of the variable
p. This defines the well-known finite difference method. However, all these evaluations require
to solve Maxwell equations using a numerical solver. Hence, depending directly to the number of
variables, the finite difference technique is extremely expensive.

Hence, adjoint methods has been developed in order to compute the derivatives with more
efficiency. It was first developed in mechanics [2, 5], then extended to 2D magnetostatic [14, 16]
and to 2D electrical machines [9, 6].

Thus, in the first subsection 3.1, the 2D magnetosatic adjoint method is recalled. In the fol-
lowing subsection 3.2, the adjoint method is extended to the 3D-case.

3.1 Sensibility analysis in 2D
Generally, due to symmetries and invariances along one direction, 3D electromagnetism problems
can be simplified in 2D problems.

Considering the Cartesian coordinates in 3D: (x, y, z) and an invariance following z, the mag-
netic flux density can be reduced to B = (Bx, By)

T . Furthermore:

• The potential vector is a scalar:

A = (0, 0, A(x, y)) ≡ A(x, y)

• The magnetic density flux is a 2D vector:

B(A) = curl(A) = (∂yA,−∂xA, 0) ≡ (∂yA,−∂xA)

• The boundary condition is reduced to A = 0 on the boundary domain ∂Ω.

In order to solve problem (P), it is necessary to compute the derivative of the function F with
respect to the design variable p. The sensitivity calculation in 2D is summarized below (for more
details see [14] and [16]):

• For problem (P), the Lagrangian function L is introduced as follows:

L (p, A, λ) = F (p, A) +

∫
Ω
λµ0 [−∇× (ν0νr(p)B(A)−M(p)) + J(p)] dΩ,

where the equality constraint is multiplied by the Lagrangian multiplier λ which is a scalar
function. λ belongs to H1

0 (Ω) (a standard Sobolev space) with the same properties as A.
Note that, the equality constraint of (P) is also multiplied by µ0 (the void permeability =
1
ν0

) in order to ensure the homogeneity considering the physical units in the summed terms.
Note that this Lagrangian formulation is in 2D, with A a scalar function, M a vector (in
2D), J is also a scalar (in direction z) and the curl operator in 2D is scalar∇× (vx, vy)

T =
∂xvy − ∂yvx.

• Using the Green formula in 2D, we obtain:

∂B
∂A

(A) = B(.),
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and the adjoint problem in 2D is:

∇× [νB(λ)−Ma1ΩT ] = 0, in Ω, (5)

where λ is named the adjoint variable and Ma = 2
µ0

(Bx − B0x, Bx − B0x)T can be un-
derstood as a permanent magnet in ΩT . The adjoint problem is therefore equivalent to a
magnetostatic problem with only one source Ma.
Note that, the computation of Ma depends on the value of the field B = (Bx, By)

T in ΩT

which must be previously calculated by solving the primal problem defined by equation (3).

• From the the equality ∂Fo(p)
∂pi

= ∂L
∂pi

(p, A(p), λ) which is verified for any couple (p, A)
satisfying the constraint (3), the sensitivity formula is obtained by deriving the Lagrangien
L with respect to the design variable p:

∂Fo(p)

∂pi
=

∫
Ω
µ0

[
λ
∂J(p)

∂pi
+ B(λ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λ)T .B(A)

]
dΩ, (6)

for each component pi of p; only p1 = νr, p4 = Jz, p5 = Mx and p6 = My are used in this
2D problem.
Note that in the sensitivity formula (6), A and λ are solutions of equations (3) and (5),
respectively.

Equations (3) and (5) can be solved by the finite element method whose weak formulation is
written as: ∫

Ω
νB(X).B(φ)dΩ−

∫
Ω

M.B(φ)dΩ−
∫

Ω
JφdΩ = 0,∀φ ∈ H1

0 (Ω). (7)

For example, in order to solve the primal problem of designing a simple magnetic circuit with
only a coil, a ferromagnetic material and no permanent magnet, we just have to take X = A,
M = 0 and the only source is the current J . Considering the same example, the adjoint problem
is derived from equation (7) by taking X = λ, J = 0 and the only source is M = Ma.

In a 2D problem, equation (7) can be simplified, such as:∫
Ω
ν∇X.∇φ dΩ−

∫
Ω

(
−My

Mx

)
.∇φ dΩ−

∫
Ω
Jφ dΩ = 0,∀φ ∈ H1

0 (Ω). (8)

3.2 Sensitivity analysis and adjoint method in 3D
In this subsection, we detail the steps to compute the sensitivity of the objective function Fo with
respect to the design variable pi for a 3D problem. Note that in 3D, the potential vector and the
magnetic flux density have non zero-components, and then,

• The potential vector is:

A = (Ax(x, y, z), Ay(x, y, z), Az(x, y, z))

• The magnetic flux density is:

B(A) = curl(A) = (∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx)T

• The boundary condition is A× n = 0 on the boundary domain ∂Ω.

The following theorem is dedicated to the computations in 3D of the partial derivatives of the
original function Fo.
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Theorem 1. The expression in 3D of the sensitivity of Fo with respect to each component pi of p
is:

∂Fo(p)

∂pi
=

∫
Ω
µ0

(
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

)
dΩ, (9)

where B(λλλ) is obtained by solving the following adjoint problem:

∇× [Ma1ΩT − νB(λλλ)] = 0, (10)

with Ma which is the adjoint magnetization defined as follows:

Ma =
2

µ0
×


Bx −B0x

By −B0y

Bz −B0z

 ,

with B = (Bx, By, Bz)
T which is the magnetic flux density.

Note that equation (10) is the adjoint problem in 3D. It is equivalent to a magnetostatic prob-
lem where Ma is the only source. This problem has to be solved numericaly in order to provide λλλ
and B(λλλ).

Proof. The proof of Theorem 1 is based on the following 3 steps:

1. Construction of the Lagrangian function by considering the formulation of problem (P).

2. Determination of the adjoint problem from the Karush-Khun-Tucker theorem.

3. Computation of the topological sensitivity.

Note that, in 3D, we work in the following Sobolev spaces

H(curl,Ω) =
{

w ∈ L2(Ω), curl(w) ∈ L2(Ω)
}
,

H0(curl,Ω) = {w ∈ H(curl,Ω),with w× n = 0 in ∂Ω} ,

because we will need to integrate the vectors A, λλλ, curl(A) and curl(λλλ) in Ω. L∞(Ω) is the space
of bounded vector functions on Ω.

1. Construction of the Lagrangian function:
The Lagrangian L is defined as the addition of the objective function and the sum of the
equal constraints multiplied by a Lagrange multiplier λλλ:

L (p,A,λλλ) = F (p,A) +

∫
Ω
λλλT .µ0 [−∇× (ν0νr(p)B(A)−M(p)) + J(p)] dΩ,

where (p,A,λλλ) ∈ L∞(Ω)×H0(curl,Ω)×H0(curl,Ω) and µ0 = 1
ν0

the void permeability.
The equality constraint of (P) is multiplied by µ0 (the void permeability = 1

ν0
) in order to

ensure homogeneity considering the physical units in the summed terms.

Using Green’s formula in 3D, we obtain:∫
Ω
λλλT .µ0 [−∇× (νB(A)−M) + J] dΩ =

∫
Ω
µ0λλλ

T .JdΩ

−
∫

Ω
µ0curl(λλλ)T .(νB(A)−M)dΩ

+

∫
∂Ω
µ0(λλλ× n)T .(νB(A)−M)d∂Ω.
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Because λλλ ∈ H0(curl,Ω),λλλ× n = 0 in ∂Ω, hence we have:∫
Ω
λλλT .µ0 [−∇× (νB(A)−M) + J] dΩ =

∫
Ω
µ0λλλ

T .JdΩ−
∫

Ω
µ0B(λλλ)T .(νB(A)−M)dΩ

=

∫
Ω
µ0

[
λλλT .J− νB(λλλ)T .B(A) + B(λλλ)T .M

]
dΩ.

Finally, the Lagrangian function is:

L (p,A,λλλ) =

∫
ΩT

|| B(A)− B0 ||2 dΩ

+

∫
Ω
µ0

[
λλλT .J(p)− ν(p)B(λλλ)T .B(A) + B(λλλ)T .M(p)

]
dΩ. (11)

2. Determination of the adjoint problem:
The directional derivative of a function f : E → F in u in the direction h with
(u, h) ∈ E2 is defined by:

Dhf(u) = lim
t→0

f(u+ th)− f(u)

t
.

If E is an euclidean vector space, and f is a real-valued differentiable application, then we
can use the gradient of f to express the directional derivative:

Dhf(u) =< ∇f(u) | h > .

In order to determine the adjoint system, we use the necessary optimality conditions at the
first order of the Karush-Kuhn-Tucker (KKT) theorem. Thus, the directional derivative of
L in A in any direction ϕϕϕ must satisfy:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ >= 0, ∀ϕϕϕ ∈ H0(rot,Ω). (12)

By considering a function f defined by:

L (p,A,λλλ) =

∫
Ω
f(p,A,λλλ)dΩ, (13)

where,

f(p,A,λλλ) =|| B(A)− B0 ||2 1ΩT + µ0

[
λλλT .J(p)− ν(p)B(λλλ)T .B(A) + B(λλλ)T .M(p)

]
.

By developing the expression of the Lagrangian (13), and using the linearity property of
integrals, we obtain:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ > = lim

t→0

L (p,A + tϕϕϕ,λλλ)−L (p,A,λλλ)

t

= lim
t→0

∫
Ω f(p,A + tϕϕϕ,λλλ)dΩ−

∫
Ω f(p,A,λλλ)dΩ

t

=

∫
Ω

lim
t→0

f(p,A + tϕϕϕ,λλλ)− f(p,A,λλλ)

t
dΩ

=

∫
Ω
Dϕϕϕf(A)dΩ

=

∫
Ω
< ∇Af | ϕϕϕ > dΩ

=

∫
Ω

∂f

∂Ax
.ϕx +

∂f

∂Ay
.ϕy +

∂f

∂Az
.ϕzdΩ.
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Using the derivation of compound functions, for each of the partial derivatives, where A.
denotes Ax, Ay or Az , then we have:

∂f

∂A.
=

∂

∂A.

[
|| B(A)− B0 ||2 1ΩT + µ0

[
λλλT .J− νB(λλλ)T .B(A) + B(λλλ)T .M

]]
=

∂

∂B(A)T
(|| B(A)− B0 ||2 1ΩT ).

∂B(A)

∂A.
− µ0νB(λλλ)T .

∂B(A)

∂A.

= BTa .
∂B(A)

∂A.
1ΩT − µ0νB(λλλ)T .

∂B(A)

∂A.

=
[
Ba1ΩT − µ0νB(λλλ)

]T
.
∂B(A)

∂A.
,

with:

Ba = 2×


Bx −B0x

By −B0y

Bz −B0z

 .

Thus, we obtain:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ >=

∫
Ω

[Ba1ΩT − µ0νB(λλλ)]T .

[
ϕx
∂B(A)

∂Ax
+ ϕy

∂B(A)

∂Ay
+ ϕz

∂B(A)

∂Az

]
dΩ.

(14)
Expanding the term with partial derivatives according to the components of A, we obtain:[

ϕx
∂B(A)

∂Ax
+ ϕy

∂B(A)

∂Ay
+ ϕz

∂B(A)

∂Az

]
= JB(A).ϕϕϕ

= DϕϕϕB(A).

Where JB(A) is the Jacobian matrix of the function B with respect to A. For each element
A = (Ax, Ay, Az)

T ∈ R3 it is associated B(A) = (Bx(A), By(A), Bz(A))T ∈ R3.

Using the definition of the directional derivative and the linearity of the curl operator, we
have:

DϕϕϕB(A) = B(ϕϕϕ). (15)

From equation (14) and using equation (15), we have:∫
Ω

[Ba1ΩT − µ0νB(λλλ)]T .B(ϕϕϕ)dΩ = 0.

By applying the Green formula in 3D, we obtain:∫
Ω
ϕϕϕT .∇× [Ba1ΩT − µ0νB(λλλ)]dΩ +

∫
∂Ω

(ϕϕϕ× n)T .[Ba1ΩT − µ0νB(λλλ)]d∂Ω = 0. (16)

Because ϕϕϕ ∈ H0(curl,Ω),ϕϕϕ× n = 0 on ∂Ω, we have:∫
Ω
ϕϕϕT .∇× [Ba1ΩT − µ0νB(λλλ)]dΩ = 0, ∀ϕϕϕ ∈ H0(rot,Ω).

Using Corollary 2.2.2 in [3] on elements of L2(Ω):

∇× [Ba1ΩT − µ0νB(λλλ)] = 0.

By multiplying the above equation by 1
µ0

, we find the following expression of the adjoint
problem:

∇× [Ma1ΩT − νB(λλλ)] = 0,

where Ma represents the adjoint magnetization as defined in the Theorem 1.
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3. Computation of the sensitivity of the problem:
From the independence of the variables p, A and λλλ, in the definition of the Lagrangian
function L , and using the property of derivation under the integral, we obtain:

∂L (p,A,λλλ)

∂pi
=

∫
Ω
µ0

[
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

]
dΩ. (17)

For each couple (p,A) satisfying constraint (3), we have Fo(p) = L (p,A(p),λλλ). Thus,
using the compound derivative theorem, we obtain:

∂Fo(p)

∂pi
=
∂L (p,A(p),λλλ)

∂pi
+
∂L (p,A(p),λλλ)

∂A

T

.
∂A(p)

∂pi
. (18)

Note that ∂L (p,A(p),λλλ)
∂pi

= 0 because p verify the adjoint system which is equivalent to the
stationarity of the Lagrangian function in A, hence, we have:

∂Fo(p)

∂pi
=

∫
Ω
µ0

[
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

]
dΩ

for each component pi of p.

From Theorem 1, we obtain directly (using the derivative with respect to p1 = νr) the follow-
ing corollary:

Corollary 2. The expression of the sensitivity with respect to ν is in 3D given by:

∂Fo(νr)

∂νr
= −

∫
Ω

B(λλλ)T .B(A)dΩ. (19)

Where B(λλλ) is obtained by solving the adjoint problem provided by equation (10) in Theorem 1.

The weak formulation for those kind of 3D magnetostatic problem is:∫
Ω
νB(X).B(ϕϕϕ)dΩ−

∫
Ω

M.B(ϕϕϕ)dΩ−
∫

Ω
J.ϕϕϕ dΩ = 0,∀ϕϕϕ ∈ H0(rot,Ω) (20)

Hence, by taking a simple magnetic circuit with only one coil, one ferromagnetic material part
and no permanent magnet, we have to take X = A, M = 0 and the only source is the current J.
Moreover, the adjoint problem is provided by taking X = λ, J = 0 and the only source is now
M = Ma.

It should be noticed that in the 3D case, it is necessary to add a gauge condition, in order to
ensure the uniqueness of the solution using finite element method [8].

4 Topology optimization algorithm
In Section 3, a way to compute efficiently the derivative of the function Fo is derived in Theorem 1
for 3D problems, these formulas are provided in continuous spaces. In this work, those formulas
are solved numerically using finite element method. This involves discretization steps where
the entire domain is discretized into small tetrahedron elements. The variables of the associated
topology problem could be directly the tetrahedron elements in the variable domain ΩV but they
also can be defined by other cells, as for example hyperrectangles (see Fig.4 in the next section).

It remains a last difficulty. In some cases, the variables are discrete. Indeed, p1 = νr represents
the relative reluctivity in a point (x, y, z)T ∈ ΩV . For a specific ferromagnetic material, p1 can
only takes two discrete values: νr = νmax

r = ν0 if we put air at (x, y, z)T or νr = νmin
r if we put

material at (x, y, z)T . Note that, the other six parameters are continuous and can be directly used
in a standard optimization code based on gradient descent steps.

In the next sub-section, the main method to deal with this issue is recalled. This is the well-
known SIMP method[5, 4, 15, 9]. In sub-section 4.2, our optimization code based on the SIMP
method is provided and explained.

9



4.1 Penalization with material density method - SIMP
Focusing on the parameter p1 which is discrete, we apply the SIMP method that is recalled in the
following; for details see, [15, 9]. This SIMP method could be applied in the same way on other
parameters pi, i = 2 · · · 7 if necessary. Here, the other parameters pi, i = 2, · · · , 7 are fixed.

The discrete parameter p1 is artificially relaxed and becomes continuous between its two pre-
vious discrete values pmin

1 and pmax
1 . This introduces composite materials between pmin

1 = νmin
r

and pmax
1 = νmax

r . This involves a magnetic structure which is generally not manufacturable.
Hence, to prevent the appearance of these intermediate values, we penalize them introducing a
density variable ρ belonging to [0,1] and linked to the design variable p1 via a material inter-
polation scheme g such that, at a point x of ΩV , one obtains: g(ρ(x, y, z)) = p1(x, y, z) with
g(0) = pmin

1 = νmin
r and g(1) = pmax

1 = νmax
r .

In the literature, there are several choices of interpolation functions g, that influences the final
result of topology optimization. In this work, we have used two penalization functions, as shown
in Fig. 2:

• Polynomial interpolation function [4]:

p1 = g(ρ) = pmin
1 + (pmax

1 − pmin
1 )ρn, (21)

where n > 0 is a penalty parameter. When the penalization parameter n is high we enforce
the solution to be discrete close to p1 ∈

{
pmin

1 , pmax
1

}
. The main problem with this scheme

is not symmetrical and hence it favors materials with low values of ρ.

• Arctangent interpolation function (introduced by D. Lukàš in [11]):

p1 = g(ρ) = pmin
1 + (pmax

1 − pmin
1 )

[
1

2 arctan(d)
arctan(d(2ρ− 1)) +

1

2

]
, (22)

where d > 0 is the penalty parameter of this scheme. This interpolation avoids the symme-
try problems of polynomial penalization. High values of d allows penalizing intermediate
materials but this can also lead to a poor convergence of the optimization algorithm.

In Fig. 2, the two used interpolation schemes are represented.

Figure 2: Polynomial and arctangent interpolation schemes for several penalization degrees

Therefore, the new variable of problem (P) is now the material density ρ and then, using
chain rule and from Theorem 1 in the case where p1 = νr, the new sensitivity with respect to ρ
becomes:

∂Fo
∂ρ

= −
∫

Ω

∂g

∂ρ
B(λλλ)T .B(A)dΩ (23)
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4.2 Optimization algorithm
In order to solve equation 23, the domain ΩV is discretized into N cells ΩVi , each of which
contains matter or not according to the value of the density ρi ∈ [0, 1], i = 1, · · · , N in ΩVi .
Then, we pose: ρρρ = (ρ1, · · · , ρN )T .
We can write the density variable ρ in all space as follows:

ρ =
N∑
i=1

ρi1ΩVi
+ ρΩ\ΩV 1Ω\ΩV (24)

with ρΩ\ΩV equals 1 in areas with ferromagnetic material and 0 in areas without ferromagnetic
material outside the variable domain ΩV .
Hence, using again chain rule and Theorem 1 in the case where p1 = νr, the sensitivity with
respect to each element ρi of ρρρ becomes:

∂Fo
∂ρi

= −
∫

ΩVi

∂g

∂ρ
B(λλλ)T .B(A)dΩ. (25)

In order to solve problem (P), the optimization algorithm needs the following information:

• The objective function and sensitivity calculation (see equation (25)).

• The constraints which are only the lower and upper bounds of the material density: ρρρ ∈
[0, 1]N .

• The constraint imposed by the Maxwell equations is indirectly taken into account using the
finite element method.

Our algorithm can be summarized in Fig. 3. Like any local optimization algorithm based on
gradient descent, this optimization module starts from a starting point denoted by ρρρ[0], build a
sequence of points ρρρ[k] and ends to ρρρopt. Then, this point ρρρopt is analyzed because this solution is
not necessarily discrete (does not belong necessarily to the set {0, 1}N ). Hence, a test is added to
check if ρρρopt is close to one of its two limits 0 or 1 with an imposed tolerance tol. If the tolerance
tol is satisfied, the solution provided is ρρρopt, otherwise the new starting point is updated by doing
ρρρ[0] = ρρρopt) and by increasing the penalty parameter. This makes it possible to converge slowly
but strongly to efficient design solutions. Indeed, by directly penalizing with a big parameter n or
d, the optimization module converges to a local minimum which is very far from those obtained
using our homothopy algorithm.

Figure 3: SIMP based topology optimization algorithm
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4.3 Filtering technique

If we consider the expression of the derivative of Fo with respect to each element of ρρρ, shown
in equation (25), the final solution has generally checkerboard patterns, [17]. In order to make
the solution more manufacturable, a regularization method must be added. Thus, in this work, a
sensitivity filtering [17] method has been used. The latter consists in modifying the values of the
sensitivity of the cost function at each iteration through a spatial filter whose goal is to weight
the value of the sensitivity in a target element by the value of its neighboring elements. In this
work, several sensitivity filters have been tested. For our problem the bi-lateral sensitivity filter
provided the most efficient discrete solutions, [17], and so, the expression of the sensitivity with
respect to an element e is replaced by:

∂Fo
∂ρe

=

∑
i∈Ne wiew(∂Fo∂ρi

)vi
∂Fo
∂ρi∑

i∈Ne wiew(∂Fo∂ρi
)vi

(26)

the sensibility weights are computed as follows:

w(
∂Fo
∂ρi

) = exp

−1

2

(
∂Fo
∂ρi
− ∂Fo

∂ρe

σr

)2
 and σr ∈]0, 1]

Moreover, σr is fixed at 0.5, and the distance weighting wie is equal to max(0, rmine − dist(i, e)).
The following parameters are defined in this work such as:

• vi is the volume of the element i.

• dist(i, e) is the distance between the center of the element i and the center of the element e.

• rmine = δhe; with δ ∈ R∗+ and he is the greatest distance between the points constituting
the element e (Euclidean norm of the difference between the coordinates of the most distant
nodes of the element e).

• The set of neighbors of the element e is defined as follows: Ne = {i | dist(i, e) ≤ rmine}.

Thus, in this section an efficient topology optimization algorithm based on adjoint methods
and SIMP penalization technique is provided. Moreover, our methodology is able to provide more
regularized solution close to a manufacturable one.

5 Numerical validations on a 3D magnetic circuit
The aim of this section is to validate our methodology on a U-shaped magnetic circuits. In a first
step, a simple design problem with 16 variables is addressed. This allows us to verify that the
computation of the gradient based on our theoretical results (mainly Theorem 1 and Corollary 2)
is close to the one obtained using the finite difference method. Then, in a second step, we compare
two penalization functions: the polynomial and the arctangent interpolation functions. Finally, in
a last sub-section, we expand our study by addressing a design problem with a large number of
variables.

5.1 Description of the design problems and numerical simulations
We consider here a simple magnetic circuit shown in Fig. 4 with one coil and two distinct variable
zones which can be air or ferromagnetic materials. For this magnetic circuit, the design variable
p1 is the relative reluctivity νr which varies between the minimum value pmin

1 = νmin
r = 1/1000

(corresponding to ferromagnetic material) and the maximum value pmax
1 = νmax

r = 1 (corre-
sponding to air).

For this example, the magnetic circuit can be divided into 4 parts, as follows:

12



• A U-shaped ferromagnetic part which defines the fixed part of the magnetic circuit. It is
represented in white on Fig. 4. Its dimensions are 105mm×40mm×15mm, the thickness
of the bottom hyperrectangle containing the coil is 10mm and the thickness of the both
sides of the U-shaped circuit is 15mm.

• A coil which is represented in yellow on Fig. 4. It is made up from 2 bottom and top bars of
15mm× 0.4mm× 5mm and 2 lateral bars of 10mm× 0.4mm× 5mm which are linked
by 4 curved bars. This coil is crossed by a current of 0.4A and has 200 windings.

• Two design variable zones which are hyperrectangles of size 30mm×15mm×15mmwhich
are represented in grey on Fig. 4. Each of these two parts is discretized into 8 variable cells
that contain air or ferromagnetic material.

• One target zone composed by small cubes of size 1mm and represented in black on Fig. 4.
These cubes are centered in the air gap between the two variable hyperrectangles. The target
zone ΩT is composed by 27 = 3×3×3 cubes, where the magnetic flux density is evaluated.

In order to solve the primal problem (3) and the adjoint problem (17), we use a finite element
method solver which is GetDP software, [7]. To use GetDP, it is necessary to specify some
elements of our problems: the Sobolev space, the weak formulation of the problem with the
boundary conditions, the Jacobian and the type of numerical integration.

GetDP is based on the mesher Gmsh, [10, 12] and the mesh of a domain owns some great
importance because this involves the accuracy obtained on the solution versus the calculation
time; so a previous study has been done to obtain efficiently a good accuracy on the solutions.

In this first example, we use two distinct meshes, as follows:

• For the calculation of magnetic flux density: we use a fine tetrahedral mesh to ensure the
accuracy of numerical values. This tetrahedral mesh is made on the whole study area Ω
using Gmsh.

• For the optimization cell variables: we discretize the variable area ΩV (grey area on Fig. 4)
into small cells. Each cell represents a variable. For this first example, the variable zone ΩV

is made up by 16 cubes (2× 2× 2 in each side).

Figure 4: The studied 3D magnetic circuit

For this first example, the given magnetic flux density B0 in the target zone ΩT is first com-
puted using a symmetric ferromagnetic shape as it is represented in Fig. 5.

The corresponding magnetic flux density is plotted in Fig. 6.

5.2 Validation of the sensitivity calculations
In order to validate the accuracy of the adjoint based approach as it was defined in Theorem 1
(without taking into account the SIMP penalization technique), the first example presented in the
previous subsection is considered but by dividing again by two all the optimization variable cells.
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Figure 5: Material distribution providing the magnetic flux density B0. Black areas contains material
with relative reluctivity νr = 1/1000 (a ferromagnetic material with magnetic permeability µr =
1000) and the white areas represent air (νr = 1).

Figure 6: Shape of the magnetic flux density B0

This yields 43 = 64 variables for the two distinct zones ΩV and thus, the objective function Fo
depends on 128 variables. Hence, the 128 partial derivatives based on our adjoint method were
compared to those computed using a standard finite difference method. The relative percentage
differences between the two gradient of Fo are shown in Fig. 7. The maximum value of the
relative percentage difference is less than 0.03%. The maximal errors are mainly concentrated in
cell variables close to the corners of the hyperrectangles because the evaluation of the magnetic
flux density is more difficult in these zones (even for fine meshes).

Therefore, according to those numerical results, the adjoint method is validated and thus, it
can be used to provide efficient information about the gradient that will be used in the optimization
algorithms.

5.3 Validation of our topology optimization algorithm based on the
two penalization techniques
To solve the topology design problem (P), a gradient based algorithm is used. At each iteration
of the optimizaiton algorithm, the gradient is computed using the adjoint method and hence, a
descent step is so-obtained. In this paper, we choose to use the solver MMA (Method of Moving
Asymptots), [19]; MMA is a nonlinear optimization code with a MatLab implemantation in open-
source. MMA is a local search based algorithm and hence, a starting point has to be given. At each
iteration of MMA, a convex approximation of the problem (P) is computed. These approximations
are mainly based on the gradients at the current iteration but also on some information of previous
iterations. The approximated convex optimization problem is then solved and yields a unique op-
timal solution which becomes the new point at this iteration. Note that, MMA can take into account
constraints. Here, problem (P) has only bound constraints.

For this first tests, the starting point is ρρρ[0] = 0.1 (ferromagnetic material) if it corresponds to
a variable cell in the left pole of ΩV and ρρρ[0] = 1 (air) for the right pole, as shown in Fig. 8.

For the penalization, both arctangent and polynomial interpolation functions are tested. Each
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Figure 7: Validation of the adjoint method by comparison with finite differences

Figure 8: Structure of the starting point ρρρ[0]

of these functions has a particular penality parameter (d for arctangent and n for polynomial).
A common parameter have to be introduced in order to compare the penalization factor of those
two functions. Thus, we have chosen to use the concept of penality bandwidth bd at ε (in %) as
illustrated in Fig. 9. In the following, the method used to find n and d for a given bandwidth bd at
ε is provided:

• Give ε

• Compute the tolerance: tol := ε×
(
pmax

1 − pmin
1

)
. This tolerance is used to define the zone

where the variable cells are well defined (air or ferromagnetic material within a tolerance
tol).

• Give a bandwidth bd

• Determine n or d by solving the nonlinear equation:

bd = ρmax − ρmin = g−1(pmax
1 − tol)− g−1(pmin

1 + tol)

where g−1 is the inverse function of the penalty function defined in equation (21) and (22)
with n or d. To solve this non linear equation, we used vpasolve of MatLab.

• Return n or d corresponding to the wished bandwidth bd at ε.

This algorithm provide an efficient way to compare rigorously penalization schemes. If the
penalty bandwidth bd decreases then the penalization factor d or n (respectively for arctangent or
polynomial penalization functions) increases. For example, for bd ∈ {0.75, 0.50, 0.25}, we obtain
n ∈ {2.0, 4.2, 10} and d ∈ {2.3, 6.7, 19}. We can now compare these two penalization functions
by considering the same bandwidth (i.e, the same range width of p to describe the intermediate
solutions [pmin + tol, pmax − tol]).

First we solve the design problem without penalization [p1 = pmin
1 + (pmax

1 − pmin
1 ).ρ] with a

starting point ρ[0] and then, we decrease the bandwidth at 5% for both polynomial and arctangent
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Figure 9: Exemple of penalty bandwidth of 0.5 at 5% for both polynomial and arctangent penalization
functions.

Penalization Polynomial Arctangent
Fo(ρρρ

opt) 0.042390 0.042391
Number of iterations 378 (178+200) 778 (178+200+200+200)
CPU time (PC-8GB-2.1GHz) 17.74h 35.61h
Glob. Sol. (Fig. 5) true true

Table 1: Circuit optimization results using polynomial and arctangent interpolation functions

functions to the following values: bd ∈ {0.75, 0.50, 0.25}. For each new bandwidth value, the
starting point is set to the solution of the previous step.

The results are shown in Table 1. Both penalizations lead to the same global minimum (shown
in Fig. 5). Note that, the limit about the number of iteration that MMA can takes is fixed to 200
iterations; the MMA stopping criteria is ‖ρρρ[k+1] − ρρρ[k]‖∞ ≤ 1.1 × 10−5 (note that MMA does not
converge in 200 iterations if we take 1× 10−5). For the unpenalized first step, the tolerance stop-
ping criterion of our algorithm in Fig. 3, is not reached and then one supplementary iteration is
done by taking n = 2.0 and d = 2.3 for respectively the polynomial and arctangent penalization
schemes. For this second step, with the polynomial scheme, MMA stopped in 200 iterations, pro-
viding the correct global solution (see Fig. 5) within a tolerance tol = 5%(pmax

1 − pmin
1 ) which

stops our homothopy topology optimization algorithm (see Fig. 3). Considering the arctangent
scheme, MMA stopped also in 200 iterations which is the given limit, but without reaching the
tolerance tol. Then, two other iterations are performed corresponding to the values 6.7 and 19 of
the penalization parameter d but the tolerance tol is still not reached. Nevertheless, the obtained
solution is also the global one, see Fig. 5. These results are summarized in Table 1.

To conclude, both algorithms based on polynomial and arctangent penalization schemes pro-
vide the same global solution: the polynomial scheme used one step of penalization n = 2.0 and
the arctangent scheme used all the values proposed d ∈ {2.3, 6.7, 19} without reaching the tol-
erance of our homothopy algorithm. However, polynomial penalization allows us to improve the
convergence of our topological optimization code (see Fig. 3) more efficiently. This shows that on
this example and using MMA code, the polynomial penalization scheme based method surpasses
the one based on arctangent.
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5.4 Design problem with a large number of variables
In the above subsection, we have shown that polynomial penalization scheme improves the effi-
ciency of our topology optimization code in 3D. Hence, the polynomial penalization is used in the
following.

In this subsection, the goal is to solve problem (P) on the same magnetic circuit described in
subsection 5.1, but by considering a large number of design variables. In order to achieve that, the
tetrahedrons of the finite element mesh in the variable zone ΩV are taken as cell variables of the
optimization design. This yields 18893 design variables.

In this design example, the target magnetic flux density B0 is a field carried only along the z
direction with a Gaussian shape according to the coordinate x:

B0 =


0

0

B0z(x)

 =


0

0

Ae−
(x−x0)

2

2σ2

 ,

where σ = 10−2 is the standard deviation of the Gaussian, A = 4.4× 10−2 is a constant equal to
the peak value of the Gaussian, and x0 is the place in space where the peak is reached. The target
zone ΩT in this case is the black area in the Fig.10.

Figure 10: The new 3D magnetic circuit

The choice of the penalty parameter n is very difficult because, if n is very large at the begin-
ning, this leads to converge to a local minimum which will be not so interesting. Thus, we carry
out a continuation process consisting in progressively increasing the penalization degree from
n = 1 to n = 100. In this work, we take n ∈ {1, 2, 3, 4, 10, 20, 100}. Note that, for a fixed value
of n the optimization module stops either if the maximum number of iterations 600 is reached or
if the stopping criteria is ‖ρρρ[k+1] − ρρρ[k]‖∞ ≤ 10−4 is satisfied.

Increasing the penalty degree n, makes it possible to enforce our method to converge slowly
but with more trust to a very efficient (local) optimal design which is close to be manufacturable.
In Fig. 11, we plot all the iterations of our topology optimization method. The small peaks in
Fig. 11, correspond to the increase of n. Note that the value of Fo does not decrease a lot after
300 iterations but the solution becomes more and more discrete by increasing n; hence, the final
number of iterations is 3509 corresponding to a CPU-time about 6 days on a PC-laptop with 8GB
and with an AMD-Ryzen-5 processor of 2.1GHz.

Thus, the optimal design of the magnetic circuit is presented in Fig. 12. Note that this solution
is not close to be entirely discrete and several variables do not respect a tolerance about 5% of
pmin

1 and pmax
1 . Indeed, 1167 variables from 18893 are in ]pmin

1 +5%,pmax
1 −5%[ which represents

6.17% of all the cell variables. Note that those intermediate cell variables which have different
colors between blue (ferromagnetic material) and red (air) in Fig. 12 are in the border between the
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Figure 11: Evolution of the value of the objective function during the iterations

Figure 12: Topological optimization solution before post processing
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ferromagnetic material and air in the variable zone ΩV . These difficulties are intrinsic in the use
of SIMP approaches even if the penalization degree is high.

Hence, to construct a manufacturable circuit, we enforce the intermediate values of the reluc-
tivity to be ferromagnetic material or air as follows: for νr >

νmax
r +νmin

r
2 we take νr := νmax

r , and

for νr <
νmax
r +νmin

r
2 we take νr := νmin

r .
In Fig. 13, we display the manufacturable optimal design circuit and in Fig. 14, the manufac-

turable design solution is also plotted in 3 distinct 3D-views.

Figure 13: Topological optimization solution after post processing

Figure 14: The manufacturable optimal design in several views

Finally in Fig. 15, the difference in ΩT between B0 and the magnetic flux density for the
optimal manufacturable design is plotted. B1,B2 and B3 correspond respectively to the magnetic
flux density at the three bars of the target area ΩT from bottom to top, see Fig. 10.
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Figure 15: Comparison between the components of the imposed field B0 and the calculated field B

Notice that the Bx and By components of the recovered field are of the order of 10−5 while
the Gaussians of the three lines are very close to the desired Gaussian.

6 Conclusion
In this paper, we have extended 2D-topology optimization methods in electromagnetism based
on adjoint and SIMP approches to the 3D case. Hence, some new theoretical results concerning
efficient ways to compute derivative based on adjoint method are provided. Then, a quite new
optimization algorithm is developed based on homothopy approches to penalize more and more
the continuous relaxation of the original discrete problem in order to enforce the convergence to
discrete solution (air or ferromagnetic material).

In a last part of the paper, numerical validations show that the gap between the gradients
computed with adjoint method or with the finite difference technique is less than 0.03% for our
design 3D problem in electromagnetism. Finally, our topology optimisation solver is efficiently
used to solve two 3D-magnetic circuit design problems where the second design problems owns
18893 cell-variables.
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Replication of results
Our work is based on the Matlab R2020b programming language and on the GMSH/GetDP soft-
ware for solving partial differential equations by the finite element method.

All information required to replicate the results of this work is clearly detailed in the manuscript.
The models and parameters of the considered design problems are presented in Section 5. More-
over, the optimization algorithm used to obtain the results presented in Section 5, is provided
in Section 4. Interested readers may send a request to the corresponding author to obtain the
MatLab files of codes.
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