
HAL Id: hal-04095069
https://hal.science/hal-04095069v1

Preprint submitted on 11 May 2023 (v1), last revised 3 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Topology Optimization for Magnetic Circuits with
Adjoint Method in 3D

Zakaria Houta, Frédéric Messine, Thomas Huguet

To cite this version:
Zakaria Houta, Frédéric Messine, Thomas Huguet. Topology Optimization for Magnetic Circuits with
Adjoint Method in 3D. 2023. �hal-04095069v1�

https://hal.science/hal-04095069v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Topology Optimization for Magnetic Circuits
with Adjoint Method in 3D

Zakaria Houta1, Frédéric Messine1,2* and Thomas Huguet1

1LAPLACE-CNRS, Toulouse-INP, ENSEEIHT, 2 rue Camichel,
Toulouse, 31000, France.

2Deeper Pulse, 27 rue d’Aubuisson, Toulouse, 31000, France.

*Corresponding author(s). E-mail(s): messine@laplace.univ-tlse.fr;
Contributing authors: houta@laplace.univ-tlse.fr;

huguet@laplace.univ-tlse.fr;

Abstract
In this paper a 3D-topology optimization method in electromagnetism is
introduced to design 3D-magnetic circuits. Some new theoretical results are
provided to deal with 3D design cases in order to compute the derivatives
using the adjoint method. Moreover, an homothopy algorithmic optimization
approach is developed based on SIMP to enforce the convergence to dis-
crete solutions close to be manufacturable. This new approach is applied
and validated to design a 3D-magnetic circuit with close to 20000 variables.

Keywords: Topology Optimization, Adjoint Method, Sensitivity Analysis, Magnetostatic
inverse problem

1 Introduction
Topology optimization was introduced since 2000 to design 2D mechanical struc-
tures, [1–4]; as for example, to design the inside mechanical structures of airplane
wings, [5]. Among different topology optimization approaches [6], the main interest-
ing ones to solve large problems are based on continuous relaxations of the binary
variables which are used to show if a cell is air or material. Thus, local descent based
algorithms can be efficiently used to solve these large problems. During the opti-
mization process, the intermediate points have to be penalized in order to enforce
local optimization solvers to converge to binary solutions representing for example
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air or materials. Bendsoe et al. have introduced different approaches to perform SIMP
method [2, 7–9]. Note SIMP method is largely used in professional solvers, as for
example OptiStruct of Altair company. Because local search solvers are based
on gradient descent steps, the computations of the derivative has to be very efficient.
Thus adjoint methods were developed to provide the gradient of a function which
depends on expensive simulation computations, [1–3].

More recently, new codes were implemented to solve 3D design problems in
mechanic mainly based on voxels (boxes which are extensions of the 2D-pixel). The
most famous result was obtained by Sigmud et al. in [5] who designed a 3D airplane
wing for Boeing with a billion of voxels. This result was obtained in 5 days using a
parallel code based on SIMP, adjoint method and local search algorithm.

From 2010, some studies were done to solve topology optimization design prob-
lems in electromagnetism, dealing with Maxwell equations. To solve these kinds of
problems, the adjoint method has also been developed, [9–11]. In [12], magnetic cir-
cuits were designed in such a way. More recently the nonlinearity of ferromagnetic
material has been taken into account in [13] and [9]. Moreover, some new mate-
rial schemes also called penalization schemes were introduced for this SIMP method
dedicated to problems in electromagnetism, [8, 9].

As far as we know, topology optimization using adjoint methods in electromag-
netism has only been developed for 2D design problems. In this paper, we extend
the topology optimization with adjoint method for 3D design problems in electro-
magnetism with the assumption that the ferromagnetic materials are linear. Some
extensions to the nonlinear case could be quite directly done from [9, 13]. More-
over, topology optimization problems in electromagnetism using multi-materials are
addressed in [9, 14].

In Section 2, topology optimization with adjoint method is recalled for 2D design
problems in electromagnetism. Section 3 is dedicated to the extension to 3D design
problems with a new theoretical formulation of the gradient. In Section 4, we detail
our algorithmic approach to solve topology optimization problems using SIMP tech-
niques. Section 5 is dedicated to the gradient validation (by comparing it to the
finite difference technique) and dedicated to numerical tests to design a 3D magnetic
circuit. Section 6 concludes.

2 Problem description
In this work, Ω represents the whole studied domain. Within Ω, ΩV represents the
variable domain in which the matter can be added or removed. This matter can be
permanent magnet in ΩV (M), coils with current in ΩV (J) or ferromagnetic material
in ΩV (νr). ΩT represents the target domain in which a particular magnetic flux den-
sity B0 has to be imposed playing with the matter in ΩV . Fig. 1 shows these different
domains. In this work ΩV (M), ΩV (J) and ΩV (νr) have to be disconnected.

The topology optimization problem is defined as follows:
• The objective function is the squared error in a target zone ΩT between an

imposed magnetic flux density B0 and the magnetic flux density B obtained with
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Fig. 1: Subdivision of the domain for topology optimization: ΩT is the target area
and ΩV (νr), ΩV (M), ΩV (J) are the design variable areas.

respect to the magnetic sources and the material distributions in all the domain
Ω. Note that B has to be computed by solving magnetostatic Maxwell equations.

• The design variables are magnetic sources (active material) such as ferromag-
netic material, coil with current density and permanent magnets. The associated
variables for all the variable domains ΩV are the distribution of relative reluc-
tivity νr, current density J (in the 3 directions (x, y, z)) and magnetization M
(in the 3 directions (x, y, z)). Hence, we define a global variable p as:

p : ΩV −→ R7

(x, y, z)T 7−→ p(x, y, z) = (p1, · · · , p7)T

Where p = (νr, Jx, Jy, Jz,Mx,My,Mz)
T and we define the three following

functions: νr(p) = νr, J(p) = (Jx, Jy, Jz)
T and M(p) = (Mx,My,Mz)

T .
Note that, p is defined in the whole domain Ω, p is fixed on Ω \ ΩV and variable on
ΩV .

Therefore, the optimization problem we addressed is the following:

min
p
Fo(p) =

∫
ΩT

|| B(A(p))− B0 ||2 dΩ, (1)

where A corresponds to the magnetic potential vector obtained by solving the
Maxwell equations.

In this work, the constitutive law of the magnetic materials is supposed to be
linear in order to simplify the computations in 3D; some extensions to the non-linear
case can be done from [9].

Hence, considering the linear case, we have:

H = νB−M (2)
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Where ν = ν0νr is the magnetic reluctivity of the material, ν0 is the air reluctivity
and νr is the relative reluctivity of the material.

In different points of domain Ω, we have for p:
• For air: νr = 1, M = 0 and J = 0 in the 3 directions.
• For ferromagnetic material: νr is a contant depending on the material (in this

paper, νr = 1
1000 ), M = 0 and J = 0 in the 3 directions.

• For permanent magnets: νr = 1, M is a constant bounded vector in 3D and
J = 0 in the 3 directions.

• For coils: νr = 1, M = 0 and J is a constant bounded vector in 3D.
Because p is extended on the whole domain Ω, in Ω \ ΩV (with ΩV = ΩV (νr) ∪
ΩV (M) ∪ ΩV (J)), p is fixed and cannot change during the optimization process.
Thus, in Ω\ΩV , p can be air, a ferromagnetic material, a permanent magnet or a coil.
In the variable domain ΩV , p is variable and can be air or a ferromagnetic material
if (x, y, z)T belongs to ΩV (νr), air or a permanent magnet if (x, y, z)T belongs to
ΩV (M) and air or a coil if (x, y, z)T belongs to ΩV (J).

The Maxwell-Ampere equation ∇ × H = J becomes, using the constitutive law
of the material described in equation (2) and the existence of the potential vector A
such that B = ∇× A:

−∇× [ν0νr(p)B(A(p))−M(p)] + J(p) = 0, in Ω. (3)

Equation (3) is called, in this paper, the primal problem. Note that B(.) is the rota-
tional operator ∇ × (.) which is also denoted by B(A) = curl(A). The Dirichlet
condition A× n = 0 is imposed on the domain boundary ∂Ω, where n is the normal
vector (this hypothesis is relevant because the border of the domain Ω is far from the
zone of interest ΩT ), as shown in Fig. 1.

The partial derivative ∂Fo
∂pi

is calculated using the adjoint method. Hence, from
equations (1) and (3), the optimization problem (1) can be equivalently formulated
as:

(P)



min
p,A

F (p,A) =
∫

ΩT
|| B(A)− B0 ||2 dΩ

uc
−∇× [ν0νr(p)B(A)−M(p)] + J(p) = 0 in Ω,
with A× n = 0 in ∂Ω
p ∈P := {p ∈ (L∞(Ω))7 : pmin

i ≤ pi ≤ pmax
i , i = 1, · · · , 7}

(4)

Where pmin and pmax are the lower and upper bounds of the variable p. Note that
in (P), the variables p and A are separated and linked by the constraint which is
the Maxwell equation. Moreover if p satisfies the Maxwell constraint, then Fo(p) =
F (p,A) and therefore, for such a point p:

∂Fo
∂pi

(p) =
∂F

∂pi
(p,A)

.
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3 Sensibility analysis from 2D to 3D
Efficient optimization codes are based on computations of the derivatives. These
derivatives can be obtained with evaluations of the objective function considering
small variations of the variable p. This defines the well-known finite difference
method. However, all these evaluations require to solve Maxwell equations using a
numerical solver. Hence, depending directly to the number of variables, the finite
difference technique is extremely expensive.

Hence, adjoint methods has been developed in order to compute the derivatives
with more efficiency. It was first developed in mechanics [1, 2], then extended to 2D
magnetostatic [10, 12] and to 2D electrical machines [9, 14].

Thus, in the first subsection 3.1, the 2D magnetosatic adjoint method is recalled.
In the following subsection 3.2, the adjoint method is extended to the 3D-case.

3.1 Sensibility analysis in 2D
Generally, due to symmetries and invariances along one direction, 3D electromag-
netism problems can be simplified in 2D problems.

Considering the Cartesian coordinates in 3D: (x, y, z) and an invariance follow-
ing z, the magnetic flux density can be reduced to B = (Bx, By)T . Furthermore:

• The potential vector is a scalar:

A = (0, 0, A(x, y)) ≡ A(x, y)

• The magnetic density flux is a 2D vector:

B(A) = curl(A) = (∂yA,−∂xA, 0) ≡ (∂yA,−∂xA)

• The boundary condition is reduced to A = 0 on the boundary domain ∂Ω.
In order to solve problem (P), it is necessary to compute the derivative of the

function F with respect to the design variable p. The sensitivity calculation in 2D is
summarized below (for more details see [12] and [10]):

• For problem (P), the Lagrangian function L is introduced as follows:

L (p, A, λ) = F (p, A) +

∫
Ω

λµ0 [−∇× (ν0νr(p)B(A)−M(p)) + J(p)] dΩ,

where the equality constraint is multiplied by the Lagrangian multiplier λwhich
is a scalar function. λ belongs to H1

0 (Ω) (a standard Sobolev space) with the
same properties as A. Note that, the equality constraint of (P) is also multi-
plied by µ0 (the void permeability = 1

ν0
) in order to ensure the homogeneity

considering the physical units in the summed terms. Note that this Lagrangian
formulation is in 2D, with A a scalar function, M a vector (in 2D), J is also
a scalar (in direction z) and the curl operator in 2D is scalar ∇ × (vx, vy)T =
∂xvy − ∂yvx.
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• Using the Green formula in 2D, we obtain:

∂B
∂A

(A) = B(.),

and the adjoint problem in 2D is:

∇× [νB(λ)−Ma1ΩT ] = 0, in Ω, (5)

where λ is named the adjoint variable and Ma = 2
µ0

(Bx−B0x, Bx−B0x)T can
be understood as a permanent magnet in ΩT . The adjoint problem is therefore
equivalent to a magnetostatic problem with only one source Ma.

Note that, the computation of Ma depends on the value of the field
B = (Bx, By)T in ΩT which must be previously calculated by solving the
primal problem defined by equation (3).

• From the the equality ∂Fo(p)
∂pi

= ∂L
∂pi

(p, A(p), λ) which is verified for any cou-
ple (p, A) satisfying the constraint (3), the sensitivity formula is obtained by
deriving the Lagrangien L with respect to the design variable p:

∂Fo(p)

∂pi
=

∫
Ω
µ0
[
λ
∂J(p)

∂pi
+ B(λ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λ)T .B(A)

]
dΩ, (6)

for each component pi of p; only p1 = νr, p4 = Jz, p5 = Mx and p6 = My

are used in this 2D problem.
Note that in the sensitivity formula (6),A and λ are solutions of equations (3)

and (5), respectively.
Equations (3) and (5) can be solved by the finite element method whose weak

formulation is written as:∫
Ω

νB(X).B(φ)dΩ−
∫

Ω

M.B(φ)dΩ−
∫

Ω

JφdΩ = 0,∀φ ∈ H1
0 (Ω). (7)

For example, in order to solve the primal problem of designing a simple magnetic
circuit with only a coil, a ferromagnetic material and no permanent magnet, we just
have to take X = A, M = 0 and the only source is the current J . Considering the
same example, the adjoint problem is derived from equation (7) by taking X = λ,
J = 0 and the only source is M = Ma.

In a 2D problem, equation (7) can be simplified, such as:∫
Ω

ν∇X.∇φ dΩ−
∫

Ω

(
−My

Mx

)
.∇φ dΩ−

∫
Ω

Jφ dΩ = 0,∀φ ∈ H1
0 (Ω). (8)

3.2 Sensitivity analysis and adjoint method in 3D
In this subsection, we detail the steps to compute the sensitivity of the objective
function Fo with respect to the design variable pi for a 3D problem. Note that in 3D,
the potential vector and the magnetic flux density have non zero-components, and
then,
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• The potential vector is:
A = (Ax(x, y, z), Ay(x, y, z), Az(x, y, z))

• The magnetic flux density is:

B(A) = curl(A) = (∂yAz − ∂zAy, ∂zAx − ∂xAz , ∂xAy − ∂yAx)T

• The boundary condition is A× n = 0 on the boundary domain ∂Ω.

The following theorem is dedicated to the computations in 3D of the partial
derivatives of the original function Fo.

Theorem 1 The expression in 3D of the sensitivity of Fo with respect to each component pi of
p is:

∂Fo(p)

∂pi
=

∫
Ω
µ0

(
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

)
dΩ, (9)

where B(λλλ) is obtained by solving the following adjoint problem:

∇× [Ma1ΩT − νB(λλλ)] = 0, (10)

with Ma which is the adjoint magnetization defined as follows:

Ma =
2

µ0
×


Bx −B0x

By −B0y

Bz −B0z

 ,

with B = (Bx, By, Bz)T which is the magnetic flux density.

Note that equation (10) is the adjoint problem in 3D. It is equivalent to a mag-
netostatic problem where Ma is the only source. This problem has to be solved
numericaly in order to provide λλλ and B(λλλ).

Proof The proof of Theorem 1 is based on the following 3 steps:

1. Construction of the Lagrangian function by considering the formulation of problem (P).

2. Determination of the adjoint problem from the Karush-Khun-Tucker theorem.

3. Computation of the topological sensitivity.

Note that, in 3D, we work in the following Sobolev spaces

H(curl,Ω) =
{

w ∈ L2(Ω), curl(w) ∈ L2(Ω)
}
,

H0(curl,Ω) = {w ∈ H(curl,Ω),with w× n = 0 in ∂Ω} ,
because we will need to integrate the vectors A, λλλ, curl(A) and curl(λλλ) in Ω. L∞(Ω) is the
space of bounded vector functions on Ω.

1. Construction of the Lagrangian function:
The Lagrangian L is defined as the addition of the objective function and the sum of the
equal constraints multiplied by a Lagrange multiplier λλλ:

L (p,A,λλλ) = F (p,A) +

∫
Ω
λλλT .µ0 [−∇× (ν0νr(p)B(A)−M(p)) + J(p)] dΩ,
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where (p,A,λλλ) ∈ L∞(Ω)×H0(curl,Ω)×H0(curl,Ω) and µ0 = 1
ν0

the void perme-
ability. The equality constraint of (P) is multiplied by µ0 (the void permeability = 1

ν0
)

in order to ensure homogeneity considering the physical units in the summed terms.

Using Green’s formula in 3D, we obtain:∫
Ω
λλλT .µ0 [−∇× (νB(A)−M) + J] dΩ =

∫
Ω
µ0λλλ

T .JdΩ

−
∫

Ω
µ0curl(λλλ)T .(νB(A)−M)dΩ

+

∫
∂Ω

µ0(λλλ× n)T .(νB(A)−M)d∂Ω.

Because λλλ ∈ H0(curl,Ω),λλλ× n = 0 in ∂Ω, hence we have:∫
Ω
λλλT .µ0 [−∇× (νB(A)−M) + J] dΩ =

∫
Ω
µ0λλλ

T .JdΩ−
∫

Ω
µ0B(λλλ)T .(νB(A)−M)dΩ

=

∫
Ω
µ0

[
λλλT .J− νB(λλλ)T .B(A) + B(λλλ)T .M

]
dΩ.

Finally, the Lagrangian function is:

L (p,A,λλλ) =

∫
ΩT

|| B(A)− B0 ||2 dΩ

+

∫
Ω
µ0

[
λλλT .J(p)− ν(p)B(λλλ)T .B(A) + B(λλλ)T .M(p)

]
dΩ. (11)

2. Determination of the adjoint problem:
The directional derivative of a function f : E → F in u in the direction h with
(u, h) ∈ E2 is defined by:

Dhf(u) = lim
t→0

f(u+ th)− f(u)

t
.

If E is an euclidean vector space, and f is a real-valued differentiable application, then
we can use the gradient of f to express the directional derivative:

Dhf(u) =< ∇f(u) | h > .

In order to determine the adjoint system, we use the necessary optimality conditions at the
first order of the Karush-Kuhn-Tucker (KKT) theorem. Thus, the directional derivative
of L in A in any directionϕϕϕ must satisfy:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ >= 0, ∀ϕϕϕ ∈ H0(rot,Ω). (12)

By considering a function f defined by:

L (p,A,λλλ) =

∫
Ω
f(p,A,λλλ)dΩ, (13)

where,

f(p,A,λλλ) =|| B(A)−B0 ||2 1ΩT +µ0

[
λλλT .J(p)− ν(p)B(λλλ)T .B(A) + B(λλλ)T .M(p)

]
.

By developing the expression of the Lagrangian (13), and using the linearity property of
integrals, we obtain:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ > = lim

t→0

L (p,A + tϕϕϕ,λλλ)−L (p,A,λλλ)

t
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= lim
t→0

∫
Ω f(p,A + tϕϕϕ,λλλ)dΩ−

∫
Ω f(p,A,λλλ)dΩ

t

=

∫
Ω

lim
t→0

f(p,A + tϕϕϕ,λλλ)− f(p,A,λλλ)

t
dΩ

=

∫
Ω
Dϕϕϕf(A)dΩ

=

∫
Ω
< ∇Af | ϕϕϕ > dΩ

=

∫
Ω

∂f

∂Ax
.ϕx +

∂f

∂Ay
.ϕy +

∂f

∂Az
.ϕzdΩ.

Using the derivation of compound functions, for each of the partial derivatives, whereA.
denotes Ax, Ay or Az , then we have:

∂f

∂A.
=

∂

∂A.

[
|| B(A)− B0 ||2 1ΩT + µ0

[
λλλT .J− νB(λλλ)T .B(A) + B(λλλ)T .M

]]
=

∂

∂B(A)T
(|| B(A)− B0 ||2 1ΩT ).

∂B(A)

∂A.
− µ0νB(λλλ)T .

∂B(A)

∂A.

= BTa .
∂B(A)

∂A.
1ΩT − µ0νB(λλλ)T .

∂B(A)

∂A.

=
[
Ba1ΩT − µ0νB(λλλ)

]T
.
∂B(A)

∂A.
,

with:

Ba = 2×


Bx −B0x

By −B0y

Bz −B0z

 .

Thus, we obtain:

<
∂L (p,A,λλλ)

∂A
| ϕϕϕ >=

∫
Ω

[Ba1ΩT − µ0νB(λλλ)]T .

[
ϕx

∂B(A)

∂Ax
+ ϕy

∂B(A)

∂Ay
+ ϕz

∂B(A)

∂Az

]
dΩ.

(14)
Expanding the term with partial derivatives according to the components of A, we obtain:[

ϕx
∂B(A)

∂Ax
+ ϕy

∂B(A)

∂Ay
+ ϕz

∂B(A)

∂Az

]
= JB(A).ϕϕϕ

= DϕϕϕB(A).

Where JB(A) is the Jacobian matrix of the function B with respect to A. For each element
A = (Ax, Ay, Az)T ∈ R3 it is associated B(A) = (Bx(A), By(A), Bz(A))T ∈ R3.

Using the definition of the directional derivative and the linearity of the curl operator, we
have:

DϕϕϕB(A) = B(ϕϕϕ). (15)

From equation (14) and using equation (15), we have:∫
Ω

[Ba1ΩT − µ0νB(λλλ)]T .B(ϕϕϕ)dΩ = 0.
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By applying the Green formula in 3D, we obtain:∫
Ω
ϕϕϕT .∇× [Ba1ΩT − µ0νB(λλλ)]dΩ +

∫
∂Ω

(ϕϕϕ× n)T .[Ba1ΩT − µ0νB(λλλ)]d∂Ω = 0.

(16)
Because ϕϕϕ ∈ H0(curl,Ω),ϕϕϕ× n = 0 on ∂Ω, we have:∫

Ω
ϕϕϕT .∇× [Ba1ΩT − µ0νB(λλλ)]dΩ = 0, ∀ϕϕϕ ∈ H0(rot,Ω).

Using Corollary 2.2.2 in [15] on elements of L2(Ω):

∇× [Ba1ΩT − µ0νB(λλλ)] = 0.

By multiplying the above equation by 1
µ0

, we find the following expression of the adjoint
problem:

∇× [Ma1ΩT − νB(λλλ)] = 0,

where Ma represents the adjoint magnetization as defined in the Theorem 1.

3. Computation of the sensitivity of the problem:
From the independence of the variables p, A and λλλ, in the definition of the Lagrangian
function L , and using the property of derivation under the integral, we obtain:

∂L (p,A,λλλ)

∂pi
=

∫
Ω
µ0
[
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

]
dΩ.

(17)
For each couple (p,A) satisfying constraint (3), we have Fo(p) = L (p,A(p),λλλ). Thus,
using the compound derivative theorem, we obtain:

∂Fo(p)

∂pi
=
∂L (p,A(p),λλλ)

∂pi
+
∂L (p,A(p),λλλ)

∂A

T

.
∂A(p)

∂pi
. (18)

Note that ∂L (p,A(p),λλλ)
∂pi

= 0 because p verify the adjoint system which is equivalent to
the stationarity of the Lagrangian function in A, hence, we have:

∂Fo(p)

∂pi
=

∫
Ω
µ0
[
λλλT .

∂J(p)

∂pi
+ B(λλλ)T .

∂M(p)

∂pi
− ν0

∂νr(p)

∂pi
B(λλλ)T .B(A)

]
dΩ

for each component pi of p.

�

From Theorem 1, we obtain directly (using the derivative with respect to p1 = νr)
the following corollary:

Corollary 2 The expression of the sensitivity with respect to ν is in 3D given by:

∂Fo(νr)

∂νr
= −

∫
Ω

B(λλλ)T .B(A)dΩ. (19)

Where B(λλλ) is obtained by solving the adjoint problem provided by equation (10) in Theorem 1.

The weak formulation for those kind of 3D magnetostatic problem is:∫
Ω

νB(X).B(ϕϕϕ)dΩ−
∫

Ω

M.B(ϕϕϕ)dΩ−
∫

Ω

J.ϕϕϕ dΩ = 0,∀ϕϕϕ ∈ H0(rot,Ω) (20)
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Hence, by taking a simple magnetic circuit with only one coil, one ferromagnetic
material part and no permanent magnet, we have to take X = A, M = 0 and the only
source is the current J. Moreover, the adjoint problem is provided by taking X = λ,
J = 0 and the only source is now M = Ma.

It should be noticed that in the 3D case, it is necessary to add a gauge condition,
in order to ensure the uniqueness of the solution using finite element method [16].

4 Topology optimization algorithm
In Section 3, a way to compute efficiently the derivative of the function Fo is derived
in Theorem 1 for 3D problems, these formulas are provided in continuous spaces. In
this work, those formulas are solved numerically using finite element method. This
involves discretization steps where the entire domain is discretized into small tetra-
hedron elements. The variables of the associated topology problem could be directly
the tetrahedron elements in the variable domain ΩV but they also can be defined by
other cells, as for example hyperrectangles (see Fig.4 in the next section).

It remains a last difficulty. In some cases, the variables are discrete. Indeed,
p1 = νr represents the relative reluctivity in a point (x, y, z)T ∈ ΩV . For a specific
ferromagnetic material, p1 can only takes two discrete values: νr = νmax

r = ν0 if we
put air at (x, y, z)T or νr = νmin

r if we put material at (x, y, z)T . Note that, the other
six parameters are continuous and can be directly used in a standard optimization
code based on gradient descent steps.

In the next sub-section, the main method to deal with this issue is recalled. This
is the well-known SIMP method[2, 7–9]. In sub-section 4.2, our optimization code
based on the SIMP method is provided and explained.

4.1 Penalization with material density method - SIMP
Focusing on the parameter p1 which is discrete, we apply the SIMP method that is
recalled in the following; for details see, [8, 9]. This SIMP method could be applied
in the same way on other parameters pi, i = 2 · · · 7 if necessary. Here, the other
parameters pi, i = 2, · · · , 7 are fixed.

The discrete parameter p1 is artificially relaxed and becomes continuous between
its two previous discrete values pmin

1 and pmax
1 . This introduces composite materials

between pmin
1 = νmin

r and pmax
1 = νmax

r . This involves a magnetic structure which is
generally not manufacturable. Hence, to prevent the appearance of these intermediate
values, we penalize them introducing a density variable ρ belonging to [0,1] and
linked to the design variable p1 via a material interpolation scheme g such that, at a
point x of ΩV , one obtains: g(ρ(x, y, z)) = p1(x, y, z) with g(0) = pmin

1 = νmin
r and

g(1) = pmax
1 = νmax

r .

In the literature, there are several choices of interpolation functions g, that influ-
ences the final result of topology optimization. In this work, we have used two
penalization functions, as shown in Fig. 2:
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• Polynomial interpolation function [7]:

p1 = g(ρ) = pmin
1 + (pmax

1 − pmin
1 )ρn, (21)

where n > 0 is a penalty parameter. When the penalization parameter n is high
we enforce the solution to be discrete close to p1 ∈

{
pmin

1 , pmax
1

}
. The main

problem with this scheme is not symmetrical and hence it favors materials with
low values of ρ.

• Arctangent interpolation function (introduced by D. Lukàš in [17]):

p1 = g(ρ) = pmin
1 +(pmax

1 −pmin
1 )

[
1

2 arctan(d)
arctan(d(2ρ− 1)) +

1

2

]
,

(22)

where d > 0 is the penalty parameter of this scheme. This interpolation avoids
the symmetry problems of polynomial penalization. High values of d allows
penalizing intermediate materials but this can also lead to a poor convergence
of the optimization algorithm.

In Fig. 2, the two used interpolation schemes are represented.

Fig. 2: Polynomial and arctangent interpolation schemes for several penalization
degrees

Therefore, the new variable of problem (P) is now the material density ρ and
then, using chain rule and from Theorem 1 in the case where p1 = νr, the new
sensitivity with respect to ρ becomes:

∂Fo
∂ρ

= −
∫

Ω

∂g

∂ρ
B(λλλ)T .B(A)dΩ (23)

4.2 Optimization algorithm
In order to solve equation 23, the domain ΩV is discretized into N cells ΩVi , each
of which contains matter or not according to the value of the density ρi ∈ [0, 1], i =
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1, · · · , N in ΩVi . Then, we pose: ρρρ = (ρ1, · · · , ρN )T .
We can write the density variable ρ in all space as follows:

ρ =

N∑
i=1

ρi1ΩVi
+ ρΩ\ΩV 1Ω\ΩV (24)

with ρΩ\ΩV equals 1 in areas with ferromagnetic material and 0 in areas without fer-
romagnetic material outside the variable domain ΩV .
Hence, using again chain rule and Theorem 1 in the case where p1 = νr, the
sensitivity with respect to each element ρi of ρρρ becomes:

∂Fo
∂ρi

= −
∫

ΩVi

∂g

∂ρ
B(λλλ)T .B(A)dΩ. (25)

In order to solve problem (P), the optimization algorithm needs the following
information:

• The objective function and sensitivity calculation (see equation (25)).
• The constraints which are only the lower and upper bounds of the material

density: ρρρ ∈ [0, 1]N .
• The constraint imposed by the Maxwell equations is indirectly taken into

account using the finite element method.
Our algorithm can be summarized in Fig. 3. Like any local optimization algorithm
based on gradient descent, this optimization module starts from a starting point
denoted by ρρρ[0], build a sequence of points ρρρ[k] and ends to ρρρopt. Then, this point ρρρopt

is analyzed because this solution is not necessarily discrete (does not belong neces-
sarily to the set {0, 1}N ). Hence, a test is added to check if ρρρopt is close to one of
its two limits 0 or 1 with an imposed tolerance tol. If the tolerance tol is satisfied,
the solution provided is ρρρopt, otherwise the new starting point is updated by doing
ρρρ[0] = ρρρopt) and by increasing the penalty parameter. This makes it possible to con-
verge slowly but strongly to efficient design solutions. Indeed, by directly penalizing
with a big parameter n or d, the optimization module converges to a local minimum
which is very far from those obtained using our homothopy algorithm.

4.3 Filtering technique

If we consider the expression of the derivative of Fo with respect to each element of
ρρρ, shown in equation (25), the final solution has generally checkerboard patterns, [3].
In order to make the solution more manufacturable, a regularization method must be
added. Thus, in this work, a sensitivity filtering [3] method has been used. The latter
consists in modifying the values of the sensitivity of the cost function at each iteration
through a spatial filter whose goal is to weight the value of the sensitivity in a target
element by the value of its neighboring elements. In this work, several sensitivity
filters have been tested. For our problem the bi-lateral sensitivity filter provided the
most efficient discrete solutions, [3], and so, the expression of the sensitivity with



Springer Nature 2021 LATEX template

14 Topology Optimization for Magnetic Circuits with Adjoint Method in 3D

Fig. 3: SIMP based topology optimization algorithm

respect to an element e is replaced by:

∂Fo
∂ρe

=

∑
i∈Ne wiew(∂Fo∂ρi

)vi
∂Fo
∂ρi∑

i∈Ne wiew(∂Fo∂ρi
)vi

(26)

the sensibility weights are computed as follows:

w(
∂Fo
∂ρi

) = exp

−1

2

(
∂Fo
∂ρi
− ∂Fo

∂ρe

σr

)2
 and σr ∈]0, 1]

Moreover, σr is fixed at 0.5, and the distance weighting wie is equal to
max(0, rmine − dist(i, e)).

The following parameters are defined in this work such as:
• vi is the volume of the element i.
• dist(i, e) is the distance between the center of the element i and the center of the

element e.
• rmine = δhe; with δ ∈ R∗+ and he is the greatest distance between the

points constituting the element e (Euclidean norm of the difference between the
coordinates of the most distant nodes of the element e).

• The set of neighbors of the element e is defined as follows: Ne =
{i | dist(i, e) ≤ rmine}.

Thus, in this section an efficient topology optimization algorithm based on adjoint
methods and SIMP penalization technique is provided. Moreover, our methodology
is able to provide more regularized solution close to a manufacturable one.
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5 Numerical validations on a 3D magnetic circuit
The aim of this section is to validate our methodology on a U-shaped magnetic
circuits. In a first step, a simple design problem with 16 variables is addressed.
This allows us to verify that the computation of the gradient based on our theoret-
ical results (mainly Theorem 1 and Corollary 2) is close to the one obtained using
the finite difference method. Then, in a second step, we compare two penalization
functions: the polynomial and the arctangent interpolation functions. Finally, in a
last sub-section, we expand our study by addressing a design problem with a large
number of variables.

5.1 Description of the design problems and numerical simulations
We consider here a simple magnetic circuit shown in Fig. 4 with one coil and two
distinct variable zones which can be air or ferromagnetic materials. For this magnetic
circuit, the design variable p1 is the relative reluctivity νr which varies between the
minimum value pmin

1 = νmin
r = 1/1000 (corresponding to ferromagnetic material)

and the maximum value pmax
1 = νmax

r = 1 (corresponding to air).

For this example, the magnetic circuit can be divided into 4 parts, as follows:
• A U-shaped ferromagnetic part which defines the fixed part of the magnetic

circuit. It is represented in white on Fig. 4. Its dimensions are 105mm×40mm×
15mm, the thickness of the bottom hyperrectangle containing the coil is 10mm
and the thickness of the both sides of the U-shaped circuit is 15mm.

• A coil which is represented in yellow on Fig. 4. It is made up from 2 bottom and
top bars of 15mm×0.4mm×5mm and 2 lateral bars of 10mm×0.4mm×5mm
which are linked by 4 curved bars. This coil is crossed by a current of 0.4A and
has 200 windings.

• Two design variable zones which are hyperrectangles of size 30mm×15mm×
15mm which are represented in grey on Fig. 4. Each of these two parts is
discretized into 8 variable cells that contain air or ferromagnetic material.

• One target zone composed by small cubes of size 1mm and represented in black
on Fig. 4. These cubes are centered in the air gap between the two variable
hyperrectangles. The target zone ΩT is composed by 27 = 3 × 3 × 3 cubes,
where the magnetic flux density is evaluated.

In order to solve the primal problem (3) and the adjoint problem (17), we use a
finite element method solver which is GetDP software, [18]. To use GetDP, it is
necessary to specify some elements of our problems: the Sobolev space, the weak
formulation of the problem with the boundary conditions, the Jacobian and the type
of numerical integration.

GetDP is based on the mesher Gmsh, [19, 20] and the mesh of a domain owns
some great importance because this involves the accuracy obtained on the solution
versus the calculation time; so a previous study has been done to obtain efficiently a
good accuracy on the solutions.

In this first example, we use two distinct meshes, as follows:
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• For the calculation of magnetic flux density: we use a fine tetrahedral mesh to
ensure the accuracy of numerical values. This tetrahedral mesh is made on the
whole study area Ω using Gmsh.

• For the optimization cell variables: we discretize the variable area ΩV (grey
area on Fig. 4) into small cells. Each cell represents a variable. For this first
example, the variable zone ΩV is made up by 16 cubes (2× 2× 2 in each side).

Fig. 4: The studied 3D magnetic circuit

For this first example, the given magnetic flux density B0 in the target zone ΩT is
first computed using a symmetric ferromagnetic shape as it is represented in Fig. 5.

Fig. 5: Material distribution providing the magnetic flux density B0. Black areas
contains material with relative reluctivity νr = 1/1000 (a ferromagnetic material
with magnetic permeability µr = 1000) and the white areas represent air (νr = 1).

The corresponding magnetic flux density is plotted in Fig. 6.

5.2 Validation of the sensitivity calculations
In order to validate the accuracy of the adjoint based approach as it was defined in
Theorem 1 (without taking into account the SIMP penalization technique), the first
example presented in the previous subsection is considered but by dividing again by
two all the optimization variable cells. This yields 43 = 64 variables for the two dis-
tinct zones ΩV and thus, the objective function Fo depends on 128 variables. Hence,
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Fig. 6: Shape of the magnetic flux density B0

the 128 partial derivatives based on our adjoint method were compared to those com-
puted using a standard finite difference method. The relative percentage differences
between the two gradient of Fo are shown in Fig. 7. The maximum value of the

Fig. 7: Validation of the adjoint method by comparison with finite differences

relative percentage difference is less than 0.03%. The maximal errors are mainly
concentrated in cell variables close to the corners of the hyperrectangles because the
evaluation of the magnetic flux density is more difficult in these zones (even for fine
meshes).
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Therefore, according to those numerical results, the adjoint method is validated
and thus, it can be used to provide efficient information about the gradient that will
be used in the optimization algorithms.

5.3 Validation of our topology optimization algorithm based on
the two penalization techniques

To solve the topology design problem (P), a gradient based algorithm is used. At
each iteration of the optimizaiton algorithm, the gradient is computed using the
adjoint method and hence, a descent step is so-obtained. In this paper, we choose to
use the solver MMA (Method of Moving Asymptots), [21]; MMA is a nonlinear opti-
mization code with a MatLab implemantation in opensource. MMA is a local search
based algorithm and hence, a starting point has to be given. At each iteration of MMA,
a convex approximation of the problem (P) is computed. These approximations are
mainly based on the gradients at the current iteration but also on some information
of previous iterations. The approximated convex optimization problem is then solved
and yields a unique optimal solution which becomes the new point at this iteration.
Note that, MMA can take into account constraints. Here, problem (P) has only bound
constraints.

For this first tests, the starting point is ρρρ[0] = 0.1 (ferromagnetic material) if it
corresponds to a variable cell in the left pole of ΩV and ρρρ[0] = 1 (air) for the right
pole, as shown in Fig. 8.

Fig. 8: Structure of the starting point ρρρ[0]

For the penalization, both arctangent and polynomial interpolation functions are
tested. Each of these functions has a particular penality parameter (d for arctangent
and n for polynomial). A common parameter have to be introduced in order to com-
pare the penalization factor of those two functions. Thus, we have chosen to use the
concept of penality bandwidth bd at ε (in %) as illustrated in Fig. 9. In the following,
the method used to find n and d for a given bandwidth bd at ε is provided:

• Give ε
• Compute the tolerance: tol := ε ×

(
pmax

1 − pmin
1

)
. This tolerance is used to

define the zone where the variable cells are well defined (air or ferromagnetic
material within a tolerance tol).

• Give a bandwidth bd
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• Determine n or d by solving the nonlinear equation:

bd = ρmax − ρmin = g−1(pmax
1 − tol)− g−1(pmin

1 + tol)

where g−1 is the inverse function of the penalty function defined in
equation (21) and (22) with n or d. To solve this non linear equation, we used
vpasolve of MatLab.

• Return n or d corresponding to the wished bandwidth bd at ε.
This algorithm provide an efficient way to compare rigorously penalization

schemes. If the penalty bandwidth bd decreases then the penalization factor d or
n (respectively for arctangent or polynomial penalization functions) increases. For
example, for bd ∈ {0.75, 0.50, 0.25}, we obtain n ∈ {2.0, 4.2, 10} and d ∈
{2.3, 6.7, 19}. We can now compare these two penalization functions by consider-
ing the same bandwidth (i.e, the same range width of p to describe the intermediate
solutions [pmin + tol, pmax − tol]).

Fig. 9: Exemple of penalty bandwidth of 0.5 at 5% for both polynomial and
arctangent penalization functions.

First we solve the design problem without penalization [p1 = pmin
1 + (pmax

1 −
pmin

1 ).ρ] with a starting point ρ[0] and then, we decrease the bandwidth at 5% for both
polynomial and arctangent functions to the following values: bd ∈ {0.75, 0.50, 0.25}.
For each new bandwidth value, the starting point is set to the solution of the previous
step.

The results are shown in Table 1. Both penalizations lead to the same global min-
imum (shown in Fig. 5). Note that, the limit about the number of iteration that MMA
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Penalization Polynomial Arctangent
Fo(ρρρ

opt) 0.042390 0.042391
Number of iterations 378 (178+200) 778 (178+200+200+200)
CPU time (PC-8GB-2.1GHz) 17.74h 35.61h
Glob. Sol. (Fig. 5) true true

Table 1: Circuit optimization results using polynomial and arctangent interpolation
functions

can takes is fixed to 200 iterations; the MMA stopping criteria is ‖ρρρ[k+1] − ρρρ[k]‖∞ ≤
1.1×10−5 (note that MMA does not converge in 200 iterations if we take 1×10−5). For
the unpenalized first step, the tolerance stopping criterion of our algorithm in Fig. 3,
is not reached and then one supplementary iteration is done by taking n = 2.0 and
d = 2.3 for respectively the polynomial and arctangent penalization schemes. For
this second step, with the polynomial scheme, MMA stopped in 200 iterations, provid-
ing the correct global solution (see Fig. 5) within a tolerance tol = 5%(pmax

1 −pmin
1 )

which stops our homothopy topology optimization algorithm (see Fig. 3). Consid-
ering the arctangent scheme, MMA stopped also in 200 iterations which is the given
limit, but without reaching the tolerance tol. Then, two other iterations are performed
corresponding to the values 6.7 and 19 of the penalization parameter d but the tol-
erance tol is still not reached. Nevertheless, the obtained solution is also the global
one, see Fig. 5. These results are summarized in Table 1.

To conclude, both algorithms based on polynomial and arctangent penalization
schemes provide the same global solution: the polynomial scheme used one step of
penalization n = 2.0 and the arctangent scheme used all the values proposed d ∈
{2.3, 6.7, 19} without reaching the tolerance of our homothopy algorithm. However,
polynomial penalization allows us to improve the convergence of our topological
optimization code (see Fig. 3) more efficiently. This shows that on this example and
using MMA code, the polynomial penalization scheme based method surpasses the one
based on arctangent.

5.4 Design problem with a large number of variables
In the above subsection, we have shown that polynomial penalization scheme
improves the efficiency of our topology optimization code in 3D. Hence, the
polynomial penalization is used in the following.

In this subsection, the goal is to solve problem (P) on the same magnetic circuit
described in subsection 5.1, but by considering a large number of design variables. In
order to achieve that, the tetrahedrons of the finite element mesh in the variable zone
ΩV are taken as cell variables of the optimization design. This yields 18893 design
variables.

In this design example, the target magnetic flux density B0 is a field carried only
along the z direction with a Gaussian shape according to the coordinate x:
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B0 =


0

0

B0z(x)

 =


0

0

Ae−
(x−x0)2

2σ2

 ,

where σ = 10−2 is the standard deviation of the Gaussian, A = 4.4 × 10−2 is a
constant equal to the peak value of the Gaussian, and x0 is the place in space where
the peak is reached. The target zone ΩT in this case is the black area in the Fig.10.

Fig. 10: The new 3D magnetic circuit

The choice of the penalty parameter n is very difficult because, if n is very large
at the beginning, this leads to converge to a local minimum which will be not so
interesting. Thus, we carry out a continuation process consisting in progressively
increasing the penalization degree from n = 1 to n = 100. In this work, we take
n ∈ {1, 2, 3, 4, 10, 20, 100}. Note that, for a fixed value of n the optimization module
stops either if the maximum number of iterations 600 is reached or if the stopping
criteria is ‖ρρρ[k+1] − ρρρ[k]‖∞ ≤ 10−4 is satisfied.

Increasing the penalty degree n, makes it possible to enforce our method to con-
verge slowly but with more trust to a very efficient (local) optimal design which is
close to be manufacturable. In Fig. 11, we plot all the iterations of our topology
optimization method. The small peaks in Fig. 11, correspond to the increase of n.
Note that the value of Fo does not decrease a lot after 300 iterations but the solution
becomes more and more discrete by increasing n; hence, the final number of itera-
tions is 3509 corresponding to a CPU-time about 6 days on a PC-laptop with 8GB
and with an AMD-Ryzen-5 processor of 2.1GHz.

Thus, the optimal design of the magnetic circuit is presented in Fig. 12. Note that
this solution is not close to be entirely discrete and several variables do not respect
a tolerance about 5% of pmin

1 and pmax
1 . Indeed, 1167 variables from 18893 are in

]pmin
1 +5%,pmax

1 − 5%[ which represents 6.17% of all the cell variables. Note that
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Fig. 11: Evolution of the value of the objective function during the iterations

those intermediate cell variables which have different colors between blue (ferromag-
netic material) and red (air) in Fig. 12 are in the border between the ferromagnetic
material and air in the variable zone ΩV . These difficulties are intrinsic in the use of
SIMP approaches even if the penalization degree is high.

Fig. 12: Topological optimization solution before post processing

Hence, to construct a manufacturable circuit, we enforce the intermediate values
of the reluctivity to be ferromagnetic material or air as follows: for νr >

νmax
r +νmin

r

2

we take νr := νmax
r , and for νr <

νmax
r +νmin

r

2 we take νr := νmin
r .

In Fig. 13, we display the manufacturable optimal design circuit and in Fig. 14,
the manufacturable design solution is also plotted in 3 distinct 3D-views.
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Fig. 13: Topological optimization solution after post processing

Fig. 14: The manufacturable optimal design in several views

Finally in Fig. 15, the difference in ΩT between B0 and the magnetic flux density
for the optimal manufacturable design is plotted. B1,B2 and B3 correspond respec-
tively to the magnetic flux density at the three bars of the target area ΩT from bottom
to top, see Fig. 10.
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Fig. 15: Comparison between the components of the imposed field B0 and the
calculated field B

Notice that the Bx and By components of the recovered field are of the order of
10−5 while the Gaussians of the three lines are very close to the desired Gaussian.

6 Conclusion
In this paper, we have extended 2D-topology optimization methods in electromag-
netism based on adjoint and SIMP approches to the 3D case. Hence, some new
theoretical results concerning efficient ways to compute derivative based on adjoint
method are provided. Then, a quite new optimization algorithm is developed based
on homothopy approches to penalize more and more the continuous relaxation of the
original discrete problem in order to enforce the convergence to discrete solution (air
or ferromagnetic material).

In a last part of the paper, numerical validations show that the gap between the
gradients computed with adjoint method or with the finite difference technique is
less than 0.03% for our design 3D problem in electromagnetism. Finally, our topol-
ogy optimisation solver is efficiently used to solve two 3D-magnetic circuit design
problems where the second design problems owns 18893 cell-variables.
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