
HAL Id: hal-04095001
https://hal.science/hal-04095001

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of intelligent collaborative robots: a review
Miguel Da Silva, Remi Regnier, Maria Makarov, Guillaume Avrin, Didier

Dumur

To cite this version:
Miguel Da Silva, Remi Regnier, Maria Makarov, Guillaume Avrin, Didier Dumur. Evaluation of intelli-
gent collaborative robots: a review. IEEE/SICE International Symposium on System Integration (SII)
2023, Jan 2023, Atlanta, United States. pp.1-7, �10.1109/SII55687.2023.10039365�. �hal-04095001�

https://hal.science/hal-04095001
https://hal.archives-ouvertes.fr


Evaluation of intelligent collaborative robots: a review

Miguel Da Silva1, Remi Regnier2, Maria Makarov3, Guillaume Avrin4, Didier Dumur5

Abstract— Intelligent collaborative robots or smart cobots
can achieve high levels of flexibility by combining the human
ability to adapt to new tasks with the performance of automated
robots (precision, repeatability, etc.). This is a major innovation
for Industry 4.0. Nevertheless, at present, cobots are not widely
deployed in industry because they are difficult to evaluate
and current standards for them are limited. The evaluation
of collaborative tasks is difficult due to their specificities such
as the variability of human behavior, artificial intelligence
systems (e.g., smart cameras), and advanced control laws. This
paper is a short review that aims to identify the methods and
material resources needed to address this need for evaluation of
intelligent cobots to foster their development and acceptability.

I. INTRODUCTION
Market research [1] shows that global sales of collab-

orative robots (or cobots) nearly doubled between 2017
and 2019. However, they are still a minority compared to
conventional industrial robots, which accounted for 95% of
global sales of industrial robot in 2019. The lack of standards
to assess cobots is holding back their deployment. This
statement is confirmed in the paper [2], it explains that robot
manipulators are difficult to assess because of the "lack of
guidelines for a realistic experimental setup". The evolution
of the number of research papers available on the Science
Direct database that mentions the terms “Human Robot Col-
laboration” and “Machine learning” in their title, abstract or
keywords per year from 1996 to 2020 shows that the interest
for intelligent collaborative robots is growing exponentially
[3]. Nevertheless, it is important to be aware that the term
“collaborative robot” can have different meanings. Most
papers about cobots give their own definition of the word
"collaborative" in the context of human-robot collaboration,
sometimes through examples or sometimes more clearly, but
there is no consensus on the definition of this term. This
problem is also identified in [4]: “Several definitions exist
in literature distinguishing collaboration from cooperation or
interaction. For example, [5] notes that cooperation robots
work with people step by step for a common goal, while
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collaborative robots work with people hand in hand on a
common task. With a more lenient definition corresponding
to the definition of cobot manufacturers, any robot operating
alongside a human without a fence can be characterized
as a collaborative robot [6]”. Several papers try to tackle
this issue by proposing a global definition of "collaborative
robots" or related concepts such as human-robot interaction
(HRI). For example, [3] classifies robots according to their
level of interaction. It proposes six levels of interaction by
making an analogy with the standard levels of autonomy
of autonomous vehicles created by the Society of Auto-
motive Engineers (SAE): fully programmed, co-existence,
assistance, co-operation, collaboration and fully autonomous.
In this case, collaborative robots are those who belong to
the level of interaction number 4 called “collaboration”. It
means that a collaborative robot shares its workspace and
works simultaneously with the human to achieve a common
goal. Therefore, according to this definition, a robot that
shares its workspace with a human and works on the same
part at different times (e.g. not simultaneously) is not a
collaborative robot but a cooperative robot. Mukherjee’s
definition is incompatible with the one given by the ISO/TS
15066:2016 standard which does not make any difference
between collaborative robots and cooperative robots. In this
paper, the definition of cobot that is used, is the one the
proposed by the ISO/TS 15066:2016 standard. It includes a
wide variety of robots including automated guided vehicles
(AGV) designed to perform fetching tasks [7], drones that are
controlled by humans without any remote [8], exoskeletons
[9] and robotic arms that work alongside humans [10]. We
propose that the words collaboration and cooperation have
the same meaning and we chose two terms to distinguish
the different types of collaboration between humans and
cobots: direct collaboration and indirect collaboration. Both
of these terms are explained in the following section, which
presents a taxonomy of cobots. The third section is about
the technical requirements for collaborative robots that are
considered in the selected research papers. To verify that
these requirements are satisfied, the authors have applied
evaluation methods that are discussed in section 4. To
contribute to the creation of new standards, we compare
a wide variety of methods used by different researchers
to identify hindrances and promising methods. In the last
section, thoughts on the prospects for the evolution of testing
tools for intelligent cobot that comes from the literature
analysis are presented.
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II. TAXONOMY OF INTELLIGENT COBOTS

The purpose of the following taxonomy (Figure 1, 2,
3) is to define the terms used to characterize intelligent
collaborative robotic systems. The words chosen for this
taxonomy can have different meanings. To avoid ambiguities
we propose the following glossary that details as much as
possible the ambiguous terms of the taxonomy.

A. Glossary

AI type: type of AI algorithm that is caracterised by its
learning method (supervised, unsupervised, etc.) or by its
architecture (symbolic, etc.).
AI application: task performed by the AI system.
Collaboration type: how the human collaborates with the
robot to perform a collaborative task.
Direct collaboration: collaboration where the human and the
robot interact on the same part at different times.
Indirect collaboration: collaboration where the human and
the robot interact on the same part at the same time.
Task: common goal that human and robot try to reach in
collaboration with each other.
Co-carrying: the robot and the human are carrying the same
object at the same time.
Gesture assistance: hand-guided tasks where the robot re-
duces the effort required by the user to perform a task or
constraints the user’s movements to help the user maintain a
proper trajectory to perform the task.
Handover: the robot places an object in the human’s hand
or holds it while the human interacts with it.
Subsystem: system that can complete a subtask that con-
tributes to a collaborative task (ex: perception of obstacles
with a 3D camera [11]).
System: hardware component that is necessary to complete
a collaborative task: robot, camera or computer.
Rapidity: time necessary to complete a given task.
Quality of human-robot interaction (HRI): global concept

Type

Locomotion

AI system

AI type AI application

Exoskeleton

Rolling

Walking

Arm

None
Ground 
robots

Flying

Genetic
algorithm

Reinforcement
learning

Semi-supervised
learning

Supervised
learning

Symbolic

Transfer 
learning

Unsupervised
learning

Other

None

Task planning

Collision detection

Gesture recognition

Human motion 
prediction

Human motion 
tracking

Object recognition

Speech recognition

Imitation learning

Lead-through
programming

Other

Other

Robot 

Fig. 2. Taxonomy of intelligent cobots

that can be described by several other concepts such as
fluency, helpfulness, trust, flexibility, ergonomics, etc.

III. TECHNICAL REQUIREMENTS FOR INTELLIGENT
COBOTS

In most of research papers about intelligent cobots, the re-
quirements are implicit and there are no clear specifications.
For example, [12], [13] and [14] aim to demonstrate that their
system or algorithm work in a controlled environment. This
approach highlights the relevance of using a new technology
for a given collaborative robotics application, but it does
not give enough guarantees on its performance to allow its
commercialization. However, by observing what is tested
during the evaluation, several high level requirements can
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be deduced. They can be classified in two main categories:
safety and performance. The safety requirements concern
the ability of the cobot to operate without causing any
damage to the human coworker, its working environment or
itself. Hundreds of papers have addressed safety issues with
collaborative robots including [15], [16]. Therefore, in the
present paper, we have chosen to focus on the performance
requirements that are less discussed in the literature. We di-
vided these performance requirements in five subcategories:
accuracy, robustness, resilience, rapidity and quality of HRI.

A. Accuracy

Most of the reviewed documents use the accuracy metric
to evaluate their collaborative systems. In this paper, the
definition of the term “accuracy” is close to the one used
on AI domain, which means that it is not related to position
or trajectory errors. It mainly focuses on the success of the
achievement of a collaborative task. It is a general term
and therefore encompasses many other requirements. It only
provides a very high level information on the performance
of the system. For example, [17], a collaborative robot
capable of playing chess with a human or with another
cobot is presented and the main requirement of this system
is accuracy in the sense of "success of the task". In order
for a cobot to be able to perform such a difficult task, the
author divided it into three subtasks: the vision algorithm,
the decision making algorithm, and the manipulator control
system. The first and second subtasks involve AI algorithms
and the third one is about control algorithms. None of these
subtasks are evaluated with complex metrics, the authors

focused on the success of the task or the subtask that can
be called “accuracy”. In this context, the accuracy of the
visual motion detection is the ability of the robotic system
to locate the pieces on the board and successfully detect
the movements of each player. The success of all subtasks
and their association is demonstrated by experimentation but
this method is limited. Nevertheless, several papers such
as [18] define precise metrics to explicit and measure the
accuracy of their system. Their paper presents an image
recognition AI algorithm that can recognize and locate an
object on the cobot workspace regardless of how it is placed.
This algorithm is designed to be integrated into collaborative
production tasks in which the human deposits parts randomly
in the robot’s workspace. To evaluate the accuracy of the
AI algorithm, they use an accuracy score metric, calculated
as the ratio of the number of error-free detections for each
image to the total number of images. Other classical metrics
in the evaluation of AI algorithms, such as F1-score, Jaccard
and precision are also used in this paper. These metrics
only guarantee the accuracy of the AI algorithm under
certain conditions (parameters such as lighting) but are not
sufficient to ensure the accuracy of the entire collaborative
system. Evaluating the accuracy of several subtasks does not
guarantee the accuracy of the whole system [2]. Moreover,
making various tests varying the influence factor is necessary
to guarantee the accuracy of the system in the largest number
of use cases. This is the notion of robustness.

B. Robustness and resilience

Evaluating the robustness of an intelligent collaborative
robotic system allows guaranteeing its performance on a
large operating domain that takes into account the possible
variations of the environment and system parameters. The
robustness of all the cobot subsystems does not guarantee
the robustness of the whole cobot. It still allows to identify
influence factors that can disturb the robot and to make
sure that critical subsystems are able to work under certain
constraints. Consequently, there is a need to evaluate both
the robustness of the subsystems and the robustness of
the complete cobot. Nevertheless, in the literature, most
papers in which collaborative robotic systems or subsystems
are tested do not test their robustness. For example, [19]
present a collaborative robot that sorts different objects based
on their color and shape is tested, but the parameters of
the test such as lighting conditions are fixed in advance
and do not vary. Thus, if one those parameters vary, the
behavior of the system is unpredictable. Some robots are
designed to operate in controlled environments where most
of the influence factors are controlled. For these robots, the
required level of robustness is lower than the one required for
autonomous robots that operates in unknown environments.
Testing the resilience of a system takes the evaluation of
the system one step further than a simple robustness test.
It is the test of the system’s ability to continue operating
outside its operating range (ex: in case of a component failure
or a cyber-attack) [20]. Although robustness and resilience
are not often evaluated in the case of collaborative robots,



they are evaluated a lot in the field of autonomous vehicles,
which today is one of the most advanced fields in terms of
evaluation techniques for complex and intelligent systems.
That is why we believe that these requirements will be
evaluated more and more for collaborative robots. Moreover,
new evaluation tools and methods are being developed for
collaborative robots, they are presented in the next section.

C. Rapidity

Rapidity is another important requirement. [21], [22] mea-
sure task completion time to see if human-robot collaboration
has an impact on production rate. We noticed that this
requirement concerns mainly pick and place collaborative
tasks. Currently, for safety reasons, the velocity of cobots is
limited by the ISO/TS 15066:2016 standard. This standard
links the rapidity to safety requirements. However, safety
requirements are currently very restrictive because of the
lack of standards to test robustness of the systems. Thus,
guaranteeing the robustness of a cobot can make the speed
limitations imposed by the safety standard less severe and it
could lead to an increase of the rapidity of the cobot. This
statement shows once again the importance of the evaluation
of the cobot’s robustness.

D. Quality of HRI

The quality of HRI is an essential yet difficult-to-assess
requirement because it covers various concepts that are often
subjective. Several papers try to evaluate this interaction in
an explicit way [23], [22]. Human-robot interaction is a
concept that cannot be measured directly but these papers
have tried to demystify this concept and to quantify it.
For example, [23] define human-robot interaction throughout
several related concepts like robot’s trust, system usability,
frustration, pleasure, satisfaction, and perceived physical
workload. Moreover, [23], [24] take into account the quality
of HRI through the ergonomics of the selected collaborative
tasks. They are measuring the human health benefit of the
collaborative robot to see if it improves human posture or
reduces the loads carried by the human. Other similar con-
cepts such as fluidity of human-robot interaction have been
developed to describe HRI [25]. Thus, the demystification of
the concept of quality of HRI made possible its evaluation
even though it cannot be perfect because the related concepts
are often subjective and the reproducibility of experiments
is limited by the human factor.

IV. EVALUATION METHODS

In the scientific literature, most of the papers about the
evaluation of cobots focus on the safety of cobots or on the
HRI. However, there are also a few papers that use evaluation
methods to test the whole intelligent collaborative robotic
system or the subsystem.

A. Evaluation of safety of cobots

The safety of collaborative robots is one of the main
barriers to the deployment of collaborative robots. This is
the reason why the researchers are focusing mainly on this

aspect. [26], [16] refer to the only safety standard that
was designed specifically for cobots, ISO/TS 15066:2016, in
order to guarantee the safety of their system. They perform
physical tests to make sure that the system is compliant with
this standard (i.e. that respects the constraints of speed and
pressure on the human body stated by this standard). These
constraints are expressed in the form of maximum values not
to be exceeded according to the mass of the robot and the
potential human/robot contact zones. However, as shown by
[3], this standard is limited to robot related constraints but
does not take into account the tool of the robot that can be
dangerous (eg. soldering iron) and the human related factors.
Moreover, it does not take into account the danger related
to the AI systems. For example, [27] present a collaborative
robot that offers tools to a human to help with an assembly
task and if an error in the AI system that plans the robot’s
handover motion occurs then the human can be injured by
a screw driver. That is why the evaluation of AI systems
is essential to guarantee the safety of an intelligent cobot.
Methods for evaluating the performance of intelligent cobots
can be used to evaluate several aspects of cobot safety, but
not necessarily in accordance with ISO/TS 15066:2016.

B. Evaluation of HRI

HRI is one of the most complex aspects of cobot eval-
uation due to its subjectivity. Nelles et al. (2019) selected
30 relevant papers on HRI evaluation and described their
evaluation method. These methods can be distinguished into
two categories: subjective and objective.

1) Subjective evaluation methods: Subjective methods do
not rely on measured data. They mainly rely on surveys that
are answered by groups of users of the cobot or by experts
who watch and interpret videos of users using the cobot.
Besides, the result of these questionnaires are scores that
correspond to the evaluation metrics. The scoring method
depend on the type of questionnaire that is used, it is either
personal with for example, scores from 1 to 5 for each
question [28] or standard such as the NASA-TLX which aims
a evaluating the perceived workload for the cobot user [29],
[30].

2) Objective evaluation methods: Contrary to subjective
evaluation methods, objective methods rely on physical data
that is provided by sensors or measuring instruments. This
data is mainly physiological, for example: the heart rate,
the skin temperature, human energy consumption (kcal) etc.
Such measures are often used to build metrics that quantify
subcategories of HRI like anxiety [31], [32]. Instead of using
scores from questionnaire results to evaluate the quality of
HRI, they use physical measurements and try to correlate
these measures with concepts related to HRI. For instance,
[33] measured the trust of the human coworker in the cobot
through the heart rate because they stated that there is a
correlation between the stress level of the human and the
heart rate. This kind of correlation allows to evaluate HRI
but they are not exact and do not take into account several
influencing factors and biases. Consequently, objective and
subjective methods are not opposed but rather complemen-



tary. Thus several papers such as [34] use both approaches
mixing physical measures with scores from questionnaires to
evaluate HRI.

C. Evaluation of cobot’s performances

The cobot performance is the ability of the robot and the
human to perform a given collaborative task according to
a set of specifications. If the specifications are guaranteed
every time the robot and the human work collaboratively
then the performance of the cobot is acceptable. This defi-
nition of performance includes safety and HRI, but as they
were already discussed in the previous sections, this section
focuses on task-related performance evaluation. There are
various existing methods to assess the ability of a cobot and
a coworker to achieve a common goal. These methods are
sorted in four main categories: analytical methods, virtual
tests, mixed tests and physical tests.

1) Analytical methods: In general, analytical methods do
not concern the test of the entire cobot because modeling the
behavior of such a complex system with all the constraints
associated to the task that it is supposed to accomplish is
impossible without the use of numerical methods. However,
analytical methods are useful to evaluate elementary func-
tionalities of cobots using simplified models and to prove
the stability of the cobot in a given test configuration. Thus,
it allows the cobot to pass a first validation step. For example,
[9] proved the Lyapunov stability of the impedance control
law under certain conditions. Nevertheless, when a cobot is
equipped with an AI system, this approach is limited because
most of them act like black boxes whose behavior cannot be
predicted analytically.

2) Virtual tests: In contrast to analytical methods, virtual
tests allows the prediction of cobot behavior in complex
scenarios. They allow to numerically solve problems that are
analytically difficult or even impossible to solve including
those that use artificial intelligence. Thus, there are two
types of virtual tests: a first one, closer to the analytical
method, which consists in solving equations numerically
without including a 3D model of the robot [35], and a second
one which includes a 3D model of the robot and which aims
at reproducing the scene of the cobot performing its task in
a virtual environment [36]). Simulations without computer-
aided design (CAD) models are used to assess specific cobot
functionalities but they are not relevant to assess a cobot
in complex scenarios. Nevertheless, they allow to evaluate
several complex functionalities that involves AI such as task
planning [37].

Virtual tests with CAD models allow to simulate realistic
use cases of the cobots thanks to simulation softwares like
Gazebo [19], RobWorkStudio [17], Tecnomatix [24], etc.
This type of simulation is often called “virtual commission-
ing”. Currently, it is mainly used to validate prototypes but
it can be unrepresentative of the reality, especially if the
task performed by the human in the simulation is complex.
Modeling humans for simulation purposes is still an active
research area. However, several papers such as [19] show that
while modeling and simulating a human interacting with a

cobot is possible, it is still difficult to obtain reliable results
with such models if the level of collaboration between the
human and the robot is high. This puts into question the
reliability of the simulation. Consequently, physical tests are
sometimes required in addition to simulation in order to vali-
date the system. The fact that the collaborative robotic system
reaches the expected performance level in a simulation does
not always mean that it will reach the same performances
in the real life. However, if the system does not achieve
the expected level of performance in the simulation, it is
unlikely to achieve that level of performance in a physical
test. In short, virtual testing is a powerful tool that can be
used to test almost any cobot functionality and that is very
efficient for prototyping but to validate an intelligent cobot
in the case where the collaboration between the cobot and
the human is direct and complex, this approach is limited.
Its lack of realism is its main flaw.

3) Physical tests: There are two categories of physical
testing: those performed in a laboratory in a controlled
environment and those performed directly in the final use
environment. Both have the advantage of being more realistic
than simulation. Nevertheless, the number of use scenarios
that can be assessed is limited because of the costs, the test
time and the safety problems of several use cases. Actually,
safety issues are particularly present in the physical evalu-
ation of collaborative robots because their direct interaction
with humans increases the risk associated with the cobot task.
Therefore, evaluation of cobots in dangerous situations or
near misses is difficult to implement. Consequently, several
use cases cannot be evaluated properly with physical tests
and that is why in the majority of cases, the robustness cannot
be evaluated with physical tests. To overcome that issue, re-
searchers often combine several testing methods. This allows
to take advantage of the benefits of each method. Among
the papers we analysed, 80% of those which use physical
methods, such as [9], also use analytical or simulation to
evaluate their system.

4) Mixed tests: Mixed tests are the least used among
the sample of papers we analysed. They are still recent
and sometimes difficult to implement. However, they have
the advantage of offering a good compromise between the
number of applicable test scenarios and the realism of the
results. There are three main type of mixed tests for cobots:
hardware in the loop (HIL), robot in the loop (RIL) and
human in the loop (HuIL).

Hardware in the loop: [38] presents a simulation of a
cobot arm close to the ones presented in the "Virtual tests"
section but instead of being only virtual, it integrates the
real single-board computer module of the cobot that is used
to process the control algorithm. This approach takes into
account all the errors linked to the single-board computer
module and makes the simulation much more realistic than
a traditional simulation. It allows to test real algorithms in
various use cases by taking into account the potential errors
or disturbances related to the properties of the hardware
that will run it.



Robot in the loop: RIL testing is still rare in the field
of intelligent collaborative robotic systems. Nevertheless,
this type of test is developing in the field of autonomous
vehicles. The latter is a critical application field in which
the slightest error can lead to dramatic consequences with
fatal accidents. Thus, for such a technology to be available
one day on the general public market, its safety must be
guaranteed and for that, it is necessary to demonstrate the
robustness and resilience of these systems. This is often
done through virtual or HIL tests, but these lack realism, so
RIL or VIL (vehicle in the loop) tests have been developed.
The principle is to immerse the real vehicle or robot in
a virtual environment. It is the same principle as virtual
reality for humans but applied to robots or autonomous
vehicles. Only the operating environment is simulated and
the robot or vehicle interacts with it via gateways that
link its sensors to the virtual environment. In the case of
the autonomous vehicle, screens are placed in front of the
vehicle’s cameras, a computer that broadcasts the images
of the virtual environment on these screens is placed in the
trunk of the vehicle and by making the car drive in a large
empty space, one can test the behavior of the vehicle on
any virtually generated road (intersections, traffic circles,
etc.). This is a promising evaluation method but it is still
underdeveloped in the field of collaborative robots and
might be unaffordable for most evaluators.

Human in the loop: During the HuIL assessment, the
human is immersed in a simulated virtual environment
using a virtual reality headset, a human motion detection
system and sometimes wearing haptic devices. The human
can interact with the virtual environment, for example
pick a part and place it on a table near the cobot in the
virtual world. HuIL evaluations overcome one of the main
obstacles to the simulation of collaborative tasks, which is
the modeling of human behavior. A significant advantage
over physical testing is the ability to test dangerous or near
miss use cases and its reproducibility is better than 100%
virtual simulations. This is the evaluation method that was
selected in [24] to test different safety devices to protect
the human of a cobot in two different cases. The first one
concerns a mechanical parts cleaning task in which the
human’s role is to replenish the cobot’s cleaning tool, which
is disposable. The second one concerns a printed circuit
board (PCB) handling task in which the human has no role
but for which the robot has to stop when he approaches
to avoid injuring him with sharp PCBs. In both cases,
dangerous situations could be tested and new sources of
danger could be discovered without the human taking any
risk. Thanks to the information provided by this simulation
on the robot’s behavior, the algorithms that define the robot’s
behavior in the presence of a human could be adjusted to
make the HRI safer. However, even if this method does
not model the human’s behavior, it still requires modeling
the interaction between the human and the cobot in the
virtual environment. This means that for cases where the

collaborative task is complex, the simulation is likely to be
unrealistic. This method is therefore optimal for evaluating
systems where the human behavior is not predictable and
difficult to model and where the human-robot interaction is
not complex. This is often the case for autonomous vehicles,
the equivalent in this domain is the driving simulator, which
allows to acquire data on human and to adapt the vehicle
behavior to each driver.

V. CONCLUSIONS

In this paper, a taxonomy was developed to clarify the
notion of collaborative robotics and to introduce different
notions related to evaluation. Through this litterature review,
we have identified several gaps and areas of progress for
the evaluation of cobots. We noticed that robustness and
resilience of a full collaborative robotic system are poorly
evaluated. This is partly due to the fact that most of the
cobots mentioned in the literature are proofs of concepts
or prototypes that are not intented to be used in an in-
dustrial setting. It is therefore an interesting research area
to explore. The progress of simulation software and the
computing power of computers allows to set up numerical
models which are more and more faithful to reality and
which can provide information on the robustness of the
intelligent cobot. Moreover, they give rise to new types of
tests that we have called "mixed tests". These tests are still
at an early stage development and are sometimes difficult to
implement. They require a lot of equipment as well as direct
access to the sensors of the cobots which are not always
possible. However, we believe that they represent the future
of simulation because they have the advantage of having the
best compromise between exhaustiveness and realism of test
scenarios. Through our analysis, we also identified the lack
of linkages between the different evaluation methods. We
believe that the different tests (physical, virtual, etc.) can be
correlated. For example, we can imagine an approach where
a collaborative task would be evaluated through a mixed test
and then reproduced in a real environment in order to validate
the mixed testbed which could then be used without physical
testing afterwards.

REFERENCES

[1] D. Callet and G. Giraud, “Le marché mondial de la robotique
industrielle,” 2021.

[2] A. H. Quispe, H. B. Amor, and H. I. Christensen, “A taxonomy
of benchmark tasks for robot manipulation,” in Robotics Research.
Springer, 2018, pp. 405–421.

[3] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran,
“A Surv. of Robot Learn. Strategies for Human-Robot
Collaboration in Ind. Settings,” Robot. and Comput.-Integrated
Manuf., vol. 73, p. 102231, Feb. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584521001137

[4] M. Knudsen and J. Kaivo-oja, “Collaborative Robots: Frontiers of
Current Literature,” J. of Intell. Syst.: Theory and Appl., vol. 3, pp.
13–20, June 2020.

[5] O. Bendel, “Co-robots from an Ethical Perspective,” in Bus. Inf. Syst.
and Technol. 4.0. Springer, 2018, pp. 275–288.

[6] S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming
for collaborative industrial tasks: An overview,” Robot. and Auton.
Syst., vol. 116, pp. 162–180, June 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S092188901830602X



[7] S. Inoue, A. Urata, T. Kodama, T. Huwer, Y. Maruyama,
S. Fujita, H. Shinno, and H. Yoshioka, “High-Precision Mobile
Robot. Manipulator for Reconfigurable Manuf. Syst.” Int. J.
of Automat. Technol., vol. 15, no. 5, pp. 651–660, Sept.
2021, publisher: Fuji Technol. Press Ltd. [Online]. Available:
https://www.fujipress.jp/ijat/au/ijate001500050651/

[8] A. C. S. Medeiros, P. Ratsamee, J. Orlosky, Y. Uranishi,
M. Higashida, and H. Takemura, “3D pointing gestures
as target selection tools: guiding monocular UAVs during
window selection in an outdoor environment,” Robomech
J, vol. 8, no. 1, p. 14, Dec. 2021. [Online]. Available:
https://robomechjournal.springeropen.com/articles/10.1186/s40648-
021-00200-w

[9] B. Brahmi, I. El Bojairami, M.-H. Laraki, C. Z. El-Bayeh,
and M. Saad, “Impedance learning control for physical
human-robot cooperative interaction,” Math. and Comput. in
Simul., vol. 190, pp. 1224–1242, Dec. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378475421002664

[10] V. Fortineau, M. Makarov, P. Rodriguez-Ayerbe, and I. A. Siegler,
“Interactive robotics for human impedance estimation in a rhythmic
task,” in 2020 IEEE 16th Int. Conf. on Automat. Sci. and Eng.
(CASE). Hong Kong, Hong Kong: IEEE, Aug. 2020, pp. 1043–1048.
[Online]. Available: https://ieeexplore.ieee.org/document/9217009/

[11] F. Flacco, T. Kroger, A. De Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in 2012 IEEE Int. Conf.
on Robot. and Automat. Saint Paul, MN: IEEE, May 2012, pp. 338–
345. [Online]. Available: http://ieeexplore.ieee.org/document/6225245/

[12] T. Brito, J. Queiroz, L. Piardi, L. A. Fernandes, J. Lima,
and P. Leitão, “A Mach. Learn. Approach for Collaborative
Robot Smart Manuf. Inspection for Quality Control Syst.”
Procedia Manuf., vol. 51, pp. 11–18, Jan. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2351978920318588

[13] N. Dimitropoulos, T. Togias, N. Zacharaki, G. Michalos, and
S. Makris, “Seamless Human–Robot Collaborative Assem. Using
Artif. Intelligence and Wearable Devices,” Appl. Sci.s, vol. 11, no. 12,
p. 5699, Jan. 2021, number: 12 Publisher: Multidisciplinary Digit.
Publishing Inst. [Online]. Available: https://www.mdpi.com/2076-
3417/11/12/5699

[14] D. Kragic, J. Gustafson, H. Karaoguz, P. Jensfelt, and R. Krug,
“Interactive, Collaborative Robots: Challenges and Opportunities,”
in Proc. of the Twenty-Seventh Int. Joint Conf. on Artif.
Intelligence. Stockholm, Sweden: Int. Joint Conf. on Artif.
Intelligence Org., July 2018, pp. 18–25. [Online]. Available:
https://www.ijcai.org/proceedings/2018/3

[15] K. Aliev and D. Antonelli, “Proposal of a Monitoring System for
Collaborative Robots to Predict Outages and to Assess Reliability
Factors Exploiting Mach. Learn.” Appl. Sci.s, vol. 11, no. 4, p. 1621,
Jan. 2021, number: 4 Publisher: Multidisciplinary Digit. Publishing
Inst. [Online]. Available: https://www.mdpi.com/2076-3417/11/4/1621

[16] Z. M. Bi, C. Luo, Z. Miao, B. Zhang, W. J. Zhang,
and L. Wang, “Saf. assurance mechanisms of collaborative
robotic systems in manufacturing,” Robot. and Comput.-
Integrated Manuf., vol. 67, p. 102022, Feb. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584520302337

[17] P. Kolosowski, A. Wolniakowski, and K. Miatliuk, Collaborative
Robot System for Playing Chess. IEEE, July 2020, pages: 6.

[18] A. Mangat, J. Mangler, and S. Rinderle-Ma, “Interactive Process
Automat. based on lightweight object detection in manufacturing
processes,” Comput. in Industry, vol. 130, 2021.

[19] R. Galin, R. Meshcheryakov, and A. Samoshina, “Math. Modelling and
Simul. of Human-Robot Collaboration,” in 2020 Int. Russian Automat.
Conf. (RusAutoCon), Sept. 2020, pp. 1058–1062.

[20] J.-L. Wybo, “The Role of Simul. Exercises in the Assessment of
Robustness and Resilience of Private or Public Org.” in Resilience
of Cities to Terrorist and other Threats, ser. NATO Sci. for Peace and
Secur. Series Series C: Environmental Secur., H. J. Pasman and I. A.
Kirillov, Eds. Dordrecht: Springer Netherlands, 2008, pp. 491–507.

[21] A. A. Malik and A. Brem, “Digit. twins for collaborative robots:
A case study in human-robot interaction,” Robot. and Comput.-
Integrated Manuf., vol. 68, p. 102092, Apr. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0736584520303021

[22] B. Sadrfaridpour and Y. Wang, “Collaborative Assem.
in Hybrid Manuf. Cells: An Integrated Framework for
Human–Robot Interact.” IEEE Trans. Automat. Sci. Eng.,

vol. 15, no. 3, pp. 1178–1192, July 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8049302/

[23] M. De Marchi, L. Gualtieri, R. A. Rojas, E. Rauch, and F. Cividini,
“Integration of an Artif. Intelligence Based 3D Perception Device
into a Human-Robot Collaborative Workstation for Learn. Factories,”
Available at SSRN 3863966, 2021.

[24] M. Metzner, D. Utsch, M. Walter, C. Hofstetter, C. Ramer, A. Blank,
and J. Franke, “A system for human-in-the-loop simulation of indus-
trial collaborative robot applications*,” in 2020 IEEE 16th Int. Conf.
on Automat. Sci. and Eng. (CASE), Aug. 2020, pp. 1520–1525, iSSN:
2161-8089.

[25] G. Hoffman, “Evaluating Fluency in Human–Robot Col-
laboration,” IEEE Trans. Human-Mach. Syst., vol. 49,
no. 3, pp. 209–218, June 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8678448/

[26] H. Shin, S. Kim, K. Seo, and S. Rhim, “A Real-Time Human-
Robot Collision Saf. Eval. Method for Collaborative Robot,”
in 2019 Third IEEE Int. Conf. on Robot. Comput. (IRC).
Naples, Italy: IEEE, Feb. 2019, pp. 509–513. [Online]. Available:
https://ieeexplore.ieee.org/document/8675665/

[27] J. Zhang, H. Liu, Q. Chang, L. Wang, and R. X.
Gao, “Recurrent neural network for motion trajectory
prediction in human-robot collaborative assembly,” CIRP
Ann., vol. 69, no. 1, pp. 9–12, Jan. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0007850620300998

[28] G. Charalambous, S. Fletcher, and P. Webb, “The development of a
scale to evaluate trust in industrial human-robot collaboration,” Int. J.
of Social Robot., vol. 8, no. 2, pp. 193–209, 2016, publisher: Springer.

[29] D. Bortot, M. Born, and K. Bengler, “Directly or on detours? How
should industrial robots approximate humans?” in 2013 8th ACM/IEEE
Int. Conf. on Human-Robot Interact. (HRI), Mar. 2013, pp. 89–90,
iSSN: 2167-2148.

[30] S. M. Rahman, B. Sadrfaridpour, and Y. Wang, “Trust-based optimal
subtask allocation and model predictive control for human-robot
collaborative assembly in manufacturing,” in Dynamic Systems and
Control Conference, vol. 57250. American Society of Mechanical
Engineers, 2015, p. V002T32A004.

[31] B. Daniel, T. Thomessen, and P. Korondi, “Simplified Human-Robot
Interaction: Modeling and Evaluation,” Modeling, Identification and
Control, vol. 34, no. 4, pp. 199–211, 2013.

[32] I. Maurtua, N. Pedrocchi, A. Orlandini, J. de Gea Fernandez, C. Vogel,
A. Geenen, K. Althoefer, and A. Shafti, “FourByThree: Imagine
humans and robots working hand in hand,” in 2016 IEEE 21st int. conf.
on emerging technologies and factory automation (ETFA). IEEE,
2016, pp. 1–8.

[33] D. Novak, M. Mihelj, and M. Munih, “Psychophysiological responses
to different levels of cognitive and physical workload in haptic
interaction,” Robot.a, vol. 29, no. 3, pp. 367–374, 2011, publisher:
Cambridge University Press.

[34] V. Weistroffer, A. Paljic, P. Fuchs, O. Hugues, J.-P. Chodacki, P. Ligot,
and A. Morais, “Assessing the acceptability of human-robot co-
presence on assembly lines: A comparison between actual situations
and their virtual reality counterparts,” in The 23rd IEEE Int. Sympo-
sium on Robot and Human Interactive Commun. IEEE, 2014, pp.
377–384.

[35] F. Dimeas and N. Aspragathos, “Online Stability in Human-
Robot Cooperation with Admittance Control,” IEEE Trans. Haptics,
vol. 9, no. 2, pp. 267–278, Apr. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7384497/

[36] S. Parsa and M. Saadat, “Human-robot collaboration
disassembly planning for end-of-life product disassembly
process,” Robot. and Comput.-Integrated Manuf.,
vol. 71, p. 102170, Oct. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0736584521000545

[37] X. Yu, Y. Li, S. Zhang, C. Xue, and Y. Wang,
“Estimation of human impedance and motion intention
for constrained human–robot interaction,” Neurocomputing,
vol. 390, pp. 268–279, May 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0925231219314444

[38] L. Tongtong, Y. Tao, Y. Zelin, L. Shuxuan, and L. Jianming, “Develop.
of Hardware-in-Loop Simul. Platform for Collaborative Robots Based
on LinuxCNC and V-rep,” in 2018 IEEE Int. Conf. on Mechatronics
and Automat. (ICMA), Aug. 2018, pp. 1323–1328, iSSN: 2152-744X.


