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A Relaxation Approach for Simulating Fluid
Flows in a Nozzle

Frédéric Coquel, Khaled Saleh, Nicolas Seguin

Abstract We present here a Godunov-type scheme to simulate one-dimensional
flows in a nozzle with variable cross-section. The method relies on the construc-
tion of a relaxation Riemann solver designed to handle all types of flow regimes,
from subsonic to supersonic flows, as well as resonant transonic flows. Some com-
putational results are also provided, in which this relaxation method is compared
with the classical Rusanov scheme and a modified Rusanov scheme.
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1 Introduction

In this paper, we are interested in the numerical approximation of the solutions of
a model describing one-dimensional barotropic flows in a nozzle. In this model,
ρ andw are respectively the density and the velocity of the fluid while α stands
for the cross-section of the nozzle, which is assumed to be constant in time. Under
the classical assumption thatα is small with respect to a characteristic length in the
mainstream direction, the flow can be supposed to be one-dimensional and described
by the following set of partial differential equations:

∂tα = 0,
∂t(αρ)+ ∂x(αρw) = 0, t > 0, x∈ R,
∂t(αρw)+ ∂x(αρw2 + α p(τ))− p(τ)∂xα = 0,

(1)
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whereτ = ρ−1 is the specific volume andτ 7→ p(τ) is a barotropic pressure law
(satisfyingp′(τ) < 0 andp′′(τ) > 0). System (1) takes the condensed form:

∂tU+ ∂xf(U)+c(U)∂xU = 0, (2)

where the state vector isU = (α,αρ ,αρw)T . The solutions are sought in the phase
space of positive solutions defined as

Ω = {U = (α,αρ ,αρw)T ∈ R
3,α > 0,αρ > 0}. (3)

We recall the properties of this model:

• Property 1.1 (Hyperbolicity) System (1) admits, forU in Ω , the following
eigenvalues

λ0(U) = 0, λ1(U) = w−c(τ), λ2(U) = w+c(τ), (4)

where c(τ) = τ
√

−p′(τ). The system is hyperbolic (i.e. the corresponding eigen-
vectors spanR3) if and only if|w| 6= c(τ). Besides, the fields associated with the
λ1 and λ2 eigenvalues are genuinely non-linear while the field associated with
λ0 is linearly degenerate.

• Property 1.2 (Entropy) The entropy solutions of system (1) satisfy the following
inequality in the weak sense

∂t (αρE )+ ∂x(αρE w+ α p(τ)w) ≤ 0 (5)

whereE = w2

2 +e(τ) is the total energy and where the functionτ 7→ e(τ) is given
by e′(τ) = −p(τ).

The Godunov scheme for this model is difficult to implement because the Rie-
mann problem for system (1) is hard to solve due to the non linearities of the pres-
sure law (giving rise to the genuinely non-linear acoustic fields), to the absence of a
satisfactory definition of the non-conservative productp(τ)∂xα and to the resonance
phenomenon that appears for transonic flows causing the model to lose hyperbolic-
ity [5]. For these reasons, we rather follow the classical approach of [7] and design
an approximate Riemann solver, relying on a relaxation method. With this end in
view, the solutions of system (1) are approximated by the solutions of the following
enlarged relaxation system in the limit of a vanishing positive parameterε:

∂tαε = 0,
∂t(αρ)ε + ∂x(αρw)ε = 0, t > 0, x∈ R,
∂t(αρw)ε + ∂x(αρw2 + απ(τ,T ))ε −π(τ,T )ε ∂xαε = 0,

∂t(αρT )ε + ∂x(αρT w)ε =
1
ε
(αρ)ε(τ −T )ε ,

(6)
with a linearization of the pressure law given byπ(τ,T ) = p(T )+a2(T −τ). The
variableT is an additionnal unknown relaxing towards the specific volumeτ in the
limit ε ց 0, and the constanta is a numerical parameter that must be taken large
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enough so as to guarantee the non-linear stability of the numerical approximation.
The state vector for the relaxation system isW = (α,αρ ,αρw,αρT )T and the
solutions are sought in the phase space

Ω r = {W = (α,αρ ,αρw,αρT )T ∈ R
4,α > 0,αρ > 0,αρT > 0}. (7)

The following property motivates the introduction of this relaxation system

Property 1.3 (Hyperbolicity) The convective part of (6) admits, forW in Ω r , the
following eigenvalues

σ0(W) = 0, σ1(W) = w−aτ, σ2(W) = w, σ3(W) = w+aτ. (8)

The system is hyperbolic (i.e. the corresponding eigenvectors spanR
4) if and only

if |w| 6= aτ, and all the fields are linearly degenerate.

2 The Riemann problem for the relaxation system

In this section, we give the main ideas leading to the construction of solutions to the
Riemann problem for the convective part of the relaxation system (6). Being given
WL andWR two states inΩ r , we look for solutions of

{
∂tW+ ∂xg(W)+d(W)∂xW = 0,
W(x,0) = WL if x < 0 and WR if x > 0.

(9)

As all the characteristic fields are linearly degenerate, the solution turns out to be
simpler to construct than a solution of the Riemann problem for the equilibrium sys-
tem (1). Indeed, the solution is sought in the form of a self-similar function consist-
ing in constant intermediate states separated by contact discontinuities. The linear
degeneracy of the fields provides natural jump relations across each discontinuity
and yields a set of equations eventually leading to the expessions of the wave speeds
and intermediate states. However, some issues related to the resonance phenomenon
still need to be handled with care (see [2] for details).

We show that the solutions can be expressed in terms of the physical data
VL = (ρL,wL,TL) andVR = (ρR,wR,TR) (i.e.all the initial data excluding the cross-
sectionα) and of the ratio of left and right initial sectionsν := αL

αR
. More precisely,

we introduce the following quantities depending only on(VL,VR)

w♯ :=
1
2
(wL +wR)−

1
2a

(πR−πL), (10)

τ♯
L := τL +

1
a
(w♯ −wL) = τL +

1
2a

(wR−wL)−
1

2a2 (πR−πL), (11)

τ♯
R := τR−

1
a
(w♯ −wR) = τR+

1
2a

(wR−wL)+
1

2a2 (πR−πL), (12)
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wherew♯ has the dimension of a speed andτ♯
L,τ♯

R the dimension of specific vol-
umes. These quantities appear in the explicit expressions of the solutions and it can
be proved that these specific volumes need to be positive in order to guarantee the
positivity of the solutions. In the numerical applicationshowever,a will be chosen
large for stability matters (see section 4) and it will always be possible to impose
the positivity ofτ♯

L andτ♯
R by takinga large enough.

The main result of this section is the existence theorem for the Riemann problem.

Theorem 2.1 Let WL andWR be two positive states inΩ r . Assume that a is such
thatτ♯

L > 0 andτ♯
R > 0. Then the Riemann problem (9) admits a positive self-similar

solution whatever the ratioν = αL
αR

is.

Sketch of the proof (see [2] for details).The proof consists in the effective con-
struction of a solution. For the relaxation system, the eigenvalues are not naturally
ordered because of the existence of a standing wave, and a resonance phenomenon
does appear for transonic flows. Therefore, in order to construct solutions, we inves-
tigate all admissible wave configurations (including sonicand supersonic ones) and
for each admissible ordering of the eigenvalues, we determine sufficient conditions
on the initial statesWL andWR for the solution to have this particular ordering.
Eventually, we checka posteriori that the determined conditions totally cover the
whole space of initial conditionsΩ r ×Ω r . ⊓⊔

Figure 1 represents the map of the admissible solutions given by Theorem 2.1
with respect to the initial statesWL andWR. The right part of the chart corresponds
to the solutions with positive material speed, while the left part depicts the symmet-
ric configurations with negative material speed.

Fig. 1 Wave configuration of the solution of the Riemann problem (9)with respect toWL andWR.
ML = wL

aτL
andMR = wR

aτR
are the Mach numbers of the initial left and right statesWL andWR. The

material wave is represented by a dashed line.
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3 Numerical approximation

In this section, we derive a numerical scheme from the relaxation approximation
introduced in section 1, the aim being to approximate the weak solutions of a Cauchy
problem associated with system (1):

{
∂tU+ ∂xf(U)+c(U)∂xU = 0,
U(x,0) = U0(x).

(13)

Let ∆x be a space step and∆ t a time step. The space is partitioned into cellsR =⋃
j∈Z

Cj with Cj = [x j− 1
2
,x j+ 1

2
[, wherex j+ 1

2
= ( j + 1

2)∆x are the cell interfaces. At the

discrete timestn = n∆ t, the solution of (13) is approximated on each cellCj by a

constant value denoted byUn
j =

(
αn

j ,(αρ)n
j ,(αρw)n

j

)T
. We now describe the two-

step splitting method associated with the relaxation system (6) in order to calculate
the values of the approximate solution at timetn+1 (Un+1

j ) j∈Z from those at timetn.

Step 1: Time evolution(tn → tn+1,−)

We first introduce the piecewise constant approximate solution of the relaxation sys-

tem at timetn: x 7→W(x,tn)= W
n
j inCj with W

n
j =

(
αn

j ,(αρ)n
j ,(αρw)n

j ,(αρT )n
j

)
,

whereT n
j := τn

j , i.e. Wn
j is at equilibrium. Then, the following Cauchy problem is

exactly solvedfor t ∈ [0,∆ t] with ∆ t small enough (see condition (15) below)

{
∂tW̃+ ∂xg(W̃)+d(W̃)∂xW̃ = 0,

W̃(x,0) = W(x,tn).
(14)

Since the initial conditionx 7→ W(x,tn) is piecewise constant, the exact solution
of (14) is obtained by gluing together the solutions of the Riemann problems set
at each cell interfacex j+ 1

2
, provided that these solutions do not interact during the

period∆ t, i.e.provided the following classical CFL condition

∆ t
∆x

max
W

|σi(W)| <
1
2
, i ∈ {0, ...,3}, (15)

for all W under consideration. More precisely, if(x,t) is in [x j ,x j+1]× [0,∆ t], then

W̃(x,t) = Wr

(
x−x j+1/2

t
;a j+1/2,W

n
j ,W

n
j+1

)
, (16)

where(x,t) 7→ Wr
(

x
t ;a,WL,WR

)
is the self-similar solution of the Riemann prob-

lem constructed in section 1, which clearly depends on the local choice of the pa-
rametera. Then, in order to define a piecewise constant approximate solution at time
tn+1,−, the solutioñW(x,t) is averaged on each cellCj at time∆ t:
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W(x,tn+1,−) = W
n+1,−
j :=

1
∆x

∫ x
j+ 1

2

x
j− 1

2

W̃(x,∆ t)dx, ∀x∈Cj , ∀ j ∈ Z. (17)

Step 2: Instantaneous relaxation(tn+1,− → tn+1)

The second step consists in sendingε to zero instantaneously in the piecewise con-
stant functionW(x,tn+1,−) obtained at the end of the first step. This amounts to
imposingT

n+1
j := τn+1

j , thus we have

W
n+1
j =

(
αn+1,−

j ,(αρ)n+1,−
j ,(αρw)n+1,−

j ,αn+1,−
j

)T
. (18)

Finally, the new cell value at timetn+1 of the approximate solution reads

U
n+1
j =

(
αn+1,−

j ,(αρ)n+1,−
j ,(αρw)n+1,−

j

)T
. (19)

We can prove that this two-step relaxation method can be equivalently rewritten in
the form of a Godunov-type finite volume scheme [7].

4 Non-linear stability of the scheme

Non-linear stability issues are usually dealt with througha so-calleddiscrete entropy
inequality, which is the discrete counterpart of the entropy inequality (5) satisfied
by the weak solutions of the model. We have the following definition:

Definition 4.1 We say that a numerical scheme satisfies a discrete entropy inequal-
ity if there exists a numerical entropy flux G(UL,UR) which is consistent with the
exact entropy fluxG = αρE w+ α p(τ)w (in the sense that G(U,U) = G (U) for all
U) such that, under some CFL condition, the discrete values(Un

j ) j∈Z,n∈N computed
by the scheme automatically satisfy

(αρE )(Un+1
j )− (αρE )(Un

j )+
∆ t
∆x

(G(Un
j ,U

n
j+1)−G(Un

j−1,U
n
j )) ≤ 0. (20)

As seen in section 3, under the CFL condition (15), the different Riemann problems
at each interface do not interact and the parametera = a j+ 1

2
can be chosen locally

interface by interface. Usually, ifa j+ 1
2

is large enough, so as to satisfy a so-called

Whitham condition (see [1]), then a discrete entropy inequality (20) is guaranteed.
In order to definea j+ 1

2
, we propose a weak Whitham-like condition that handles the

resonance phenomenon and still guarantees a discrete entropy inequality under the
CFL condition (15) (see [2] for details).
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5 Numerical tests

In this section, we run the relaxation scheme described in section 3 on a Riemann
problem that contains the standing wave associated with theconstant cross-section
α, a left-goingλ1-rarefaction wave, a sonic right-goingλ1-rarefaction wave and a
right-goingλ2-shock. The chosen pressure law is an ideal gas barotropic pressure
law p(τ) = τ−γ , with γ = 3. The left and right initial conditions are given byαL =
3.0,ρL = 1.0,wL = 0,αR = 1.0,ρR= 0.1, andwR = 0. The outcome of the relaxation
method is compared with two other numerical schemes. The first one is the classical
Rusanov scheme where the cross-sectionα is preserved throughout time:

αn+1
j := αn

j . (21)

The second one is a modification of the Rusanov scheme that consists in applying
the scheme to the whole state vectorU (including the cross-sectionα) causingα to
be dissipated:

αn+1
j := αn

j −
∆ t
∆x

(
qn

j+ 1
2
−qn

j− 1
2

)
, (22)

with qn
j+ 1

2
= −r(Un

j )(αn
j+1 −αn

j ) where the scalarr(Un
j ) is the maximal value of

the spectral radius of the Jacobian matrices(∇f +c)(Un
k) for k = j, j +1. In Figure

2, we can see that, due to a smoothing effect, the dissipationof the cross-section
α provides a notable improvement for the Rusanov scheme (see [4] and [8] for
different approaches to improve the Rusanov scheme). TheL1-norm of the error
on α, at the final timeT, vanishes as the space step∆x goes to zero (with∆ t/∆x
constant) with the orderO(∆x1/2).
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