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A Relaxation Approach for Simulating Fluid
Flows in a Nozzle

Frédéric Coquel, Khaled Saleh, Nicolas Seguin

Abstract We present here a Godunov-type scheme to simulate one-siiometh

flows in a nozzle with variable cross-section. The methosebn the construc-
tion of a relaxation Riemann solver designed to handle aksyof flow regimes,
from subsonic to supersonic flows, as well as resonant tréamflows. Some com-
putational results are also provided, in which this relexatmethod is compared
with the classical Rusanov scheme and a modified Rusanomsche
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1 Introduction

In this paper, we are interested in the numerical approxanatf the solutions of

a model describing one-dimensional barotropic flows in azlezn this model,

p andw are respectively the density and the velocity of the fluidlevhi stands
for the cross-section of the nozzle, which is assumed to hstaat in time. Under
the classical assumption thatis small with respect to a characteristic length in the
mainstream direction, the flow can be supposed to be onergimmeal and described
by the following set of partial differential equations:

dga =0,
a(ap)+dx(apw) =0, t>0,xeR, (1)
& (apw) + dx(apw?+ap(1)) — p(1)da =0,
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wheret = p~1 is the specific volume and +— p(1) is a barotropic pressure law
(satisfyingp’(1) < 0 andp”(1) > 0). System (1) takes the condensed form:

U+ dxf(U) 4 ¢c(U)oxU = 0, )

where the state vectori$ = (a,ap,apw)’. The solutions are sought in the phase
space of positive solutions defined as

Q={U=(a,ap,apw)’ e R® a > 0,ap > 0}. (3)

We recall the properties of this model:

e Property 1.1 (Hyperbolicity) System (1) admits, fot/ in Q, the following
eigenvalues

M) =0, M(U)=w—c(1), A(U)=w+c(1), (4)

where ¢7) =7,/ —p/(T). The system is hyperbolic (i.e. the corresponding eigen-
vectors spaiR®) if and only if|w| # c(1). Besides, the fields associated with the
A1 and A, eigenvalues are genuinely non-linear while the field asgedi with

Ao is linearly degenerate.

e Property 1.2 (Entropy) The entropy solutions of system (1) satisfy the following
inequality in the weak sense

o (apé&)+ox(ap&w+ap(t)w) <0 (5)

where& = ""72 +e(1) is the total energy and where the functior- e(T) is given

by €(t) = —p(7).

The Godunov scheme for this model is difficult to implementéiese the Rie-
mann problem for system (1) is hard to solve due to the nomitities of the pres-
sure law (giving rise to the genuinely non-linear acouséltig), to the absence of a
satisfactory definition of the non-conservative proda(at)dya and to the resonance
phenomenon that appears for transonic flows causing thelnmwldse hyperbolic-
ity [5]. For these reasons, we rather follow the classic@lrapch of [7] and design
an approximate Riemann solver, relying on a relaxation ogkthVith this end in
view, the solutions of system (1) are approximated by thet&wois of the following
enlarged relaxation system in the limit of a vanishing pesiparametee:

dat =0,

G (ap)f +ok(apw)é =0, t>0, xeR,
A (apw)é + d(apw? + am(t,. 7)) — (1, 7)Edkat =0,

A (apT)* +d(ap W) = = (ap)(t — T,

£
(6)
with a linearization of the pressure law giventsyr, 7) = p(.7) +a%(.7 —1). The
variable.7 is an additionnal unknown relaxing towards the specific Nwua in the
limit €\, 0, and the constara is a numerical parameter that must be taken large
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enough so as to guarantee the non-linear stability of theenigad approximation.
The state vector for the relaxation systeniWs= (a,ap,apw,ap.7)" and the
solutions are sought in the phase space

Q"' ={W=(a,ap,apw,ap7)" eR* a >0,ap>0,ap7 >0}. (7)

The following property motivates the introduction of thidaxation system

Property 1.3 (Hyperbolicity) The convective part of (6) admits, f&¥ in Q', the
following eigenvalues

oo(W) =0, 01(W) =w—ar, 02(W) = w, o3(W)=w+ar. (8)

The system is hyperbolic (i.e. the corresponding eigenv@spanR?) if and only
if |w| # at, and all the fields are linearly degenerate.

2 The Riemann problem for the relaxation system

In this section, we give the main ideas leading to the con8tm of solutions to the
Riemann problem for the convective part of the relaxaticstey (6). Being given
W, andWg two states im2", we look for solutions of

AW + oxg(W) + d(W) kW = 0, )
W(x,00=W_ if x<0 and Wgr if x>0.

As all the characteristic fields are linearly degenerate sthlution turns out to be
simpler to construct than a solution of the Riemann problenttfe equilibrium sys-
tem (1). Indeed, the solution is sought in the form of a sieffilar function consist-
ing in constant intermediate states separated by contsablinuities. The linear
degeneracy of the fields provides natural jump relationsssceach discontinuity
and yields a set of equations eventually leading to the esxpes of the wave speeds
and intermediate states. However, some issues relatee teghnance phenomenon
still need to be handled with care (see [2] for details).

We show that the solutions can be expressed in terms of theigathydata
Vi =(pL, W, 7 ) andVr = (pr,WR, -7R) (i.e.all the initial data excluding the cross-
sectiona) and of the ratio of left and right initial sectiows.= g—; More precisely,
we introduce the following quantities depending only(®h , Vg)

1 1
g._ = _ = _
W 2(WL+WR) Za(ﬂh ), (10)
= TL+}(Wﬁ_WL):TL+i(WR_WL)__1 (TR —T1L) (11)
L a 2a 2a2 ’

1 1 1
Th = TR—E(Wt—WR)=TR+§(WR—WL)+@(T¢<—TU, (12)
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wherew? has the dimension of a speed aric;lr,ﬁq the dimension of specific vol-
umes. These quantities appear in the explicit expressihe golutions and it can
be proved that these specific volumes need to be positivedier o guarantee the
positivity of the solutions. In the numerical applicatidmsvevera will be chosen
large for stability matters (see section 4) and it will alwdye possible to impose
the positivity ofrf and r& by takinga large enough.

The main result of this section is the existence theorenh®Riemann problem.

Theorem 2.1 Let W, and Wg be two positive states if2". Assume that a is such

that rlﬁ_ >0and ré > 0. Then the Riemann problem (9) admits a positive self-simila
solution whatever the ratio = g—; is.

Sketch of the proof (see [2] for details).The proof consists in the effective con-
struction of a solution. For the relaxation system, the mig&ies are not naturally
ordered because of the existence of a standing wave, andresaree phenomenon
does appear for transonic flows. Therefore, in order to coatssolutions, we inves-
tigate all admissible wave configurations (including samd supersonic ones) and
for each admissible ordering of the eigenvalues, we detersifficient conditions
on the initial state§¥, and Wg for the solution to have this particular ordering.
Eventually, we checla posteriorithat the determined conditions totally cover the
whole space of initial condition@" x Q". 0O

Figure 1 represents the map of the admissible solutionsxdiyeTheorem 2.1
with respect to the initial staté¥, andWg. The right part of the chart corresponds
to the solutions with positive material speed, while thé pefrt depicts the symmet-
ric configurations with negative material speed.

=
Ex

'ﬁR %R=71 /ﬂR=O ./ﬂL=0 .//[//L=l ,4%/11

wi<0 | wi>0

Fig. 1 Wave configuration of the solution of the Riemann problemn(@@h respect téW, andWrg.
M= ;V—TLL and.Zr = ;"TF; are the Mach numbers of the initial left and right stafésandWg. The
material wave is represented by a dashed line.
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3 Numerical approximation

In this section, we derive a numerical scheme from the rélaxapproximation
introduced in section 1, the aim being to approximate thekgehutions of a Cauchy
problem associated with system (1):

AU+ 8f(U) + (V)3 = 0,
{ U(x,0) = Up(). (13)

Let Ax be a space step arlt a time step. The space is partitioned into c&lls-

U Cj with Cj = [x; 13X wherex; 1 = (j+ 1)Axare the cell interfaces. At the
jez
discrete times" = nAt, the solution of (13) is approximated on each €llby a

i+l

T
constant value denoted By = (aj”, (ap)f, (apw)’j‘) . We now describe the two-

step splitting method associated with the relaxation sy¢® in order to calculate
the values of the approximate solution at titiie! (U?*l)jez from those at time".

Step 1: Time evolutioft" — t™17)

We first introduce the piecewise constant approximate isolaff the relaxation sys-

temattime": x— W(x,t") = Wi'in Cj with Wi = (a}‘, (ap)f, (apw)f, (apﬂ)?) ,

where 7" := 1}, i.e. W] is at equilibrium. Then, the following Cauchy problem is

exactly solvedfor t € [0, At] with At small enough (see condition (15) below)

{QLWMXQ(W)M(W)@XW_ 0, 14
W(x,0) = W(x,t").

Since the initial conditiorx — W(x,t") is piecewise constant, the exact solution
of (14) is obtained by gluing together the solutions of therRann problems set
at each cell interface, ey provided that these solutions do not interact during the

periodAt, i.e. prowded the following classical CFL condition

At 1
7x MaNai(W)] < 3,

T 5 1€{0....3}, (15)

for all W under consideration. More precisely(¥t) is in [x;j,Xj+1] x [0,At], then

X—Xjt1/2

W(x,t) =W, ( .

84172, W] WJH) (16)
where(x,t) — W, (’f‘;a,WL,WR) is the self-similar solution of the Riemann prob-
lem constructed in section 1, which clearly depends on tbal lohoice of the pa-

rameteia. Then, in order to define a piecewise constant approximaiésoat time
t"1- the solutionW(x,t) is averaged on each c€l| at timeAt:
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1 e .

W(x L) = Wt ::E(/X‘*2W(X,At)d>g ¥xeCj, Vjez. (17)
1

=2

Step 2: Instantaneous relaxatigf ™~ — t™+1)

The second step consists in sending zero instantaneously in the piecewise con-
stant functionW(x,t"*1~) obtained at the end of the first step. This amounts to
imposing7""*:= ", thus we have

-
Wit = (ot (ap) T (apw) A ) (18)
Finally, the new cell value at tim&+* of the approximate solution reads
T
1,- 1,- 1,-
U= (ot (@) (apw) ) (19)

We can prove that this two-step relaxation method can bevalgumtly rewritten in
the form of a Godunov-type finite volume scheme [7].

4 Non-linear stability of the scheme

Non-linear stability issues are usually dealt with throagio-calledliscrete entropy
inequality, which is the discrete counterpart of the entropy inequ#h) satisfied
by the weak solutions of the model. We have the following digdin:

Definition 4.1 We say that a numerical scheme satisfies a discrete entreguat-
ity if there exists a numerical entropy fluX@_, Ur) which is consistent with the
exact entropy flug¢ = ap&w+ ap(1)w (in the sense that @, U) = ¢ (U) for all
U) such that, under some CFL condition, the discrete Va(iﬂ%"?;jgz,ngN computed
by the scheme automatically satisfy

(ap&) (U — (aps)(UT) + %(G(UT,U?H) —G(U} ,,UN) <0.  (20)

As seen in section 3, under the CFL condition (15), the difieRiemann problems

at each interface do not interact and the paran&ateaH% can be chosen locally
interface by interface. Usually, ﬁH% is large enough, so as to satisfy a so-called
Whitham condition (see [1]), then a discrete entropy inéitué?0) is guaranteed.

In orderto definaH%, we propose a weak Whitham-like condition that handles the
resonance phenomenon and still guarantees a discret@gniamuality under the
CFL condition (15) (see [2] for details).
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5 Numerical tests

In this section, we run the relaxation scheme describeddticse3 on a Riemann
problem that contains the standing wave associated witbdhstant cross-section
a, a left-goingA;-rarefaction wave, a sonic right-goirdg-rarefaction wave and a
right-goingAz-shock. The chosen pressure law is an ideal gas barotrogssyme
law p(t) = 1Y, with y= 3. The left and right initial conditions are given by =
3.0,0. =1.0,w =0,ar=1.0,pr=0.1, andwg = 0. The outcome of the relaxation
method is compared with two other numerical schemes. Thefiksis the classical
Rusanov scheme where the cross-seatias preserved throughout time:

alt=af. (21)
The second one is a modification of the Rusanov scheme thaist®im applying
the scheme to the whole state vedibfincluding the cross-sectiom) causinga to
be dissipated:

At
ntl._ on_ n __4n
)i af 7 (g = ). (22)
with q?+% = —r(Uf)(a},; — af') where the scalar(UY) is the maximal value of

the spectral radius of the Jacobian matri@es+ c)(Uy) for k= j, j + 1. In Figure
2, we can see that, due to a smoothing effect, the dissipafitime cross-section
o provides a notable improvement for the Rusanov scheme @eanfl [8] for
different approaches to improve the Rusanov scheme).Lfheorm of the error
on a, at the final timeT, vanishes as the space siftp goes to zero (withAt /Ax
constant) with the ordef’ (Ax!/?).

Acknowledgements The second author receives a financial support by ANRT thr@rgEDF-
CIFRE contract 529/2009. Computational facilities werevited by EDF. The third author is
partially supported by the LRC Manon (Modélisation et Appmation Numérique Orientées pour
I’energie Nucléaire — CEA/DM2S-LJLL).

References

1. F. BouchutNonlinear Stability of Finite Volume Methods for Hyperledionservation Laws
Birkhauser. Frontiers in Mathematics. 2004.

2. F. Coquel, K. Saleh, N. Seguin. Relaxation and numerjgataximation for fluid flows in a
nozzle.Preprint to be published.

3. C. M. Dafermos.Hyperbolic Conservation Laws in Continuum Physi€pringer-Verlag.
Grundlehren der mathematischen Wissenschaftei325. 2000.

4. L. Girault, J-M. Hérard. A two-fluid hyperbolic model irparous mediumVi2AN, Vol 44(6),
pp 1319-1348, 2010.

5. P. Goatin, P.G. LeFloch. The Riemann problem for a classsafnant hyperbolic systems of
balance lawsAnn. Inst. H. Poincaré Anal. Non Linéaire 210 6, pp 881-902, 2004.

6. E. Godlewski, P-A. RaviarNumerical Approximation of Hyperbolic Systems of Congéraa
Laws Springer-Verlag. Applied Mathematical Sciencésl 118. 1996.



Cross-section

Frédéric Coquel, Khaled Saleh, Nicolas Seguin

Mach number

35 15
L 4 / |
2,5
2,
L 0,5 4
1,5
1 0
0,5 | | | | | | | | L | |
' 0.4 0.2 0 0.2 0, 0.4 0.2 0 0.2 04
v v
Velocity Density
15
1 F
0,5
ot 0,5 I J
_0'5,
| | | | 0 | | | L | L
04 02 0 0,2 0, 0,4 0.2 0 0,2 0,4
Mass flux
1,
0,5
OIHFEJ me
_0'5 -
-0 5 | | | L _ | | | |
05—2%3 02 02 04 T4 02 04

o

Xo
o
N

Fig. 2 Solution of the Riemann problem at tiffe= 0.2. Space steglx = 10~°. Straight line:
relaxation scheme, circles: classical Rusanov scheraagtes: Rusanov scheme with dissipation

of the cross-section.

7. A.Harten, P.D. Lax & B. Van Leer. On upstream differencamgl Godunov-type schemes for
hyperbolic conservation law§&omm. Math. Sciol 1. pp 763-796. 2003.
8. D. Kroner, M.D. Thanh. Numerical solution to compressitiows in a nozzle with variable
cross-sectionSIAM J. Numer. AnalVol 43(2), pp 796-824, 2006.
9. P.G. LeFloch, M.D. Thanh. The Riemann problem for fluid 8awa nozzle with discontin-

uous cross-sectiotomm. Math. ScMol 1, pp 763-796, 2003.

The paper is in final form and no similar paper has been or isggibmitted elsewhere.



