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Abstract

Elementary Hodge decompositions break down any vector field into a sum of a gradient field and
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1 Introduction
The elementary Hodge decomposition on a compact Riemannian manifold writes any vector field as a
sum of a gradient field and a vector field whose divergence vanishes. In some sense, this decomposition
corresponds to the Riemannian probability distribution ` and can be extended to any other probability
measure admitting a positive and smooth density with respect to `, with its corresponding skewed
divergence, see Theorem 1 below. An interest of this extension is to explain why in the variational
formulation of Benamou and Brenier [4] of the Wasserstein distance, only gradient fields are needed.

Our main goal here is to transpose this decomposition to the finite Markov process setting, see
Theorem 8 in Section 3, via some geometric definitions inspired by Kenyon [9], interpreting 1-forms
as anti-symmetric functions on the oriented edges of the underlying graph. The main difference with
the continuous situation turns out to be that the two-sided flow of diffeomorphisms generated by a
vector field has to be replaced by a one-sided flow on probability measures generated by some non-
linear Markov generators. It will enable us to revisit the works of Maas [10] and Erbar and Maas [7]
on optimal transport for finite Markov processes. Denote P`pV q the set of all probability measures
on the finite state space V giving a positive weight to all its points. We will see furthermore that
any smooth mapping P`pV q Q ρ ÞÑ Lρ, where Lρ is an irreducible Markov generator admitting ρ
as reversible measure, leads to a Riemannian structure on P`pV q which is natural in the context of
finite optimal transport. But we will check that not all Riemannian structures on P`pV q are of this
Markovian form, except when V has only two points.

The above decompositions are said to be “elementary Hodge” because they can be seen as gener-
alizations of the Helmholtz decomposition, see for instance Section 3.44 of Rutherford [2], while being
less involved that the Hodge decomposition exposed e.g. in Chapter 6 of Warner [13] or in Bertin,
Demailly, Illusie, and Peters [5].

The plan of this note is as follows. In the next section we recall in details the elementary Hodge
decompositions relative to “nice” probability measures on compact Riemannian manifolds, since we
did not find a pedagogical exposition in the literature. This point of view is transferred to finite
irreducible and reversible Markov processes in Section 3, which leads to the introduction of Markov-
Riemannian metrics. The paper finishes with two appendices. One dealing, on finite state spaces, with
a continuity property of the solutions to Poisson equations, which are at the heart of the elementary
Hodge decompositions. The second appendix computes a Metropolis-Riemann distance on the two
point state space.

Acknowledgments: I would particularly like to thank Jérôme Bolte and Stéphane
Villeneuve for the discussions we had about this paper, and Thăng Lê for finding mistakes in a first
version.

2 The compact Riemannian manifold setting
A reminder of the elementary Hodge decomposition of vector fields is presented here, which will serve
as a guide for the extension to the finite state space framework.

Consider M a compact and connected Riemannian manifold. Denote TM “
Ů

xPM TxM the
corresponding tangent space, where TxM is the tangent space above x PM . Let ΣpTMq be the set of
tangent vector fields on M , namely the smooth sections from M to TM .

Denote P`pMq the set of probability measures ρ on M admitting a smooth and positive density,
still denoted ρ, with respect to the Riemannian probability measure `. For any ρ P P`pMq, we see
ΣpTMq as a tangent space above ρ and we endow it with the scalar product xx¨, ¨yyρ given by

@ b, b1 P ΣpTMq,
@@

b, b1
DD

ρ
B

ż

M

@

b, b1
D

x
ρpdxq
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(where x¨, ¨yx in the scalar product in the tangent space TxM). This introduces a notion of ρ-
orthogonality on ΣpTMq.

Given a smooth function U : M Ñ R, the Riemannian gradient ∇U of U is an example of vector
field. We denote G their set as U runs through all smooth functions. It appears that G is a linear
sub-bundle of ΣpTMq.

A vector field b P ΣpTMq is said to leave ρ P P`pMq invariant, if

@ t ě 0, ϕtpρq “ ρ

where pϕtqtPR is the flow generated by b and where for any t ě 0, ϕtpρq is the push-forward of ρ by
ϕt. Denote by Ipρq the set of b P ΣpTMq leaving ρ invariant.

Here is the statement of the elementary Hodge ρ-decomposition of ΣpTMq:

Theorem 1 For any ρ P P`pMq, we have

ΣpTMq “ G ‘ Ipρq

where the terms of the r.h.s. are ρ-orthogonal.

Before giving proof of this decomposition, let us recall a computational characterization of Ipρq.
For any ρ P P`pMq, denote divρ the ρ-skewed divergence defined by

@ b P ΣpTMq, divρpbq B
1

ρ
divpρbq

where divp¨q is the usual Riemannian divergence. The corresponding ρ-skewed Laplacian 4ρ is defined
similarly

@ f P C8pMq, 4ρpfq B divρp∇fq
“ 4pfq ` x∇ lnpρq,∇fy

where 4 is the Laplace-Beltrami operator. The second order operator 4ρ has several names, de-
pending in the context in which it is used: the generalized Ornstein-Uhlenbeck diffusion generator
in probability theory, the over-damped Langevin operator in analysis and the Witten Laplacian in
geometry (especially concerning its extensions to differential forms).

The interest of ρ-skewed divergence is the well-known:

Lemma 2 For any fixed ρ P P`pMq, we have for any b P ΣpTMq,

b P Ipρq ô divρpbq “ 0

Proof
This is a simple consequence of Stokes’ theorem. Indeed, ρ P P`pMq and b P ΣpTMq being fixed,
denote ρt B ϕtpρq for any t ě 0. We have that ρ P Ipρq if and only if for any test function f P C8pMq,

@ t ě 0, ρtrf s “ ρrf s

or equivalently

@ t ě 0, Btρtrf s “ 0

It leads us to compute Bt|t“0ρtrf s, since Btρtrf s can be computed similarly at any time t ě 0,
replacing ρ by ρt (which is well-known to belong to P`pMq too).
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We have by definition of the flow,

Bt|t“0ρtrf s “ Bt|t“0

ż

fpϕtpxqq ρpdxq

“

ż

xb,∇fy dρ

“

ż

xρb,∇fy d`

“ ´

ż

divpρbqf d`

“ ´

ż

divρpbqf dρ

Since the density ρ is positive, this expression vanishes for all f P C8pMq if and only divρpbq “ 0,
as desired. �

We can now come to the

Proof of Theorem 1
The elements ρ P P`pMq and b P ΣpTMq being fixed, we consider the Poisson equation in U :

"

4ρpUq “ divρpbq
`rU s “ 0

(1)

This equation is well-known to admit a unique solution if and only if ρrdivρpbqs “ 0. We compute

ρrdivρpbqs “

ż

divρpbq dρ

“

ż

divpρbq d`

“ 0

where Stokes’ theorem has been invoked again.
Consider U the unique solution of (1) and define β B b´∇U . We have

divρpβq “ divρpb´∇Uq
“ divρpbq ´4ρpUq

“ 0

by construction of U .
It remains to check that for any ∇U P G and any β P Ipρq are ρ-orthogonal. We compute

xx∇U, βyyρ “

ż

x∇U, βy dρ

“

ż

x∇U, ρβy d`

“ ´

ż

divpρβqU d`

“ ´

ż

divρpβqU dρ

“ 0

�
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Remark 3 Let us come back to the solution U of the Poisson equation (1), for given ρ P P`pMq and
b P ΣpTMq. For x PM , consider pXρ

xpsqqsě0 a diffusion of generator Lρ starting from x. We have the
probabilistic representation

Upxq “ ´

ż `8

0
ErdivρpbqpX

ρ
xqpsqs ds (2)

where the integrant converges exponentially fast to 0 with respect to s, as the spectral gap of 4ρ can
be bounded below uniformly in terms of the supremum norm of lnpρq (see also Appendix A, where
this property will be developed in the finite state space setting).

Girsanov formula relates explicitly the law of Xρ
xr0, ss B pX

ρ
xpuqquPr0,ss to that of the Riemannian

Brownian motion X1
x r0, ss, for any s ě 0, by stating that for any measurable bounded function F on

the M -valued trajectories over the time interval r0, ss,

ErF pXρ
xr0, ssqs

“ E
„

F pX1
x r0, ssq exp

ˆ
ż s

0

@

∇ lnpρqpX1
x pvqq, dX

1
x pvq

D

´
1

2

ż s

0
|∇ lnpρqpX1

x pvqq|
2 dv

˙

“ E
„

F pX1
x r0, ssq exp

ˆ

lnpρqpX1
x psqq ´ lnpρqpxq ´

1

2

ż s

0
4 lnpρqpX1

Xpvqq ` |∇ lnpρqpX1
x pvqq|

2 dv

˙

(where the scalar product and the norms are taken above X1
Xpvq).

In conjunction with (2), it can be deduced that the mapping P`pMq Q ρ ÞÑ U P C8pMq is regular,
when P`pMq is endowed with the topology inherited from C8pMq. ˝

Let us give a classical consequence of the elementary Hodge decomposition of Theorem 1 concerning
the introduction of a (infinite-dimensional) Riemannian-like structure on P`pMq as in Ambrosio, Gigli
and Savaré [1].

A (smooth) curve r0, 1s Q t ÞÑ ρt P P`pMq (for the topology inherited from C8pMq) is said to be
generated by a (smooth) curve r0, 1s Q t ÞÑ bt P ΣpTMq of vector fields when

@ t P r0, 1s, ρt “ ϕtpρ0q (3)

where the time-inhomogenous flow pϕtqtPr0,1s is defined through

@ t P r0, 1s, @ x PM,
d

dt
ϕtpxq “ btpϕtpxqq

(starting with ϕ0 being the identity mapping).
When there is a (smooth) curve r0, 1s Q t ÞÑ Ut P C8pMq of smooth functions such that furthermore

@ t P r0, 1s, bt “ ∇Ut

we say pρtqtPr0,1s is generated by a (smooth) curve of gradient fields.
Generation by vector fields is in fact equivalent to generation by gradient fields:

Proposition 4 Assume that pρtqtPr0,1s is generated by the vector field curve pbtqtPr0,1s. Then it is
also generated by the gradient field curve p∇UtqtPr0,1s, where for any t P r0, 1s, ∇Ut comes from the
elementary Hodge decomposition of bt above ρt:

bt “ ∇Ut ` βt

with βt P Ipρtq. Furthermore p∇UtqtPr0,1s is the only gradient field curve generating pρtqtPr0,1s.
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Proof
Taking into account Remark 3, we get r0, 1s Q t ÞÑ ∇Ut is as smooth as r0, 1s Q t ÞÑ bt.

Denote by prρtqtPr0,1s the flow generated by the gradient fields p∇UtqtPr0,1s. Consider a test function
f P C8pMq, we have for any t P r0, 1s,

Btρtrf s “ Bt

ż

fpϕtpxqq ρpdxq

“

ż

xbt,∇fyϕtpxq ρpdxq

“

ż

xbt,∇fyx ρtpdxq

“ ´

ż

fdivρtpbtq dρt

“ ´

ż

fdivρtp∇Utq dρt (4)

“ Btrρtrf s

By integration, it follows that pρtqtPr0,1s coincides with prρtqtPr0,1s.
Assume there is another gradient field curve p∇rUtqtPr0,1s generating pρtqtPr0,1s. According to (4),

we have for any t P r0, 1s and any test function f P C8pMq,
ż

fdivρtp∇Utq dρt “

ż

fdivρtp∇rUtq dρt

It follows that for any given t P r0, 1s,
ż

A

∇f,∇pUt ´ rUtq
E

dρt “ 0

so that taking f “ Ut ´ rUt, we get ∇pUt ´ rUtq “ 0. Since this is true for any t P r0, 1s, it means the
two gradient field curves p∇UtqtPr0,1s and pr∇UtqtPr0,1s coincide. �

Remark 5 To make evolve the boundary BA of a smooth domain A in M , one usually resorts
to a T pMq-valued vector field on BA and “pushes the boundary points” according to this vector
field. It is well-known, see e.g. Mantegazza [11], that it is sufficient to consider vector fields that are
normal to BA, because their tangential components leave BA invariant (and just act as an infinitesimal
reparametrization). Proposition 4 is a result analogous to this orthogonal decomposition of vector fields
on BA into normal and tangential components. In fact we believe that both the elementary Hodge
decomposition and the normal and tangential decomposition are two instances of a more general result
for measures on M (where BA would be identified with the Hausdorff trace of ` on BA) that is outside
the scope of the present note. ˝

To go in the direction of a Riemannian-type distance on P`pMq, we have to define the length of a
curve. We start by associating to ρ0 P P`pMq and to a curve of vector fields pbtqtPr0,1s the quantity

Lpρ0, pbtqtPr0,1sq B

d

ż 1

0
}bt}

2
ρt
dt (5)

where pρtqtPr0,1s is deduced from ρ0 and pbtqtPr0,1s via (3).
Next, if pρtqtPr0,1s is a curve in P`pMq, we define

LppρtqtPr0,1sq B inf
 

Lpρ0, pbtqtPr0,1sq : pbtqtPr0,1s P BppρtqtPr0,1sq
(

(6)

where BppρtqtPr0,1sq stands for the set of vector field curves generating pρtqtPr0,1s.
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Lemma 6 Let pρtqtPr0,1s be a curve in P`pMq generated by a vector field curve. Consider p∇UtqtPr0,1s
the unique gradient field curve generating pρtqtPr0,1s according to Proposition 4. We have

LppρtqtPr0,1sq “ Lpρ0, p∇UtqtPr0,1sq

Proof
Consider any vector field curve pbtqtPr0,1s generating pρtqtPr0,1s and decompose it as in Proposition 4.
The orthogonality property of Theorem 1 then shows that

@ t P r0, 1s, }bt}
2
ρt

“ }∇Ut}2ρt ` }βt}
2
ρt

implying that

Lpρ0, pbtqtPr0,1sq ě Lpρ0, p∇UtqtPr0,1sq

This shows that the infimum of (6) is attained at the unique gradient field generating pρtqtPr0,1s. �

The last step in constructing a Riemannian-like distance D on P`pMq is to define, for any ρ0, ρ1 P
P`pMq,

Dpρ0, ρ1q B inftLppρtqtPr0,1sq : pρtqtPr0,1s P Rpρ0, ρ1qu

where Rpρ0, ρ1q is the set of curves in P`pMq, starting at ρ0 and ending at ρ1, and generated by
vector field curves. Lemma 6 shows that in this definition, it is sufficient to consider gradient field
curves, thus enabling us to recover the variational formulation of Benamou and Brenier [4] in terms of
gradient field curves. It turns out that D is a Wasserstein distance, but we will not go further in this
direction.

3 The finite Markov process setting
We propose here a version of Theorem 1 valid for finite Markov processes (as a first step toward a full
Markov process extension?).

The Riemannian structure of M can be entirely encapsulated into the Laplace-Beltrami operator
4. By analogy, a finite framework consists in an irreducible Markov generator L B pLpx, yqqx,yPV
whose invariant probability π is supposed to be reversible. Denote V the underlying finite state space.
It is endowed with a graph structure, by defining its edge set as

E B tpx, yq P V 2 : Lpx, yq ą 0u (7)

Note that the edges are directed and that by reversibility we have

@ x, y P V, px, yq P E ô py, xq P E

Thus it could be tempting to consider the corresponding set of undirected edges. It is more
convenient to choose an orientation for any undirected edge. More precisely we consider a set ~E Ă E,
such that for any px, yq P E, either px, yq P ~E or py, xq P ~E, but not both px, yq and py, xq belong to ~E.

A function F : E Ñ R is said to be a vector field if and only if

@ px, yq P E, F px, yq “ ´F py, xq

We denote by ΣpEq the set of vector fields on the graph pV,Eq. Note that it is in natural bijection
with R ~E the set of mapping from ~E to R. This definition is inspired by Kenyon [9] (see also Remark 12
below). The latter paper also writes L in a form analogous to 4 “ div ˝∇ in the Riemannian setting.
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More precisely, given a function f : V Ñ R (whose space is denoted RV ), define the gradient of f as
the vector field given by

@ px, yq P E, ∇fpx, yq B fpyq ´ fpxq (8)

Endow V with the probability measure π and ~E with the measure µ defined by

@ px, yq P ~E, µpx, yq B πpxqLpx, yq (9)

The operator ∇ can be seen as going from L2pπq to L2pµq. By definition, the divergence div is
the opposite of the adjoint operator to ∇. Then we can write again:

L “ div ˝∇ (10)

Denote G the set of vector fields which are gradients.
Pursuing our analogies with the Riemannian case, let P`pV q stands for all probability measures

giving a positive weight to all points of V . Consider F P ΣpEq, to make it act on elements of P`pV q,
consider the Markov generator LF associated to F via

@ x ‰ y P V, LF px, yq B F`px, yqLpx, yq (11)

where we adopt the convention

@ px, yq R E, F px, yq “ 0 (12)

and where F`px, yq stands for the non-negative part of F px, yq (the entries of the diagonal of LF are
such that the row sums all vanish).

Remark 7 The Markov processes XF generated by LF mimick, as much as possible, dynamical
systems generated by vector fields. In particular edges can be crossed only in one direction. Note that
if F is a gradient ∇f , then the jumps of XF (strictly) increase f and it follows that XF converges in
finite but random time toward a (random) local maxima of f . Recall that x P V is a local maxima
for f (with respect to the neighborhood structure given by E) when for any px, yq P E, we have
fpyq ď fpxq. ˝

The Markov generator LF enables to associate to F the flow pϕtqtě0 acting on P`pV q via

@ ν P P`pV q, @ t ě 0, ϕtpνq B ν expptLF q (13)

Contrary to the Riemannian case, we cannot consider negative times if we want to stay in P`pV q.
The other major difference is that there is no underlying dynamical system acting on the points of V .
Instead, it must be replaced by the Markov process generated by LF (whose time-marginal distribution
are the pϕtpνqqtě0 when the initial distribution is ν).

We say that a vector field F P ΣpEq leaves our fixed reversible probability π invariant if and only
if

@ t ě 0, ϕtpπq “ π

Denote again by Ipπq the set of F P ΣpEq leaving π invariant.
Let us define a scalar product on ΣpEq, seen as a tangent space to P`pV q above π P P`pV q, to get

a notion of π-orthogonality. We define the scalar product xx¨, ¨yyπ on ΣpEq through

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

π
“

ÿ

xPV

@

F, F 1
D

x
πpxq

where

@ x P V, @ F, F 1 P ΣpEq,
@

F, F 1
D

x
B

ÿ

yPV ztxu

F px, yqF 1px, yqLpx, yq
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Namely, we have

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

π
“

ÿ

x‰yPV

F px, yqF 1px, yqπpxqLpx, yq

(this quantity can also be identified with 2 xF, F 1yL2pµq, where µ is defined in (9)).
We have the analogue of Theorem 1, but restricted to the probability π:

Theorem 8 We have

ΣpEq “ G ‘ Ipπq

where the terms of the r.h.s. are π-orthogonal.

Let us compute the divergence, as in Kenyon [9], who used the following explicit form to deduce (10).

Lemma 9 We have for any F P ΣpEq:

@ x P V, divpF qpxq “
ÿ

yPV

F px, yqLpx, yq (14)

Proof
Consider a test function f P RV . We have

µrF∇f s “
ÿ

px,yqP ~E

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

px,yqPE

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

x,yPV

F px, yqpfpyq ´ fpxqqπpxqLpx, yq

“
1

2

ÿ

x,yPV

F px, yqfpyqπpxqLpx, yq ´
1

2

ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

Note that by reversibility and by definition of a vector field,
ÿ

x,yPV

F px, yqfpyqπpxqLpx, yq “
ÿ

x,yPV

F px, yqfpyqπpyqLpy, xq

“ ´
ÿ

x,yPV

F py, xqfpyqπpyqLpy, xq

“ ´
ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

thus we get

µrF∇f s “ ´
ÿ

x,yPV

F px, yqfpxqπpxqLpx, yq

“ ´
ÿ

xPV

πpxqfpxq
ÿ

yPV

F px, yqLpx, yq

The desired formula follows. �

We deduce the analogue of Lemma 2, at least for ρ “ π:
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Lemma 10 We have for any F P ΣpEq,

F P Ipπq ô divpF q “ 0

Proof
Consider a vector field F satisfying divpF q “ 0. It is equivalent to the fact that for any f P RV , we
have πrfdivpF qs “ 0. We compute, taking into account the convention (12), the reversibility of π for
L and the anti-symmetry of F ,

πrfdivpF qs “
ÿ

x,yPV

πpxqLpx, yqF px, yqfpxq

“ ´
ÿ

x,yPV

πpyqLpy, xqF py, xqfpxq

“ ´
ÿ

x,yPV

πpxqLpx, yqF px, yqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF px, yqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`px, yqfpyq `
ÿ

x‰yPV

πpxqLpx, yqF´px, yqfpyq

where F´px, yq B ´minpF px, yq, 0q is the non-positive part of F px, yq. By definition of LF , the first
sum is equal to

ÿ

x‰yPV

πpxqLF px, yqfpyq “ πrLF rf ss ´
ÿ

xPV

πpxqLF px, xqfpxq

We compute
ÿ

xPV

πpxqLF px, xqfpxq “ ´
ÿ

xPV

πpxqfpxq
ÿ

y‰x

LF px, yq

“ ´
ÿ

xPV

πpxqfpxq
ÿ

y‰x

F`px, yqLpx, yq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`px, yqfpxq

“ ´
ÿ

x‰yPV

πpyqLpy, xqF`py, xqfpyq

“ ´
ÿ

x‰yPV

πpxqLpx, yqF`py, xqfpyq

Since F is a vector field, we have

@ x, y P V, F`py, xq “ F´px, yq

Putting together the above computations, we end up with

πrfdivpF qs “ ´πrLF rf ss (15)

and the desired equivalence follows. �

Now we have at our disposal all the ingredients necessary to the

Proof of Theorem 8
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The arguments are exactly the same as those of the proof of Theorem 1. The vector field F P ΣpEq
being fixed, we consider the Poisson equation in U :

"

LpUq “ divpF q
πrU s “ 0

(16)

This equation is well-known to admit a unique solution if and only if πrdivpF qs “ 0. From (15)
and writing 1 for the constant function taking the value 1, we get

πrdivpF qs “ ´πrLF r1ss

“ 0

Consider U the unique solution of (16) and define G B b´∇U . We have

divpGq “ divpF ´∇Uq
“ divpF q ´ LpUq

“ 0

by construction of U .
It remains to check that for any ∇U P G and any G P Ipπq are π-orthogonal. By definition we

have

xx∇U,Gyyπ “
ÿ

x,yPV

pUpyq ´ UpxqqGpx, yqπpxqLpx, yq

By symmetry, we have
ÿ

x,yPV

UpyqGpx, yqπpxqLpx, yq “ ´
ÿ

x,yPV

UpxqGpx, yqπpxqLpx, yq

so that

xx∇U,Gyyπ “ ´2
ÿ

x,yPV

UpxqGpx, yqπpxqLpx, yq

“ ´2πrUdivpGqs

“ 0

�

Of course, Theorem 8 can be extended to any ρ P P`pV q, it is sufficient to be given a corresponding
irreducible generator Lρ admitting ρ as reversible probability measure and to consider all the above
related notions. Let us assume that the corresponding graph pV,Eq remains the same, which amounts
to assuming there is a function ρ : E Ñ p0,`8q such that

@ px, yq P V 2, x ‰ y, Lρpx, yq “ ρpx, yqLpx, yq

(when px, yq R E, x ‰ y, the values of ρpx, yq are irrelevant since Lpx, yq “ 0, we can take for instance
ρpx, yq “ 0). The reversibility of ρ is equivalent to

@ px, yq P E, δρpxqρpx, yq “ δρpyqρpy, xq (17)

where δρ is the density of ρ with respect to π:

@ x P V, δρpxq B
ρpxq

πpxq

11



Remark 11 Maas in [10] also “extends” the probability ρ into a function ρ of two variables of the
state space (rather corresponding to the sides of (17)). He makes further assumptions, in particular
that there exists a function θ : p0,`8q2 Ñ p0,`8q such that ρpx, yq “ θpρpxq, ρpyqq, which are not
necessary for our purposes. ˝

The definition of the gradient remains the same, but in (9) we have to consider

@ px, yq P ~E, µρpx, yq B ρpxqLρpx, yq

with the corresponding notion of divergence divρ, so that Lρ “ divρ ˝∇.
Definition (11) has to be replaced by

@ x ‰ y P V, Lρ,F px, yq B pF px, yqq`Lρpx, yq “ pF px, yqq`ρpx, yqLpx, yq (18)

The set Ipρq can be seen as the set of vector fields F leaving ρ invariant, with respect to the linear
flow pϕρ,tqtě0 defined, as in (13), by

@ ν P P`pV q, @ t ě 0, ϕtpνq B ν expptLρ,F q

but it seems more natural (cf. (24) below) to see Ipρq as the set of vector fields F leaving ρ invariant,
with respect to the non-linear flow pψtqtě0 described by its evolution:

@ ν P P`pV q, @ t ě 0, Btψtpνq “ ψtpνqLψtpνq,F (19)

(and starting with ψ0pνq “ ν). This non-linearity is a true discrepancy with respect to the Riemannian
situation.

Remark 12 The fact that Definition (8) does not depend on L nor ρ, suggests, as in Kenyon [9],
that it corresponds more to a 1-form than to a gradient, in analogy with differential geometry, where
the differential of a function does not depend on the Riemannian structure, contrary to the gradient.
Thus it seems Hodge decompositions would be more natural for differential form fields than for vector
fields. In the Riemannian setting, vector fields are important to describe corresponding dynamical
systems, reason why we prefer to work with them. In the finite Markov setting, this link is distorted
by the mapping F ÞÑ Lρ,F , so we should probably adopt the 1-form terminology. ˝

Finally the scalar product xx¨, ¨yyρ on ΣpEq should be defined through

@ F, F 1 P ΣpEq,
@@

F, F 1
DD

ρ
“

ÿ

x‰yPV

F px, yqF 1px, yqρpxqLρpx, yq (20)

leading to the notion of ρ-orthogonality on ΣpEq.
With these definitions, Theorem 8 extends immediately into

Theorem 13 For any ρ P P`pV q, we have

ΣpEq “ G ‘ Ipρq

where the terms of the r.h.s. are ρ-orthogonal.

Another difference with the Riemannian case is the choice of the Lρ for ρ P P`pV q, role which
previously were “naturally” played the 4ρ for ρ P P`pMq. A classical choice is to consider the
Metropolis generators, which corresponds to

@ ρ P P`pV q, @ px, yq P E, ρpx, yq “ min

ˆ

1,
ρpyqπpxq

πpyqρpxq

˙

“ min

ˆ

1,
δρpyq

δρpxq

˙

(21)

12



which satisfies (17), since

@ px, yq P E, δρpxqρpx, yq “ minpδρpxq, δρpyqq (22)

(there is a relation between this construction of Lρ from L and ρ and that of 4ρ from 4 and ρ, since
they both correspond to the minimization of some trajectorial entropy, see [6]).

The favorite choice of Erbar and Maas [7], to extend the notions of Ricci lower bounds and their
consequences for functional inequalities of finite Markov processes, is

@ ρ P P`pV q, @ px, yq P E, δρpxqρpx, yq “
δρpyq ´ δρpxq

lnpδρpyqq ´ lnpδρpxqq
(23)

Whatever the choice, some regularity of the mapping P`pV q Q ρ ÞÑ Lρ P RVˆV must be assumed
for the considerations of Remark 3 to hold (for more details in this respect see the following appendix).
For instance let us assume this mapping is locally Lipschitzian (seeing P`pV q as a subset of p0, 1qV ),
condition which also insures the needed local existence and uniqueness of the solution to (19). Note
that both (22) and (23) satisfy this condition. Proposition 4 and Lemma 6 are then also valid in the
finite setting, via the same proofs. Indeed, it is sufficient to extend the notion of generation by vector
or gradient field curves via: a continuous curve r0, 1s Q t ÞÑ ρt P P`pV q is said to be generated by a
continuous curve r0, 1s Q t ÞÑ Ft P ΣpEq of vector fields when

@ t P r0, 1s, 9ρt “ ρtLρt,Ft (24)

We say furthermore that r0, 1s Q t ÞÑ ρt P P`pV q is generated by a continuous gradient field
curve, when Ft belongs to G for all t P r0, 1s. Then Proposition 4 and Lemma 6 extend literally to
the finite Markov setting.

More precisely, we are led to introduce as in (5), for any ρ0 P P`pV q and any continuous curve
r0, 1s Q t ÞÑ Ft P ΣpEq of vector fields,

Lpρ0, pFtqtPr0,1sq B

d

ż 1

0
}Ft}

2
ρt
dt

where pρtqtPr0,1s is the solution of (24). Next, as in (6), when pρtqtPr0,1s is a continuous curve in P`pMq,
we define

LppρtqtPr0,1sq B inf
 

Lpρ0, pFtqtPr0,1sq : pFtqtPr0,1s P BppρtqtPr0,1sq
(

where BppρtqtPr0,1sq stands for the set of continuous vector field curves generating pρtqtPr0,1s.
We get then that if BppρtqtPr0,1sq ‰ H, then

LppρtqtPr0,1sq “ Lpρ0, p∇UtqtPr0,1sq

where p∇UtqtPr0,1s is the unique gradient field curve generating pρtqtPr0,1s. By the usual convention,
when BppρtqtPr0,1sq “ H, we take LppρtqtPr0,1sq “ `8.

Following a traditional path, we construct a Riemannian-like distance D on P`pMq by defining,
for any ρ0, ρ1 P P`pMq,

Dpρ0, ρ1q B inftLppρtqtPr0,1sq : pρtqtPr0,1s P Rpρ0, ρ1qu (25)

where Rpρ0, ρ1q is the set of continuous curves in P`pMq, starting at ρ0 and ending at ρ1.
To check this distance takes finite values, we have to show that Rpρ0, ρ1q contains at least one

curve generated by a continuous vector field. The following result is the main step in this direction.
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Lemma 14 Let be given ρ P P`pV q and a signed measure η P HpV q with

HpV q B

#

η B pηpxqqxPV P RV :
ÿ

xPV

ηpxq “ 0

+

Then there exists a unique function U P RV with
ř

xPV Upxq “ 0 and such that

η “ ρLρ,∇U (26)

Furthermore the mapping pρ, ηq ÞÑ U is continuous.

Proof
Equation (26) amounts to

@ x P V, ηpxq “
ÿ

y‰x

ρpyq∇`Upy, xqLρpy, xq ` ρpxqLρ,∇U px, xq (27)

where ∇`Upy, xq stands for p∇Upy, xqq`. By definition, we have

ρpxqLρ,∇U px, xq “ ´ρpxq
ÿ

z‰x

Lρ,∇U px, zq

“ ´
ÿ

z‰x

∇`Upx, zqρpxqLρpx, zq

“ ´
ÿ

z‰x

∇´Upz, xqρpzqLρpz, xq

so (27) rewrites

@ x P V, ηpxq “
ÿ

y‰x

ρpyq∇Upy, xqLρpy, xq

“ ´rLρrU spxq (28)

where the Markov generator rLρ is defined via

@ x ‰ y P V, rLρpx, yq B ρpyqLρpy, xq (29)

(and the diagonal of rLρ is such that all the row sums vanish).
Note that rLρ is a symmetric matrix so its reversible measure is the uniform distribution υ over V .

Since rLρ is irreducible, υ is also its unique invariant measure. These observations show that U is the
unique solution of the Poisson equation

"

rLρpUq “ η
υrU s “ 0

(30)

The continuity of U in pρ, ηq is obtained as in the proof of Proposition 16 in Appendix A. �

The previous lemma proves that any C1 curve pρtqtPr0,1s in P`pV q is generated by the continuous
gradient field p∇UtqtPr0,1s, where for any t P r0, 1s, ∇Ut is obtained as in (26), where η is replaced by
9ρt and ρ by ρt. In particular Rpρ0, ρ1q ‰ H, for any ρ0, ρ1 P P`pV q.

The fact that in (26), η “ 0 is equivalent to ∇U “ 0 implies that D defined in (25) is a genuine
Riemannian distance on P`pV q. Indeed, from the previous definitions, the scalar product above
ρ P P`pV q of two tangent vectors η, η1 P HpV q is given by

@@@

η, η1
DDD

ρ
B

@@

∇U,∇U 1
DD

ρ
(31)
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where ∇U and ∇U 1 are the respective unique solutions to (26) and to η1 “ ρLρ,∇U 1 .
The particular case where pLρqρPP`pV q correspond to the Metropolis construction (starting from

a given irreducible and fixed couple pπ, Lq) could be called the Metropolis-Riemann structure of
P`pV q. In Appendix B we compute the associated distance D when V has two points and the jump
rates of L are both equals to 1.

In general, let us compute more explicitly the scalar product given in (31):

Lemma 15 For any ρ P P`pV q and any η, η1 P HpV q, we have
@@@

η, η1
DDD

ρ
“

ÿ

x‰yPV

rAρpx, yqpηpyq ´ ηpxqqpη
1pyq ´ η1pxqq

with rAρ B p rAρpx, yqqx,yPV the matrix given by

@ x, y P V, rAρpx, yq B 2

ż

r0,`8q

rPρ,tpx, yq ´
1

|V |
dt (32)

where

@ t ě 0, rPρ,t B expptrLρq

(recall that the Markov generator rLρ was defined in (29), that it is reversible with respect to the
uniform distribution υ ” 1

|V | and that the r.h.s. is absolutely convergent since the integrant is converging
exponentially fast to zero).

Proof
By definition, we have for any ρ P P`pV q,

@@

∇U,∇U 1
DD

ρ
“

ÿ

x‰yPV

ρpxqLρpx, yqpUpyq ´ UpxqqpU
1pyq ´ U 1pxqq

“
ÿ

x‰yPV

rLρpx, yqpUpyq ´ UpxqqpU
1pyq ´ U 1pxqq

“
ÿ

xPV

rLρrpU ´ UpxqqpU
1 ´ U 1pxqqspxq

Note that

rLρrpU ´ UpxqqpU
1 ´ U 1pxqqs “ rLρrUU

1s ´ UpxqrLρrU
1s ´ U 1pxqrLρrU s

so we deduce, taking into account the reversibility of υ for rLρ

xx∇U,∇U 1yyρ
|V |

“ υrrLρrU
2s ´ U rLρrU

1s ´ U 1rLρrU ss

“ ´υrU rLρrU
1ss ´ υrU 1rLρrU ss

“ ´2υrU rLρrU
1ss

“ 2υrUη1s

according to (26), where η and U are replaced by η1 and U 1.
Recall that the solution of (30) is given by

@ x P V, Upxq “

ż `8

0
Erηp rXρ,xptqqs dt

15



where rXρ,x B p rXρ,xptqqtě0 is a Markov process of generator rLρ starting from x P V . Taking into
account that η P HpV q, the r.h.s. can written

ż `8

0
Erηp rXρ,xptqqs ´ υrηs dt “

ż `8

0

rPρ,trηspxq ´
1

|V |

ÿ

yPV

ηpyq dt

“
ÿ

yPV

ηpyq

ż `8

0

ˆ

rPρ,tpx, yq ´
1

|V |

˙

dt

It follows that

@@

∇U,∇U 1
DD

ρ
“ 2

ÿ

x,yPV

η1pxqηpyq

ż `8

0

ˆ

rPρ,tpx, yq ´
1

|V |

˙

dt

“ 2
ÿ

x,yPV

rAρpx, yqη
1pxqηpyq

Note that rAρ B p rAρpx, yqqx,yPV is a symmetric matrix, since the same is true for rLρ and thus for
rPρ,t for any t ě 0. Furthermore we have

@ x P V,
ÿ

yPV

ˆ

rPρ,tpx, yq ´
1

|V |

˙

“ 0

and by symmetry

@ y P V,
ÿ

xPV

ˆ

rPρ,tpx, yq ´
1

|V |

˙

“ 0

It follows that

@ x P V,
ÿ

yPV

Aρpx, yq “ 0 “
ÿ

yPV

Aρpy, xq

and the announced result follows. �

Consider any scalar product, xxx¨, ¨yyy on HpV q. It can be extended into a semi-definite scalar
product on RV , still written xxx¨, ¨yyy, by imposing that 1, the vector whose entries are all equal to 1,
is orthogonal to HpV q and that xxx1,1yyy “ 0. Consider A B pApx, yqqx,yPV the associated symmetric
matrix. It is a non-negative matrix of rank |V | ´ 1 and all the row and column sums vanish and we
can write

@ η, η1 P HpV q,
@@@

η, η1
DDD

“
ÿ

x‰yPV

Apx, yqpηpyq ´ ηpxqqpη1pyq ´ η1pxqq

Any Riemannian structure on P`pV q is thus equivalent to the datum of a smooth mapping

P`pV q Q ρ ÞÑ Aρ P A (33)

where A is the space of all symmetric non-negative matrices of rank |V | ´ 1 whose row and column
sums all vanish.

It is natural to wonder if all Riemannian structures on P`pV q come from a smooth family pLρqρPP
of irreducible Markov generators, respectively reversible with respect to the ρ. Or equivalently, if the
mapping (33) is constructed, as in Lemma 15, from a family prLρqρPP of irreducible Markov generators
reversible with respect to the uniform distribution υ. Let us call these metric structures Markov-
Riemannian.
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To investigate the existence of non-Markov-Riemannian structures, we consider a generic A P A
and we wonder if we can find on V an irreducible Markov generator rL reversible with respect to υ
such that A “ rA B p rApx, yqqx,yPV with

@ x, y P V, rApx, yq B 2

ż

r0,`8q
expptrLqpx, yq ´

1

|V |
dt

Consider a spectral decomposition of ´rL: prλn, rϕnqnPJ0,|V |´1K, where prϕnqnPJ0,|V |´1K is an orthogonal
basis of RV for its usual scalar product, where

@ n P J0, |V | ´ 1K, rLrrϕns “ ´rλn rϕn

and where rλ0 “ 0 and rϕ0 “ 1.
It appears that a spectral decomposition of rA is pλn, rϕnqnPJ0,|V |´1K, where

@ n P J0, |V | ´ 1K, λn B

#

0 , if n “ 0
2
rλn

, otherwise

We are thus led to the following question. Consider an orthogonal basis pϕnqnPJ0,|V |´1K of RV , with
ϕ0 “ 1. Let be given positive numbers pλnqnPJ|V |´1K and take λ0 “ 0. The matrix of the operator
A : RV Ñ RV described by

@ n P J0, |V | ´ 1K, Arϕns “ λnϕn

corresponds to a generic element of A. When is the operator rL defined by rLrϕ0s “ 0 and

@ n P J|V | ´ 1K, rLrϕns “ ´
2

λn
ϕn (34)

a Markov generator? It amounts to check that the off-diagonal entries of rL are non-negative.
This problem is related to the determination of Markov sequences, see Definition 2.3 of Bakry and

Huet [3] and to the hypergroup property of the basis pϕnqnPJ0,|V |´1K .
When |V | “ 2, the operator rL defined by (34) is always a Markov generator, since it is given by

rL “

ˆ

´1{λ1 1{λ1
1{λ1 ´1{λ1

˙

But as soon as |V | ě 3, it is well-known that rL defined by (34) may not be a Markov generator.
Here is an example with V “ t1, 2, 3u (which can be extended to any V with |V | ě 3). We take

ϕ0 “

¨

˝

1
1
1

˛

‚ ϕ1 “

¨

˝

1
´2
1

˛

‚ ϕ2 “

¨

˝

´1
0
1

˛

‚

Consider rL described by (34), with λ1, λ2 ą 0 to be chosen later. Introduce the function

f B 2ϕ0 ` ϕ1 ` 3ϕ2 “

¨

˝

0
0
6

˛

‚

If rL was to be Markovian we would have

@ t ě 0, ft B 2ϕ0 ` expp´2t{λ1qϕ1 ` 3 expp´2t{λ2qϕ2 ě 0

In particular we should have Btftp1q|t“0 ě 0. But we compute that

Bt|t“0ftp1q “ ´
2

λ1
`

6

λ2

quantity which is negative with λ1 “ 2 and λ2 “ 7.
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A Continuity of the solution to the Poisson equation
The purpose of this appendix is to show that the solution U of (16) is continuous in terms of F,L and
π.

On the finite set V , let RpV q be the set of couples pπ, Lq consisting of an irreducible Markov
generator L reversible with respect to the probability measure π. Endow V with a total order ď and
consider

ÝÑ
V B tpx, yq P V 2 : x ă yu

The mapping

RpV q Q pπ, Lq ÞÑ ppπpxqqxPV , pLpx, yqqpx,yqPÝÑV q P p0, 1q
V ˆ r0,`8q

ÝÑ
V

is a bijection on its image and enables us to endow RpV q with a natural topology.
Let ΣpV 2q be the set of general vector fields, which are the functions F : V 2 Ñ R satisfying

@ px, yq P V 2, F px, yq “ ´F py, xq (35)

(in particular F vanishes on the diagonal). Again, ΣpV 2q is endowed with the topology inherited from
R
ÝÑ
V .
The divergence associated to L is the mapping transforming any vector field F P ΣpV 2q into

the function divLpF q defined on V via

@ x P V, divLpF qpxq “
ÿ

yPV

F px, yqLpx, yq

For any vector field F P ΣpV 2q and any pπ, Lq P RpV q, consider the Poisson equation in the
unknown function UL,F described by

"

LpUL,F q “ divLpF q
πrUL,F s “ 0

(36)

By reversibility of π for L and by the anti-symmetry property (35), we have πrdivLpF qs “ 0 so
there is a unique solution UL,F to (36). Our main result here is:

Proposition 16 The mapping

ΣpV 2q ˆRpV q Q pF, π, Lq ÞÑ UL,F P RV

is continuous.

Proof
Recall the probabilistic representation of UL,F :

@ x P V, UL,F pxq “ ´

ż `8

0
ErdivLpF qpXxptqqs dt (37)

where Xx B pXxptqqtě0) stands for a left-limit and right-continuous Markov process starting from x
and admitting L (resp. L) as generator.

To see the r.h.s. of (37) is well-defined, introduce the spectral gap of L:

λpLq B min

"

´
πrfLrf ss

πrf2s
: f P RV zt0u, πrf s “ 0

*
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which is the smallest non-zero eigenvalue of ´L (which is diagonalizable in R` by reversibility). We
have ΛpLq ą 0 by irreducibility of L.

For x P V and t ě 0, denote mx,t the law of Xxptq, seen as a row vector. Using matrix product,
we have

@ t ě 0, mx,t “ mx,0 expptLq

and by duality, il follows that

@ t ě 0,
mx,t

π
“ expptLq

”mx,0

π

ı

where the densities mx,t
π and mx,0

π are seen as a function, thus represented by column vectors.
We deduce that for any test function f P RV ,

@ t ě 0, |mx,trf s ´ πrf s| “

ˇ

ˇ

ˇ
π
”´mx,t

π
´ 1

¯

f
ıˇ

ˇ

ˇ

ď

d

π

„

´mx,t

π
´ 1

¯2


a

πrf2s

“

d

π

„

´

expptLq
”mx,0

π
´ 1

ı¯2


a

πrf2s

ď expp´λpLqtq

d

π

„

´mx,0

π
´ 1

¯2


a

πrf2s

“ expp´λpLqtq

g

f

f

eπ

«

ˆ

δx
π
´ 1

˙2
ff

a

πrf2s

ď

d

πrf2s

πpxq
expp´λpLqtq

Applying this bound with f “ divLpF q, we get

@ x P V, @ t ě 0, |ErdivLpF qpXxptqqs| “ |mx,trdivLpF qs ´ πrdivLpF qs|

ď

d

πrdivLpF q2s

πpxq
expp´λpLqtq

which shows that the integral in (37) is absolutely converging.
It is well-known, see for instance Kato [8], that the mapping

RpV q Q pπ, Lq ÞÑ λpLq P p0,`8q

is continuous. More precisely, to come back to the symmetric setting of Chapter 2 Section 5 of Kato
[8], note that λpLq is also the spectral gap of the symmetric matrix pLpx, yq

a

πpxq{πpyqqx,yPV .
It follows we can apply the convergence under integral theorem to get the desired continuity from

(37). �

The previous result enables us to extend Proposition 4 to the finite setting, by showing that
continuous curve r0, 1s Q t ÞÑ ρt P P`pV q generated (in the sense of (24)) by a continuous vector field
curve is also generated by a continuous gradient vector field curve. Proposition 4 is even more than
what we need. Indeed in Section 3, we fixed an element pπ, Lq of RpV q and only considered the other
elements prπ, rLq P RpV q sharing with pπ, Lq the same oriented edge set E defined in (7). We end up
with the previous set RpV q only when E coincides with V 2 minus its diagonal. Otherwise, the set of
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such elements prπ, rLq is a proper subset RpEq of RpV q. Of course by restriction, Proposition 16 is also
valid if RpV q is replaced by RpEq.

The interest ofRpEq is that a Girsanov formula holds between its elements, a finite setting analogue
of Remark 2. More precisely, let prπ, rLq P RpEq and denote rXx B p rXxptqqtě0 be a left-limit and right-
continuous Markov process starting from x and admitting rL as generator. Then for any T ě 0, the laws
Lp rXr0, T sq and LpXr0, T sq of rXr0, T s and Xr0, T s are equivalent and the Radon-Nikodym derivative
of Lp rXr0, T sq with respect to LpXr0, T sq is given by

dLp rXr0, T sq
dLpXr0, T sq

“ exp

¨

˝

ÿ

px,yqPE

ln

˜

rLpx, yq

Lpx, yq

¸

NT px, yq ´

ż T

0
HpXtq dt

˛

‚

where for any px, yq P E, NT px, yq is the number of jumps of Xr0, T s from x to y and

@ x P V, Hpxq B rLpx, xq ´ Lpx, xq

For a proof of this result, see e.g. the lecture notes [12].

B On the two point state space
The goal of this appendix is to compute a Metropolis distance on the set of positive probability
measures on V B t0, 1u, as an illustration of the constructions of Section 3.

As reference framework we choose

L B

ˆ

´1 1
1 ´1

˙

so π “ p1{2, 1{2q and the corresponding edge set is E “ tp0, 1q, p1, 0qu.
Any ρ P P`pV q writes p1 ´ ρp1q, ρp1qq, where ρp1q P p0, 1q. From now on, to simplify notations,

ρ is identified with ρp1q which is denoted ρ P p0, 1q. We consider the Metropolis choice of generators
described in (21):

@ ρ P p0, 1q, Lρ “

ˆ

´ρp0, 1q ρp0, 1q
ρp1, 0q ´ρp1, 0q

˙

with

ρp0, 1q “ 1^
ρ

1´ ρ

ρp1, 0q “ 1^
1´ ρ

ρ

Any vector field F P ΣpEq is determined by the value F p0, 1q P R which will simply be denoted
F P R in the sequel. Note that in the present situation, any vector field is a gradient field. With this
convention, the Markov generator (18) is given by

@ ρ P p0, 1q, @ F P R, Lρ,F “

$

’

’

’

’

&

’

’

’

’

%

ˆ

´Fρp0, 1q Fρp0, 1q
0 0

˙

, if F ě 0

ˆ

0 0
´Fρp1, 0q Fρp1, 0q

˙

, if F ă 0

We also compute that, as in (20) and with the above notations,

@ ρ P p0, 1q, @ F P R, }F }2ρ “
ÿ

x‰yPV

F 2px, yqρpxqLρpx, yq

“ 2rρ^ p1´ ρqsF 2
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Given a continuous curve r0, 1s Q t ÞÑ Ft P R, Equation (24) writes

@ t P r0, 1s, 9ρt “

"

p1´ ρtqFtρtp0, 1q , if Ft ě 0
ρtFtρtp1, 0q , if Ft ă 0

“ rρ^ p1´ ρqsFt (38)

Let be given ρ0, ρ1 P p0, 1q, the distance Dpρ0, ρ1q defined in (25) is described by

D2pρ0, ρ1q “ 2 min

"
ż 1

0
rρt ^ p1´ ρtqsF

2
t dt : pFtqtPr0,1s P Dpρ0, ρ1q

*

(39)

where pρtqtPr0,1s is the solution of (38) and where Dpρ0, ρ1q is the set of stepwise continuous mappings
r0, 1s Q t ÞÑ Ft P R which are such that the corresponding pρtqtPr0,1s does start at ρ0 and end at
ρ1. Indeed, our previous continuity assumption can be relaxed into stepwise continuity by classical
arguments of regularization by convolution.

To compute Dpρ0, ρ1q, there is no loss of generality in assuming that ρ0 ď ρ1 and even ρ0 ă ρ1,
since Dpρ0, ρ0q “ 0. Furthermore, we can restrict our attention to non-negative r0, 1s Q t ÞÑ Ft P R`.
Indeed, if we have Ft0 ă 0 for some t0 P r0, 1s, then, since 9ρt has the same sign as Ft for all t P r0, 1s,
we can find t1 ă t2 P r0, 1s with t0 P pt1, t2q such that ρt1 “ ρt2 . It follows that in the minimization
(39), it is advantageous to replace pFtqtPr0,1s by pGtqtPr0,1s defined by

@ t P r0, 1s, Gt B

"

0 , if t P rt1, t2s
Ft , otherwise

since pGtqtPr0,1s P Dpρ0, ρ1q and
ż 1

0
rρt ^ p1´ ρtqsF

2
t dt ą

ż 1

0
rρt ^ p1´ ρtqsG

2
t dt

Let us consider the case where ρ0 ě 1{2. The situation where ρ1 ď 1{2 can be treated similarly
and the case where ρ0 ă 1{2 and ρ1 ą 1{2 is deduced by writting Dpρ0, ρ1q “ Dpρ0, 1{2q`Dp1{2, ρ1q.

Lemma 17 For 1{2 ď ρ0 ă ρ1, we have

Dpρ0, ρ1q “ 4p
a

1´ ρ0 ´
a

1´ ρ1q

Proof
Assuming, as we are allowed to, Ft ě 0 for any t P r0, 1s, (38) reduces to

@ t P r0, 1s, 9ρt “ p1´ ρtqFt

since ρt ě 1{2 for all t P r0, 1s.
We deduce that

@ t P r0, 1s, ρt “ 1´ p1´ ρ0q expp´φtq

where

@ t P r0, 1s, φt “

ż t

0
Fs ds

It appears that pFtqtPr0,1s belongs to Dpρ0, ρ1q if and only if

φ1 “ ln

ˆ

1´ ρ0
1´ ρ1

˙

(40)
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Introduce the mapping h defined on R` via

@ u P R`, hpuq B

ż u

0

a

p1´ ρ0qe´q dq

so that
ż 1

0
rρt ^ p1´ ρtqsF

2
t dt “

ż 1

0
p1´ ρtqF

2
t dt

“

ż 1

0
ph1pφtq 9φtq

2 dt

The optimization problem (39) amounts to minimize twice the above r.h.s. under the condition

hpφ1q “ h

ˆ

ln

ˆ

1´ ρ0
1´ ρ1

˙˙

C A

which is equivalent to (40). Writing for any t P r0, 1s, ϕt B h1pφtq 9φt, we are led to the simple
problem of minimizing

ş1
0 ϕ

2
t dt under the contraint

ş1
0 ϕt dt “ A. It is well-known that the minimizer

r0, 1s Q t ÞÑ ϕt is constant and so we end up with A2 for the minimal value.
Thus we have shown that

D2pρ0, ρ1q

2
“ h2

ˆ

ln

ˆ

1´ ρ0
1´ ρ1

˙˙

“

˜

ż ln
´

1´ρ0
1´ρ1

¯

0

a

p1´ ρ0qe´q dq

¸2

“ p1´ ρ0q

˜

ż ln
´

1´ρ0
1´ρ1

¯

0
e´q{2 dq

¸2

“ 8p1´ ρ0q

ˆ

1´

c

1´ ρ1
1´ ρ0

˙2

“ 8p
a

1´ ρ0 ´
a

1´ ρ1q
2

which is the desired result. �
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