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Elementary Hodge decompositions break down any vector field into a sum of a gradient field and a divergence-free vector field. Such a result is extended to finite irreducible and reversible Markov processes, where vector fields correspond to anti-symmetric functions on the oriented edges of the underlying graph.

Introduction

The elementary Hodge decomposition on a compact Riemannian manifold writes any vector field as a sum of a gradient field and a vector field whose divergence vanishes. In some sense, this decomposition corresponds to the Riemannian probability distribution and can be extended to any other probability measure admitting a positive and smooth density with respect to , with its corresponding skewed divergence, see Theorem 1 below. An interest of this extension is to explain why in the variational formulation of Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] of the Wasserstein distance, only gradient fields are needed.

Our main goal here is to transpose this decomposition to the finite Markov process setting, see Theorem 8 in Section 3, via some geometric definitions inspired by Kenyon [9], interpreting 1-forms as anti-symmetric functions on the oriented edges of the underlying graph. The main difference with the continuous situation turns out to be that the two-sided flow of diffeomorphisms generated by a vector field has to be replaced by a one-sided flow on probability measures generated by some nonlinear Markov generators. It will enable us to revisit the works of Maas [START_REF] Maas | Gradient flows of the entropy for finite Markov chains[END_REF] and Erbar and Maas [START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF] on optimal transport for finite Markov processes. Denote P `pV q the set of all probability measures on the finite state space V giving a positive weight to all its points. We will see furthermore that any smooth mapping P `pV q Q ρ Þ Ñ L ρ , where L ρ is an irreducible Markov generator admitting ρ as reversible measure, leads to a Riemannian structure on P `pV q which is natural in the context of finite optimal transport. But we will check that not all Riemannian structures on P `pV q are of this Markovian form, except when V has only two points.

The above decompositions are said to be "elementary Hodge" because they can be seen as generalizations of the Helmholtz decomposition, see for instance Section 3.44 of Rutherford [START_REF] Aris | Vectors, tensors and the basic equations of fluid mechanics[END_REF], while being less involved that the Hodge decomposition exposed e.g. in Chapter 6 of Warner [START_REF] Warner | Foundations of differentiable manifolds and Lie groups[END_REF] or in Bertin, Demailly, Illusie, and Peters [START_REF] Bertin | Introduction to Hodge theory[END_REF].

The plan of this note is as follows. In the next section we recall in details the elementary Hodge decompositions relative to "nice" probability measures on compact Riemannian manifolds, since we did not find a pedagogical exposition in the literature. This point of view is transferred to finite irreducible and reversible Markov processes in Section 3, which leads to the introduction of Markov-Riemannian metrics. The paper finishes with two appendices. One dealing, on finite state spaces, with a continuity property of the solutions to Poisson equations, which are at the heart of the elementary Hodge decompositions. The second appendix computes a Metropolis-Riemann distance on the two point state space.
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The compact Riemannian manifold setting

A reminder of the elementary Hodge decomposition of vector fields is presented here, which will serve as a guide for the extension to the finite state space framework.

Consider M a compact and connected Riemannian manifold. Denote T M " Ů xPM T x M the corresponding tangent space, where T x M is the tangent space above x P M . Let ΣpT M q be the set of tangent vector fields on M , namely the smooth sections from M to T M .

Denote P `pM q the set of probability measures ρ on M admitting a smooth and positive density, still denoted ρ, with respect to the Riemannian probability measure . For any ρ P P `pM q, we see ΣpT M q as a tangent space above ρ and we endow it with the scalar product xx¨, ¨yy ρ given by

@ b, b 1 P ΣpT M q, @@ b, b 1 DD ρ ż M @ b, b 1 D x ρpdxq
(where x¨, ¨yx in the scalar product in the tangent space T x M ). This introduces a notion of ρorthogonality on ΣpT M q. Given a smooth function U : M Ñ R, the Riemannian gradient ∇U of U is an example of vector field. We denote G their set as U runs through all smooth functions. It appears that G is a linear sub-bundle of ΣpT M q.

A vector field b P ΣpT M q is said to leave ρ P P `pM q invariant, if @ t ě 0, ϕ t pρq " ρ where pϕ t q tPR is the flow generated by b and where for any t ě 0, ϕ t pρq is the push-forward of ρ by ϕ t . Denote by Ipρq the set of b P ΣpT M q leaving ρ invariant.

Here is the statement of the elementary Hodge ρ-decomposition of ΣpT M q:

Theorem 1 For any ρ P P `pM q, we have

ΣpT M q " G ' Ipρq
where the terms of the r.h.s. are ρ-orthogonal.

Before giving proof of this decomposition, let us recall a computational characterization of Ipρq. For any ρ P P `pM q, denote div ρ the ρ-skewed divergence defined by

@ b P ΣpT M q, div ρ pbq 1 ρ divpρbq
where divp¨q is the usual Riemannian divergence. The corresponding ρ-skewed Laplacian ρ is defined similarly @ f P C 8 pM q, ρ pf q div ρ p∇f q " pf q `x∇ lnpρq, ∇f y where is the Laplace-Beltrami operator. The second order operator ρ has several names, depending in the context in which it is used: the generalized Ornstein-Uhlenbeck diffusion generator in probability theory, the over-damped Langevin operator in analysis and the Witten Laplacian in geometry (especially concerning its extensions to differential forms).

The interest of ρ-skewed divergence is the well-known:

Lemma 2 For any fixed ρ P P `pM q, we have for any b P ΣpT M q, b P Ipρq ô div ρ pbq " 0

Proof

This is a simple consequence of Stokes' theorem. Indeed, ρ P P `pM q and b P ΣpT M q being fixed, denote ρ t ϕ t pρq for any t ě 0. We have that ρ P Ipρq if and only if for any test function f P C 8 pM q, @ t ě 0, ρ t rf s " ρrf s or equivalently @ t ě 0, B t ρ t rf s " 0 It leads us to compute B t | t"0 ρ t rf s, since B t ρ t rf s can be computed similarly at any time t ě 0, replacing ρ by ρ t (which is well-known to belong to P `pM q too).

We have by definition of the flow,

B t | t"0 ρ t rf s " B t | t"0 ż f pϕ t pxqq ρpdxq " ż xb, ∇f y dρ " ż xρb, ∇f y d " ´ż divpρbqf d " ´ż div ρ pbqf dρ
Since the density ρ is positive, this expression vanishes for all f P C 8 pM q if and only div ρ pbq " 0, as desired.

We can now come to the

Proof of Theorem 1

The elements ρ P P `pM q and b P ΣpT M q being fixed, we consider the Poisson equation in U :

" ρ pU q " div ρ pbq rU s " 0 (1) 
This equation is well-known to admit a unique solution if and only if ρrdiv ρ pbqs " 0. We compute ρrdiv ρ pbqs "

ż div ρ pbq dρ " ż divpρbq d " 0
where Stokes' theorem has been invoked again.

Consider U the unique solution of (1) and define β b ´∇U . We have div ρ pβq " div ρ pb ´∇U q " div ρ pbq ´ ρ pU q " 0 by construction of U . It remains to check that for any ∇U P G and any β P Ipρq are ρ-orthogonal. We compute 1), for given ρ P P `pM q and b P ΣpT M q. For x P M , consider pX ρ x psqq sě0 a diffusion of generator L ρ starting from x. We have the probabilistic representation

U pxq " ´ż `8 0 Erdiv ρ pbqpX ρ x qpsqs ds (2)
where the integrant converges exponentially fast to 0 with respect to s, as the spectral gap of ρ can be bounded below uniformly in terms of the supremum norm of lnpρq (see also Appendix A, where this property will be developed in the finite state space setting). Girsanov formula relates explicitly the law of X ρ x r0, ss pX ρ x puqq uPr0,ss to that of the Riemannian Brownian motion X 1

x r0, ss, for any s ě 0, by stating that for any measurable bounded function F on the M -valued trajectories over the time interval r0, ss,

ErF pX ρ x r0, ssqs " E " F pX 1 x r0, ssq exp ˆż s 0 @ ∇ lnpρqpX 1 x pvqq, dX 1 x pvq D ´1 2 
ż s 0 |∇ lnpρqpX 1 x pvqq| 2 dv ˙ " E " F pX 1 x r0, ssq exp ˆlnpρqpX 1 x psqq ´lnpρqpxq ´1 2 ż s 0 lnpρqpX 1 X pvqq `|∇ lnpρqpX 1 x pvqq| 2 dv

˙

(where the scalar product and the norms are taken above X 1 X pvq). In conjunction with (2), it can be deduced that the mapping P `pM q Q ρ Þ Ñ U P C 8 pM q is regular, when P `pM q is endowed with the topology inherited from C 8 pM q.

Let us give a classical consequence of the elementary Hodge decomposition of Theorem 1 concerning the introduction of a (infinite-dimensional) Riemannian-like structure on P `pM q as in Ambrosio, Gigli and Savaré [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

A (smooth) curve r0, 1s Q t Þ Ñ ρ t P P `pM q (for the topology inherited from C 8 pM q) is said to be generated by a (smooth) curve r0, 1s Q t Þ Ñ b t P ΣpT M q of vector fields when @ t P r0, 1s, ρ t " ϕ t pρ 0 q

where the time-inhomogenous flow pϕ t q tPr0,1s is defined through @ t P r0, 1s, @ x P M, d dt ϕ t pxq " b t pϕ t pxqq (starting with ϕ 0 being the identity mapping). When there is a (smooth) curve r0, 1s Q t Þ Ñ U t P C 8 pM q of smooth functions such that furthermore

@ t P r0, 1s, b t " ∇U t
we say pρ t q tPr0,1s is generated by a (smooth) curve of gradient fields.

Generation by vector fields is in fact equivalent to generation by gradient fields:

Proposition 4 Assume that pρ t q tPr0,1s is generated by the vector field curve pb t q tPr0,1s . Then it is also generated by the gradient field curve p∇U t q tPr0,1s , where for any t P r0, 1s, ∇U t comes from the elementary Hodge decomposition of b t above ρ t : b t " ∇U t `βt with β t P Ipρ t q. Furthermore p∇U t q tPr0,1s is the only gradient field curve generating pρ t q tPr0,1s .

Proof

Taking into account Remark 3, we get r0,

1s Q t Þ Ñ ∇U t is as smooth as r0, 1s Q t Þ Ñ b t .
Denote by pr ρ t q tPr0,1s the flow generated by the gradient fields p∇U t q tPr0,1s . Consider a test function f P C 8 pM q, we have for any t P r0, 1s,

B t ρ t rf s " B t ż f pϕ t pxqq ρpdxq " ż xb t , ∇f y ϕtpxq ρpdxq " ż xb t , ∇f y x ρ t pdxq
" ´ż f div ρt pb t q dρ t " ´ż f div ρt p∇U t q dρ t (4)

" B t r ρ t rf s
By integration, it follows that pρ t q tPr0,1s coincides with pr ρ t q tPr0,1s . Assume there is another gradient field curve p∇ r U t q tPr0,1s generating pρ t q tPr0,1s . According to (4), we have for any t P r0, 1s and any test function f P C 8 pM q, ż f div ρt p∇U t q dρ t "

ż f div ρt p∇ r U t q dρ t
It follows that for any given t P r0, 1s, ż A ∇f, ∇pU t ´r U t q E dρ t " 0 so that taking f " U t ´r U t , we get ∇pU t ´r U t q " 0. Since this is true for any t P r0, 1s, it means the two gradient field curves p∇U t q tPr0,1s and p r ∇U t q tPr0,1s coincide.

Remark 5 To make evolve the boundary BA of a smooth domain A in M , one usually resorts to a T pM q-valued vector field on BA and "pushes the boundary points" according to this vector field. It is well-known, see e.g. Mantegazza [START_REF] Mantegazza | Lecture notes on mean curvature flow[END_REF], that it is sufficient to consider vector fields that are normal to BA, because their tangential components leave BA invariant (and just act as an infinitesimal reparametrization). Proposition 4 is a result analogous to this orthogonal decomposition of vector fields on BA into normal and tangential components. In fact we believe that both the elementary Hodge decomposition and the normal and tangential decomposition are two instances of a more general result for measures on M (where BA would be identified with the Hausdorff trace of on BA) that is outside the scope of the present note. To go in the direction of a Riemannian-type distance on P `pM q, we have to define the length of a curve. We start by associating to ρ 0 P P `pM q and to a curve of vector fields pb t q tPr0,1s the quantity Lpρ 0 , pb t q tPr0,1s q

d ż 1 0 }b t } 2 ρt dt (5) 
where pρ t q tPr0,1s is deduced from ρ 0 and pb t q tPr0,1s via (3). Next, if pρ t q tPr0,1s is a curve in P `pM q, we define Lppρ t q tPr0,1s q inf Lpρ 0 , pb t q tPr0,1s q : pb t q tPr0,1s P Bppρ t q tPr0,1s q (

where Bppρ t q tPr0,1s q stands for the set of vector field curves generating pρ t q tPr0,1s .

Lemma 6 Let pρ t q tPr0,1s be a curve in P `pM q generated by a vector field curve. Consider p∇U t q tPr0,1s the unique gradient field curve generating pρ t q tPr0,1s according to Proposition 4. We have Lppρ t q tPr0,1s q " Lpρ 0 , p∇U t q tPr0,1s q

Proof

Consider any vector field curve pb t q tPr0,1s generating pρ t q tPr0,1s and decompose it as in Proposition 4.

The orthogonality property of Theorem 1 then shows that

@ t P r0, 1s, }b t } 2 ρt " }∇U t } 2 ρt `}β t } 2 ρt implying that
Lpρ 0 , pb t q tPr0,1s q ě Lpρ 0 , p∇U t q tPr0,1s q

This shows that the infimum of ( 6) is attained at the unique gradient field generating pρ t q tPr0,1s .

The last step in constructing a Riemannian-like distance D on P `pM q is to define, for any ρ 0 , ρ 1 P P `pM q, Dpρ 0 , ρ 1 q inftLppρ t q tPr0,1s q : pρ t q tPr0,1s P Rpρ 0 , ρ 1 qu

where Rpρ 0 , ρ 1 q is the set of curves in P `pM q, starting at ρ 0 and ending at ρ 1 , and generated by vector field curves. Lemma 6 shows that in this definition, it is sufficient to consider gradient field curves, thus enabling us to recover the variational formulation of Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] in terms of gradient field curves. It turns out that D is a Wasserstein distance, but we will not go further in this direction.

The finite Markov process setting

We propose here a version of Theorem 1 valid for finite Markov processes (as a first step toward a full Markov process extension?).

The Riemannian structure of M can be entirely encapsulated into the Laplace-Beltrami operator . By analogy, a finite framework consists in an irreducible Markov generator L pLpx, yqq x,yPV whose invariant probability π is supposed to be reversible. Denote V the underlying finite state space. It is endowed with a graph structure, by defining its edge set as

E tpx, yq P V 2 : Lpx, yq ą 0u (7) 
Note that the edges are directed and that by reversibility we have @ x, y P V, px, yq P E ô py, xq P E Thus it could be tempting to consider the corresponding set of undirected edges. It is more convenient to choose an orientation for any undirected edge. More precisely we consider a set E Ă E, such that for any px, yq P E, either px, yq P E or py, xq P E, but not both px, yq and py, xq belong to E.

A function F : E Ñ R is said to be a vector field if and only if @ px, yq P E, F px, yq " ´F py, xq

We denote by ΣpEq the set of vector fields on the graph pV, Eq. Note that it is in natural bijection with R E the set of mapping from E to R. This definition is inspired by Kenyon [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF] (see also Remark 12 below). The latter paper also writes L in a form analogous to " div ˝∇ in the Riemannian setting.

More precisely, given a function f : V Ñ R (whose space is denoted R V ), define the gradient of f as the vector field given by @ px, yq P E, ∇f px, yq f pyq ´f pxq (8)

Endow V with the probability measure π and E with the measure µ defined by @ px, yq P E, µpx, yq πpxqLpx, yq

The operator ∇ can be seen as going from L 2 pπq to L 2 pµq. By definition, the divergence div is the opposite of the adjoint operator to ∇. Then we can write again:

L " div ˝∇ (10) 
Denote G the set of vector fields which are gradients.

Pursuing our analogies with the Riemannian case, let P `pV q stands for all probability measures giving a positive weight to all points of V . Consider F P ΣpEq, to make it act on elements of P `pV q, consider the Markov generator L F associated to F via

@ x ‰ y P V, L F px, yq F `px, yqLpx, yq (11) 
where we adopt the convention

@ px, yq R E, F px, yq " 0 (12) 
and where F `px, yq stands for the non-negative part of F px, yq (the entries of the diagonal of L F are such that the row sums all vanish).

Remark 7

The Markov processes X F generated by L F mimick, as much as possible, dynamical systems generated by vector fields. In particular edges can be crossed only in one direction. Note that if F is a gradient ∇f , then the jumps of X F (strictly) increase f and it follows that X F converges in finite but random time toward a (random) local maxima of f . Recall that x P V is a local maxima for f (with respect to the neighborhood structure given by E) when for any px, yq P E, we have f pyq ď f pxq. The Markov generator L F enables to associate to F the flow pϕ t q tě0 acting on P `pV q via @ ν P P `pV q, @ t ě 0, ϕ t pνq ν expptL F q (13)

Contrary to the Riemannian case, we cannot consider negative times if we want to stay in P `pV q.

The other major difference is that there is no underlying dynamical system acting on the points of V . Instead, it must be replaced by the Markov process generated by L F (whose time-marginal distribution are the pϕ t pνqq tě0 when the initial distribution is ν). We say that a vector field F P ΣpEq leaves our fixed reversible probability π invariant if and only if @ t ě 0, ϕ t pπq " π Denote again by Ipπq the set of F P ΣpEq leaving π invariant.

Let us define a scalar product on ΣpEq, seen as a tangent space to P `pV q above π P P `pV q, to get a notion of π-orthogonality. We define the scalar product xx¨, ¨yy π on ΣpEq through @ F, F 1 P ΣpEq, @@ F, F 1 DD π "

ÿ xPV @ F, F 1 D x πpxq
where

@ x P V, @ F, F 1 P ΣpEq, @ F, F 1 D x ÿ yPV ztxu F px, yqF 1 px, yqLpx, yq
Namely, we have

@ F, F 1 P ΣpEq, @@ F, F 1 DD π " ÿ x‰yPV F px, yqF 1 px, yqπpxqLpx, yq
(this quantity can also be identified with 2 xF, F 1 y L 2 pµq , where µ is defined in ( 9)).

We have the analogue of Theorem 1, but restricted to the probability π:

Theorem 8 We have ΣpEq " G ' Ipπq
where the terms of the r.h.s. are π-orthogonal.

Let us compute the divergence, as in Kenyon [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF], who used the following explicit form to deduce [START_REF] Maas | Gradient flows of the entropy for finite Markov chains[END_REF].

Lemma 9

We have for any F P ΣpEq: The desired formula follows.

@ x P V, divpF qpxq " ÿ yPV F px, yqLpx, yq (14) 
We deduce the analogue of Lemma 2, at least for ρ " π:

Lemma 10 We have for any F P ΣpEq, F P Ipπq ô divpF q " 0 Proof Consider a vector field F satisfying divpF q " 0. It is equivalent to the fact that for any f P R V , we have πrf divpF qs " 0. We compute, taking into account the convention [START_REF] Miclo | Processus de Markov inhomogènes finis[END_REF], the reversibility of π for L and the anti-symmetry of F , and the desired equivalence follows.

πrf
Now we have at our disposal all the ingredients necessary to the

Proof of Theorem 8

The arguments are exactly the same as those of the proof of Theorem 1. The vector field F P ΣpEq being fixed, we consider the Poisson equation in U :

" LpU q " divpF q πrU s " 0 (16) 
This equation is well-known to admit a unique solution if and only if πrdivpF qs " 0. From (15) and writing 1 for the constant function taking the value 1, we get πrdivpF qs " ´πrL F r1ss " 0 Consider U the unique solution of ( 16) and define G b ´∇U . We have divpGq " divpF ´∇U q " divpF q ´LpU q " 0 by construction of U .

It Of course, Theorem 8 can be extended to any ρ P P `pV q, it is sufficient to be given a corresponding irreducible generator L ρ admitting ρ as reversible probability measure and to consider all the above related notions. Let us assume that the corresponding graph pV, Eq remains the same, which amounts to assuming there is a function ρ : E Ñ p0, `8q such that @ px, yq P V 2 , x ‰ y, L ρ px, yq " ρpx, yqLpx, yq (when px, yq R E, x ‰ y, the values of ρpx, yq are irrelevant since Lpx, yq " 0, we can take for instance ρpx, yq " 0). The reversibility of ρ is equivalent to

@ px, yq P E, δ ρ pxqρpx, yq " δ ρ pyqρpy, xq (17) 
where δ ρ is the density of ρ with respect to π:

@ x P V, δ ρ pxq ρpxq πpxq
Remark 11 Maas in [START_REF] Maas | Gradient flows of the entropy for finite Markov chains[END_REF] also "extends" the probability ρ into a function ρ of two variables of the state space (rather corresponding to the sides of ( 17)). He makes further assumptions, in particular that there exists a function θ : p0, `8q 2 Ñ p0, `8q such that ρpx, yq " θpρpxq, ρpyqq, which are not necessary for our purposes. The definition of the gradient remains the same, but in [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF] we have to consider @ px, yq P E, µ ρ px, yq ρpxqL ρ px, yq with the corresponding notion of divergence div ρ , so that L ρ " div ρ ˝∇. Definition [START_REF] Mantegazza | Lecture notes on mean curvature flow[END_REF] has to be replaced by @ x ‰ y P V, L ρ,F px, yq pF px, yqq `Lρ px, yq " pF px, yqq `ρpx, yqLpx, yq

The set Ipρq can be seen as the set of vector fields F leaving ρ invariant, with respect to the linear flow pϕ ρ,t q tě0 defined, as in [START_REF] Warner | Foundations of differentiable manifolds and Lie groups[END_REF], by @ ν P P `pV q, @ t ě 0, ϕ t pνq ν expptL ρ,F q but it seems more natural (cf. (24) below) to see Ipρq as the set of vector fields F leaving ρ invariant, with respect to the non-linear flow pψ t q tě0 described by its evolution:

@ ν P P `pV q, @ t ě 0, B t ψ t pνq " ψ t pνqL ψtpνq,F (19) 
(and starting with ψ 0 pνq " ν). This non-linearity is a true discrepancy with respect to the Riemannian situation.

Remark 12

The fact that Definition (8) does not depend on L nor ρ, suggests, as in Kenyon [START_REF] Kenyon | Spanning forests and the vector bundle Laplacian[END_REF], that it corresponds more to a 1-form than to a gradient, in analogy with differential geometry, where the differential of a function does not depend on the Riemannian structure, contrary to the gradient. Thus it seems Hodge decompositions would be more natural for differential form fields than for vector fields. In the Riemannian setting, vector fields are important to describe corresponding dynamical systems, reason why we prefer to work with them. In the finite Markov setting, this link is distorted by the mapping F Þ Ñ L ρ,F , so we should probably adopt the 1-form terminology. Finally the scalar product xx¨, ¨yy ρ on ΣpEq should be defined through @ F, F 1 P ΣpEq, @@ F, F 1 DD ρ "

ÿ x‰yPV F px, yqF 1 px, yqρpxqL ρ px, yq (20) 
leading to the notion of ρ-orthogonality on ΣpEq.

With these definitions, Theorem 8 extends immediately into

Theorem 13 For any ρ P P `pV q, we have

ΣpEq " G ' Ipρq
where the terms of the r.h.s. are ρ-orthogonal.

Another difference with the Riemannian case is the choice of the L ρ for ρ P P `pV q, role which previously were "naturally" played the ρ for ρ P P `pM q. A classical choice is to consider the Metropolis generators, which corresponds to @ ρ P P `pV q, @ px, yq P E, ρpx, yq " min ˆ1, ρpyqπpxq πpyqρpxq ˙" min ˆ1, δ ρ pyq δ ρ pxq

˙(21)

which satisfies (17), since @ px, yq P E, δ ρ pxqρpx, yq " minpδ ρ pxq, δ ρ pyqq (

(there is a relation between this construction of L ρ from L and ρ and that of ρ from and ρ, since they both correspond to the minimization of some trajectorial entropy, see [START_REF] Diaconis | On characterizations of Metropolis type algorithms in continuous time[END_REF]).

The favorite choice of Erbar and Maas [START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF], to extend the notions of Ricci lower bounds and their consequences for functional inequalities of finite Markov processes, is @ ρ P P `pV q, @ px, yq P E, δ ρ pxqρpx, yq " δ ρ pyq ´δρ pxq lnpδ ρ pyqq ´lnpδ ρ pxqq (23)

Whatever the choice, some regularity of the mapping P `pV q Q ρ Þ Ñ L ρ P R V ˆV must be assumed for the considerations of Remark 3 to hold (for more details in this respect see the following appendix). For instance let us assume this mapping is locally Lipschitzian (seeing P `pV q as a subset of p0, 1q V ), condition which also insures the needed local existence and uniqueness of the solution to (19). Note that both ( 22) and ( 23) satisfy this condition. Proposition 4 and Lemma 6 are then also valid in the finite setting, via the same proofs. Indeed, it is sufficient to extend the notion of generation by vector or gradient field curves via: a continuous curve r0, 1s Q t Þ Ñ ρ t P P `pV q is said to be generated by a continuous curve r0, 1s Q t Þ Ñ F t P ΣpEq of vector fields when @ t P r0, 1s,

9 ρ t " ρ t L ρt,Ft (24) 
We say furthermore that r0, 1s Q t Þ Ñ ρ t P P `pV q is generated by a continuous gradient field curve, when F t belongs to G for all t P r0, 1s. Then Proposition 4 and Lemma 6 extend literally to the finite Markov setting.

More precisely, we are led to introduce as in ( 5), for any ρ 0 P P `pV q and any continuous curve r0, 1s Q t Þ Ñ F t P ΣpEq of vector fields, Lpρ 0 , pF t q tPr0,1s q

d ż 1 0 }F t } 2 ρt dt
where pρ t q tPr0,1s is the solution of (24). Next, as in ( 6), when pρ t q tPr0,1s is a continuous curve in P `pM q, we define Lppρ t q tPr0,1s q inf Lpρ 0 , pF t q tPr0,1s q : pF t q tPr0,1s P Bppρ t q tPr0,1s q ( where Bppρ t q tPr0,1s q stands for the set of continuous vector field curves generating pρ t q tPr0,1s . We get then that if Bppρ t q tPr0,1s q ‰ H, then Lppρ t q tPr0,1s q " Lpρ 0 , p∇U t q tPr0,1s q where p∇U t q tPr0,1s is the unique gradient field curve generating pρ t q tPr0,1s . By the usual convention, when Bppρ t q tPr0,1s q " H, we take Lppρ t q tPr0,1s q " `8. Following a traditional path, we construct a Riemannian-like distance D on P `pM q by defining, for any ρ 0 , ρ 1 P P `pM q, Dpρ 0 , ρ 1 q inftLppρ t q tPr0,1s q : pρ t q tPr0,1s P Rpρ 0 , ρ 1 qu (25

)
where Rpρ 0 , ρ 1 q is the set of continuous curves in P `pM q, starting at ρ 0 and ending at ρ 1 .

To check this distance takes finite values, we have to show that Rpρ 0 , ρ 1 q contains at least one curve generated by a continuous vector field. The following result is the main step in this direction.

Lemma 14 Let be given ρ P P `pV q and a signed measure η P HpV q with HpV q # η pηpxqq xPV P R V :

ÿ xPV ηpxq " 0 +
Then there exists a unique function U P R V with ř xPV U pxq " 0 and such that

η " ρL ρ,∇U (26) 
Furthermore the mapping pρ, ηq Þ Ñ U is continuous.

Proof

Equation (26) amounts to where the Markov generator r L ρ is defined via

@ x P V,
@ x ‰ y P V, r L ρ px, yq ρpyqL ρ py, xq (29) 
(and the diagonal of r L ρ is such that all the row sums vanish). Note that r L ρ is a symmetric matrix so its reversible measure is the uniform distribution υ over V . Since r L ρ is irreducible, υ is also its unique invariant measure. These observations show that U is the unique solution of the Poisson equation " r L ρ pU q " η υrU s " 0 (30)

The continuity of U in pρ, ηq is obtained as in the proof of Proposition 16 in Appendix A.

The previous lemma proves that any C 1 curve pρ t q tPr0,1s in P `pV q is generated by the continuous gradient field p∇U t q tPr0,1s , where for any t P r0, 1s, ∇U t is obtained as in (26), where η is replaced by 9 ρ t and ρ by ρ t . In particular Rpρ 0 , ρ 1 q ‰ H, for any ρ 0 , ρ 1 P P `pV q.

The fact that in (26), η " 0 is equivalent to ∇U " 0 implies that D defined in ( 25) is a genuine Riemannian distance on P `pV q. Indeed, from the previous definitions, the scalar product above ρ P P `pV q of two tangent vectors η, η 1 P HpV q is given by

@@@ η, η 1 DDD ρ @@ ∇U, ∇U 1 DD ρ ( 31 
)
where ∇U and ∇U 1 are the respective unique solutions to (26) and to η 1 " ρL ρ,∇U 1 .

The particular case where pL ρ q ρPP `pV q correspond to the Metropolis construction (starting from a given irreducible and fixed couple pπ, Lq) could be called the Metropolis-Riemann structure of P `pV q. In Appendix B we compute the associated distance D when V has two points and the jump rates of L are both equals to 1.

In general, let us compute more explicitly the scalar product given in (31):

Lemma 15 For any ρ P P `pV q and any η, η 1 P HpV q, we have

@@@ η, η 1 DDD ρ " ÿ x‰yPV r
A ρ px, yqpηpyq ´ηpxqqpη 1 pyq ´η1 pxqq with r A ρ p r A ρ px, yqq x,yPV the matrix given by

@ x, y P V, r A ρ px, yq 2 
ż r0,`8q r P ρ,t px, yq ´1 |V | dt (32) 
where @ t ě 0, r P ρ,t exppt r L ρ q (recall that the Markov generator r L ρ was defined in (29), that it is reversible with respect to the uniform distribution υ " 1 |V | and that the r.h.s. is absolutely convergent since the integrant is converging exponentially fast to zero).

Proof

By definition, we have for any ρ P P `pV q, @@ ∇U, ∇U 1 DD ρ "

ÿ x‰yPV ρpxqL ρ px, yqpU pyq ´U pxqqpU 1 pyq ´U 1 pxqq " ÿ x‰yPV r L ρ px, yqpU pyq ´U pxqqpU 1 pyq ´U 1 pxqq " ÿ xPV r L ρ rpU ´U pxqqpU 1 ´U 1 pxqqspxq Note that r L ρ rpU ´U pxqqpU 1 ´U 1 pxqqs " r L ρ rU U 1 s ´U pxq r L ρ rU 1 s ´U 1 pxq r L ρ rU s so we deduce, taking into account the reversibility of υ for r L ρ xx∇U, ∇U 1 yy ρ |V | " υr r L ρ rU 2 s ´U r L ρ rU 1 s ´U 1 r L ρ rU ss " ´υrU r L ρ rU 1 ss ´υrU 1 r L ρ rU ss " ´2υrU r L ρ rU 1 ss " 2υrU η 1 s
according to (26), where η and U are replaced by η 1 and U 1 .

Recall that the solution of (30) is given by

@ x P V, U pxq " ż `8 0 Erηp r X ρ,x ptqqs dt
where r X ρ,x p r X ρ,x ptqq tě0 is a Markov process of generator r L ρ starting from x P V . Taking into account that η P HpV q, the r.h.s. can written

ż `8 0 Erηp r X ρ,x ptqqs ´υrηs dt " ż `8 0 r P ρ,t rηspxq ´1 |V | ÿ yPV ηpyq dt " ÿ yPV ηpyq ż `8 0 ˆr P ρ,t px, yq ´1 |V | ˙dt It follows that @@ ∇U, ∇U 1 DD ρ " 2 ÿ x,yPV η 1 pxqηpyq ż `8 0 ˆr P ρ,t px, yq ´1 |V | ˙dt " 2 ÿ x,yPV r A ρ px, yqη 1 pxqηpyq
Note that r A ρ p r A ρ px, yqq x,yPV is a symmetric matrix, since the same is true for r L ρ and thus for r P ρ,t for any t ě 0. Furthermore we have

@ x P V, ÿ yPV ˆr P ρ,t px, yq ´1 |V | ˙" 0
and by symmetry

@ y P V, ÿ xPV ˆr P ρ,t px, yq ´1 |V | ˙" 0 It follows that @ x P V, ÿ yPV A ρ px, yq " 0 " ÿ yPV A ρ py, xq
and the announced result follows.

Consider any scalar product, xxx¨, ¨yyy on HpV q. It can be extended into a semi-definite scalar product on R V , still written xxx¨, ¨yyy, by imposing that 1, the vector whose entries are all equal to 1, is orthogonal to HpV q and that xxx1, 1yyy " 0. Consider A pApx, yqq x,yPV the associated symmetric matrix. It is a non-negative matrix of rank |V | ´1 and all the row and column sums vanish and we can write @ η, η 1 P HpV q, @@@ η, η 1 DDD "

ÿ x‰yPV Apx, yqpηpyq ´ηpxqqpη 1 pyq ´η1 pxqq
Any Riemannian structure on P `pV q is thus equivalent to the datum of a smooth mapping

P `pV q Q ρ Þ Ñ A ρ P A ( 33 
)
where A is the space of all symmetric non-negative matrices of rank |V | ´1 whose row and column sums all vanish.

It is natural to wonder if all Riemannian structures on P `pV q come from a smooth family pL ρ q ρPP of irreducible Markov generators, respectively reversible with respect to the ρ. Or equivalently, if the mapping (33) is constructed, as in Lemma 15, from a family p r L ρ q ρPP of irreducible Markov generators reversible with respect to the uniform distribution υ. Let us call these metric structures Markov-Riemannian.

To investigate the existence of non-Markov-Riemannian structures, we consider a generic A P A and we wonder if we can find on V an irreducible Markov generator r L reversible with respect to υ such that A " r A p r Apx, yqq x,yPV with @ x, y P V, r Apx, yq 2

ż r0,`8q exppt r Lqpx, yq ´1 |V | dt
Consider a spectral decomposition of ´r L: p r λ n , r ϕ n q nP 0,|V |´1 , where p r ϕ n q nP 0,|V |´1 is an orthogonal basis of R V for its usual scalar product, where @ n P 0, |V | ´1 , r Lr r ϕ n s " ´r λ n r ϕ n and where r λ 0 " 0 and r ϕ 0 " 1.

It appears that a spectral decomposition of r

A is pλ n , r ϕ n q nP 0,|V |´1 , where

@ n P 0, |V | ´1 , λ n # 0 , if n " 0 2 r λn , otherwise
We are thus led to the following question. Consider an orthogonal basis pϕ n q nP 0,|V |´1 of R V , with ϕ 0 " 1. Let be given positive numbers pλ n q nP |V |´1 and take λ 0 " 0. The matrix of the operator A : R V Ñ R V described by

@ n P 0, |V | ´1 ,
Arϕ n s " λ n ϕ n corresponds to a generic element of A. When is the operator r L defined by r Lrϕ 0 s " 0 and

@ n P |V | ´1 , r Lrϕ n s " ´2 λ n ϕ n (34) 
a Markov generator? It amounts to check that the off-diagonal entries of r L are non-negative. This problem is related to the determination of Markov sequences, see Definition 2.3 of Bakry and Huet [START_REF] Bakry | The hypergroup property and representation of Markov kernels[END_REF] and to the hypergroup property of the basis pϕ n q nP 0,|V |´1 .

When |V | " 2, the operator r L defined by (34) is always a Markov generator, since it is given by r L " ˆ´1{λ 1 1{λ 1 1{λ 1 ´1{λ 1

Ḃut

as soon as |V | ě 3, it is well-known that r L defined by (34) may not be a Markov generator. Here is an example with V " t1, 2, 3u (which can be extended to any V with |V | ě 3). We take

ϕ 0 " ¨1 1 1 ' ϕ 1 " ¨1 ´2 1 ' ϕ 2 " ¨´1 0 1 ' Consider r
L described by (34), with λ 1 , λ 2 ą 0 to be chosen later. Introduce the function

f 2ϕ 0 `ϕ1 `3ϕ 2 " ¨0 0 6 ' If r
L was to be Markovian we would have

@ t ě 0, f t 2ϕ 0 `expp´2t{λ 1 qϕ 1 `3 expp´2t{λ 2 qϕ 2 ě 0
In particular we should have B t f t p1q| t"0 ě 0. But we compute that

B t | t"0 f t p1q " ´2 λ 1 `6 λ 2
quantity which is negative with λ 1 " 2 and λ 2 " 7.

A Continuity of the solution to the Poisson equation

The purpose of this appendix is to show that the solution U of ( 16) is continuous in terms of F, L and π.

On the finite set V , let RpV q be the set of couples pπ, Lq consisting of an irreducible Markov generator L reversible with respect to the probability measure π. Endow V with a total order ď and consider

Ý Ñ V tpx, yq P V 2 : x ă yu
The mapping

RpV q Q pπ, Lq Þ Ñ ppπpxqq xPV , pLpx, yqq px,yqP Ý Ñ V q P p0, 1q V ˆr0, `8q

Ý Ñ V
is a bijection on its image and enables us to endow RpV q with a natural topology. Let ΣpV 2 q be the set of general vector fields, which are the functions F :

V 2 Ñ R satisfying @ px, yq P V 2 , F px, yq " ´F py, xq (35) 
(in particular F vanishes on the diagonal). Again, ΣpV 2 q is endowed with the topology inherited from

R Ý Ñ V .
The divergence associated to L is the mapping transforming any vector field F P ΣpV 2 q into the function div L pF q defined on V via

@ x P V, div L pF qpxq " ÿ yPV F px, yqLpx, yq
For any vector field F P ΣpV 2 q and any pπ, Lq P RpV q, consider the Poisson equation in the unknown function U L,F described by

"

LpU L,F q " div L pF q πrU L,F s " 0 (36) By reversibility of π for L and by the anti-symmetry property (35), we have πrdiv L pF qs " 0 so there is a unique solution U L,F to (36). Our main result here is:

Proposition 16 The mapping

ΣpV 2 q ˆRpV q Q pF, π, Lq Þ Ñ U L,F P R V is continuous.

Proof

Recall the probabilistic representation of U L,F :

@ x P V, U L,F pxq " ´ż `8 0 Erdiv L pF qpX x ptqqs dt (37) 
where X x pX x ptqq tě0 ) stands for a left-limit and right-continuous Markov process starting from x and admitting L (resp. L) as generator.

To see the r.h.s. of (37) is well-defined, introduce the spectral gap of L:

λpLq min " ´πrf Lrf ss πrf 2 s : f P R V zt0u, πrf s " 0 *
which is the smallest non-zero eigenvalue of ´L (which is diagonalizable in R `by reversibility). We have ΛpLq ą 0 by irreducibility of L. For x P V and t ě 0, denote m x,t the law of X x ptq, seen as a row vector. Using matrix product, we have @ t ě 0, m x,t " m x,0 expptLq and by duality, il follows that @ t ě 0, m x,t π " expptLq " m x,0 π ı where the densities mx,t π and m x,0 π are seen as a function, thus represented by column vectors. We deduce that for any test function f P R V , @ t ě 0, |m x,t rf s ´πrf s| " ˇˇπ "´m

x,t π ´1¯f ıˇˇď d π " ´mx,t π ´1¯2  a πrf 2 s " d π " ´expptLq " m x,0 π ´1ı¯2  a πrf 2 s ď expp´λpLqtq d π " ´mx,0 π ´1¯2  a πrf 2 s " expp´λpLqtq g f f e π « ˆδx π ´1˙2 ff a πrf 2 s ď d πrf 2 s πpxq expp´λpLqtq
Applying this bound with f " div L pF q, we get @ x P V, @ t ě 0, |Erdiv L pF qpX x ptqqs| " |m x,t rdiv L pF qs ´πrdiv L pF qs| ď d πrdiv L pF q 2 s πpxq expp´λpLqtq which shows that the integral in (37) is absolutely converging. It is well-known, see for instance Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF], that the mapping

RpV q Q pπ, Lq Þ Ñ λpLq P p0, ` 8q 
is continuous. More precisely, to come back to the symmetric setting of Chapter 2 Section 5 of Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF], note that λpLq is also the spectral gap of the symmetric matrix pLpx, yq a πpxq{πpyqq x,yPV . It follows we can apply the convergence under integral theorem to get the desired continuity from (37).

The previous result enables us to extend Proposition 4 to the finite setting, by showing that continuous curve r0, 1s Q t Þ Ñ ρ t P P `pV q generated (in the sense of (24)) by a continuous vector field curve is also generated by a continuous gradient vector field curve. Proposition 4 is even more than what we need. Indeed in Section 3, we fixed an element pπ, Lq of RpV q and only considered the other elements pr π, r Lq P RpV q sharing with pπ, Lq the same oriented edge set E defined in [START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF]. We end up with the previous set RpV q only when E coincides with V 2 minus its diagonal. Otherwise, the set of such elements pr π, r

Lq is a proper subset RpEq of RpV q. Of course by restriction, Proposition 16 is also valid if RpV q is replaced by RpEq.

The interest of RpEq is that a Girsanov formula holds between its elements, a finite setting analogue of Remark 2. More precisely, let pr π, r Lq P RpEq and denote r X x p r X x ptqq tě0 be a left-limit and rightcontinuous Markov process starting from x and admitting r L as generator. Then for any T ě 0, the laws 

B On the two point state space

The goal of this appendix is to compute a Metropolis distance on the set of positive probability measures on V t0, 1u, as an illustration of the constructions of Section 3.

As reference framework we choose

L ˆ´1 1 1 ´1 ṡo 
π " p1{2, 1{2q and the corresponding edge set is E " tp0, 1q, p1, 0qu. Any ρ P P `pV q writes p1 ´ρp1q, ρp1qq, where ρp1q P p0, 1q. From now on, to simplify notations, ρ is identified with ρp1q which is denoted ρ P p0, 1q. We consider the Metropolis choice of generators described in (21): @ ρ P p0, 1q, L ρ " ˆ´ρp0, 1q ρp0, 1q ρp1, 0q ´ρp1, 0q ẇith ρp0, 1q " 1 ^ρ 1 ´ρ ρp1, 0q " 1 ^1 ´ρ ρ

Any vector field F P ΣpEq is determined by the value F p0, 1q P R which will simply be denoted F P R in the sequel. Note that in the present situation, any vector field is a gradient field. With this convention, the Markov generator (18) is given by @ ρ P p0, 1q, @ F P R, L ρ,F "

$ ' ' ' ' & ' ' ' ' % ˆ´F ρp0, 1q F ρp0, 1q 0 0 ˙, if F ě 0 ˆ0 0 ´F ρp1, 0q F ρp1, 0q ˙, if F ă 0
We also compute that, as in (20) and with the above notations, @ ρ P p0, 1q, @ F P R, }F } Let be given ρ 0 , ρ 1 P p0, 1q, the distance Dpρ 0 , ρ 1 q defined in (25) is described by D 2 pρ 0 , ρ 1 q " 2 min "ż 1 0 rρ t ^p1 ´ρt qsF 2 t dt : pF t q tPr0,1s P Dpρ 0 , ρ 1 q * (39)

where pρ t q tPr0,1s is the solution of (38) and where Dpρ 0 , ρ 1 q is the set of stepwise continuous mappings r0, 1s Q t Þ Ñ F t P R which are such that the corresponding pρ t q tPr0,1s does start at ρ 0 and end at ρ 1 . Indeed, our previous continuity assumption can be relaxed into stepwise continuity by classical arguments of regularization by convolution.

To compute Dpρ 0 , ρ 1 q, there is no loss of generality in assuming that ρ 0 ď ρ 1 and even ρ 0 ă ρ 1 , since Dpρ 0 , ρ 0 q " 0. Furthermore, we can restrict our attention to non-negative r0, 1s Q t Þ Ñ F t P R `. Indeed, if we have F t 0 ă 0 for some t 0 P r0, 1s, then, since 9 ρ t has the same sign as F t for all t P r0, 1s, we can find t 1 ă t 2 P r0, 1s with t 0 P pt 1 , t 2 q such that ρ t 1 " ρ t 2 . It follows that in the minimization (39), it is advantageous to replace pF t q tPr0,1s by pG t q tPr0,1s defined by @ t P r0, 1s, G t " 0 , if t P rt 1 , t 2 s F t , otherwise since pG t q tPr0,1s P Dpρ 0 , ρ 1 q and ż 1 0 rρ t ^p1 ´ρt qsF 2 t dt ą ż 1 0 rρ t ^p1 ´ρt qsG 2 t dt

Let us consider the case where ρ 0 ě 1{2. The situation where ρ 1 ď 1{2 can be treated similarly and the case where ρ 0 ă 1{2 and ρ 1 ą 1{2 is deduced by writting Dpρ 0 , ρ 1 q " Dpρ 0 , 1{2q `Dp1{2, ρ 1 q.

Lemma 17 For 1{2 ď ρ 0 ă ρ 1 , we have Dpρ 0 , ρ 1 q " 4p a 1 ´ρ0 ´a1 ´ρ1 q

Proof

Assuming, as we are allowed to, F t ě 0 for any t P r0, 1s, (38) reduces to @ t P r0, 1s, 9 ρ t " p1 ´ρt qF t since ρ t ě 1{2 for all t P r0, 1s. We deduce that @ t P r0, 1s, ρ t " 1 ´p1 ´ρ0 q expp´φ t q where @ t P r0, 1s, φ t " ż t 0 F s ds It appears that pF t q tPr0,1s belongs to Dpρ 0 , ρ 1 q if and only if φ 1 " ln ˆ1 ´ρ0 1 ´ρ1

˙(40)

Introduce the mapping h defined on R `via @ u P R `, hpuq ż u 0 a p1 ´ρ0 qe ´q dq so that ż 1 0 rρ t ^p1 ´ρt qsF 2 t dt "

ż 1 0 p1 ´ρt qF 2 t dt " ż 1 0 ph 1 pφ t q 9 φ t q 2 dt
The optimization problem (39) amounts to minimize twice the above r.h.s. under the condition hpφ 1 q " h ˆln ˆ1 ´ρ0 1 ´ρ1

˙˙ A which is equivalent to (40). Writing for any t P r0, 1s, ϕ t h 1 pφ t q 9 φ t , we are led to the simple problem of minimizing ş 1 0 ϕ 2 t dt under the contraint ş 1 0 ϕ t dt " A. It is well-known that the minimizer r0, 1s Q t Þ Ñ ϕ t is constant and so we end up with A 2 for the minimal value.

Thus we have shown that which is the desired result.

D 2 pρ 0 , ρ 1 q 2 " h 2 ˆln ˆ1 ´ρ0 

  remains to check that for any ∇U P G and any G P Ipπq are π-orthogonal. By definition we have xx∇U, Gyy π "

			ÿ	
			pU pyq ´U pxqqGpx, yq πpxqLpx, yq
		x,yPV	
	By symmetry, we have		
	ÿ			
	x,yPV	U pyqGpx, yq πpxqLpx, yq "	´ÿ x,yPV	U pxqGpx, yq πpxqLpx, yq
	so that			
		xx∇U, Gyy π "	´2 ÿ	U pxqGpx, yq πpxqLpx, yq
			x,yPV	
		" ´2πrU divpGqs
		" 0	

  Lp r Xr0, T sq and LpXr0, T sq of r Xr0, T s and Xr0, T s are equivalent and the Radon-Nikodym derivative of Lp r Xr0, T sq with respect to LpXr0, T sq is given by where for any px, yq P E, N T px, yq is the number of jumps of Xr0, T s from x to y and

	dLp r Xr0, T sq dLpXr0, T sq	" exp	¨ÿ px,yqPE	ln	˜r Lpx, yq Lpx, yq	¸NT px, yq	´ż T 0	HpX t q dt '
		@ x P V,	Hpxq	r Lpx, xq ´Lpx, xq
	For a proof of this result, see e.g. the lecture notes [12].	

  Given a continuous curve r0, 1s Q t Þ Ñ F t P R, Equation (24) writes @ t P r0, 1s,9 ρ t " " p1 ´ρt qF t ρ t p0, 1q , if F t ě 0 ρ t F t ρ t p1, 0q , if F t ă 0

	" rρ ^p1 ´ρqsF t	(38)
	ρ " 2	ÿ

x‰yPV F 2 px, yqρpxqL ρ px, yq " 2rρ ^p1 ´ρqsF

2 

* Fundings from the grants ANR-17-EURE-0010 and AFOSR-22IOE016 are acknowledged.