
HAL Id: hal-04094954
https://hal.science/hal-04094954v1

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-User Linearly Separable Computation: A Coding
Theoretic Approach

Ali Khalesi, Petros Elia

To cite this version:
Ali Khalesi, Petros Elia. Multi-User Linearly Separable Computation: A Coding Theoretic Approach.
ITW 2022, IEEE Information Theory Workshop, 1-9 November 2022, Mumbai, India, IEEE, Nov
2022, Mumbai, India. pp.428-433, �10.1109/ITW54588.2022.9965859�. �hal-04094954�

https://hal.science/hal-04094954v1
https://hal.archives-ouvertes.fr

Multi-User Linearly Separable Computation:

A Coding Theoretic Approach

Ali Khalesi Petros Elia

Eurecom

06410 Sophia Antipolis, France

Email: {ali.khalesi;petros.elia}@eurecom.fr

Abstract—In this work, we investigate the problem of multi-
user linearly separable function computation, where N servers
help compute the desired functions (jobs) of K users. In this
setting each desired function can be written as a linear com-
bination of up to L (generally non-linear) sub-functions. Each
server computes some of the sub-tasks, and communicates a
linear combination of its computed outputs (files) in a single-
shot to some of the users, then each user linearly combines its
received data in order to recover its desired function. We explore
the range of the optimal computation cost via establishing a
novel relationship between our problem, syndrome decoding and
covering codes. The work reveals that in the limit of large N , the
optimal computation cost — in the form of the maximum fraction
of all servers that must compute any subfunction — is lower

bounded as γ ≥ H−1
q (

log
q
(L)

N
), for any fixed logq(L)/N . The

result reveals the role of the computational rate logq(L)/N , which
cannot exceed what one might call the computational capacity
Hq(γ) of the system.

Index Terms— Distributed computation, Linearly separable
function, Coding theory

I. INTRODUCTION

There is a recent surge in the use of distributed computing

system such as MapReduce [1], Spark [2] for processing non-

linear and computationally hard functions. This surge has been

further intensified by recent developments relating to training

large-scale machine learning algorithms such as deep neural

networks with high data complexity (cf. [3]). In many such

applications, the main goal is to utilize distributed parallel

processing techniques to offload computations to a group of

distributed servers in order to reduce the computation time.

Such approaches can be found in various settings such as

in [4].

This parallelization among distributed workers and servers

presents new challenges in terms of accuracy, scalability,

latency and straggler mitigation, privacy and security, com-

munication and computation complexity [3], [5]. To this end,

various information- and coding-theoretic works, have sought

to design algorithms that alleviate the above problems, as well

as establish the fundamental performance limits in various

scenarios. Such works can be found in the context of computa-

tional accuracy [6]–[9], latency and straggler mitigation [10]–

[13], scalability [14], [15], security and privacy [16]–[20], as

This work was supported by the European Research Council (ERC) through
the EU Horizon 2020 Research and Innovation Program under Grant 725929
(Project DUALITY)

well as in the context of communication and computation

complexity [21]–[27]. For a detailed survey of various such

works, the reader is encouraged to see [28], [29].

In this paper we adapted a data parallel, centralized topology

[3], where there exist a master or dealer node who acts

as a total trusted authority and manages N worker\server

nodes, in the presence of L datasets\sub-tasks. Our setting

also considers K agents\users, where each such user sends

its demand to the master node. In particular, our setting here

considers a master node that manages N server nodes that

must contribute in a distributed manner to the computation of

the desired function by each of the K different users. Under

the linearly-separable assumption (cf. [30]), we consider that

each user k ∈ {1, 2, . . . ,K} asks for a linearly-separable

function that takes as input up to L sub-functions.

To derive bounds to the computational costs required (at

the servers) to complete the computation for all users, we here

establish a novel relationship between our computing problem,

linear codes, syndrome decoding, and the here-introduced

class of partial-covering codes.

In this paper, Section II introduces the system model,

Section III formulates the problem, Section IV makes the

connection to coding theory, Section V presents the main

algebraic converse, and finally Section VI concludes the paper.

Notations: For some n ∈ N, we define [n] , {1, 2, . . . , n}.

For some matrix (or vector) X, we use ω(X) to denote the

corresponding hamming weight. We will denote the finite field

GF(q) as F. For some vector x ∈ F
n and some code C ⊆ F

n,

we will use d(x, C) to represent the hamming distance of x

to the nearest codeword in C. We will dedicate the use of

letter ρ to correspond to a code’s normalized covering radius,

while we will use ρ(C) when we want to emphasize on the

normalized covering radius of a specific code C ∈ F
n. For

some matrix H, we will use CH to represent the linear code

whose parity-check matrix is H. Similarly, when we write HC ,

we refer to the parity-check matrix of a linear code C. For some

k ≤ n, k, n ∈ N, we will also use C(k, n) to represent a linear

code of message length k and codeword length n. We will use

Vq(n, ρ) to represent the volume of a Hamming ball in F
n with

radius ρn. For 0 ≤ x ≤ 1− 1
q
, x ∈ R, we will use the notation

Hq(x) , x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x)

to represent the q-ary entropy function. Finally we will use

sup(x⊺) to represent the support of some vector x
⊺ ∈ F

n,

i.e., to represent the set of indices of non-zero elements of

that vector.

II. PROBLEM STATEMENT

In this section, we explain the Multi-user Linearly Separable

Computation setting (cf. Fig. 1) which consists of K users, N
servers, and a master node that coordinates servers and users1.

In this problem, user k ∈ [K] demands a function

Fk(D1, . . . , DL) of L independent datasets Dℓ, ℓ ∈ [L], where

this function takes the general linearly-separable form

Fk(D1, D2, . . . , DL) (1)

, fk,1f1(D1) + fk,2f2(D2) + . . .+ fk,LfL(DL) (2)

= fk,1W1 + fk,2W2 + . . .+ fk,LWL k ∈ [K], (3)

where in the above, Wℓ = fℓ(Dℓ) ∈ F, ℓ ∈ [L] is a so-called

‘file’ output, and where fk,ℓ ∈ F, k ∈ [K], ℓ ∈ [L] are the

linear combination coefficients which belong, together with

the entries of Wℓ, in some finite field F.

A. Phases

The model involves three phases, with the first being the

demand phase, then the assignment and computation phase

and then the transmission and decoding phase.

In the demand phase, each user k ∈ [K] sends the informa-

tion of its desired function Fk(.) to the master node, who then

deduces the linear decomposition of this function according

to (3). Then based on these K desired functions, during the

assignment and computation phase, the master assigns some

of the datasets to each server, who then proceeds to calculate

the corresponding files Wℓ = fℓ(Dℓ) for their locally available

datasets. Based on this assignment, each dataset Dℓ will be

placed at all the servers in some chosen server set Wℓ.

In the assignment and computation phase, the master

in accordance with the desired task functions assigns some

datasets to each server, and then each server n ∈ [N] computes

all the computationally hard files from the locally-available

datasets. To this end, we define the set of indices of the

servers that dataset ℓ ∈ [L] has been assigned to as Wℓ ⊂ [N].

During the transmission phase, a linear combination of the

locally available output files at the server is transmitted, where

each server n ∈ [N] transmits

zn ,
∑

ℓ∈[L]

en,ℓWℓ n ∈ [N], (4)

in a single shot (slot) over a broadcast channel to a subset of

users in Tn ∈ [K]. In the above, we can easily see that the

encoding coefficients en,ℓ, which are indeed determined by the

master node, satisfy en,ℓ = 0, ∀(n, ℓ) ∈ [N]× [L], n /∈ Wℓ.

1Our setting incorporates the underlying assumption that the tasks per-
formed at the servers substantially outweigh in computational complexity the
basic linear operations that are performed at the different users and also we
have assumed that each server node is connected to all of the users through
a broadcast channel.

Server Nodes

...

Users
...

Master Node

...

Fig. 1. The K-user, N -server Linearly Separable Computation setting. After
each user informs the master of its desired function Fk(.), each component
subfunction Wℓ = fℓ(Dℓ) is evaluated at each server in Wℓ. Each server
n transmits a linear combination zn (of the locally available files) to all
users in Tn. This combination is defined by the coefficients en,ℓ. Finally,
to decode, each user k ∈ [K] linearly combines (based on decoding vectors
dk), its received signal from all the servers it is connected to. Decoding must
produce for each user its desired function Fk(D1, . . . , DL).

Finally during the decoding part, each user k linearly

combines the received signals as follows

F ′
k ,

∑

n∈[N]

dk,nzn, (5)

for some decoding coefficients dk,n ∈ F, n ∈ [N] determined

again by the master node. Naturally dk,n = 0, ∀k /∈ Tn.

Decoding is successful when F ′
k = Fk for all k ∈ [K].

B. Computation Cost

Remembering that |Wℓ| indicates the number of servers that

compute a subfunction Wℓ = fℓ(Dℓ), ℓ ∈ [L], our normalized

computational cost metric takes the form

γ ,

max
l∈[L]

|Wl|

N
, (6)

to represent the maximum fraction of all servers that must

compute any subfunction. We wish to establish a lower bound

on this computational cost.

III. PROBLEM FORMULATION

To formulate the problem we first define the below vectors,

w , [W1,W2, . . . ,WL]
⊺, (7)

en , [en,1, en,2, . . . , en,L]
⊺, n ∈ [N], (8)

E , [e1, e2, . . . , eN]⊺, (9)

dk , [dk,1, dk,2, . . . , dk,N]⊺, k ∈ [K], (10)

z , [z1, z2, . . . , zN]⊺, (11)

fk , [fk,1, fk,2, . . . , fk,L]
⊺, k ∈ [K], (12)

f , [F1, F2, . . . , FK]⊺, (13)

f
′ , [F ′

1, F
′
2, . . . , F

′
K]⊺, (14)

F , [f1, f2, . . . , fK]⊺. (15)

Note that from (3), we have that

f = [f1, f2, . . . , fK]⊺w, (16)

and then from (4) we conclude that

z = Ew = [e1, e2, . . . , eN]⊺w, (17)

which indicates what each server transmits. This transmission

is defined by the so-called encoding matrix E. Now from (5)

we see that each user, after decoding, receives

F ′
k = d

T
k z, (18)

which in turn defines the set of all decoded signals

f
′ = [d1,d2, . . . ,dK]⊺z (19)

across all the users. This decoding is itself fully defined by

the so-calleddecoding matrix

D , [d1,d2, . . . ,dK]⊺ ∈ F
K×N . (20)

Decoding is successful and correct if and only if

f = f
′ (21)

for any Dℓ, ℓ ∈ [L]. Directly from (16), (17), (19) into (21),

we see that correctness holds — for any Dℓ, ℓ ∈ [L], i.e., for

any w ∈ F
L×1 — if and only if 2

DE = F. (22)

Noting that Wl = sup(E(:, {l})⊺) and that |Wl| = ω(E(:
, {l})), we have that

max
l∈[L]

ω(E(:, l)) = max
l∈[L]

|Wl| (23)

which simply tells us that our computational cost γ from (6)

takes the form

γ =
1

N
max
l∈[L]

ω(E(:, l)). (24)

We here provide a simple example to help clarify the setting

and the notations.

A. Simple Example

As described in Figure 2, we consider the example of a

system with a master node, N = 8 servers, K = 4 users,

L = 6 datasets, and a field of size q = 7.

Let us assume that the users ask the following functions:

F1 = 2f1(D1) + 4f2(D2) + 4f3(D3) + 5f4(D4) + 5f5(D5),

F2 = 3f1(D1) + 4f2(D2) + 5f3(D3) + 2f4(D4) + 6f5(D5)

+ 6f6(D6),

F3 = 2f1(D1) + 4f2(D2) + 6f3(D3) + 5f4(D4) + 2f5(D5),

F4 = 3f1(D1) + 5f2(D2) + 2f4(D4) + 3f5(D5) + f6(D6)

2Since the master node does not know about Wℓ, ℓ ∈ where designing the
scheme, to make sure that (21) holds for all values of Wℓ ∈ F

n, we reach
DE = F is both necessary and sufficient condition. more is available on
https://arxiv.org/abs/2206.11119.

Server Nodes

Users

...

Master Node

Fig. 2. Multi-user linearly separable setting with 8 servers, 4 users and 6
datasets.

where Fk, k ∈ [4] is defined in (3) (after which, the

corresponding fk,w are respectively defined in (7) and (12)).

Consequently from (15), our demand matrix takes the form

F =

2 4 4 5 5 0
3 4 5 2 6 6
2 4 6 5 2 0
3 5 0 2 3 1

 . (25)

In the assignment phase, the master allocates

D1, D2, . . . , D6 to the 8 servers according to

W1 = {1, 2, 3, 5, 8}, W2 = {1, 2, 3, 4, 6, 7}, (26)

W3 = {1, 2, 3}, W4 = {1, 4, 5, 7} (27)

W5 = {1, 2, 4, 5, 6, 8}, W6 = {3, 4, 5, 6, 7, 8} (28)

so that for example dataset 3 resides at servers {1, 2, 3},

and where server 2 is assigned datasets D1, D2, D3, D5 and

thus has to compute W1 = f1(D1),W2 = f2(D2),W3 =
f3(D3),W5 = f5(D5). A quick inspection shows that the

normalized computation cost (cf. (6)) is equal to

γ =

max
l∈[6]

|Wl|

8
= 6/8. (29)

After computing their designated output files, each server n
transmits zn as follows

z1 = 2W1 + 6W2 + 3W3 +W4 + 2W5, (30)

z2 = 4W1 + 5W2 + 2W3 + 3W5, (31)

z3 = W1 + 2W2 +W3 + 2W6, (32)

z4 = W2 + 2W4 + 4W5 +W6, (33)

z5 = 2W1 +W4 + 3W5 + 2W6, (34)

z6 = 2W2 + 5W5 + 3W6, (35)

z7 = W2 + 2W4 + 4W6, (36)

z8 = 2W1 + 4W5 + 5W6, (37)

corresponding to an encoding matrix (cf. (17)) of the form

E =

2 6 3 1 2 0
4 5 2 0 3 0
1 2 1 0 0 2
0 1 0 2 4 1
2 0 0 1 3 2
0 2 0 0 5 3
0 1 0 2 0 4
2 0 0 0 4 5

. (38)

We can quickly verify (cf. (29)) that indeed max
l∈[6]

ω(E(:

, l))/8 = 6/8 = γ.

Subsequently, the master asks each server n to send its

generated zn to its designated receiving users, such that for

each server, these user sets are:

T1 = {2, 4}, T2 = {1, 3}, T3 = {3}, T4 = {1, 2, 3, 4}, (39)

T5 = {1, 2, 3, 4}, T6 = {1, 2}, T7 = {1, 4}, T8 = {4}, (40)

where for example server 2 will transmit z2 to users 1 and 3.

To decode, each user k ∈ [4] computes the linear combination

F ′
k as

F ′
1 = 2z2 + 3z4 + 4z5 + 2z6 + z7, (41)

F ′
2 = 4z1 + 2z4 + z5 + 3z6, (42)

F ′
3 = 4z2 + 5z3 + 2z4 + z5, (43)

F ′
4 = 4z1 + 2z3 + z4 + 2z5 + 4z7 + 5z8, (44)

corresponding to a decoding matrix of the form

D =

0 2 0 3 4 2 1 0
4 0 0 2 1 3 0 0
0 4 5 2 1 0 0 0
4 0 2 1 2 0 4 5

 . (45)

A quick verification3 reveals the correctness of decoding and

that indeed F ′
k = Fk for all k = 1, 2, 3, 4. For example, for

the first user, we see that F ′
1 = 2z2 +3z4 +4z5 +2z6 + z7 =

2(4W1+5W2+2W3+3W5)+3(W2+2W4+4W5+W6)+
4(2W1+W4+3W5+2W6)+2(2W2+5W5+3W6)+(W2+
2W4 + 4W6) = 2W1 + 4W2 + 4W3 + 5W4 + 5W5 + 0W6

which indeed matches F1. In this example, each user recovers

their desired function, with a corresponding normalized com-

putational cost γ = 3/4 . This has just been an example to

illustrate the setting. The effort to find a solution with reduced

computation cost, follows in the section below.

IV. A CODING THEORETIC APPROACH

This section establishes a conceptual bridge between our

problem and coding theory.

Our first aim is to decompose F into F = DE under a

constrained computation cost, i.e., under a sparsity constraint

on E. For Eℓ , E(:, l) and Fℓ , F(:, l) denoting the

lth column of D and E respectively, we can rewrite our

decomposition as

DEℓ = Fℓ, ℓ ∈ [L]. (46)

3Let us recall that each decoded symbol takes the form F ′

k
= d

⊺

k
z where

d
⊺

k
is the kth row of D, and where z = [z1 z2 · · · zN]T .

If we viewed D ∈ F
K×N as a parity check matrix of a code

C ⊂ F
N , referred to as HC , then we could view Eℓ ∈ F

N as

an arbitrary error pattern, and Fℓ ∈ F
K as the corresponding

syndrome. Since we wish to sparsify Eℓ, we are interested in

Eℓ being the minimum-weight coset leader whose syndrome

is Fℓ. This is simply the output of the minimum-distance

syndrome decoder. To get a first handle on the weights of Eℓ,

we can refer to the theory of covering codes which bounds

the weights of coset leaders.

To derive our results for any L ≤ qK4, we will first need to

explore certain coding-theoretic properties, and for this reason

we will transition to the traditional coding-theoretic notation

which speaks of an n-length code C of rate k/n, where for

us n = N and k = N − K. The parity check matrix HC ∈
F
(n−k)×n will generally be associated to our decoding matrix

D ∈ F
K×N , the received (or error) vectors x ∈ F

n will be

associated to the encoding vectors Eℓ ∈ F
N , and its syndrome

sx ∈ F
n−k (or just s depending on the occasion) will be

associated to Fℓ ∈ F
K . As suggested before, when we write

CD (or CH) we will refer to the code whose parity check matrix

is D (or H).

V. RESULTS

As a first step, we extend the concept of covering codes to

the following class of codes,

Definition 1. Let ρ ∈ (0, 1]. We say that a set X ⊆ F
n is

ρ-covered by a code C ⊆ F
n iff

d(x, C) ≤ ρn, ∀x ∈ X (47)

in which case, we say that C is a (ρ,X)-partial covering code.

Naturally when X = F
n, the code is simply the traditional

covering code.

We are now able to link partial covering codes to our

distributed computing problem via the following thheorem,

Theorem 1. A solution to the multi-user linearly separable

problem DE = F with complexity γ = 1
N
max
ℓ∈[L]

ω(E(:, l))

exists if and only if D is the parity check matrix to a (γ,X)-
partial covering code CD for some existing set X ⊇ XF,D,

where XF,D is defined as,

XF,D , {x ∈ F
N |Dx = F(:, l), for some ℓ ∈ [L]}. (48)

With such D in place, each E(:, l) is the output of the

minimum-distance syndrome decoder of CD for syndrome

F(:, l).

Proof. To first prove that the complexity constraint indeed

requires D to correspond to a partial covering code that

covers X , let us assume that D does not have this property,

and thus there exists an x ∈ X such that d(x, CD) > ρn.

Let cmin be the closest codeword to x in the sense that

d(x, cmin) = d(x, CD). Now let emin = x − cmin and note,

directly from the above assumption, that ω(emin) > ρn.

4There are at most L = qK possible distinct columns for F. We naturally
assume the worst case where the columns of F are different.

Naturally Dx = D(emin + cmin) = Demin by virtue of the

fact that D is the parity check matrix of CD. Since x ∈ X ,

we know that ∃ ℓ ∈ [L] : Dx = F(:, l) which directly means

that ∃ ℓ ∈ [L] : Demin = F(:, l). This emin is the coset leader

associated to syndrome F(:, l).
Since though DE = F, we also have that DE(:, l) =

F(:, l). Since E(:, l) and emin are in the same coset (of the

same syndrome F(:, l)), and emin is the minimum-weight coset

leader, we can conclude that ω(E(:, l)) ≥ emin. Thus the

assumption that ω(emin) > ρn implies that ω(E(:, l)) > ρn
which contradicts the complexity requirement that ω(E(:
, l)) ≤ ρn from (23) and (6) and. Thus if D does not

correspond to a partial covering code that covers XF,D, the

complexity constraint is violated.

On the other hand, recalling that CD is a partial covering

code for X , means that for any x ∈ X then d(x, CD) ≤ ρn.

For the same x ∈ X , let cmin be again its closest codeword,

and let emin = x − cmin, where again by definition (of the

partial covering code), ω(emin) ≤ ρn. Since, like before,

Demin = F(:, l) for some l ∈ [L], then we simply set

E(:, l) = emin whose weight is sufficiently low to guarantee

the complexity constraint. We recall that for each F(:, l), this

coset leader E(:, l) = emin can be found using the minimum-

distance syndrome decoder.

We can now proceed with the characterisation of the con-

verse.

Theorem 2. For the distributed linearly separable problem

with K users, N servers and any number L of sub-functions,

the optimal computation cost is lower bounded as

γ ≥ H−1
q (

logq(L)

N
). (49)

Proof. Let γ = ρ. To prove our theorem, we first need to

prove that a code C(k, n) ⊆ F
n
q can ρn-cover a set X ⊆ F

n
q

of size |X | = qkL, only if

logq(L) ≤ logq(Vq(n, ρ)). (50)

To prove (50) we simply apply the union bound after noting

that each of the qk codewords can only ρn-cover Vq(n, ρ)
vectors. This implies that

Lqk ≤ Vq(n, ρ)q
k, (51)

which in turn directly yields (50) after applying the logarithm

on both sides of the inequality.

To complete the proof, we first assign the above set X to

be the X in Theorem 1, where now X ⊇ XF,D (cf. (48)).

We know from above that |X | = Lqk. We can also see that

|XF,D| = Lqk because, by definition (cf. (48)), this set XF,D

is the reverse image – to the ambient space F
n – of the all the

syndromes corresponding to F (i.e., the reverse image of all

the columns of F). Thus now we know that X = XF,D. Then

by substituting N = n,K = n − k, we see that logq(L) ≤
logq(Vq(N, ρ)). By applying the well known (asymptotically

tight) bound qNHq(ρ)−o(N) ≤ Vq(N, ρ) ≤ qNHq(ρ), we can

conclude that, in the limit of large L, logq(L) ≤ NHq(ρ),

thus proving that H−1
q (

log
q
(L)

N
) ≤ ρ.

Remark 1. We see that the lower bound is only dependent on
log

q
(L)

N
and if L = qK , the result reduces to sphere-covering

bound, which has been already known in the literature.

VI. CONCLUSION

We have explored the computational cost of the multi-

user linearly separable function computation setting, which

is a broad setting that captures several distributed computing

problems such as the distributed gradient coding problem

[13], the distributed linear transform problem [31], and the

distributed matrix multiplication and the distributed multi-

variate polynomial computation problems [32], [33], among

others. The work established a novel relationship between our

problem and coding theory, and provided an algebraic converse

that reveals that the normalized computational cost — in the

form of the maximum fraction of all servers that must compute

any subfunction — is lower bounded as γ ≥ H−1
q (

log
q
(L)

N
) in

the limit of large L and fixed logq(L)/N .

In the journal version of this work which is available online

now on https://arxiv.org/abs/2206.11119, we have provided

achievable schemes for the same setting and in detail insights

on this problem.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 10), 2010.

[3] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM

Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–33, 2020.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on

operating systems design and implementation (OSDI 16), pp. 265–283,
2016.

[5] S. Ulukus, S. Avestimehr, M. Gastpar, S. Jafar, R. Tandon, and C. Tian,
“Private retrieval, computing and learning: Recent progress and future
challenges,” IEEE Journal on Selected Areas in Communications, 2022.

[6] T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: A coding
scheme for distributed computation of approximated matrix multipli-
cation,” IEEE Transactions on Information Theory, vol. 67, no. 6,
pp. 4185–4196, 2021.

[7] J. Wang, Z. Jia, and S. A. Jafar, “Price of precision in coded distributed
matrix multiplication: A dimensional analysis,” in 2021 IEEE Informa-

tion Theory Workshop (ITW), pp. 1–6, IEEE, 2021.

[8] E. Ozfatura, S. Ulukus, and D. Gündüz, “Coded distributed computing
with partial recovery,” IEEE Transactions on Information Theory, 2021.

[9] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Cache-aided matrix
multiplication retrieval,” IEEE Transactions on Information Theory,
2022.

[10] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic mds codes and expander graphs,” IEEE Transactions on

Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[11] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Tree
gradient coding,” in 2019 IEEE International Symposium on Information

Theory (ISIT), pp. 2808–2812, IEEE, 2019.

[12] K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly separable
computation,” IEEE Transactions on Information Theory, 2021.

[13] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International

Conference on Machine Learning, pp. 3368–3376, PMLR, 2017.
[14] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi, “Near-

optimal straggler mitigation for distributed gradient methods,” in 2018

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pp. 857–866, IEEE, 2018.
[15] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog lagrange

coded computing,” IEEE Journal on Selected Areas in Information

Theory, vol. 2, no. 1, pp. 283–295, 2021.
[16] M. Soleymani and H. Mahdavifar, “Distributed multi-user secret shar-

ing,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 164–
178, 2020.

[17] A. Khalesi, M. Mirmohseni, and M. A. Maddah-Ali, “The capacity re-
gion of distributed multi-user secret sharing,” IEEE Journal on Selected

Areas in Information Theory, vol. 2, no. 3, pp. 1057–1071, 2021.
[18] H. Akbari-Nodehi and M. A. Maddah-Ali, “Secure coded multi-party

computation for massive matrix operations,” IEEE Transactions on

Information Theory, vol. 67, no. 4, pp. 2379–2398, 2021.
[19] H. A. Nodehi and M. A. Maddah-Ali, “Limited-sharing multi-party

computation for massive matrix operations,” in 2018 IEEE International

Symposium on Information Theory (ISIT), pp. 1231–1235, IEEE, 2018.
[20] K. Wan, H. Sun, M. Ji, and G. Caire, “On secure distributed linearly

separable computation,” IEEE Journal on Selected Areas in Communi-

cations, 2022.
[21] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded

distributed computing,” in 2018 IEEE International Symposium on

Information Theory (ISIT), pp. 2032–2036, IEEE, 2018.
[22] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to

optimally allocate resources for coded distributed computing?,” in 2017

IEEE International Conference on Communications (ICC), pp. 1–7,
IEEE, 2017.

[23] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an opti-
mal design for high-dimensional coded matrix multiplication,” Advances

in Neural Information Processing Systems, vol. 30, 2017.
[24] W. Li, Z. Chen, Z. Wang, S. A. Jafar, and H. Jafarkhani, “Flexible

distributed matrix multiplication,” arXiv preprint arXiv:2107.10448,
2021.

[25] M. V. Jamali, M. Soleymani, and H. Mahdavifar, “Coded distributed
computing: Performance limits and code designs,” in 2019 IEEE Infor-

mation Theory Workshop (ITW), pp. 1–5, IEEE, 2019.
[26] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix

multiplication,” in 2017 55th Annual Allerton Conference on Communi-

cation, Control, and Computing (Allerton), pp. 1271–1278, IEEE, 2017.
[27] K. Wan, H. Sun, M. Ji, and G. Caire, “On the tradeoff between

computation and communication costs for distributed linearly separable
computation,” IEEE Transactions on Communications, vol. 69, no. 11,
pp. 7390–7405, 2021.

[28] J. S. Ng, W. Y. B. Lim, N. C. Luong, Z. Xiong, A. Asheralieva,
D. Niyato, C. Leung, and C. Miao, “A survey of coded distributed
computing,” arXiv preprint arXiv:2008.09048, 2020.

[29] S. Li and S. Avestimehr, “Coded computing: Mitigating fundamental
bottlenecks in large-scale distributed computing and machine learning,”
2020.

[30] K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly separable
computation,” IEEE Transactions on Information Theory, pp. 1–1, 2021.

[31] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” Advances In

Neural Information Processing Systems, vol. 29, 2016.
[32] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation

in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3,
pp. 1920–1933, 2020.

[33] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded dis-
tributed batch computation,” IEEE Transactions on Information Theory,
vol. 67, no. 5, pp. 2821–2846, 2021.

