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Abstract

We introduce and analyse the almost sure convergence of a new stochastic algorithm for the global
minimization of Morse functions on compact Riemannian manifolds. This diffusion process is called
fraudulent because it requires the knowledge of minimal value of the function. Its investigation is
nevertheless important, since in particular it appears as the limit behavior of non-fraudulent and
time-inhomogeneous swarm mean-field algorithms used in global optimization.
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1 Introduction
To find the global minima of functions also admitting local minima is of great importance, both from
a theoretical and practical point of view. Here the smooth context of Morse functions on compact
Riemannian manifolds is considered. We introduce a new time-homogeneous stochastic algorithm X
called fraudulent because it requires the knowledge of the minimal value. In some sense it serves as
an illustration of the folklore assertion that to know the minimal value of a function and to find a cor-
responding global minimum are equivalent problems. Nevertheless we found interesting to investigate
this algorithm for three reasons:

• The process X is an approximation of the large-time limit behavior of the time-inhomogeneous
swarm mean-field algorithm introduced in [1]. The latter algorithm is non-fraudulent since it
uses its current distribution to estimate in real time the minimal value.

• The principle behind the convergence of X toward the global minima can be used to devise
other non-fraudulent stochastic algorithms based on particles systems that learn adaptatively
the minimal value.

• The stochastic algorithm X is useful to find other global minima, once one is known, because as
soon as the dimension is larger than or equal to 2, all global minima attract X with a positive
probability.

More precisely, on a compact Riemannian manifold M , of dimension m ě 1, let be given a Morse
function U satisfying minM U “ 0. Recall that a smooth mapping is a Morse function if its Hessian is
non-degenerate at each of its critical points (which are the points where the gradient vanishes).

Consider a diffusion X B pXptqqtě0 associated to the generator

Lβ B U4 ¨ ´β x∇U,∇¨y

where4, x¨, ¨y and∇ stand for the Laplacian, scalar product and gradient coming from the Riemannian
structure, and where β is a real number. Since we want to find the global minima of U , we are more
interested in the case β ą 0, where the drift has an attractive (respectively repulsive) effect with
respect to the local minima (resp. maxima). But as we are to see, it is convenient to also consider
non-positive values of β, where the effects of the drift are reversed.

Due to the Morse assumption on U and the fact that minM U “ 0, we have that
?
U is a Lipschitz

mapping on M (for more details, see Remark 4 below). As a consequence it is possible to construct
X, whatever the initial condition, as the unique strong solution to a stochastic differential equation
driven by a m-dimensional Brownian motion B B pBptqqtě0 (independent from Xp0q), see for instance
Ikeda and Watanabe [5]. Heuristically, this stochastic differential equation can be written under the
Itô’s form

dXptq “ ´β∇UpXptqq dt`
a

2UpXptqq dBptq (1)

or under Stratonovich’s form

dXptq “ ´

ˆ

β `
1

2
?
2

˙

∇UpXptqq dt`
a

2UpXptqq ˝ dBptq

where dBptq has to be isometrically interpreted in the tangent space above Xptq through some stochas-
tic parallel displacements. At least when M is a flat torus, the writing (1) is perfectly rigorous.

Consider the set of global minima of U given by

U B tx PM : Upxq “ 0u

Note that if Xp0q P U , then X does not move: for any t ě 0, we have Xptq “ Xp0q. This
observation can be strengthened into the attractiveness of U , which is the main goal of this paper.
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We need some additional notations. Under the Morse assumption, U consists of a finite set of points,
say y1, y2, ..., yN , with N P N. For each n P JNK B t1, 2, ..., Nu, denote λ1pnq ď λ2pnq ď ¨ ¨ ¨ ď λmpnq
the positive eigenvalues of the Hessian of U at yn. Introduce the condition

β ą max
nPJNK

ř

iPJmK λipnq

2λ1pnq
´ 1 (2)

Theorem 1 Whatever the initial condition Xp0q, under (2) the limit Xp8q B limtÑ`8Xptq exists
a.s. and belongs to U . Furthermore, when m ě 2, if X starts from a point x0 R U , we have for any
x P U ,

Px0rXp8q “ xs ą 0

When m “ 1, denote x1 and x2 the boundary points of the connected component of MzU containing
x0 (when U is a singleton, we get x1 “ x2). Then we have

Px0rXp8q “ x1s ą 0, Px0rXp8q “ x2s ą 0, @ x P Uztx1, x2u, Px0rXp8q “ xs “ 0

Thus under (2) X is a time-homogeneous stochastic algorithm minimizing globally U and finding
all the global minima as soon as m ě 2.

It is natural to wonder about the optimality of (2). In this direction, we will show:

Theorem 2 Assume that

β ă min
nPJNK

ř

iPJmK λipnq

2λmpnq
´ 1 (3)

Whatever the initial condition Xp0q, we have

P
„

lim
tÑ`8

Xptq exists and belongs to U


“ 0

As a consequence, the value m{2´ 2 is critical for β when at each global minimum the Hessian is
proportional to the identity:

Corollary 3 Assume that for each n P N we have λ1pnq “ λmpnq, then we have

β ą
m

2
´ 1 ñ P

„

lim
tÑ`8

Xptq exists and belongs to U


“ 1

β ă
m

2
´ 1 ñ P

„

lim
tÑ`8

Xptq exists and belongs to U


“ 0

In particular this result always applies in dimension 1 and we get ´1{2 as the critical value for β
(justifying our consideration of negative β).

In practice we may not have access to the eigenvalues of the Hessian at the global minima, so
Condition (2) is difficult to check. An alternative to the appropriate choice of the coefficient β is to
let it depend on the current value of U . More precisely, consider ζ : p0,`8q Ñ p0,`8q a smooth
function such that

lim
uÑ0`

ζpuq “ `8 (4)

lim
uÑ0`

?
uζpuq “ 0 (5)

We replace the generator Lβ by

Lζ B U4 ¨ ´ζpUq x∇U,∇¨y (6)
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with ζpUpxqq∇Upxq “ 0 for x P U by continuity, due to (5) (this is in fact the only justification for
this assumption). Heuristically this generator corresponds to the Itô stochastic differential equation

dXptq “ ´ζpUpXptqq∇UpXptqq dt`
a

2UpXptqq dBptq

The coefficients of this equation are not globally Lipschitz, nevertheless, we will see that whatever
the initial distribution, there is a unique strong diffusion X associated to (6) in the sense of martingale
problem. For this processX, Theorem 1 still holds, without Assumption (2). Of course in this situation
we lose the critical phenomenon described by Corollary 3. But the advantage is that the diffusion X
associated to (6) could be applied to deal with situations less regular than Morse functions.

In the above results, no estimate on the speed of convergence were provided, but it should be
possible to remedy this by examining more quantitatively the following arguments. We hope to go
further in future investigations.

The plan of the paper is as follows. In the next section we prove Theorem 1 under a stronger
assumption than (2). Bessel processes with negative dimension play a pivotal role. In Section 3 the
arguments are improved to lead to the desired results. An appendix succinctly recalls the swarm
mean-field algorithm of [1] to explain how a fraudulent algorithm can appear from the investigation
on non-fraudulent ones. Another simpler and illustrative example is given, even if it is probably less
efficient than swarm algorithms.

Acknowledgments:
I would particularly like to thank Marc Arnaudon, Jérôme Bolte and Stéphane Villeneuve for the
discussions we had about this paper.

2 Proof of a weaker version of Theorem 1
Here we prove Theorem 1 under the stronger assumption

β ą 1` sup
nPJNK

ř

iPJmK λipnq

2λ1pnq
(7)

Its relaxation to (2) will be shown in the next section.

First let us give a sketch of the proof. For any given global minimum yn, with n P JNK, we can find
a small radius rn ą 0 such that inside the ball Bpyn, rnq, the evolution of UpXptqq is comparable to a
time-changed Bessel process with negative dimension. Since a Bessel process with negative dimension
a.s. converges to zero in finite time, X will stay in Bpyn, rnq forever with positive probability and
then converge to yn, if it happens to belong to an even smaller neighborhood Vn of yn at some time.
Nevertheless, the convergence is not expected to occur in finite time due to the time-change, see
Example 7 below. It remains to remark that outside YnPJNKVn, the diffusion X is elliptic, so it will
end up entering YnPJNKVn. Since each times this happens X has a positive chance to converge to a
point of U , this event will end up occurring with probability 1. The last assertions of Theorem 1 are
consequences of the ellipticity of X outside U .

Let us now develop more precisely the above arguments.
We begin by recalling some general facts about the process X, for any fixed β P R. Its law on the

set of continuous trajectories from R` to M is uniquely determined by the initial distribution of Xp0q
and the by fact for any smooth function f : M Ñ R, the process Mf B pMf ptqqtě0 defined by

@ t ě 0, Mf ptq B fpXptqq ´ fpXp0qq ´

ż t

0
Lβrf spXpsqq ds
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is a continuous martingale (with respect to the filtration generated by X). Furthermore, its bracket
(the notation of which should not to be confused with the Riemannian scalar product) is given by

@ t ě 0,
A

Mf
E

t
“ 2

ż t

0
UpXpsqq }∇fpXpsqq}2 ds (8)

where }¨} stands for the Riemannian norm.
When M is a flat torus, these observations can be deduced from Itô’s formula, asserting that:

dfpXptqq “ rUpXptqq4fpXptqq ´ β x∇UpXptqq,∇fpXptqqys dt`
a

2UpXptqq x∇fpXptqq, dBptqy

so that

@ t ě 0, Mf ptq “

ż t

0

a

2UpXpsqq x∇fpXpsqq, dBpsqy

This formula can be generalized for general compact Riemannian manifolds, nevertheless the above
martingale problem point of view is more synthetic and enables to avoid delicate geometric construc-
tions. For extensive developments of the martingale problem approach, we refer to the books of Stroock
and Varadhan [9] and Ethier and Kurtz [3].

Introduce

σf B inftt ě 0 : UpXptqq }∇fpXptqq}2 “ 0u

with the convention that σf “ `8 when the r.h.s. is the empty set. Assume that UpXptqq }∇fpXptqq}2 ‰
0, so that σf ą 0 a.s.

Since for any t P r0, σf q, we have UpXptqq }∇fpXptqq}2 ą 0, we can consider the time change
pτ ft qtPr0,ςq uniquely defined through

@ t P r0, ςf q, 2

ż τft

0
UpXpsqq }∇fpXpsqq}2 ds “ t

where

ςf B 2

ż σf

0
UpXpsqq }∇fpXpsqq}2 ds

Define the process Y f via

pY f ptqqtPr0,ςf q B pfpXpτ ft qqqtPr0,ςf q

Classical time-change theory, see for instance the first section of Chapter 5 of Revuz and Yor [7],
Levy’s characterization theorem and (8), enable us to construct a Brownian motion pW ptqqtě0 (up to
a possible enlargement of the underlying probability space), so that for any time t P r0, ςq,

dY f ptq “
1

2
F f pY f ptqq dt` dW ptq

where for any x PM such that Upxq }∇fpxq}2 ‰ 0,

F f pxq B
Lβrf spxq

Upxq }∇fpxq}2

“
4fpxq
}∇fpxq}2

´ β
x∇Upxq,∇fpxqy
Upxq }∇fpxq}2
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Now let us apply these considerations to a particular function f . The first idea is to take f “ U
(in next section we will see that this is not optimal). To simplify the notations, all the superscripts f
are removed in this case. Thus we have

σ “ inftt ě 0 : Xptq P Cu

with C B tx P M : ∇Upxq “ 0u being the set of critical points of U . Furthermore we consider the
process Y given by

pY ptqqtPr0,ςq B pUpXpτtqqqtPr0,ςq

with

@ t P r0, ςq, 2

ż τt

0
UpXpsqq }∇UpXpsqq}2 ds “ t

and

ς B 2

ż σ

0
UpXpsqq }∇UpXpsqq}2 ds

The evolution of Y is given by

dY ptq “
1

2
F pXpτtqq dt` dW ptq (9)

where pW ptqqtě0 is a Brownian motion and where for any x PMzC,

F pxq B
4Upxq
}∇Upxq}2

´
β

Upxq

The process pUpXptqqqtě0 is not Markovian in general, nevertheless we are to show that it can be
conveniently compared to a Bessel process while Xptq is close to an element of U .

Indeed, fix a global minimum yn, with n P JNK. Consider an exponential system of coordinates
px1, x2, ..., xmq on a neighborhood of Nn of yn with x1pynq “ x2pynq “ ¨ ¨ ¨ “ xmpynq “ 0 and such that
the vectors pBxiqiPJmK forms an orthonormal basis of the tangent space at yn consisting of eigenvectors
of the Hessian of U respectively to the eigenvalues pλipnqqiPJmK. Let be given ε P p0, 1q, the value
of which will be chosen more precisely below. We can find a small enough radius rn ą 0, such that
the open ball Bpyn, rnq is included into Nn and such that for any x P Bpyn, rnq, identified with its
coordinates px1, x2, ..., xmq, we have

p1´ εq
ÿ

iPJmK

λipnq ď 4Upxq ď p1` εq
ÿ

iPJmK

λipnq (10)

p1´ εq
ÿ

iPJmK

λ2i pnqx
2
i ď }∇U}2 pxq ď p1` εq

ÿ

iPJmK

λ2i pnqx
2
i (11)

1

2
p1´ εq

ÿ

iPJmK

λipnqx
2
i ď Upxq ď

1

2
p1` εq

ÿ

iPJmK

λipnqx
2
i (12)

Indeed, the first and second estimates are obtained through the expressions of the Laplace-Beltrami
and gradient operators in terms of the metric, taking into account that the first order expansion of the
metric in a exponential (or geodesic) chart is constant, see for instance Section 10.1 page 58 of Chow,
Lu and Ni [2].

Remark 4 For x P MzU , we have ∇
?
U “ ∇U{p2

?
Uq and the above bounds enable to see the

norm of this vector is bounded on Bpxn, rnqztynu, for all n P JNK. Since
›

›∇
?
U
›

› is clearly bounded
on Mz YnPJNK Bpyn, rnq, we deduce that

?
U is Lipschitzian, as announced in the introduction. ˝
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In particular, yn is the unique critical point of U in Bpyn, rnq. Assume that Xp0q P Vn with

Vn B tx P Bpyn, rnqztynu : Upxq ă cn{2u (13)

with

un B min
zPBBpyn,rnq

Upzq (14)

where BBpyn, rnq is the boundary of Bpyn, rnq. Denote

σn B inftt ě 0 : Xptq “ yn or Xptq R Bpyn, rnqu ď σ (15)

(as usual, σn “ `8 when the r.h.s. is the empty set), and

ςn B 2

ż σn

0
UpXpsqq }∇UpXpsqq}2 ds

Replacing ς by ςn ď ς in the above considerations enables to investigate the process X while it
stays in Bpyn, rn{2qztynu. We are led to study pY ptqqtPr0,ςns. The following result is important in this
respect.

Lemma 5 We have for any x P Bpyn, rnqztynu,
˜

p1´ εq2
ř

iPJmK λipnq

2p1` εqλmpnq
´ β

¸

1

Upxq
ď F pxq ď

˜

p1` εq2
ř

iPJmK λipnq

2p1´ εqλ1pnq
´ β

¸

1

Upxq

Proof
For any x P Bpyn, rnqztynu, we have

p1´ εq
ř

iPJmK λipnqx
2
i

p1` εq
ř

iPJmK λ
2
i pnqx

2
i

ď
2Upxq

}∇Upxq}2
ď

p1` εq
ř

iPJmK λipnqx
2
i

p1´ εq
ř

iPJmK λ
2
i pnqx

2
i

implying

p1´ εq

p1` εqλmpnq
ď

2Upxq

}∇Upxq}2
ď

p1` εq

p1´ εqλ1pnq

since for any real numbers xi, for i P JmK, not all of them vanishing, we have

1

λmpnq
ď

ř

iPJmK λipnqx
2
i

ř

iPJmK λ
2
i pnqx

2
i

ď
1

λ1pnq

The announced follows, by writting

@ x P Bpyn, rnqztynu, F pxq “

ˆ

4Upxq Upxq

}∇Upxq}2
´ β

˙

1

Upxq

�

Recall that β has been chosen so that

β ą 1` sup
nPJNK

ř

iPJmK λipnq

2λ1pnq
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so we can choose ε ą 0 so that

δ B
p1` εq2

ř

iPJmK λipnq

2p1´ εqλ1pnq
` 1´ β

is negative.
We deduce from (9) that

@ t P r0, ςnq, dY ptq ď dW ptq `
δ ´ 1

2Y ptq
dt (16)

This inequality leads us to consider rY B prY ptqqtě0 solution of the stochastic differential equation

@ t ě 0, drY ptq “ dW ptq `
δ ´ 1

2rY ptq
dt (17)

starting with rY p0q “ un{2 (defined in (14)).
The process rY is a Bessel process with negative dimension δ ă 0, for a recent account, see e.g. Le

Gall [6]. It hits 0 in (a.s.) finite time and stays at 0 afterward, the strength of the drift not allowing
it to escape 0.

Define

θ B inftt ě 0 : rY ptq “ 0u

rθ B inftt ě 0 : rY ptq “ unu

pn B Prθ ă rθs (18)

Since rY is a Markov process and that limtÑ`8
rY ptq “ 0 a.s., we have pn ą 0.

By comparison, we get

Lemma 6 Assume that Xp0q P Vn defined in (13). Then we have

P
„

@ t ě 0, Xptq P Bpxn, rnq and lim
tÑ`8

Xptq “ xn



ě pn

Proof
For ε P p0, Y p0qq, define

θε B inftt ě 0 : rY ptq “ εu

Applying Theorem (3.7) of Revuz and Yor [7], we get that

@ t P r0, θε ^ rθq, Y ptq ď rY ptq

Indeed, this a consequence of Y p0q ď un{2 “ rY p0q as well as of the comparison between (16) and
(17). Note that in the proof of Theorem (3.7) of Revuz and Yor [7], we need rY to be Markovian and
that its drift is Lipschitz, which is true as long as it belongs to the segment rε, uns. But Y is not
required to be Markovian, it is sufficient that its drift is adapted.

Letting ε go to zero, we deduce

@ t P r0, θ ^ rθq, Y ptq ď rY ptq

(one would have remarked that Y ptq remains strictly below un and thus Xpτtq remains in Bpyn, rnq
as long as t ă rθ).

It follows that on the event tθ ă rθu, we have that Y hits 0 in finite time. Equivalently, Xpτtq has
to hit yn in finite time, since Xpτtq has also to remain in Bpyn, rnq on tθ ă rθu and yn is the unique
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point of this ball where U vanishes. Recall that if X hits yn, then it has to stay there forever. Thus on
the event tθ ă rθu, Xptq always stays in Bpxn, rnq and limtÑ`8Xptq “ yn. It leads to the announced
result. �

Due to the time change, we cannot deduce the convergence of X to yn in finite time from the
corresponding convergence of pXτtqtě0 (when it occurs). On the contrary, we believe that X never
converges in finite time, as suggested by the following caricatural example.

Example 7 Let us momentarily leave the compact setting and consider the function U : R Q x ÞÑ x2.
The corresponding diffusion X on R given by (1) solves the stochastic differential equation

@ t ě 0, dXptq “ ´βXptqdt` |Xptq|dBptq

Assume that Xp0q ą 0 and consider

σ B inftt ě 0 : Xptq “ 0u

While t P r0, σq, we have Xptq ą 0, so that

@ t P r0, σq, dXptq “ ´βXptqdt`XptqdBptq

It leads us to introduce p rXptqqtě0 B peβtXptqqtě0, satisfying

@ t P r0, σq, d rXptq “ rXptqdBptq

whose solution is well known to be the exponential martingale

@ t P r0, σq, rXptq “ rXp0q exppBptq ´ t{2q

It follows that

@ t P r0, σq, Xptq “ Xp0q exppBptq ´ p1` 2βqt{2q

By consequence we have σ “ `8 and the process X does not hit the global minima of U in finite
time. Note also that limtÑ`8Xptq “ 0 as soon as β ą ´1{2 in accordance with the observation
following Corollary 3.

This example can be transferred on the compact space R{p2πZq in the following way: consider on
R{p2πZq a Morse function rU coinciding with the above U on r´π{2, π{2s and such that 0 is a global
minimum of rU . Let rX be the diffusion evolving as (1), but with U replaced by rU . Assume that
rXp0q “ π{4 and by contradiction that the corresponding hitting time rσ of 0 is finite with positive
probability. Taking into account the Markov property, the process rX then stays inside r´π{2, π{2s
and converges to 0 in finite time with a positive probability p ą 0 (since if starting from π{4, rX always
hits π{2 before 0, it cannot converge to 0). It follows that if X also starts from π{4 and uses the same
driving Brownian motion, then it coincides with rX for all times with probability p. This implies that
X converges to zero in finite time with positive probability, a contradiction.

The fact that the diffusion given by (1) does not hit U in finite time with positive probability is
probably true under the Morse assumption of this paper.

˝

The end of the proof of Theorem 1 follows the pattern sketched at the beginning of this section.
More precisely, define

rA B Mz YnPJNK Bpyn, rnq

pA B YnPJNKVn

p B mintpn : n P JNKu ą 0
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Whatever the initial distribution of Xp0q, consider the sequences of stopping times prθkqkě0 and ppθkqkě0
defined iteratively from rθ0 “ 0 via

#

pθk B inftt ě rθk : Xptq P pAu

rθk`1 B inftt ě pθk : Xptq P rAu
(19)

(with the usual convention that the infimum of the empty set is `8).
By the strong ellipticity of X on the compact set Mz pA, for any k P N such that rθk ă `8, we have

a.s. pθk ă `8. On the contrary, we deduce from Lemma 6 and from the strong Markov property that
for any k P N such that pθk ă `8, we end up with rθk`1 “ `8 with probability p at least. It follows
that for any k P Z`,

Prrθk`1 ă `8 | rθk ă `8s ď p1´ pq

so by iteration we get

@ k P Z`, Prrθk ă `8s ď p1´ pqk

and finally

Pr@ k P Z`, rθk ă `8s “ 0

The fact that a.s. there exists a random k P Z` such that rθk “ `8 ends the proof of the first
statement of Theorem 1.

Concerning its second statement, note that when Xp0q P Vn, for some n P JNK, there is a positive
probability that X exits Bpyn, rnqztynu via the boundary BBpyn, rnq.

When m ě 2, assume that the rn ą 0, for n P JNK, have been furthermore chosen so small so
that Mz \nPJNK Vn is connected and contains \nPJNKBBpyn, rnq (the \ meaning that it is a union of
disjoint sets). It follows that if Xp0q P \nPJNKBBpyn, rnq, then by ellipticity of Lβ on the connected
set Mz \nPJNK Vn, for any n P JNK, we have PrXppθ1q P Bpyn, rnqs ą 0 for any given n P JNK. Taking
into account that Prrθ2 “ `8|Xppθ1q P Bpyn, rnqs ą 0, we deduce that PrXp8q “ yns ą 0.

When m “ 1, a similar reasoning leads to the desired result, ending the proof of Theorem 1 under
(7).

3 Extensions
After ending the proof of Theorem 1, we show Theorem 2 and next we present the extension to
generators of the form (6) and discuss the Morse assumption.

3.1 Under Assumption (2)
We end the proof of Theorem 1. The overall approach is the same but instead of considering f “ U ,
we take f “ Ua, with a P p0, 1q. This exponent being fixed, we remove all the superscripts f from the
notations, as in the previous section when f was equal to U . An immediate drawback with respect
to the latter case is that a priori Ua is not smooth. But it is not difficult to go around this problem,
since Ua is smooth on MzU and we are only considering our process up to the time it may reach U .

More precisely, we proceed as in the previous section, assuming that Xp0q P Vnztynu for some
n P JNK. Instead of considering σn given in (15), we introduce for any ε P p0, UpXp0qqq the stopping
time

σn,ε B inftt ě 0 : Xptq R An,εu

10



with

An,ε B tx P Bpyn, rnq : Upxq ě εu

Remark that

lim
εÑ0`

σn,ε “ σn

The advantage of An,ε is that there exist smooth functions f on M coinciding with Ua on An,ε.
The considerations at the beginning of Section 2 can be applied to such a function f , up to the time
σn,ε. By letting ε go to 0`, we get the following result, analogous to (9).

Consider the process Y given by

pY ptqqtPr0,ςnq B pUpXpτtqqqtPr0,ςnq

with

@ t P r0, ςnq, 2

ż τt

0
UpXpsqq }∇UapXpsqq}2 ds “ t

and

ςn B 2

ż σn

0
UpXpsqq }∇UapXpsqq}2 ds

The evolution of Y is given by

dY ptq “
1

2
F pXpτtqq dt` dW ptq

where pW ptqqtě0 is a Brownian motion and for any x PMzC,

F pxq B
4Uapxq
}∇Uapxq}2

´ β
x∇Upxq,∇Uapxqy
Upxq }∇Uapxq}2

“
4Uapxq

a2U2a´2pxq }∇U}2
´

β

aUapxq

We compute that outside C,

4Ua “ aUa´14U ` apa´ 1qUa´2 }∇U}2

so that outside C,

F “
1

a

ˆ

U4U
}∇U}2

` a´ 1´ β

˙

1

Ua

From Lemma 5, we get that a comparison is possible with a Bessel process of asymptotic dimension
(i.e. when we let ε go to zero in Lemma 5)

δa “ 2`
1

a

˜

ř

iPJmK λipnq

2λ1pnq
´ 1´ β

¸

Thus under (2), by choosing a ą 0 sufficiently small, we can get δa ă 0, ending the proof of
Theorem 1.

Remark 8 Without resorting to Ua, Condition (2) can also be obtained through the following
observation. Coming back to the argument of the previous section, what is important for our purpose
is that the Bessel process (17) can hit 0 in finite time, since this implies the same behavior for the
process Y . Indeed, once X has hit yn, it cannot escape from it, so it closes our time-horizon (this
is even more true when X does not hit yn in finite time as suggested by Remark 7). It remains to
recall that a Bessel process of dimension δ hits 0 in finite time if and only if δ ă 2. This leads to
Condition (2). But this argument conceals there is a negative (even as negative as we want) dimension
Bessel process behind the scene. ˝

11



3.2 Proof of Theorem 2
Up to now we have not taken into account the lower bound in Lemma 5. It can be used to prove there
is no convergence toward U . More precisely, assume that (3) holds and let us show we cannot have
limtÑ`8Xptq P U (except on a P-negligible set).

Indeed, the lower bound in Lemma 5 enables to make a reverse comparison between Y and the
Bessel process rY of (asymptotic) dimension

δ B min
nPJNK

ř

iPJmK λipnq

2λmpnq
` 1´ β

which is (strictly) larger than 2 under (3). Such a Bessel process diverges to `8 in large time
without hitting 0 (starting from a positive value). It implies that the time σn always satisfies that
Xpσnq belongs to the boundary of the ball Bpyn, rnq. If we come back to (19), we get that for any
k P Z`, rθk ă `8. In particular the set Mz YnPJNK Bpyn, rnq is visited again after any given time: the
convergence to U is thus forbidden.

Corollary (3) is an immediate consequence of Theorems 1 and 2.

Remark 9 If we insist on also having β ą 0 in (3), we must assume that

min
nPJNK

ř

iPJmK λipnq

2λmpnq
ą 1 (20)

Since for any n P JNK we have
ř

iPJmK λipnq

2λmpnq
ď

mλmpnq

2λmpnq

“
m

2

condition (20) is only possible for m ě 3. ˝

A little more generally, denote for any β P R,

N´pβq B

#

n P JNK :

ř

iPJmK λipnq

2λmpnq
´ 1 ą β

+

N`pβq B

#

n P JNK :

ř

iPJmK λipnq

2λ1pnq
´ 1 ă β

+

From the above considerations, we see that X cannot converge to yn with n P N´pβq, while there
is a positive probability that X converges to yn for n P N`pβq. But this criterion does not strongly
discriminate the elements of U , in the sense we cannot find β P R with N´pβq ‰ H and N`pβq ‰ H,
due to the inequalities

@ n, n1 P JNK,

ř

iPJmK λipnq

2λmpnq
ď

m

2
ď

ř

iPJmK λipn
1q

2λ1pn1q

We don’t know if it is possible, in dimension m ě 2, to find a Morse function U , β P R and
n ‰ n1 P JNK such that

PrXp8q “ yns ą 0 and PrXp8q “ yn1s “ 0

12



3.3 Further extensions
Let us first consider the case of the generator Lζ defined in (6) under Assumptions (4) and (5). Its
coefficients are not globally Lipschitz but they are Lipschitz on any open subset Uε B tx P M :
Upxq ą εu, with ε P p0,maxM Uq. This observation enables to construct by localization X until the
first time it hits U . Furthermore the law of the process obtained in this way is uniquely determined
until it leaves Uε, for any ε P p0,maxM Uq, due to the uniqueness of the solution of the corresponding
martingale problem. The uniqueness of the law of X until it hits U follows. Taking into account
that starting from U , the process X cannot move (e.g. by using that LζU “ 0 “ LζU

2), we get the
announced uniqueness of X in the sense of martingale problems.

By localization also, we can construct small neighborhoods of the elements of U , where the evolution
of UpXptqq can be compared with that of a Bessel process of negative dimension (as large as we wish,
due to (4)), up to a time change. The arguments of Section 2 then show that Theorem 1 holds for this
new diffusion X, without Assumption (2).

The Morse assumption on U was considered for simplicity, but it can be relaxed. For instance in the
cases where U consists of finite number of connected and disjoint submanifolds, say U1, U2, ..., UN , with
non-degenerate Hessians of U in the orthogonal directions. Assume furthermore that for any n P JNK,
we can find orthogonal vector fields on Un which are eigenvectors of the orthogonal Hessians. Then
approximations such as (10), (11) and (12) are still valid in the corresponding exponential systems of
coordinates, where m has to be replaced by the co-dimension m1 of Un. More precisely, we can extend
them into

p1´ εq
ÿ

iPJm1K

λipyq ď 4Upxq ď p1` εq
ÿ

iPJm1K

λipyq

p1´ εq
ÿ

iPJm1K

λ2i pyqz
2
i ď }∇U}2 pxq ď p1` εq

ÿ

iPJm1K

λ2i pyqz
2
i

1

2
p1´ εq

ÿ

iPJm1K

λipyqz
2
i ď Upxq ď

1

2
p1` εq

ÿ

iPJm1K

λipyqz
2
i

in a sufficiently small tubular neighborhood of Un, with x charted by py, zq, y standing for the Rieman-
nian projection on Un and z B pziqiPJm1K for the coordinates in the exponential systems deduced from
the eigenvectors (note that the gradient and the Laplacian of U in the directions of y are negligible).

More generally, when the eigenvectors cannot be defined globally on Un, one has to work in a finite
number of charts, which increases the technicality of the proofs without changing the convergence
result, when β is large enough in terms of the orthogonal eigenvalues of the Hessian (or when a
generator of the form (6) is considered).

A Non-fraudulent algorithms
Two examples are given below showing how fraudulent algorithms can be related to the investigation
of non-fraudulent algorithms.

We start with the time-inhomogeneous swarm mean-field algorithm introduced in [1], which was
the initial motivation for this work. On a compact Riemannian manifold, consider the non-linear
evolution equation

d

dt
ρt “ divpρtrγt∇U `∇ϕ1pρtqsq (21)

where

• ρt is the density with respect to the Riemannian probability ` of another probability on M ,
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• pγtqtě0 is an inverse temperature scheme, assumed to be smooth and to increase to `8 in large
times,

• ϕ : R` Ñ R` is a strictly convex function satisfying ϕp0q “ 0 and ϕ1p0q “ ´8 and is C2 on
p0,`8q.

A non-linear diffusion Y B pY ptqqtě0 is associated to this equation, whose evolution can be heuris-
tically described as in (1) via

dY ptq “ ´γt∇UpY ptqq `
a

2αpρtpY ptqqq dBptq

where

• ρt is the density with respect to the Riemannian probability ` of the law of Xptq,

• the function α : p0,`8q Ñ R` is given by

@ r ą 0, αprq B
1

r

ż r

0
sϕ2psq ds

• pBptqqtě0 is a m-dimensional Brownian motion.

In [1] we considered the convex function defined, for given m P p0, 1{2q, by

@ r ě 0, ϕ B

#

ϕmprq if r P p0, 1s

ϕ2prq if r P p1,`8q

with for any m P p0,`8qzt1u,

@ r ě 0, ϕmprq B
rm ´ 1´mpr ´ 1q

mpm´ 1q

It was shown through new functional inequalities that at least in dimension 1, we can find power
schemes pγtqtě0, such that for any neigborhood N of U , we have

lim
tÑ`8

ρtpN q “ 1

namely that the above evolutions provide a theoretical global optimization procedure for U . In practice,
the evolution pρtqtě0 should be seen as a mean-field limit and approximated by swarm particle systems
(each particle “counting” the number of particles around it to get an estimate of the local density and
boosting the intensity of its own Brownian motion accordingly if they are too few or too many).

In the final discussion section of [1], an heuristic comparison was made with usual simulated
annealing and it appeared that in large times and up to a time change, Y behaves like the diffusion
X described by (1) with β “ m{p1´mq.

Condition (2) may explain the restriction to dimension 1 considered in [1] and suggests the means to
go beyond it, but the relation between the swarm and fraudulent algorithms should be first investigated
more closely.

Another illustrative example consists of the following simpler algorithm, which is probably less
efficient than the swarm particle algorithm due to the lack of interactions between the approximating
particles, called Z1, Z2, ..., Zq below. The underlying idea is to estimate the quantity Upxq ´minM U
through

@ x PM, Upxq ´min
M

U “ ´ lim
γÑ`8

1

γ
lnpµγpxqq (22)

14



where µγ is the density of the Gibbs measure associated to the potential U and to the inverse temper-
ature γ ě 0:

@ x PM, µγpxq B
expp´γUpxqq

ş

M expp´γUpyqq `pdyq

Other ways of approximating the l.h.s. of (22) can be devised, thus in [1] the main role is played by
the stationary measure of (21) for a fixed parameter γt, which is next sent to infinity. The convergence
(22) is more classical and leads to the following natural procedure. Nevertheless other alternative
approaches would deserve to be investigated.

The Gibbs measure µγ d` is the invariant (an even reversible) probability measure associated to
the Markov generator 4 ¨ ´γ x∇U,∇¨y, namely to the diffusion Y B pY ptqqtě0 heuristically described
as in (1) through

@ t ě 0, dY ptq “ ´γ∇UpY ptqq dt`
?
2 dW ptq

where W B pW ptqqtě0 is a m-dimensional Brownian motion.
It is well-known that the law of Y ptq converges to µγ as t goes to infinity. To get γ going to infinity,

we consider a time-inhomogeneous version Z B pZptqqtě0 of Y associated to a scheme γ : R` Q t ÞÑ γt
via

@ t ě 0, dZptq “ ´γt∇UpZptqq dt`
?
2 dW ptq

From the theory of simulated annealing, see Holley, Kusuoka and Stroock [4], it is known that for
large times t ě 0, the law LpZptqq of Zptq becomes closer and closer to µγtd` if the inverse temperature
scheme γ has a sufficiently slow logarithmic growth. More precisely, for a scheme of the form

@ t ě 0, γt “ k´1 lnp1` tq (23)

the relative entropy of LpZptqq with respect to µγt goes to zero for large time t ě 0 when k ą c, where
c ě 0 the largest height of a well not containing a given element of U (the constant c does not depend
on this fixed element).

To get an approximation of the density µγtpxq, we first consider a finite sequence Z1, ..., ZQ, Q P N
of independent copies of Z, namely satisfying

@ q P JQK, @ t ě 0, dZqptq “ ´γt∇UpZqptqq dt`
?
2 dWqptq

where Wq B pWqptqqtě0 are independent m-dimensional Brownian motions for q P JQK. For Q large
enough, by the law of the large numbers, we can expect that for fixed t ě 0, the empirical measure
of the Zqptq, q P JQK is an approximation of the law of Zptq and thus is close to µγt if the time t has
been chosen large enough and the inverse temperature schedule according to (23) with k ą c.

Next let be given a kernel approximation of the Dirac masses: it is a family pKhp¨, ¨qqhą0 of smooth
mappings on M2 such that for any x P M , Khpx, yq`pdyq is a probability measure weakly converging
toward δx as h goes to 0` (a geometrical example is the heat kernel on M at small times).

Through classical density approximation, see e.g. the book of Silverman [8], we hope that for t ě 0
and Q large enough and h ą 0 small enough,

1

Q

ÿ

qPJQK

KhpZqptq, xq

is a good approximation of µγtpxq for any x P M . In view of (22), we are led to consider a process
X B pXptqqtě0 defined by

dXptq “ ´β∇UpXptqq dt`
b

2V pγt, Xptq, ZJQtKptqq dBptq
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where β satisfies (2) and the Brownian motion B is independent of the Brownian motions Wq, for
q P N, where

V pγt, Xptq, ZJQtKptqq B

ˇ

ˇ

ˇ
ln
´

ř

qPJQtKKhtpZqptq, Xptqq{Q
¯ˇ

ˇ

ˇ

γt

and where Q : R` Q t ÞÑ Qt P N and h : R` Q t ÞÑ ht are respectively non-decreasing and increasing
evolutions, such that

lim
tÑ`8

Qt “ `8 and lim
tÑ`8

ht “ 0

We can assume that the potential upward jumps Qt ´ Qt´ are either 0 or of size 1 and that
furthermore when a jump of Q does occur at time t ě 0, then a particle is chosen among the current
Qt´ ones and gives rise to a new particle at the same place. Afterward the two particles at this same
place evolve independently.

More precisely, in addition to (23) with k ą c, we are looking for appropriate schedules Q and h
such that X turns out to be a global minimizer of U , in the sense that Xptq converges a.s. for large
times t ě 0 toward an element of U , which is expected to be random if U is not a singleton, according
to Theorem 1.
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