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We introduce and analyse the almost sure convergence of a new stochastic algorithm for the global minimization of Morse functions on compact Riemannian manifolds. This diffusion process is called fraudulent because it requires the knowledge of minimal value of the function. Its investigation is nevertheless important, since in particular it appears as the limit behavior of non-fraudulent and time-inhomogeneous swarm mean-field algorithms used in global optimization.

Introduction

To find the global minima of functions also admitting local minima is of great importance, both from a theoretical and practical point of view. Here the smooth context of Morse functions on compact Riemannian manifolds is considered. We introduce a new time-homogeneous stochastic algorithm X called fraudulent because it requires the knowledge of the minimal value. In some sense it serves as an illustration of the folklore assertion that to know the minimal value of a function and to find a corresponding global minimum are equivalent problems. Nevertheless we found interesting to investigate this algorithm for three reasons:

• The process X is an approximation of the large-time limit behavior of the time-inhomogeneous swarm mean-field algorithm introduced in [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF]. The latter algorithm is non-fraudulent since it uses its current distribution to estimate in real time the minimal value.

• The principle behind the convergence of X toward the global minima can be used to devise other non-fraudulent stochastic algorithms based on particles systems that learn adaptatively the minimal value.

• The stochastic algorithm X is useful to find other global minima, once one is known, because as soon as the dimension is larger than or equal to 2, all global minima attract X with a positive probability.

More precisely, on a compact Riemannian manifold M , of dimension m ě 1, let be given a Morse function U satisfying min M U " 0. Recall that a smooth mapping is a Morse function if its Hessian is non-degenerate at each of its critical points (which are the points where the gradient vanishes).

Consider a diffusion X pXptqq tě0 associated to the generator

L β U ¨´β x∇U, ∇¨y
where , x¨, ¨y and ∇ stand for the Laplacian, scalar product and gradient coming from the Riemannian structure, and where β is a real number. Since we want to find the global minima of U , we are more interested in the case β ą 0, where the drift has an attractive (respectively repulsive) effect with respect to the local minima (resp. maxima). But as we are to see, it is convenient to also consider non-positive values of β, where the effects of the drift are reversed.

Due to the Morse assumption on U and the fact that min M U " 0, we have that ?

U is a Lipschitz mapping on M (for more details, see Remark 4 below). As a consequence it is possible to construct X, whatever the initial condition, as the unique strong solution to a stochastic differential equation driven by a m-dimensional Brownian motion B pBptqq tě0 (independent from Xp0q), see for instance Ikeda and Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. Heuristically, this stochastic differential equation can be written under the Itô's form dXptq " ´β∇U pXptqq dt `a2U pXptqq dBptq [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF] or under Stratonovich's form dXptq " ´ˆβ `1 2 ? 2 ˙∇U pXptqq dt `a2U pXptqq ˝dBptq where dBptq has to be isometrically interpreted in the tangent space above Xptq through some stochastic parallel displacements. At least when M is a flat torus, the writing (1) is perfectly rigorous. Consider the set of global minima of U given by

U tx P M : U pxq " 0u
Note that if Xp0q P U, then X does not move: for any t ě 0, we have Xptq " Xp0q. This observation can be strengthened into the attractiveness of U, which is the main goal of this paper.

We need some additional notations. Under the Morse assumption, U consists of a finite set of points, say y 1 , y 2 , ..., y N , with N P N. For each n P N t1, 2, ..., N u, denote λ 1 pnq ď λ 2 pnq ď ¨¨¨ď λ m pnq the positive eigenvalues of the Hessian of U at y n . Introduce the condition

β ą max nP N ř iP m λ i pnq 2λ 1 pnq ´1 (2)
Theorem 1 Whatever the initial condition Xp0q, under (2) the limit Xp8q lim tÑ`8 Xptq exists a.s. and belongs to U. Furthermore, when m ě 2, if X starts from a point x 0 R U, we have for any x P U, P x 0 rXp8q " xs ą 0 When m " 1, denote x 1 and x 2 the boundary points of the connected component of M zU containing x 0 (when U is a singleton, we get x 1 " x 2 ). Then we have P x 0 rXp8q " x 1 s ą 0, P x 0 rXp8q " x 2 s ą 0, @ x P Uztx 1 , x 2 u, P x 0 rXp8q " xs " 0 Thus under (2) X is a time-homogeneous stochastic algorithm minimizing globally U and finding all the global minima as soon as m ě 2.

It is natural to wonder about the optimality of (2). In this direction, we will show:

Theorem 2 Assume that β ă min nP N ř iP m λ i pnq 2λ m pnq ´1 (3) 
Whatever the initial condition Xp0q, we have

P " lim tÑ`8
Xptq exists and belongs to U  " 0

As a consequence, the value m{2 ´2 is critical for β when at each global minimum the Hessian is proportional to the identity: Corollary 3 Assume that for each n P N we have λ 1 pnq " λ m pnq, then we have

β ą m 2 ´1 ñ P " lim tÑ`8
Xptq exists and belongs to U

 " 1 β ă m 2 ´1 ñ P " lim tÑ`8
Xptq exists and belongs to U  " 0

In particular this result always applies in dimension 1 and we get ´1{2 as the critical value for β (justifying our consideration of negative β).

In practice we may not have access to the eigenvalues of the Hessian at the global minima, so Condition (2) is difficult to check. An alternative to the appropriate choice of the coefficient β is to let it depend on the current value of U . More precisely, consider ζ : p0, `8q Ñ p0, `8q a smooth function such that

lim uÑ0 `ζ puq " `8 (4) lim uÑ0 `?uζ puq " 0 (5)
We replace the generator L β by

L ζ U ¨´ζpU q x∇U, ∇¨y (6) 
with ζpU pxqq∇U pxq " 0 for x P U by continuity, due to (5) (this is in fact the only justification for this assumption). Heuristically this generator corresponds to the Itô stochastic differential equation dXptq " ´ζpU pXptqq∇U pXptqq dt `a2U pXptqq dBptq

The coefficients of this equation are not globally Lipschitz, nevertheless, we will see that whatever the initial distribution, there is a unique strong diffusion X associated to [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF] in the sense of martingale problem. For this process X, Theorem 1 still holds, without Assumption [START_REF] Chow | Hamilton's Ricci flow[END_REF]. Of course in this situation we lose the critical phenomenon described by Corollary 3. But the advantage is that the diffusion X associated to [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF] could be applied to deal with situations less regular than Morse functions.

In the above results, no estimate on the speed of convergence were provided, but it should be possible to remedy this by examining more quantitatively the following arguments. We hope to go further in future investigations.

The plan of the paper is as follows. In the next section we prove Theorem 1 under a stronger assumption than [START_REF] Chow | Hamilton's Ricci flow[END_REF]. Bessel processes with negative dimension play a pivotal role. In Section 3 the arguments are improved to lead to the desired results. An appendix succinctly recalls the swarm mean-field algorithm of [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF] to explain how a fraudulent algorithm can appear from the investigation on non-fraudulent ones. Another simpler and illustrative example is given, even if it is probably less efficient than swarm algorithms.
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Proof of a weaker version of Theorem 1

Here we prove Theorem 1 under the stronger assumption

β ą 1 `sup nP N ř iP m λ i pnq 2λ 1 pnq (7) 
Its relaxation to (2) will be shown in the next section.

First let us give a sketch of the proof. For any given global minimum y n , with n P N , we can find a small radius r n ą 0 such that inside the ball Bpy n , r n q, the evolution of U pXptqq is comparable to a time-changed Bessel process with negative dimension. Since a Bessel process with negative dimension a.s. converges to zero in finite time, X will stay in Bpy n , r n q forever with positive probability and then converge to y n , if it happens to belong to an even smaller neighborhood V n of y n at some time. Nevertheless, the convergence is not expected to occur in finite time due to the time-change, see Example 7 below. It remains to remark that outside Y nP N V n , the diffusion X is elliptic, so it will end up entering Y nP N V n . Since each times this happens X has a positive chance to converge to a point of U, this event will end up occurring with probability 1. The last assertions of Theorem 1 are consequences of the ellipticity of X outside U.

Let us now develop more precisely the above arguments. We begin by recalling some general facts about the process X, for any fixed β P R. Its law on the set of continuous trajectories from R `to M is uniquely determined by the initial distribution of Xp0q and the by fact for any smooth function f : M Ñ R, the process M f pM f ptqq tě0 defined by @ t ě 0, M f ptq f pXptqq ´f pXp0qq ´ż t 0 L β rf spXpsqq ds is a continuous martingale (with respect to the filtration generated by X). Furthermore, its bracket (the notation of which should not to be confused with the Riemannian scalar product) is given by

@ t ě 0, A M f E t " 2 ż t 0 U pXpsqq }∇f pXpsqq} 2 ds (8)
where }¨} stands for the Riemannian norm. When M is a flat torus, these observations can be deduced from Itô's formula, asserting that:

df pXptqq " rU pXptqq f pXptqq ´β x∇U pXptqq, ∇f pXptqqys dt `a2U pXptqq x∇f pXptqq, dBptqy so that

@ t ě 0, M f ptq " ż t 0 a 2U pXpsqq x∇f pXpsqq, dBpsqy
This formula can be generalized for general compact Riemannian manifolds, nevertheless the above martingale problem point of view is more synthetic and enables to avoid delicate geometric constructions. For extensive developments of the martingale problem approach, we refer to the books of Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes[END_REF] and Ethier and Kurtz [START_REF] Stewart | Markov processes[END_REF].

Introduce

σ f inftt ě 0 : U pXptqq }∇f pXptqq} 2 " 0u
with the convention that σ f " `8 when the r.h.s. is the empty set. Assume that U pXptqq }∇f pXptqq} 2 ‰ 0, so that σ f ą 0 a.s. Since for any t P r0, σ f q, we have U pXptqq }∇f pXptqq} 2 ą 0, we can consider the time change pτ f t q tPr0,ςq uniquely defined through

@ t P r0, ς f q, 2 ż τ f t 0 U pXpsqq }∇f pXpsqq} 2 ds " t where ς f 2 ż σ f 0 U pXpsqq }∇f pXpsqq} 2 ds Define the process Y f via pY f ptqq tPr0,ς f q pf pXpτ f t qqq tPr0,ς f q
Classical time-change theory, see for instance the first section of Chapter 5 of Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF], Levy's characterization theorem and ( 8), enable us to construct a Brownian motion pW ptqq tě0 (up to a possible enlargement of the underlying probability space), so that for any time t P r0, ςq,

dY f ptq " 1 2 F f pY f ptqq dt `dW ptq
where for any x P M such that U pxq }∇f pxq} 2 ‰ 0,

F f pxq L β rf spxq U pxq }∇f pxq} 2 " f pxq }∇f pxq} 2 ´β x∇U pxq, ∇f pxqy U pxq }∇f pxq} 2
Now let us apply these considerations to a particular function f . The first idea is to take f " U (in next section we will see that this is not optimal). To simplify the notations, all the superscripts f are removed in this case. Thus we have σ " inftt ě 0 : Xptq P Cu with C tx P M : ∇U pxq " 0u being the set of critical points of U . Furthermore we consider the process Y given by pY ptqq tPr0,ςq pU pXpτ t qqq tPr0,ςq with @ t P r0, ςq, 2

ż τt 0 U pXpsqq }∇U pXpsqq} 2 ds " t and ς 2 ż σ 0 U pXpsqq }∇U pXpsqq} 2 ds
The evolution of Y is given by

dY ptq " 1 2 F pXpτ t qq dt `dW ptq (9) 
where pW ptqq tě0 is a Brownian motion and where for any x P M zC,

F pxq U pxq }∇U pxq} 2 ´β U pxq
The process pU pXptqqq tě0 is not Markovian in general, nevertheless we are to show that it can be conveniently compared to a Bessel process while Xptq is close to an element of U.

Indeed, fix a global minimum y n , with n P N . Consider an exponential system of coordinates px 1 , x 2 , ..., x m q on a neighborhood of N n of y n with x 1 py n q " x 2 py n q " ¨¨¨" x m py n q " 0 and such that the vectors pB x i q iP m forms an orthonormal basis of the tangent space at y n consisting of eigenvectors of the Hessian of U respectively to the eigenvalues pλ i pnqq iP m . Let be given P p0, 1q, the value of which will be chosen more precisely below. We can find a small enough radius r n ą 0, such that the open ball Bpy n , r n q is included into N n and such that for any x P Bpy n , r n q, identified with its coordinates px 1 , x 2 , ..., x m q, we have

p1 ´ q ÿ iP m λ i pnq ď U pxq ď p1 ` q ÿ iP m λ i pnq (10) p1 ´ q ÿ iP m λ 2 i pnqx 2 i ď }∇U } 2 pxq ď p1 ` q ÿ iP m λ 2 i pnqx 2 i (11) 1 2 p1 ´ q ÿ iP m λ i pnqx 2 i ď U pxq ď 1 2 p1 ` q ÿ iP m λ i pnqx 2 i (12)
Indeed, the first and second estimates are obtained through the expressions of the Laplace-Beltrami and gradient operators in terms of the metric, taking into account that the first order expansion of the metric in a exponential (or geodesic) chart is constant, see for instance Section 10.1 page 58 of Chow, Lu and Ni [START_REF] Chow | Hamilton's Ricci flow[END_REF].

Remark 4 For x P M zU, we have ∇ ? U " ∇U {p2 ? U q and the above bounds enable to see the norm of this vector is bounded on Bpx n , r n qzty n u, for all n P N . Since

› › ∇ ? U › › is clearly bounded on M z Y nP N Bpy n , r n q, we
deduce that ? U is Lipschitzian, as announced in the introduction.

In particular, y n is the unique critical point of U in Bpy n , r n q. Assume that Xp0q P V n with

V n tx P Bpy n , r n qzty n u : U pxq ă c n {2u (13) with u n min zPBBpyn,rnq U pzq (14)
where BBpy n , r n q is the boundary of Bpy n , r n q. Denote σ n inftt ě 0 : Xptq " y n or Xptq R Bpy n , r n qu ď σ (15) (as usual, σ n " `8 when the r.h.s. is the empty set), and

ς n 2 ż σn 0 U pXpsqq }∇U pXpsqq} 2 ds
Replacing ς by ς n ď ς in the above considerations enables to investigate the process X while it stays in Bpy n , r n {2qzty n u. We are led to study pY ptqq tPr0,ςns . The following result is important in this respect.

Lemma 5 We have for any x P Bpy n , r n qzty n u,

˜p1 ´ q 2 ř iP m λ i pnq 2p1 ` qλ m pnq ´β¸1 U pxq ď F pxq ď ˜p1 ` q 2 ř iP m λ i pnq 2p1 ´ qλ 1 pnq ´β¸1 U pxq

Proof

For any x P Bpy n , r n qzty n u, we have

p1 ´ q ř iP m λ i pnqx 2 i p1 ` q ř iP m λ 2 i pnqx 2 i ď 2U pxq }∇U pxq} 2 ď p1 ` q ř iP m λ i pnqx 2 i p1 ´ q ř iP m λ 2 i pnqx 2 i implying p1 ´ q p1 ` qλ m pnq ď 2U pxq }∇U pxq} 2 ď p1 ` q p1
´ qλ 1 pnq since for any real numbers x i , for i P m , not all of them vanishing, we have

1 λ m pnq ď ř iP m λ i pnqx 2 i ř iP m λ 2 i pnqx 2 i ď 1 λ 1 pnq
The announced follows, by writting

@ x P Bpy n , r n qzty n u, F pxq " ˆ U pxq U pxq }∇U pxq} 2 ´β˙1 U pxq
Recall that β has been chosen so that

β ą 1 `sup nP N ř iP m λ i pnq 2λ 1 pnq
so we can choose ą 0 so that

δ p1 ` q 2 ř iP m λ i pnq 2p1 ´ qλ 1 pnq `1 ´β is negative.
We deduce from (9) that

@ t P r0, ς n q, dY ptq ď dW ptq `δ ´1 2Y ptq dt (16) 
This inequality leads us to consider r Y p r Y ptqq tě0 solution of the stochastic differential equation

@ t ě 0, d r Y ptq " dW ptq `δ ´1 2 r Y ptq dt ( 17 
)
starting with r Y p0q " u n {2 (defined in ( 14)). The process r Y is a Bessel process with negative dimension δ ă 0, for a recent account, see e.g. Le Gall [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF]. It hits 0 in (a.s.) finite time and stays at 0 afterward, the strength of the drift not allowing it to escape 0. Define

θ inftt ě 0 : r Y ptq " 0u r θ inftt ě 0 : r Y ptq " u n u p n Prθ ă r θs (18) 
Since r Y is a Markov process and that lim tÑ`8 r Y ptq " 0 a.s., we have p n ą 0. By comparison, we get Lemma 6 Assume that Xp0q P V n defined in (13). Then we have P " @ t ě 0, Xptq P Bpx n , r n q and lim tÑ`8

Xptq " x n  ě p n

Proof

For P p0, Y p0qq, define

θ inftt ě 0 : r Y ptq " u
Applying Theorem (3.7) of Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF], we get that

@ t P r0, θ ^r θq, Y ptq ď r Y ptq
Indeed, this a consequence of Y p0q ď u n {2 " r Y p0q as well as of the comparison between ( 16) and (17). Note that in the proof of Theorem (3.7) of Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF], we need r Y to be Markovian and that its drift is Lipschitz, which is true as long as it belongs to the segment r , u n s. But Y is not required to be Markovian, it is sufficient that its drift is adapted.

Letting go to zero, we deduce @ t P r0, θ ^r θq, Y ptq ď r Y ptq (one would have remarked that Y ptq remains strictly below u n and thus Xpτ t q remains in Bpy n , r n q as long as t ă r θ). It follows that on the event tθ ă r θu, we have that Y hits 0 in finite time. Equivalently, Xpτ t q has to hit y n in finite time, since Xpτ t q has also to remain in Bpy n , r n q on tθ ă r θu and y n is the unique point of this ball where U vanishes. Recall that if X hits y n , then it has to stay there forever. Thus on the event tθ ă r θu, Xptq always stays in Bpx n , r n q and lim tÑ`8 Xptq " y n . It leads to the announced result.

Due to the time change, we cannot deduce the convergence of X to y n in finite time from the corresponding convergence of pX τt q tě0 (when it occurs). On the contrary, we believe that X never converges in finite time, as suggested by the following caricatural example.

Example 7 Let us momentarily leave the compact setting and consider the function

U : R Q x Þ Ñ x 2 .
The corresponding diffusion X on R given by (1) solves the stochastic differential equation @ t ě 0, dXptq " ´βXptqdt `|Xptq|dBptq

Assume that Xp0q ą 0 and consider σ inftt ě 0 : Xptq " 0u

While t P r0, σq, we have Xptq ą 0, so that @ t P r0, σq, dXptq " ´βXptqdt `XptqdBptq

It leads us to introduce p r Xptqq tě0 pe βt Xptqq tě0 , satisfying @ t P r0, σq, d r Xptq " r XptqdBptq whose solution is well known to be the exponential martingale

@ t P r0, σq, r Xptq " r Xp0q exppBptq ´t{2q
It follows that @ t P r0, σq, Xptq " Xp0q exppBptq ´p1 `2βqt{2q

By consequence we have σ " `8 and the process X does not hit the global minima of U in finite time. Note also that lim tÑ`8 Xptq " 0 as soon as β ą ´1{2 in accordance with the observation following Corollary 3.

This example can be transferred on the compact space R{p2πZq in the following way: consider on R{p2πZq a Morse function r U coinciding with the above U on r´π{2, π{2s and such that 0 is a global minimum of r U . Let r X be the diffusion evolving as (1), but with U replaced by r U . Assume that r Xp0q " π{4 and by contradiction that the corresponding hitting time r σ of 0 is finite with positive probability. Taking into account the Markov property, the process r X then stays inside r´π{2, π{2s and converges to 0 in finite time with a positive probability p ą 0 (since if starting from π{4, r X always hits π{2 before 0, it cannot converge to 0). It follows that if X also starts from π{4 and uses the same driving Brownian motion, then it coincides with r X for all times with probability p. This implies that X converges to zero in finite time with positive probability, a contradiction.

The fact that the diffusion given by (1) does not hit U in finite time with positive probability is probably true under the Morse assumption of this paper.

The end of the proof of Theorem 1 follows the pattern sketched at the beginning of this section. More precisely, define

r A M z Y nP N Bpy n , r n q p A Y nP N V n p mintp n : n P N u ą 0
Whatever the initial distribution of Xp0q, consider the sequences of stopping times p r θ k q kě0 and p p θ k q kě0 defined iteratively from r θ 0 " 0 via Pr@ k P Z `, r θ k ă `8s " 0

# p θ k inftt ě
The fact that a.s. there exists a random k P Z `such that r θ k " `8 ends the proof of the first statement of Theorem 1.

Concerning its second statement, note that when Xp0q P V n , for some n P N , there is a positive probability that X exits Bpy n , r n qzty n u via the boundary BBpy n , r n q.

When m ě 2, assume that the r n ą 0, for n P N , have been furthermore chosen so small so that M z \ nP N V n is connected and contains \ nP N BBpy n , r n q (the \ meaning that it is a union of disjoint sets). It follows that if Xp0q P \ nP N BBpy n , r n q, then by ellipticity of L β on the connected set M z \ nP N V n , for any n P N , we have PrXp p θ 1 q P Bpy n , r n qs ą 0 for any given n P N . Taking into account that Pr r θ 2 " `8|Xp p θ 1 q P Bpy n , r n qs ą 0, we deduce that PrXp8q " y n s ą 0. When m " 1, a similar reasoning leads to the desired result, ending the proof of Theorem 1 under (7).

Extensions

After ending the proof of Theorem 1, we show Theorem 2 and next we present the extension to generators of the form (6) and discuss the Morse assumption.

Under Assumption (2)

We end the proof of Theorem 1. The overall approach is the same but instead of considering f " U , we take f " U a , with a P p0, 1q. This exponent being fixed, we remove all the superscripts f from the notations, as in the previous section when f was equal to U . An immediate drawback with respect to the latter case is that a priori U a is not smooth. But it is not difficult to go around this problem, since U a is smooth on M zU and we are only considering our process up to the time it may reach U.

More precisely, we proceed as in the previous section, assuming that Xp0q P V n zty n u for some n P N . Instead of considering σ n given in (15), we introduce for any P p0, U pXp0qqq the stopping time

σ n, inftt ě 0 : Xptq R A n, u with A n, tx P Bpy n , r n q : U pxq ě u Remark that lim Ñ0 `σn, " σ n
The advantage of A n, is that there exist smooth functions f on M coinciding with U a on A n, . The considerations at the beginning of Section 2 can be applied to such a function f , up to the time σ n, . By letting go to 0 `, we get the following result, analogous to [START_REF] Stroock | Multidimensional diffusion processes[END_REF].

Consider the process Y given by pY ptqq tPr0,ςnq pU pXpτ t qqq tPr0,ςnq with @ t P r0, ς n q, 2 ż τt 0 U pXpsqq }∇U a pXpsqq} 2 ds " t and

ς n 2 
ż σn 0 U pXpsqq }∇U a pXpsqq} 2 ds
The evolution of Y is given by

dY ptq " 1 2 F pXpτ t qq dt `dW ptq
where pW ptqq tě0 is a Brownian motion and for any x P M zC,

F pxq U a pxq }∇U a pxq} 2 ´β x∇U pxq, ∇U a pxqy U pxq }∇U a pxq} 2 "
U a pxq a 2 U 2a´2 pxq }∇U } 2 ´β aU a pxq We compute that outside C, U a " aU a´1 U `apa ´1qU a´2 }∇U } 2 so that outside C,

F " 1 a ˆU U }∇U } 2 `a ´1 ´β˙1 U a
From Lemma 5, we get that a comparison is possible with a Bessel process of asymptotic dimension (i.e. when we let go to zero in Lemma 5)

δ a " 2 `1 a ˜řiP m λ i pnq 2λ 1 pnq ´1 ´βŢ
hus under (2), by choosing a ą 0 sufficiently small, we can get δ a ă 0, ending the proof of Theorem 1.

Remark 8 Without resorting to U a , Condition (2) can also be obtained through the following observation. Coming back to the argument of the previous section, what is important for our purpose is that the Bessel process (17) can hit 0 in finite time, since this implies the same behavior for the process Y . Indeed, once X has hit y n , it cannot escape from it, so it closes our time-horizon (this is even more true when X does not hit y n in finite time as suggested by Remark 7). It remains to recall that a Bessel process of dimension δ hits 0 in finite time if and only if δ ă 2. This leads to Condition [START_REF] Chow | Hamilton's Ricci flow[END_REF]. But this argument conceals there is a negative (even as negative as we want) dimension Bessel process behind the scene.

Proof of Theorem 2

Up to now we have not taken into account the lower bound in Lemma 5. It can be used to prove there is no convergence toward U. More precisely, assume that (3) holds and let us show we cannot have lim tÑ`8 Xptq P U (except on a P-negligible set).

Indeed, the lower bound in Lemma 5 enables to make a reverse comparison between Y and the Bessel process r Y of (asymptotic) dimension

δ min nP N ř iP m λ i pnq 2λ m pnq `1 ´β
which is (strictly) larger than 2 under (3). Such a Bessel process diverges to `8 in large time without hitting 0 (starting from a positive value). It implies that the time σ n always satisfies that Xpσ n q belongs to the boundary of the ball Bpy n , r n q. If we come back to (19), we get that for any k P Z `, r θ k ă `8. In particular the set M z Y nP N Bpy n , r n q is visited again after any given time: the convergence to U is thus forbidden.

Corollary ( 3) is an immediate consequence of Theorems 1 and 2.

Remark 9 If we insist on also having β ą 0 in (3), we must assume that

min nP N ř iP m λ i pnq 2λ m pnq ą 1 (20) 
Since for any n P N we have

ř iP m λ i pnq 2λ m pnq ď mλ m pnq 2λ m pnq " m 2 
condition (20) is only possible for m ě 3. A little more generally, denote for any β P R,

N ´pβq # n P N : ř iP m λ i pnq 2λ m pnq ´1 ą β + N `pβq # n P N : ř iP m λ i pnq 2λ 1 pnq ´1 ă β +
From the above considerations, we see that X cannot converge to y n with n P N ´pβq, while there is a positive probability that X converges to y n for n P N `pβq. But this criterion does not strongly discriminate the elements of U, in the sense we cannot find β P R with N ´pβq ‰ H and N `pβq ‰ H, due to the inequalities @ n, n 1 P N ,

ř iP m λ i pnq 2λ m pnq ď m 2 ď ř iP m λ i pn 1 q 2λ 1 pn 1 q
We don't know if it is possible, in dimension m ě 2, to find a Morse function U , β P R and n ‰ n 1 P N such that PrXp8q " y n s ą 0 and PrXp8q " y n 1 s " 0

Further extensions

Let us first consider the case of the generator L ζ defined in [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF] under Assumptions (4) and [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]. Its coefficients are not globally Lipschitz but they are Lipschitz on any open subset U tx P M : U pxq ą u, with P p0, max M U q. This observation enables to construct by localization X until the first time it hits U. Furthermore the law of the process obtained in this way is uniquely determined until it leaves U , for any P p0, max M U q, due to the uniqueness of the solution of the corresponding martingale problem. The uniqueness of the law of X until it hits U follows. Taking into account that starting from U, the process X cannot move (e.g. by using that L ζ U " 0 " L ζ U 2 ), we get the announced uniqueness of X in the sense of martingale problems.

By localization also, we can construct small neighborhoods of the elements of U, where the evolution of U pXptqq can be compared with that of a Bessel process of negative dimension (as large as we wish, due to (4)), up to a time change. The arguments of Section 2 then show that Theorem 1 holds for this new diffusion X, without Assumption [START_REF] Chow | Hamilton's Ricci flow[END_REF].

The Morse assumption on U was considered for simplicity, but it can be relaxed. For instance in the cases where U consists of finite number of connected and disjoint submanifolds, say U 1 , U 2 , ..., U N , with non-degenerate Hessians of U in the orthogonal directions. Assume furthermore that for any n P N , we can find orthogonal vector fields on U n which are eigenvectors of the orthogonal Hessians. Then approximations such as (10), ( 11) and ( 12) are still valid in the corresponding exponential systems of coordinates, where m has to be replaced by the co-dimension m 1 of U n . More precisely, we can extend them into

p1 ´ q ÿ iP m 1 λ i pyq ď U pxq ď p1 ` q ÿ iP m 1 λ i pyq p1 ´ q ÿ iP m 1 λ 2 i pyqz 2 i ď }∇U } 2 pxq ď p1 ` q ÿ iP m 1 λ 2 i pyqz 2 i 1 2 p1 ´ q ÿ iP m 1 λ i pyqz 2 i ď U pxq ď 1 2 p1 ` q ÿ iP m 1 λ i pyqz 2 i
in a sufficiently small tubular neighborhood of U n , with x charted by py, zq, y standing for the Riemannian projection on U n and z pz i q iP m 1 for the coordinates in the exponential systems deduced from the eigenvectors (note that the gradient and the Laplacian of U in the directions of y are negligible). More generally, when the eigenvectors cannot be defined globally on U n , one has to work in a finite number of charts, which increases the technicality of the proofs without changing the convergence result, when β is large enough in terms of the orthogonal eigenvalues of the Hessian (or when a generator of the form (6) is considered).

A Non-fraudulent algorithms

Two examples are given below showing how fraudulent algorithms can be related to the investigation of non-fraudulent algorithms.

We start with the time-inhomogeneous swarm mean-field algorithm introduced in [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF], which was the initial motivation for this work. On a compact Riemannian manifold, consider the non-linear evolution equation

d dt ρ t " divpρ t rγ t ∇U `∇ϕ 1 pρ t qsq (21) 
where • ρ t is the density with respect to the Riemannian probability of another probability on M ,

• pγ t q tě0 is an inverse temperature scheme, assumed to be smooth and to increase to `8 in large times,

• ϕ : R `Ñ R `is a strictly convex function satisfying ϕp0q " 0 and ϕ 1 p0q " ´8 and is C 2 on p0, `8q.

A non-linear diffusion Y pY ptqq tě0 is associated to this equation, whose evolution can be heuristically described as in (1) via dY ptq " ´γt ∇U pY ptqq `a2αpρ t pY ptqqq dBptq where • ρ t is the density with respect to the Riemannian probability of the law of Xptq,

• the function α : p0, `8q Ñ R `is given by @ r ą 0, αprq 1 r ż r 0 sϕ 2 psq ds

• pBptqq tě0 is a m-dimensional Brownian motion.

In [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF] we considered the convex function defined, for given m P p0, 1{2q, by

@ r ě 0, ϕ # ϕ m prq if r P p0, 1s ϕ 2 prq if r P p1, `8q
with for any m P p0, `8qzt1u, @ r ě 0, ϕ m prq r m ´1 ´mpr ´1q mpm ´1q

It was shown through new functional inequalities that at least in dimension 1, we can find power schemes pγ t q tě0 , such that for any neigborhood N of U, we have lim tÑ`8 ρ t pN q " 1 namely that the above evolutions provide a theoretical global optimization procedure for U . In practice, the evolution pρ t q tě0 should be seen as a mean-field limit and approximated by swarm particle systems (each particle "counting" the number of particles around it to get an estimate of the local density and boosting the intensity of its own Brownian motion accordingly if they are too few or too many).

In the final discussion section of [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF], an heuristic comparison was made with usual simulated annealing and it appeared that in large times and up to a time change, Y behaves like the diffusion X described by (1) with β " m{p1 ´mq.

Condition (2) may explain the restriction to dimension 1 considered in [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF] and suggests the means to go beyond it, but the relation between the swarm and fraudulent algorithms should be first investigated more closely.

Another illustrative example consists of the following simpler algorithm, which is probably less efficient than the swarm particle algorithm due to the lack of interactions between the approximating particles, called Z 1 , Z 2 , ..., Z q below. The underlying idea is to estimate the quantity U pxq ´min M U through

@ x P M, U pxq ´min M U " ´lim γÑ`8 1 γ lnpµ γ pxqq (22) 
where µ γ is the density of the Gibbs measure associated to the potential U and to the inverse temperature γ ě 0:

@ x P M, µ γ pxq expp´γU pxqq ş M expp´γU pyqq pdyq
Other ways of approximating the l.h.s. of (22) can be devised, thus in [START_REF] Bolte | Swarm gradient dynamics for global optimization: the density case[END_REF] the main role is played by the stationary measure of (21) for a fixed parameter γ t , which is next sent to infinity. The convergence (22) is more classical and leads to the following natural procedure. Nevertheless other alternative approaches would deserve to be investigated.

The Gibbs measure µ γ d is the invariant (an even reversible) probability measure associated to the Markov generator ¨´γ x∇U, ∇¨y, namely to the diffusion Y pY ptqq tě0 heuristically described as in (1) through @ t ě 0, dY ptq " ´γ∇U pY ptqq dt `?2 dW ptq where W pW ptqq tě0 is a m-dimensional Brownian motion. It is well-known that the law of Y ptq converges to µ γ as t goes to infinity. To get γ going to infinity, we consider a time-inhomogeneous version Z pZptqq tě0 of Y associated to a scheme γ : R `Q t Þ Ñ γ t via @ t ě 0, dZptq " ´γt ∇U pZptqq dt `?2 dW ptq From the theory of simulated annealing, see Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], it is known that for large times t ě 0, the law LpZptqq of Zptq becomes closer and closer to µ γt d if the inverse temperature scheme γ has a sufficiently slow logarithmic growth. More precisely, for a scheme of the form @ t ě 0, γ t " k ´1 lnp1 `tq

the relative entropy of LpZptqq with respect to µ γt goes to zero for large time t ě 0 when k ą c, where c ě 0 the largest height of a well not containing a given element of U (the constant c does not depend on this fixed element).

To get an approximation of the density µ γt pxq, we first consider a finite sequence Z 1 , ..., Z Q , Q P N of independent copies of Z, namely satisfying @ q P Q , @ t ě 0, dZ q ptq " ´γt ∇U pZ q ptqq dt `?2 dW q ptq where W q pW q ptqq tě0 are independent m-dimensional Brownian motions for q P Q . For Q large enough, by the law of the large numbers, we can expect that for fixed t ě 0, the empirical measure of the Z q ptq, q P Q is an approximation of the law of Zptq and thus is close to µ γt if the time t has been chosen large enough and the inverse temperature schedule according to (23) with k ą c.

Next let be given a kernel approximation of the Dirac masses: it is a family pK h p¨, ¨qq hą0 of smooth mappings on M 2 such that for any x P M , K h px, yq pdyq is a probability measure weakly converging toward δ x as h goes to 0 `(a geometrical example is the heat kernel on M at small times).

Through classical density approximation, see e.g. the book of Silverman [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF], we hope that for t ě 0 and Q large enough and h ą 0 small enough,

1 Q ÿ qP Q K h pZ q ptq, xq
is a good approximation of µ γt pxq for any x P M . In view of (22), we are led to consider a process X pXptqq tě0 defined by dXptq " ´β∇U pXptqq dt `b2V pγ t , Xptq, Z Qt ptqq dBptq where β satisfies (2) and the Brownian motion B is independent of the Brownian motions W q , for q P N, where We can assume that the potential upward jumps Q t ´Qt´a re either 0 or of size 1 and that furthermore when a jump of Q does occur at time t ě 0, then a particle is chosen among the current Q t´o nes and gives rise to a new particle at the same place. Afterward the two particles at this same place evolve independently.

V
More precisely, in addition to (23) with k ą c, we are looking for appropriate schedules Q and h such that X turns out to be a global minimizer of U , in the sense that Xptq converges a.s. for large times t ě 0 toward an element of U, which is expected to be random if U is not a singleton, according to Theorem 1. miclo@math.cnrs.fr Toulouse School of Economics, 1, Esplanade de l'université 31080 Toulouse cedex 06, France Institut de Mathématiques de Toulouse Université Paul Sabatier, 118, route de Narbonne 31062 Toulouse cedex 9, France

  pγ t , Xptq, Z Qt ptqq ˇˇln ´řqP Qt K ht pZ q ptq, Xptqq{Q ¯ˇγ t and where Q : R `Q t Þ Ñ Q t P N and h : R `Q t Þ Ñ h t are respectively non-decreasing and increasing evolutions, such that

	lim tÑ`8	Q t " `8 and	lim tÑ`8	h t " 0
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