

Mid-late holocene accretional history of low-lying, coral-reef rim islets, South-Marutea Atoll, Tuamotu, central South Pacific: The key role of marine hazard events

Lucien F Montaggioni, Bernard Salvat, Edwige Pons-Branchu, Arnaud Dapoigny, Bertrand Martin-Garin, Gilbert Poli, Jean-Marc Zanini, Robert

Wan

▶ To cite this version:

Lucien F Montaggioni, Bernard Salvat, Edwige Pons-Branchu, Arnaud Dapoigny, Bertrand Martin-Garin, et al.. Mid-late holocene accretional history of low-lying, coral-reef rim islets, South-Marutea Atoll, Tuamotu, central South Pacific: The key role of marine hazard events. Natural Hazards Research, 2023, 10.1016/j.nhres.2023.02.004. hal-04094921

HAL Id: hal-04094921 https://hal.science/hal-04094921

Submitted on 11 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mid-late holocene accretional history of low-lying, coral-reef rim islets, South-Marutea Atoll, Tuamotu, central South Pacific: The key role of marine hazard events

Lucien F. Montaggioni, Bernard Salvat, Edwige Pons-Branchu, Arnaud Dapoigny, Bertrand Martin-Garin, Gilbert Poli, Jean-Marc Zanini, Robert Wan

PII: S2666-5921(23)00018-5

DOI: https://doi.org/10.1016/j.nhres.2023.02.004

Reference: NHRES 77

To appear in: Natural Hazard Research

Received Date: 31 October 2022

Revised Date: 19 January 2023

Accepted Date: 20 February 2023

Please cite this article as: Montaggioni, L.F., Salvat, B., Pons-Branchu, E., Dapoigny, A., Martin-Garin, B., Poli, G., Zanini, J.-M., Wan, R., Mid-late holocene accretional history of low-lying, coral-reef rim islets, South-Marutea Atoll, Tuamotu, central South Pacific: The key role of marine hazard events, *Natural Hazard Research* (2023), doi: https://doi.org/10.1016/j.nhres.2023.02.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 National Institute of Natural Hazards, Ministry of Emergency Management of China. Publishing services provided by Elsevier B.V. on behalf of KeAi Communication Co. Ltd.

1	Mid-Late Holocene accretional history of low-lying, coral-reef rim islets, South-Marutea
2	Atoll, Tuamotu, central South Pacific: the key role of marine hazard events

- 3 Lucien F. Montaggioni ^a*, Bernard Salvat ^b, Edwige Pons-Branchu ^c, Arnaud Dapoigny ^c,
- 4 Bertrand Martin-Garin^a, Gilbert Poli^d, Jean-Marc Zanini^e, Robert Wan^f.
- ^a Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, 13331 Marseille, France
- ⁶ ^b PSL-École pratique des hautes études, UAR 3278, EPHE, CNRS, UPVD, Labex Corail,
- 7 °LSCE/IPSL, CEA–CNRS–UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- 8 ^dEnvironmental Consultant 75016 Paris, France
- 9 ^eEnvironmental Consultant 75014 Paris, France
- 10 ^f Tahiti Perles, Papeete, BP 850, French Polynesia
- 11 Corresponding author, Email address: montaggioni@cerege.fr

12 Abstract

South-Marutea Atoll is located at the south-eastern end of the Tuamotu Archipelago, French 13 14 Polynesia, central South Pacific. Understanding the modalities of islet building from low-15 lying atolls over the mid to late Holocene, in relation to sea-level changes and cycles of 16 marine hazard events, is a prerequisite for better anticipate future geomorphic changes to 17 which the islets will likely be faced in the next decades under global climate warming. Herein 18 is presented the depositional history of two selected atoll islets, based on chronostratigraphic 19 analysis of sedimentary, coral-dominated sequences from six excavations. Identified as Motu 20 Aramu and Motu Vainono, these islets are located respectively in north-north-east and due 21 south of the atoll rim. Additional surficial sampling was conducted on modern ocean-facing

22 shingle ridges, respectively on north-north-west (Motu Oire), west (Motu Aranui) and east 23 (Motu Tekava) rim areas, in order to date the latest ridge-emplacement stages. Oire and 24 Aranui sites, located along the leeward atoll sites, are protected from trade winds, Aramu, 25 Vainono and Tekava are located on the windward sides, directly exposed to northeasterly and 26 southeasterly storm swells respectively. A total of 88 coral clasts were collected to be U/Th 27 dated. The excavated sequences range between 2.50 m and 0.90 m in thickness, from the 28 outer islet sides lagoonwards. Five lithofacies, including two subfacies, were recognized 29 based on texture and biological composition: a coral boulder-cobble-dominated, a coral 30 pebble-dominated – pebble-supported and sand-supported subfacies – and a foraminifera-rich, 31 sand-dominated and an organic-rich, pebble to sand facies. These facies tend to be distributed 32 from ocean sides landwards according to a decreasing grain-size gradient. A model of atoll-33 island accretion emerges in relation with changes in frequency and intensity of marine hazard 34 events. The islet foundations consist of conglomerate platforms, locally up to 1.0 m thick, deposited from about 5,000 to 1,000 yr BP. Islets began to accrete from 5,000 yr BP. While at 35 36 Motu Vainono, islet building occurred continuously over the last 5,000 years, at Motu Aramu, there is an apparent non-depositional episode, from 4,000 to 2,000 yr BP, interpreted as 37 38 caused by a marked decreased in ENSO-related cyclone activity. The outer shingle ridges in all 39 studied sites were regularly reshaped during the last millennium. During the last 5,000 years, 40 the major accretion-islet episodes occurred irrespective of the course of sea level, indicating 41 that sea-level change was not a driver of islet accretion. Periodical, marine high-energy events 42 clearly appear to be the key controls of islet shaping. Shifts of cyclone source areas further 43 south and increasing cyclone intensity, but lower frequency, due to enhanced ENSO variability 44 throughout the 21st century, is postulated to expose the Gambier island Group to stronger, but 45 fewer disturbance events when compared to the last millennia.

46 Keywords:

- 47 Atoll
- 48 Islet accretion
- 49 Storminess
- 50 Tuamotu
- 51 Central south Pacific
- 52 Holocene

53 **1. Introduction**

54 According to the lastest IPCC Report (Pörtner et al., 2022), sedimentary coastal systems will 55 be subjected to drastic topographic readjustments prior to the end of the current century in 56 response to ongoing global climate warming. In the Pacific Ocean, low-lying coastal systems 57 are mainly represented by atolls, i.e. shallow-water, annular to elongate, coral-reef rimmed 58 islands, usually overtopped discontinuously by islets, composed of coral-derived rubble 59 and/or skeletal sands (Woodroffe and Biribo, 2011). These islets are known as motu by Polynesian natives. Culminating at elevations rarely exceeding +5 m above present mean sea 60 61 level (pmsl), these have been interpreted as storm-generated, depositional landforms built up 62 during the last millennia in relation with relative changes in sea level (Pirazzoli and Montaggioni, 1986; Dickinson, 2009; Woodroffe et al., 1999; Kench et al., 2005; Barry et al., 63 64 2007; Kench et al., 2014a, 2014b).

65 Over an about twenty-year period, in the Indo-Pacific, a great deal of research was dedicated to understanding the morphological evolution of low-lying atoll islets during the last few 66 67 decades in response to the rise in sea level (Roy and Connell, 1991; Woodroffe, 2008; 68 Dickinson 2009; Webb and Kench, 2010; Rankey, 2011; Ford, 2012; Yates et al., 2013; Ford and Kench, 2015; Storlazzi et al., 2015; Purkis et al., 2016; Duvat, 2019; Duvat et al., 2017a; 69 70 Shope and Storlazzi, 2019) and to the intensification of storminess (Kench and Brander, 2006; 71 Hoecke et al., 2013; Canavesio, 2014; Smithers and Hoecke, 2014; Costa et al., 2017; Duvat 72 et al., 2020). The relevant findings were used to attempt predicting the morphodynamic 73 behavior of these islets in the face of global warming in the next future decades. By contrast,

a limited number of investigations were carried out in order to reconstruct the morphological
reconstruction of atoll islets during the last millennia (Kench et al., 2014a, b; Montaggioni et
al., 2018, 2019).

77 Atoll islets are usually regarded as potentially vulnerable, liable to experience submersion 78 and/or erosion (Yamano et al., 2007; Woodroffe, 2008; Dickinson, 2009; Ford and Kench, 79 2014; Canavesio, 2014, 2019; Storlazzi et al., 2015; Shope et al., 2016, 2017; Duvat et al., 80 2017b; Montaggioni et al., 2021; Amores et al., 2022). As a result, the fate of islets together 81 with the related human settlements, remain uncertain (Shope and Storlazzi, 2019; Magnan et 82 al., 2018, 2022) and therefore is still actively debated. Among scientists, there are those who 83 believe that islets could be submerged (Yamano et al., 2007; Dickinson, 2009; Connell, 2013; 84 Hubbard et al., 2014; Woodruff et al., 2013; Storlazzi et al., 2015), and others who thought 85 that they will persist, migrating laterally across atoll-rim surfaces (Webb and Kench, 2010; Rankey, 2011; Biribo and Woodroffe, 2013; Ford, 2012, 2013; Le Cozannet et al., 2014; Pala, 86 87 2014; Ford and Kench, 2015; McLean and Kench, 2015; Duvat and Pillet, 2017; Duvat et al., 88 2017b). In any case, active cyclogenesis are known to promote both islet accretion and erosion. generally at different sites of a same atoll (Stoddart, 1971; Stoddart and Steers, 1977; 89 90 Scoffin 1993; Canavesio, 2014; Montaggioni et al., 2018, 2019, 2021).

In French Polynesia, studies were conducted on the dynamics of atoll-islet shorelines in
response to change in sea level over the last few decades (Duvat, 2019; Duvat and Pillet,
2017; Duvat et al., 2017a, b). Correlatively, Canavesio (2014, 2019) explored the influence of
extreme marine hazards on the short-term evolution of motu morphology. In both cases, the
investigations focused on a few atoll sites and atolls only. Furthermore, as claimed by Shope
and Storlazzi (2019), such works only based on a few decades of observations may not
accurately predicate how atoll islets will react in the future when sea level will reach

98 elevations as high as or higher than those reached during the mid-late Holocene islet accretion99 phases and, in addition, when storminess will become stronger.

100 Estimating the degree of vulnerability of atoll islets to ongoing climate change requires as a 101 prerequisite detailed reconstructions of the mode and timing of atoll islet formation over 102 millennial timescales. Islet sedimentary beds are known to preserve evidence of the passage 103 of intense storms. In French Polynesia, studies devoted to reconstructing the internal 104 architecture of low-lying islets are still limited to Takapoto (Montaggioni et al., 2018, 2019) 105 and Rangiroa (Montaggioni et al., 2022) Atolls. The findings revealed that, at Takapoto, on 106 both leeward and windward sides, motu have formed over the last 2,500 years, as sea level 107 was falling, from depocentres initially located in the middle parts of the atoll rims, then 108 accreting centrifugally seawards and lagoonwards. By contrast, in northern Rangiroa, islet 109 development appears to have started about 6,000 years ago at the time sea level was moving 110 up to its present position, indicating that the main accretionary phase of the motu has occurred 111 during the rising sea-level episode, approximately from 6,000 to 3,000 years BP. As their 112 islets were demonstrated to have formed at different stages of the sea-level course over the 113 last 6,000 years, the question is to what extent the models from Takapoto and Rangiroa, both 114 located in the northern Tuamotu, are representative at the whole archipelago scale.

The present study aims to reconstruct the timing and mode of formation of two rim islets from South-Marutea Atoll (Fig. 1), situated at the south-eastern end of the Tuamotu Archipelago, at a distance of 1500 km and 1300 km from Takapoto and Rangiroa Islands. The selected motu are located in the north and south areas of the atoll respectively. The main objectives are to elucidate if there are potentially time offset in islet initiation and differences in accretional processes between atolls situated at the opposite ends of a same reef province, and suspected to be subjected to differential environmental conditions and storm regimes. Assuming that the

mid to late Holocene sea-level pattern defined from the north-western Tuamotu (Pirazzoli and
Montaggioni, 1988a; Hallmann et al., 2020) is of regional value, also applicable to the southeastern parts of the archipelago (Pirazzoli and Montaggioni, 1987) may lead to isolate the
respective roles of sea-level change and marine natural hazard events in South-Marutea atollislet formation.

127 **2. Regional setting**

128 **2.1.** Site location and atoll morphology.

129 Composed of 77 atolls, the Tuamotu Archipelago is located in the central South Pacific, 130 extending along a west-north-west to east-south-east axis, about 1700 km long. Located at 131 1470 km from Tahiti, South-Marutea Atoll, also known as Quiros, Lord Hood, Marutea-I-132 Runga or Nuku-Nui, lies in the far south-eastern part of the archipelago, between 21°28'27.74''-21°34'25.12" latitude south and 135°38'42.57''-135°27'12.46" longitude 133 134 west (Fig. 1a). This atoll has to be differentiated from North-Marutea, located at about 650 km 135 east of Tahiti. South-Marutea is resting on a 37.3–30.4 million years old, oceanic crust (Müller 136 et al., 1997). Geodynamically speaking, it belongs to the Tuamotu trail chain, presumably 137 generated from the Easter hotspot (Ito et al., 1995), to be distinguished from the nearby 138 Moruroa-Gambier-Pitcairn island chain generated by the Pitcairn hotspot (Dupuy et al., 1993). 139 The South-Marutea volcano, about 2700 m high, is likely to have started erupting by the lower 140 Miocene. Geographically and administratively speaking, rising at a distance of less than 200 141 km north of Mangareva Island, South-Marutea is part of the Gambier Island Group.

First described by Seurat (1904), South-Marutea is of closed type (totally devoid of passes),
broadly trapezoid in shape, 20 km long and 8 km wide, with a circumference of 55 km (Fig. 1b).
Its main axis, oriented west-north-west to east-south-east, is consistent with that of the Tuamotu

island chains. The atoll reef rim ranges between about 350 and 1100 m in width, covering about
15 km². The lagoon is 112 km² in area, -40 m in maximum depth and exhibits a blue hole,
-72 m deep, close to its eastern border. A 10 km-long, almost continuous motu occupies the
north-eastern rim part while the other rim areas have small islets usually separated by *hoa*, i.e.
shallow channels allowing water exchanges between the open sea and the lagoon at high tide.
The islets are elongated or crescent-shaped.

151 The atoll rim is fringed oceanwards by a coral-reef flat zone, 150 to 230 m wide, less than 152 1 m deep, overlined by an about 0.50 m-high algal crest, at its outermost borders. The living 153 coral cover rate does not exceed 5 % of the total reef-flat surface. The upper forereef zone 154 consists of a gently-dipping spur-and-groove system, followed outwards by a sub-horizontal, 155 about 50 m-wide terrace, usually ending into a drop-off at depths of 10-15 m. The spur-and-156 groove system and the terrace are colonized by coral communities dominated by pocilloporids 157 and acroporids. Observations from the north-north-west rim tip (Motu Oire), at base of the 158 spurs, living coral coverage averaged 45 % over the past few years (Chancerelle, Y., CRIOBE, 159 pers. com.)

160 *2.2. Climate*

In French Polynesia, the climate system is driven by the trade winds and by the El Niño-Southern Oscillation () which regulates both tropical cyclones and extra-tropical storms (Andréfoüet et al., 2012; Lecacheux et al., 2013). In the Gambier Islands, the climate is typically maritime, tropical, humid, but relatively cooler than that from the north-western Tuamotu region. Rainfall remains relatively stable throughout the year, averaging 140 mm in July and 210 mm in November, thus resulting in an average annual rate of 2,000 mm. As in the whole tropical Pacific, the wind regime at South-Marutea, is dominated by trade-winds,

blowing mainly from the north to south-east sectors (Fig. 2). During the winter season, the
trade winds generate strong, about 2–2.50 m-high wave surges. During the summer season,
the trade winds are significantly less active and generate moderate swells, occasionally
disturbed by distant-source storms originating from the southern latitudes (Canavesio, 2019)
and cyclones. Tides are semi-diurnal and microtidal, averaging 0.70–0.80 m in amplitude at
spring tide.

174 French Polynesia has clearly fewer cyclones than the rest of the central South Pacific. The 175 cyclone season occurs generally during the austral summer. The eastward shift of warmer 176 waters during El Niño events triggers the motion of tropical storms further east to the 177 Tuamotu. Most cyclones come from the west through the Cook Islands, usually passing south 178 of the Society Islands, but more regularly passing over the Austral Islands (Larrue and 179 Chiron, 2010). Some cyclones generate from within the Marquesas. Increase in ENSO 180 variability is driven by a change in the magnitude and frequency of extreme El Niño events 181 (Bjerknes, 1969; Kao and Yu, 2009). During active, El Niño phases, intense cyclonic hazards 182 mainly affect the region bounded by the Tuamotu and Austral Islands, while, during la Niña 183 phases, decreasing cyclonic activity seem to operate between the Gambier and the southern 184 Austral areas (Laurent and Varney, 2014). As a response to global warming, there was a 185 significant enhancement of ENSO variability by about 25 % over the last five decades, 186 compared to the preindustrial times (Grothe et al., 2019). The province is also affected by 187 tropical lows that form over oceanic areas with surface temperature of about 26 °C, just 188 poleward of the Inter-Tropical Convergence Zone (ITCZ) where the trade winds of northern 189 and southern hemispheres are converging. These can generate strong winds and swells across 190 the Tuamotu province.

191 In French Polynesia, the history of extreme marine hazard events is poorly documented 192 (Laurent and Varney, 2014; Dupon, 1987). Between 1822 to 2014, about 24 extreme wave 193 events, most interpreted as related to tropical cyclones, would have passed across the region. 194 The last ones were interpreted as triggered by 'Super-ENSO' events (Hameed et al., 2018), 195 presumably in relation to global climate warming. These last events were anomalous since, 196 over periods of several centuries, the number of strong storms and cyclones in the province 197 was expected to probably range between 2–3 per century (Canavesio, pers.comm.) to a 198 maximum of 4–10 (Dupon, 1987). Cyclone events typified by a 50-year return interval would 199 generate wave exceeding 12 m high (Canavesio, 2014).

200 Storm wave surges hitting South-Marutea are generated by tropical cyclones, depressions, and 201 southern, distant-source wave surges. For the 1831 to 1968 period, there were three recorded 202 passages of destructing cyclones in the Gambier region. Initiated close to the Marquesas 203 Archipelago, all these cyclones were described as having followed similarly close trajectories 204 as tracked south-east along the west Mangareva coasts at distances of less than 10 km 205 (Laurent and Varney, 2014). During the 1969–2010 interval, South-Marutea is known to have 206 been impacted by eight cyclones and depressions (Laurent and Varney, 2014) (Fig. 3). In the 207 vicinity of the Gambier Islands, most cyclones tend to become less powerful, grading into 208 tropical depressions, hence unable to displace the largest coral debris. The most recent 209 damaging effects have resulted from the passage of cyclones Nano and William. Nano passed 210 over South-Marutea by 27th January 1983. All atolls located along its trajectory were 211 impacted, especially their north- and east-facing rim sides which were totally submerged. 212 Descriptions from neighbouring atolls of Hao and Tureia reveal that about 15 to 18 m-high 213 waves have flooded over the reef rims, locally resulting in removing portions of islets over 214 lengths of 60 m and widths of 20 m, together with transport of coral-built mega-blocks from 215 the adjacent forereef slopes onto the motu (Laurent and Varney, 2014). The eye of Cyclone

216 William has passed close to the north of South-Marutea by 20th April 1983. At Turea, waves 217 of about 8 to 9 m high were observed. It is noteworthy that, at South-Marutea, while there are 218 several metre-thick, outer shingle ridges, mostly composed of coral boulders and cobbles, 219 deposited along the reef-rim, there is no mega-boulder. Large mega-casts are also missing (B. 220 Salvat, pers. observ.). These are striking features because numerous mega-clasts, a few to tens 221 of cubic metres in volume, are frequently present on reef flats in the majority of atolls in the 222 Tuamotu, locally in the north and central part of the archipelago, usually deposited along the 223 northern and southern faces (Bourrouilh and Talandier, 1985; Etienne et al., 2011; Terry and 224 Etienne, 2011; Lau et al., 2016). This strongly suggests that the studied atoll and most of 225 nearby islands have escaped catastrophic impacts generated by the close passage of cyclones, 226 in contrast to what is seen at Hao and Tureia. South-Marutea, located further south, close to 227 the end of the cyclonic tracks in the south Pacific (Larrue and Chiron, 2010; Laurent and 228 Varney, 2014), is likely to have been hit by cyclones with loss of strength. However, mean tide levels during a cyclonic event can be strongly impacted by both wave setup, i.e. increase 229 230 of mean water level due to waves breaking on the reef front, and by runup, i.e. maximum 231 elevation reached by waves on the atoll land. For cyclonic wave heigths of 8 to 12 m, runup 232 effects could increase the reference ocean water level by more than 4.5–5.0 m along 233 coastlines (Pedreros et al., 2010). It is noteworthy that elevation reached by sea level is 234 sensitive mainly to wave direction. The effects of changing incident waves that deflect into a 235 direction different from the perpendicular to the reef front line could cause increasing risk and 236 disturbances in some areas, especially near passes or hoa. Similarly, atoll-islet inundation can 237 occur from waves surges directly generated from lagoonal waters (Damlamian et al., 2013).

Distant-source swells originate from high-latitude storms, especially in the south (austral)
hemisphere. There is little information about the real influence of distant-source storms in
atoll shaping in the Tuamotu, although their return frequency is approximatively annual,

probably because these have usually limited effect on human activities. However, these are
known to have triggered a rise of up to 2.50 m in atoll lagoon level above low spring tide,
resulting in islet submergence and damage (Canavesio, 2019). Lagoon water infilling seems
to depend not only upon the magnitude of the storm wave event, but also upon the duration of
the event.

246 In addition, little is known about the frequency and effects of tsunamis in French Polynesia 247 and, especially, in the south-eastern Tuamotu end (Sladen et al., 2007). Around fifteen 248 tsunamis were estimated to have hit French Polynesia and the Tuamotu since the fifteenth 249 century (Lau et al., 2016). Earthquake-generated tsunamis from the eastern Pacific subduction 250 zones seem to be potentially not able to impact the Gambier areas (Heinrich et al., 1996; 251 Reymond et al., 2013). According to Sladen et al., (2007), the Tuamotu have been 252 significantly less affected by tsunamis than high volcanic islands in other French Polynesian 253 archipelagoes, although some atoll-rim deposits may be interpreted as resulting from devastating tsunami impacts (Montaggioni et al., 2022). Since the 16th century, less than ten 254 255 tsunamis were expected to have struck the Tuamotu islands and generated less than 2 m-high 256 waves (Lau et al., 2016).

Moreover, as emphasized by Duvat et al. (2020), climate events regarded as moderate
compared to tropical cyclones can significantly contribute to atoll-islet shaping. Usually
overlooked as sediment providers, low-to medium water energy hazards, with return periods
of 2–3 years, compared to those of cyclone (several decades), regularly supply motu with
material derived from upper forereef and reef-flat zones and contiguous conglomerate
platforms.

- 263 Rapid, high amplitude mean global sea-level rise is expected for the next centuries (Horton et
- al., 2020). Highest sea-level positions should be close to those estimated for the last
- interglacial MIS 5e stage (Rohling et al., 2007; Kopp et al., 2009)..

3. Material and methods

267 3.1. Field surveys

- 268 The studied motu sites are the following: north-east (Aramu) (Fig. 1c), due south (Vainono)
- 269 (Fig. 1d), west (Aranui) (Fig. 1e), north-north-west (Oire) (Fig. 1f) and due east (Tekava)

270 (Fig. 1g).

271 First, detailed levelling along longitudinal profiles across the atoll-reef rim was conducted 272 using a conventional automatic level. Each reference point along the profiles was positioned 273 using DGPS coordinates. Elevations were measured by reference to present-day mean sea 274 level (pmsl), assuming a conservative error of ± 0.10 m. The profiles across the motu reveal 275 similar protruding relief seawards. These relate to shingle ridges bordering the ocean-facing 276 sides of the atoll-reef rim, as observed at Motu Vainono, across its highest tip (Figs. 1d, 4a) 277 and at Motu Oire (Figs. 1f, 4b). The islets rest usually on conglomerate platforms, i.e. 278 lithified, heterometric skeletal sheets, regarded as cemented within vadose and phreatic 279 marine zones during the sea-level lowering over the last 4,000 years (Montaggioni et al., 280 2021). Conglomerates are less than 1.00 m in apparent thickness, but are thicker locally, 281 particularly in the south-south-west (Motu Aranui) and the west (Motu Oire) areas of the atoll 282 reef-rim (Fig.5a, b, c). Coral pebbles were collected superficially along the shingle-ridge 283 profiles for radiometric dating submission. Similarly, for comparison, samples were also 284 taken along the ocean-facing shingle ridges on Motu Aranui (Fig. 1e), on the south-south-

west coast (21°31'38.6"S, 135°37'48.9"W) and Motu Tekava (Fig. 1g), on the south-southeast atoll-rim end (21°31'51.31"S, 135°27'23.70"W).

287 Additional topographic surveys were conducted in relation to excavated cross-sections 288 through two selected islets, respectively Motu Aramu, exposed to the north-north-east trade 289 winds (21°29'00.2", 135°30'48"W) and Motu Vainono, exposed to the south-east 290 (21°34'05.3''S, 135°33'05.9''W). Aramu is 230 m long, while Vainono extends over 720 m. 291 Islet topography are very similar at both studied sites. Along the ocean side, the transition 292 zone between the inner reef-flat zone and the land is occupied by steeply-dipping (up to 20°) 293 sandy, skeletal beaches (Fig. 6). Inland, there are unconsolidated rubble ridges, mainly 294 composed of block-sized (0.30 m on average), individual coral colonies, dominated by 295 pocilloporids and acroporids (Fig. 7). The ocean-facing ridge slopes are steep (up to 30°) 296 while the inner faces are gently-dipping (less than 15°). Ridge heights at the transect sites are 297 2.30 m at Motu Aramu (Fig. 8) and 5.10 m at Motu Vainono (Fig. 9). Behind the ridges, there 298 are gently-dipping (less than 10–15°) to flat-topped benches culminating at elevations of 299 1.60 m to 2.60 m respectively. The benches end into 10° sloping beaches, about 20 to 80 m in 300 width. The inner sides of shingle ridges at Motu Vainono are covered by low-growing plants 301 (Scaevola taccada). Conglomerate platforms and beaches from the ocean-facing Aramu areas 302 are colonized by spaced *Pemphis acidula* tufts - miki-miki in Polynesian language. The inner, 303 flat-topped surfaces of both islets are occupied by both low-growing plants (Scaevola 304 taccada, Microsorum grossum), shrubs (Pandanus tectorius) and trees (Guettarda speciosa, 305 Cocos nucifera).

Second, vertical excavations using backhoe were dug through Motu Aramu (Fig. 8) and Motu
Vainono (Fig. 9) from top surface to underlying conglomerate surfaces in order to determine
islet subsurface stratigraphy. On both motu, the excavations were dug at three specific

309 locations: just behind the shingle ridge, in the middle part of the motu and on the lagoon-310 facing margin. From the ocean side inwards, these holes are successively labelled A 311 (21°28'57.1"S, 135°30'45.6"W), B (21°29'00.2"S, 135°30'48.1"W) and C (21°29'02.7"S, 312 135°30'50.3"W) on Motu Aramu, and D (21°34'09.0"S, 135°33'04.2"W), E (21°34'05.3"S, 313 135°33'05.9"W), and F (21°33'57.54"S, 135°33'07.86"W) on Motu Vainono. Field grain-314 size analysis of coarser detrital material was performed using the Udden-Wentworth 315 classification (Terry and Goff, 2014) as measured along the longest axis from photographed 316 square-metre quadrats. Coral pebbles and gravels were collected for radiometric dating at all 317 excavated sites. Taxonomic identification of dated coral specimens was made at the generic

318 level.

319 *3.2. Uranium–thorium dating procedures*

The reconstruction of atoll islet chronostratigraphy and building history is based on uraniumseries dating of the 88 coral gravels to pebbles, labelled M, collected on South-Marutea Atoll, both at the surface of islets and, within excavations, along the walls and at the bottom.

323 Prior to radiometric analysis, millimetric pieces of the coral clasts were cut using a micro saw 324 in order to select the most clean and pristine parts. These pieces were rinsed with mQ water and ultra-sonicated several times. After adding a triple ²²⁹Th ²³³Ue ²³⁶U spike in a Teflon 325 326 beaker, samples (from 150 to 350 mg) were dissolved with diluted HCl. The U–Th separation 327 and purification were performed after coprecipitation with Fe(OH)3, on 0.6 ml columns filled 328 with U-TEVA and prefilter resins, in nitric media – see Pons-Branchu et al. (2014) for details. 329 The U and Th isotopic compositions were analyzed at the Laboratoire des sciences du climat 330 et de l'environnement (LSCE, France), on a Multi-Collector inductively coupled plasma source 331 mass spectrometer (MCeICPMS) Thermo ScientificTM Neptune^{plus} fitted with a desolvating 332 introduction system (aridus II), and a jet interface. For mass fractionation correction, we used

an exponential mass fractionation law – normalized to natural 238 U/ 235 U isotopic ratio – and 333 334 standard – sample bracketing. More details on the analytical procedure – chemistry and MC-335 ICPMS analysis – can be found in Pons- Branchu et al. (2014). After corrections for peak tailing, hydrate interference and chemical blanks, ²³⁰Th/²³⁴U ages were calculated (Table 1) 336 from measured atomic ratios through iterative age estimation using the ²³⁰Th, ²³⁴U, and ²³⁸U 337 338 decay constants of Cheng et al. (2013) and Jaffey et al. (1971). Ages are expressed in calendar 339 years (cal.yr), by reference to 2022, i.e. the year of sample analysis. In order to make age 340 results more easily comparable to previous research, particularly that based on radiocarbon 341 measurements, ages are also given in conventional years BP by reference to 1950 (see Table 342 1, Supplementary Material).

343 3.3. Significance of coral-clast ages

344 Radiometric dating of displaced skeletal material (corals, molluscs, foraminifera) for 345 reconstructing depositional histories of atoll islets were discussed by Woodroffe et al. (1999, 346 2007), Kench et al. (2014) and Montaggioni et al. (2018, 2019, 2021, 2022). As an unknown 347 time interval (tens to hundreds of years) is expected to separate the time of death of a given 348 organism from the time of final deposition and stabilisation of its skeletal fragments, islet 349 chronologies have therefore to be interpreted as relative, not absolute. Coral clasts may have 350 experienced successive cycles of displacement, reworking and resedimentation. This is clearly 351 evidenced by a number of age inversions in the stratigraphic sections (Figs. 8, 9). However, 352 islet chronologies is assumed to be consistent, since most of the dated samples occupy a 353 stratigraphic position within the excavations, particularly, within those close to the outer 354 ridges and from the middle parts of both islets, which is in accordance with their age. Samples 355 tend to be younger closer to the surface and older closer to the bottom. In these sites, the 356 youngest ages obtained are regarded to be closer to the time of definitive stabilization of the

- 357 relevant islet section. Clast stabilization is believed to have taken place within 200–1,000 yr-
- 358 long intervals, according to clast ages recorded at base of the excavations.

359 **4. Results**

360 *4.1. Expected age of deposition of conglomerate platforms*

361 Ages of coral clasts incorporated into islet-supporting conglomerates, collected from both 362 outcrop surfaces or at the bottom of the excavations vary widely from site to site (Fig. 10). At 363 Motu Aramu, ages range from $3,585 \pm 10$ cal.yr (M1), $3,593 \pm 20$ cal.yr (M4), and 364 $4,108 \pm 10$ cal.yr (M43) to $4,181 \pm 8$ cal.yr (M52). At Motu Vainono, conglomerate clasts yielded ages of $1,109 \pm 4$ cal.yr (M16), $1,204 \pm 8$ cal.yr, (M25), $3,218 \pm 7$ cal.yr (M118), and 365 366 $3,986 \pm 10$ cal.yr (M88). At Motu Aranui, conglomerate ages are among the oldest recorded: $3,665 \pm 16$ cal.yr (M148) and $4,829 \pm 24$ cal.yr (M149). By contrast, at Tekava, conglomerate 367 deposits are among the youngest ones: $1,011 \pm 32$ cal.yr (M103), $1,339 \pm 6$ cal.yr (M102), 368 369 and $1,743 \pm 7$ cal.yr (M101).

4.2. *Expected age of deposition of ocean-facing shingle ridges and inner sheet surfaces*

371 U/Th dating of coral clasts collected from the shingle-ridge and inner islet surfaces at the

372 different islet settings suggests that the ridges have been supplied in coral detritus between the

373 last few decades to the last millennia (Fig. 10). Clast deposition has taken place decades to

374 century apart depending on exposure to wave surges and local forereef slope physiography of

ach considered atoll site. The youngest ages are mostly obtained from the outermost, ocean-

- facing ridge surfaces or tips: Aranui (47 ± 4 cal.yr, M138), Aramu (51 ± 2 cal.yr, M53),
- 377 Vainono (79 \pm 2 cal.yr, M19; 185 \pm 3 cal.yr, M18), Oire (304 \pm 3 cal.yr, M162;

 $378 \quad 308 \pm 5$ cal.yr, M164), Tekava (343 ± 4 cal.yr, M107). By contrast, samples from the inner

talus, just behind the ridge tips, provide ages significantly older: Tekava (862 ± 5 cal.yr,

- 380 M100), Oire (1,255 ± 11 cal.yr, M166; 3,565 ± 13 cal.yr, M167), Vainono
- 381 $(2,314 \pm 150 \text{ cal.yr}, \text{M21}; 2,678 \pm 9 \text{ cal.yr}, \text{M24}; 2,695 \pm 8 \text{ cal.yr}, \text{M22}).$
- 382 Ages of samples from the inner sheet surfaces range are the following (Fig. 10):
- 383 108 ± 3 cal.yr, (M44) and 1,786 ± 12 cal.yr (M26) at Aramu, 2,480 ± 10 cal.yr (M132),
- 42 ± 2 cal.yr (M65) and 2,885 ± 8 cal.yr (M85) at Vainono, 3,846 ± 15 cal.yr (M109) at

385 Tekava.

386 *4.3. Internal islet structure and lithostratigraphy*

387 Examination of the excavations dug through both Motu Aramu and Motu Vainono revealed 388 that the relevant unconsolidated deposits are resting on firmly indurated, conglomerate 389 pavements. The conglomerate top surfaces range from 0.40 to 0.70 m (0.50 m on average) in 390 elevation above pmsl. These surfaces are locally overflooded by the ground water table at 391 maximum levels of 0.25 m (excavations C, D and F) (Fig. 11b, c, d). Analysis of the 392 excavation walls reveal that the conglomerate-overlying, loose deposits increase noticeably in 393 thickness and volume from Aramu to Vainono settings (Figs. 8, 9), probably in response to 394 exposure to higher intensity and frequency of islet-building wave surges. The ocean-facing 395 sequences (A and D) located just behind both the outer shingle ridges are 2.00 and 2.50 m 396 thick at Motu Aramu and Motu Vainono respectively. In the middle parts of the islets, the 397 thicknesses of the sedimentary sequences (B and E) are 0.90 and 2.00 m respectively. The 398 sequences from the lagoon sides (C and F) are 1.10 and 2.10 m thick respectively.

399 The sequences consist usually of beds ranging from 0.20 to 0.60 m thick (Figs. 8, 9).

400 However, locally, on Motu Vainono, single bed thickess can reach 1 to 2 m. Sediment grain-

- 401 size decreases significantly from the ocean-facing shingle ridges (Fig. 11a, c) lagoonwards
- 402 (Fig. 11b, d). Boulder- to cobble-dominated deposits laterally grade into pebble-dominated,

403 then in sand-dominated facies. Sediment composition and texture are quite similar between 404 Aramu and Vainono sites. Longest axis of coral boulders ranges between 300–350 mm to up 405 to 100 mm with mean values of around 200 mm. Along the islet transects, boulders particles 406 are progressively replaced by cobbles and pebbles. Boulders and cobbles consist 407 predominently of entire pocilloporid and fragmented acroporid colonies, associated to 408 merulinids and a few poritids (Fig. 7). Pebbly detritus are mainly composed of fragmented 409 pocilloporids, acroporids and merulinids, and low content of molluscan shells and coralline 410 algae. Sand-sized grains are composed of large foraminifera, molluscan, coral and coralline 411 debris. Foraminifera tests are dominated by soritids.

412 On the basis of textural attributes, four sedimentary facies can be recognized.

413 4.3.1. Boulder-cobble-dominated facies

This facies tends to be restricted to islet areas close to the ocean sides. It is prevalent at the most exposed site (Excavation D) on Motu Vainono where it represents about 70 % of the volume deposited (Fig. 9). By contrast, on Motu Aramu, within the ocean-facing excavation (A), boulders and cobbles do not exceed 25 % of volume (Fig. 8). Surprisingly, there is a layer composed of the same percentage of cobbles in Excavation C, close to the lagoon side at Motu Aramu.

420 4.3.2. Pebble-dominated facies

421 It is subdivided into two subfacies as differentiated by its clast-supported characteristics:

422 pebble-supported and sand-supported. Pebble detritus (about 50 mm to 5 mm in diameter) are

423 dominantly composed of diverse coral debris, together with a few molluscan shells and

424 coralline algae. Both facies are found throughout both excavated islets (Figs. 8, 9, 11 a, c).

425 However, volumes of pebble-sized material is noticeably higher in Motu Vainono than in

426 Motu Aramu. The pebble-supported subfacies is the main component in the central part of
427 Vainono islet (Excavation E) in which it occupies up to 60 % of the total volume while, in the

428 central part of Aramu islet (Excavation B), it accounts for 20–25 % only. The sand-supported

429 subfacies was encountered in both facing-ocean excavations (A, D) in which it represents

430 20 % and about 60 % of the total volumes respectively.

431 4.3.3. Sand-dominated facies.

432 Sandy material, enriched in low amounts (less than 10 %) of fine pebbles, is deposited

433 predominantly within the inner islet zones, from the central parts towards the lagoonal border,

434 on both Motu Aramu and Motu Vainono (Fig.11b, d). Higher sand amounts were found on

435 Motu Aramu, through Excavations B and C, in which it represents 70 % and 80 % of the total

436 volumes respectively. At Motu Vainono, within Excavations E and F, sand-dominated

437 sediments occupied 25 % and 28 % of the cavity.

438 4.3.4. Organic-rich facies

439 This facies defines the occurrence of brown- to black-coloured, root-bearing horizons at the

440 top part of most excavated sequences, usually at the expense of both pebble- to sand-

441 dominated facies (Fig.11b, d). It is present at all excavation tops, but best developed on

442 Vainono sites. There, its thickness ranges from 0.20 to 0.50 m. At Aramu settings, organic-

443 rich layers are 0.050 to 0.25 m thick.

444 As a summary, it appears that the thicknesses of the different facies and subfacies vary

445 markedly from Motu Aramu to Motu Vainono and from excavation to excavation. As

446 expected, coarser deposits dominate in areas facing the open ocean, while finer ones are rather

447 located near the lagoon sides. No apparent sediment grading was observed in any sequence

448 nor any bed.

4.4. Islet accretion chronology

450	All ages of the dated coral samples extracted from excavations range approximately within
451	the last 5,000 year-interval – from 5,042 \pm 16 cal.yr (M61) to 42 \pm 2 cal.yr (M65). However,
452	the age distributional patterns differ between the both islets (Fig. 10). On Motu Aramu, two
453	major phases of clast supply occurred (Fig. 12a), the earlier from about 5,000 to 4,000 cal.yr,
454	and the later from 2,000 cal.yr to the modern, separated by a two millennia-long non-
455	depositional episode or a least by a slowdown in clast supply. By contrast, on Motu Vainono,
456	earlier deposition would have initiated between 5,000 and 4,000 cal.yr (Fig. 12a). There, the
457	main accretional episode would have lasted approximately 2,000 years, between 4,000 and
458	2,000 cal.yr. Accretion then progressively decreased in intensity until the modern times.
459	Few sequences have an age-decreasing trend from base to top, consistent with stratigraphy.
460	Despite some age inversions, in Excavations A and B (Aramu, outermost and mid islet sites)
461	and F (Vainono, lagoon-margin site), the older samples tend to be deposited in the lower beds
462	while the younger ones to be found close to the land surface. Within Excavation A, ages range
463	from 4,512 \pm 12 cal.yr (M63) – 5,042 \pm 16 cal.yr (M61) at base to 545 \pm 4 cal.yr (M55) –
464	51 ± 2 cal.yr (M53) at top. Within Excavation B, ages decrease from 4,363 \pm 13 cal.yr (M51)
465	to 1,820 \pm 8 cal.yr (M47) and 108 \pm 3 cal.yr (M44). Within Excavation F, ages are
466	2,278 \pm 9 cal.yr (M84) at base, around 1,300–900 cal.yr in the medium beds and 42 \pm 2 cal.yr
467	(M65) at top. But, in most cases, the samples are found to have been reworked and mixed. As
468	a whole, ages in the sections from Motu Aramu are distributed within a wide range while
469	those from Motu Vainono are distributed narrowly. Excavations A: $5,042 \pm 16$ cal.yr (M61)
470	to 51 \pm 2 cal.yr (M53); B: 4,191 \pm 8cal. yr (M52) to 108 \pm 3 cal.yr (M47); C:
471	$4,644 \pm 25$ cal.yr (M30 bis) to 882 ± 5 cal.yr (M38); D: $4,026 \pm 13$ cal.yr (M89) to

 $2,885 \pm 8 \text{ cal.yr} (M85)$; E: $3,293 \pm 24 \text{ cal.yr} (M134)$; F: $2,449 \pm 10 \text{ cal.yr} (M82)$. The average

age difference between the dated clasts into each excavation can be estimated as follows
(Figs. 8, 9, 10): 5,000 years in Excavation A; 4,000 years in B; 4,200 years in C; 1,100 years
in D; 1,000 years in E; 1,500 years in F. With a volume at least twice that of Motu Aramu,
Motu Vainono is interpreted to have developed continuously and more rapidly throughout the
same time interval, from several distinct depositional episodes of 1,000 to 1,500 years in
duration.

479 Clasts older than 2,000 to 4,000 years are present within all the sequences, from the outermost 480 as well as from the innermost islet sites, but best stratigraphically organized and mostly 481 concentrated within the outermost excavation (A, D) deposits. This strongly suggests that the 482 earlier depocentres from which the islets have accreted laterally have settled close to the 483 ocean side, just behind the modern coastline. At Aramu, analysis of the age clast distribution 484 within Excavations A and B advocates for an earlier clast deposition at approximately 5,000 485 to 4,500 cal.yr. At Vainono, in the outermost islet sections (Excavations D and E), the 486 reported oldest clast ages range from about 4,000 to 3,000 years, thus supporting the 487 interpretation that initiation of the depocentres may have occurred about 1,000 year later, 488 compared to Aramu sites.

489 Along the lagoon sides, at Motu Aramu, in Excavation C, a number of younger clasts, 490 varying in age from 1,808 \pm 8 (M26 bis) to 882 \pm 5 cal.yr (M38), are mixed with significantly 491 older coral detritus, dated at $4,742 \pm 14$ (M28) to $4,037 \pm 15$ cal.yr (M37). Such an age 492 mixture is regarded as resulting from a severe reworking of about 4,000 yr-old deposits 493 during a later accretional phase of lagoonal islet borders, from about 1,800 cal.yr and 494 probably during the last century. Similarly, on Motu Vainono, in Excavation F (lagoon side), 495 clasts aged 2,500 cal.yr, found at top, and are mixed with some dated 1,600 to 900 cal.yr 496 located downhole. Accordingly, a reworking and resedimentation of the lagoon margins is

497 thought to have occurred presumably during the last century or earlier. Similarly, the ocean-

498 facing shingle ridges from which superficially deposited clasts yield ages ranging from about

499 70 (M19), 300 (M162, M164), 1,200 (M166), 2,500 (M21, M22, M24) to 3,500 (M167)

500 cal.yr, are relatively moving structures, occasionally suffering reshaping.

501 As a summary, Motu Aramu and Motu Vainono are believed to have started developing

502 between 5,000 and 4,500 (Fig. 13) and between 4,000 and 3,000 cal.yr (Fig. 14) respectively,

503 from depocentres settled close to the present coastline. The innermost islet areas, that have

504 probably emplaced about 500 to 1,000 years later, have suffered intense disturbance and

reworking, resulting in mixtures between older than 4,000 yr or than 1,500 yr clasts with

some younger than 1,800 cal.yr or aged 1,600–900 cal.yr respectively.

507 4.5. Islet accretion rates

508 The rate of islet accretion is obviously dependent on the frequency and intensity of wave-509 surge events, serving as both constructional and erosional agents, which have impacted the 510 atoll over time, but also on the recovery rates of coral communities in the different source 511 zones. For example, the acroporid- and pocilloporid-dominated coral populations along the 512 upper outer-reef zone, i.e. the main source of coral-clasts, are growing at rates of several tens 513 of centimetres per year. Accordingly, these would be able to regenerate after 20 years in high-514 energy settings (Y. Chancerelle, CRIOBE, pers. com.) at rates significantly higher than the 515 apparent recurrence period of islet building events averaging 50 to 100 years.

The accretion rates of atoll-rim islets and adjacent shingle ridges can be estimated based on
U/Th dating. Vertical accretion rates at Aramu and Vainonono sites range at around 2–3 to
6 cm per century respectively. Lateral accretion rates from the depocentres oceanwards range
between less than 1 m per century at Aramu and 2–2.5 m per century at Vainono.

Progradation towards the lagoon margins occurred at rates averaging 3–3.5 and 7–9 m per century at Aramu and Vainono respectively. Shingle ridges have prograded to the ocean at rates of 75–60 cm per century at Aramu and 200–250 cm per century at Vainono. These values clearly take into account erosional and reworking phases, given major depositional events are known to have occurred through instantaneous, high-intensity, low-frequency wave surges.

526 **5. Discussion**

527 5.1. Islet-accretion and sea-level change

In the Tuamotu, the sea-level course during the mid to late Holocene times is relatively well 528 529 constrained based on dating of exposed coral heads, conglomerates and remnants of reef flats 530 (Pirazzoli and Montaggioni, 1986, 1988a, b) and elevated micro-atolls (Hallmann et al., 2018, 531 2020), especially, in the Gambier islands (Pirazzoli and Montaggioni, 1987) (Fig. 12b). After 532 a rapid postglacial rise (Bard et al., 1996), sea level reached and outpassed its present position 533 by approximately 6,000 cal.yr. Sea level continued to rise up irregularly to heights of about + 534 1m relative to pmsl, from 5,000 to 4,100 cal.yr, then remained stable over a period of about 535 600 years. From about 3,400 yr BP, sea level started to fall progressively (Hallmann et al., 536 2020). Between 3,000 and 1,500 cal.yr, sea level dropped step by step eaching its modern 537 position during the last millennium (Pirazzoli and Montaggioni, 1987, 1986, 1988a, b; 538 Hallmann et al., 2018, 2020). 539 Throughout the tropics, the initiation and building of atoll-rim islets would have taken place 540 under different eustatic regimes: during a post-highstand sea-level fall (Woodroffe et al.,

- 541 1999; Dickinson, 2009; Kench et al., 2014a, b; Yasukochi et al., 2014), a rise in sea level
- 542 (Montaggioni et al., 2022) or stillstands higher than the present (McLean et al., 1978; Stoddart

543 et al., 1978; Woodroffe and Morrison, 2001; Kench et al., 2014a, b, 2020; Yamano et al.,

544 2014). For example, in the north-west Tuamotu, on Takapoto Atoll, motu would have

545 developed during the sea-level drop phase from 2,500 yr BP to present (Montaggioni et al.,

546 2018, 2019). However, there is no evidence that the position of sea level during its course has

547 played a significant role in atoll-islet building.

548 5.2. Timing and mode of islet-accretion

549 Radiometric dating of both islet foundations, i.e. conglomerate platforms, and overlying 550 unconsolidated islet deposits, reveal that all these features have deposited over the last 5,000 551 years, from the mid to late Holocene (Figs. 10, 12a). These findings clearly indicate that the 552 emplacement of Motu Aramu and Motu Vainono and their conglomerate foundations has 553 taken place throughout the whole mid-late Holocene sea-level cycle. Atoll-rim nourishment 554 by coral detritus on Aramu sites would have begun from about 5,000 cal.yr as sea-level was 555 rising. Since the top surfaces of conglomerate platforms reach locally elevations of up to 556 1.00 m, it is obvious that their present-day position cannot be related to any higher sea 557 stillstand during the mid-late Holocene (Montaggioni et al., 2021). The timing of deposition of rubble sheets from which conglomerates have formed is consistent with previous data 558 559 gained from a number of other French Polynesian islands. These revealed that deposition of 560 conglomerates has mostly taken place between 6,000 cal.yr to present, peaking between 4,000 561 and 1,000 cal.yr. It is instructive to recall that both deposition and consolidation of 562 conglomeratic material and accretion of overlying atoll-rim islets were demonstrated to have 563 occurred locally simultaneously. In other words, there have been interplays between deposition of antecedent rubble sheets behind conglomerate pavements and islet building 564 565 (Montaggioni et al., 2021), as currently observed on Motu Tekava (Fig. 15).

566 The mode of islet development was identical on both Aramu and Vainono sites as illustrated 567 by isochron distribution (Figs. 13, 14). Islet accretion has been initiated from nodal points, i.e. 568 depocentres, as previously observed on Takapoto Atoll, north-west Tuamotu (Montaggioni et 569 al., 2019). However, there is no direct evidence that all islets present around the atoll rim have 570 accreted similarly, from prograding and final coalescence of a series of nearby isolated 571 depocentres, especially, in rim areas on which rest continuous, elongated islets, spreading 572 over several kilometres, as observed in the north-east rim. However, based on the present-day 573 physiography of the south-west rim, typified by alternations of small, isolated motu separated 574 by a series of functioning hoa, the accretional islet model involving prograding depocentres is 575 thought to be realistic (Fig. 16).

Starting at around 5,000 cal.yr, the first islet accretional event ended 4,000 yr ago at Aramu 576 577 sites (Fig. 12a). At the same time, islet deposition was initiated on Vainono reef-rim while sea level peaked at +1m above pmsl (Fig. 12b). At Aramu, the postulated non-depositional 578 579 episode between 4,000 and 1,800 cal.yr, occurred during the about 600 yr-long high stillstand 580 and lasted up to one millennium. The second and final accretional event took place during the 581 last 1,800 years as sea level dropped to its modern position. Correlatively, over the last 4,000 582 years, at Vainono sites, coral clasts were supplied continuously (Fig. 12a), during both the 583 high sea stand and the following drop (Fig. 12b). Strong discrepancies in accretional histories 584 between two nearby islets from a same atoll clearly support the fact that sea-level dynamics is 585 not the major driver of atoll islet building in French Polynesia, contrary to some previous 586 interpretations in other reef provinces (Perry et al., 2011; Kench et al., 2014b, 2020), even if 587 there is apparently a close correspondence between the course of sea level and islet 588 nourishment by coral detritus on Motu Vainono. In fact, atoll-islet building seems to have 589 been no longer dependent on sea-level dynamics. Fluctuations of some tens of centimetres

590 have not been able to significantly influence the depositional islet patterns in regions 591 periodically subjected to storm wave surges. During the last 6,000 years, the only required 592 control of sea-level was the maintenance of a position close to present throughout the 593 complete cycle of islet accretion, thus facilitating supply of coral detritus from adjacent 594 forereef zones. However, it is noteworthy that initiation of islet accretion can operate even 595 when sea-level was several tens of metres below its present position during the postglacial 596 rising sea-level course, as observed on Rangiroa Atoll, northwestern Tuamotu. In such a case, 597 rubble deposition was interpreted as resulting from occasional tsunamis (Montaggioni et al., 598 2022).

599 5.3. Islet accretion: the key role of marine hazard events

600 Natural hazards, including winter storms, cyclones, distant-source swells, tropical low waves 601 and tsunamis, are known to be drivers of formation and shaping of low-lying reef islands 602 (Woodroffe, 2008; Canavesio, 2019; Montaggioni, 2018, 2019 and references herein; Duvat 603 et al., 2020). Especially, most of them are able to move gravels and large boulders from 604 adjacent reef sources across atoll rims. Unfortunately, it is not possible to identify the 605 respective role of these different islet-building agents in the sedimentary record, especially 606 beyond the historical period due to the lack of record. Only assumptions can be made, based 607 on the frequency of each agent. In the Tuamotu, tropical lows and tsunamis usually produce 608 low intensity impacts, unlikely to be recorded in the sedimentary archives. Only the end-609 products of tropical cyclones and extreme distant-source events are most likely to be 610 encapsulated into islet-sequences. The end-products are the result of both constructional and 611 erosional processes. The morphological and stratigraphical attributes of these products, i.e. 612 islets and associated shingle ridges and sheets, can provide valuable information on past

regional storm dynamics, i.e. frequency and intensity of wave surges impacting islands (Nott,
2011; Montaggioni, 2018, 2019).

At reef settings and, particularly, in French Polynesia, coral clasts and finer skeletal grains deposited onto reef rims are known to have originated dominantly from the adjacent upper forereef zones, mostly extracted from coral communities living at depths less than 25 m (Laboute, 1985; Harmelin-Vivien and Laboute, 1986; Harmelin-Vivien, 1994) and partly from coral communities living in outer reef-flat and lagoonal environments (Adjas, 1988), as shown from taxonomic analysis of coral clasts and composition of groove sand pockets and lagoonal deposits.

622 In the tropical Pacific, biogeochemical records and climate modelling indicated that mid 623 Holocene was a time of reduced ENSO variability (Clement et al., 2000; Koutavas et al., 2006; 624 Zhang et al., 2014; Emile-Geay et al., 2016; Lawman et al., 2020). Decreased ENSO frequency 625 took place at times in the last few thousand years (Emile-Geay et al., 2015). Cyclone-related 626 rainfall intensity increases after 4,200 yr BP, as well as at 3,200 and 2,000 yr BP in South 627 America (Conroy et al., 2008; Emile-Geay et al., 2015). In the Tuamotu, occurrences of 628 extreme marine wave hazards prior to the mid-nineteenth century are poorly documented 629 (Laurent and Varney, 2014). A comprehensive survey of extreme hydrodynamic events, based 630 on radiometric dating of mega-boulders was published by Lau et al., (2016), focusing only on 631 the central Tuamotu region. Boulder age suggested that 5-9 extreme marine events occurred 632 between 1200 and 1900 AD, with 3–5 events over the seventeenth and nineteenth centuries. 633 In the absence of mega-boulders on South-Marutea, using the U/Th clast-age database 634 provided herein can contribute to define the number of significant wave-surge events that 635 have struck the south-eastern Tuamotu end over the last 5,000 years. A total of 86 are 636 identified during this time span (Fig. 17), taking into account possible age overlapping

between samples as recognized from U/Th error range. The number of events recorded per 637 638 century ranges from zero to 5. It is evident that a database including a relatively limited 639 number of dated specimens cannot provide a comprehensive record of past hazard events. 640 Sedimentary sequences are well known to be truncated records of the depositional history of a 641 given environment (Sadler, 1999). Especially, traces of marine hydrodynamic events are 642 frequently poorly or incompletely preserved in atoll-rim ridge and beach stratigraphies. In addition, defining the number of storm events recorded by any islet sequence may be biased 643 644 by sampling procedures including incomplete age determination (Nott, 2011). However, 645 assuming that an average of 1 to 5 cyclonic events per century with a mean recurrence time of 646 50 years is consistent with previous historical estimates (Dupon, 1987; Laurent and Varney, 647 2014; Lau et al., 2016), our data is thought to preserve a reliable picture of marine wave-surge 648 event history in the remote south-eastern Tuamotu at a centennial to millennial-scale 649 frequency over the last five millennia (Fig. 17). The historical period, i.e. the last two centuries, includes 6 hazard events, respectively occurring in around 1817, 1914, 1949, 1971, 650 651 1975, and 1980. The last two younger samples (M138, M65) were probably projected onto 652 the atoll rim during the passage of cyclone Frances (February 1976) and cyclone Nano 653 (January 1983). Related to the year 1971 (M53), there is no direct record of a marine hazard 654 event within the Gambier region; the only record is that of a moderate tropical depression 655 (Vivienne) passed close through the Austral Archipelago, far from the Gambier. Similarly, 656 there is no evidence of a noticeable cyclone activity from 1914 (M44) to 1949 (M19) within 657 the entire Tuamotu region. As for the nineteenth century, only one sample (M18: 1817 \pm 3 658 AD) accounts for a storm event at South-Marutea, but not validated in the historical registry. 659 It is noteworthy, as shown by Duvat et al. (2020), projection of coral clasts from outer reef 660 slopes to adjacent atoll rims can occur during tropical lows, under moderate hydrodynamical 661 conditions, without the involvement of any extreme hazard event. Such relatively low-wave

662 energy events do not get enough attention to be listed as part of significantly human-

663 impacting climate phenomena.

Throughout pre-European historical times, from the beginning of the Common Era to the eighteenth century, clast dating allows a total of 35 hazard events distributed into three main periods of active storminess to be identified (Fig. 17): from the 18th to 15th, from the 12th to the 7th and from the 3rd to the 2nd centuries, apparently separated by two quiescent intervals between the 12th–15th and the 7th–3rd centuries respectively. Each active interval appears to have been separated from the next by a non-deposition interlude longer than 200 years, although this last event may also have incorporated islet-damaging phases.

671 The regional pattern successively shows a continuous, higher storm activity from about the 672 7th to the 12th centuries, broadly encompassing the Medieval Warm Period, followed by a 673 brief decrease in storminess prior to the 15th century, and finally by a recovery of storm 674 activity over a period (15th–19th centuries) apparently coinciding with the Little Ice Age. 675 This pattern is regarded as consistent with reconstructed variability of past cyclone dynamics 676 across the central south Pacific, controlled by a large shift of the Pacific Walker circulation (Bramante et al., 2020). Similarly, weakening of storminess over earlier, brief intervals within 677 678 the Common Era could be caused by repeated migrations of the Walker circulation, thus 679 mitigating the activity of ENSO events.

Throughout the three millennia-long period preceding the Common Era, 51 hazard occurrences are recorded, with a frequency of one to five per century (Fig. 17) as numerous as those observed during the 2,000 yr-long Common Era. However, the most striking feature is the absence of coral clast samples aged less than 4,000 cal.yr and more than 2,000 years old, collected at Aramu sites, while present in large numbers (17 counted samples) on Motu

685 Vainono (Fig. 12a). Several alternative explanations could be put forward. The absence of the 686 relevant samples could be due to an artefact of collection or to suppression of the 4,000– 687 2,000 yr time-specific coral-clast stocks due to intensive marine erosional phase. Another 688 explanation could be found in the location of Motu Aramu, north of the atoll rim, likely to be 689 less exposed to some extreme marine hazard events, such as distant-source wave surges, that 690 come from the deep South Pacific, when compared to Vainono sites. Interestingly, the non-691 depositional episode at Aramu sites coincides with intervals of a relatively low-baseline 692 cyclogenesis activity (Fig. 12c, d) and more sustained south-east trade winds in connection 693 with an attenuation of ENSO amplitude by about 20 % to up to 60 % within the 5,000- to 694 2,000-yr band. This decrease in ENSO activity was documented by a number of sedimentary 695 data collected from the central and eastern Pacific: foraminiferal records in the eastern Pacific 696 basinal sediments (Koutouvas et a., 2006), coral archives from Line Islands in the central 697 tropical Pacific (McGregor et al., 2013; Grothe et al., 2019), grain-size analysis of a sedimentary core from Junco Crater Lake in Galapagos (Conroy et al., 2008) and sediment 698 699 laminae light-intensity in a core from Laguna Pallcacocha in Ecuador (Moy et al., 2002). 700 Assuming that cyclogenesis was at its lowest level during this time span, deposition of high 701 coral-clast volumes at north-facing Aramu sites may be caused by other marine hazards, 702 including trade-wind-generated winter storms. By contrast, at south-facing Vainono sites, islet 703 deposits emplaced during the 5,000–2,000 yr-interval may have been supplied by distant-704 source, austral swells.

As a summary, the age database provided herein seems to reliably reflect the variability of
ENSO frequency events at centennial- to millennial scales through the number of recorded
wave-surge events in the south-eastern Tuamotu end.

708 5.4. Conceptual model of atoll-rim islet building

709 A number of atoll-islet building models have been already described from some cyclone-710 prone or not-prone reef settings, based on reconstruction of low-lying, reef-rim and lagoon-711 islet development history, in the Indian and Pacific oceans. (Stoddart et al., 1978; Chivas et 712 al., 1986; Richmond, 1992; McLean and Woodroffe, 1994; Woodroffe et al., 1999; Kench et 713 al., 2005, 2012, 2014a, b, 2020; Barry et al., 2007; Yamano et al., 2014; Montaggioni et al., 714 2018, 2019; Liang et al., 2022). The initial baseline conditions required for optimal islet 715 building and sustainability were defined as follows: (1) hard antecedent substrates, such as 716 reef flats, conglomerate platforms, are usually prerequisite for islet settlement; (2) substrates 717 have to be close or at sea level at the time of islet initiation; (3) maintenance of growing islets 718 within the range of the sea-level course; (4) availability of sediment producers at close 719 proximity; (5) recurrence of marine, high to low-intensity hazard events.

720 At South-Marutea, on both Motu Aramu and Motu Vainono, islet development occurred over 721 the last 5,000 years while sea level followed a complete trajectory from rising to about +1 m 722 to falling close to its present position (Fig. 12b). Conglomerate platforms, locally as high as 723 +1.10 m relative to pmsl, started to form at around 5,000 cal.yr (Figs. 13, 14) during the rise 724 in sea level. The widespread conglomerate deposits, locally consisting of one single bed, 725 gives evidence of the occurrence of high-intensity, wave-surge events at a starting time of 726 reduced ENSO activity in the central south Pacific. This strongly suggests that non-cyclonic 727 events could occasionally play a dominant role in atoll-islet shaping. Contrary to Takapoto 728 Atoll, northern Tuamotu, on which depocentres were initiated at the middle parts of the atoll-729 reef rims (Montaggioni et al., 2019), on South-Makatea, incipient depocentres settled over 730 conglomerate pavements close to the outer atoll reef-rim margins, just behind the modern 731 reef-flat zones (Fig. 16). Depocentres as originally preferential sites of clast deposition

732 formed isolated, probably subcircular to elongated features as similar in shape to smaller islets 733 at present found along the south-western atoll rim (Fig. 1b). From 4,000 cal.yr, the 734 depocentres have prograded seawards and lagoonwards at rates of several metres per century. 735 It is noteworthy that conglomerate platforms and islets were continuously being formed until 736 the present. At Aramu, the islet landscape was shaped in two stages, between 5,000 and 737 4,000 cal.yr and 2,000 cal.yr to present. At Vainono, the major shaping phases occurred from 738 4,000 to 3,000 cal.yr during the higher sea stillstand. By contrast, at Motu Aramu, the earlier 739 development episode lasted throughout the rising sea-level phase, but development restarted 740 only at the time while sea level was falling. This means that the position of sea level was not a 741 major determinant of islet building. Islet nourishment took place at sea-level trajectory. In 742 particular, the present findings show that gradual sea-level drop is not a general promoter of 743 islet accretion, as pointed out by Dickinson (2004). The key controls of islet development, at 744 least in the studied sites, appear to be changes in intensity and frequency of marine hazard 745 events rather than sea-level fluctuations over time.

The islet accretionary model obtained from South-Marutea Atoll typically refers to the
'regular lagooward accretion' model described by Woodroffe et al. (1999) in which accretion
begins from depocentres located close to oceanwards shore and then incrementally extends
preferentially lagoonwards through time. This model differs markedly from that established at
Takapoto, confirming that islet shaping patterns are complex and can vary signicantly from
site to site.

752 5.5. Projected future climate regime and its effects in the south-eastern Tuamotu atoll region

In the last decades, warming peak during several ENSO occurrences has moved from the
eastern to central Pacific on 100° longitude, accompanied by an increasing amplitude and
decadal variability of ENSO events and strengthening of trade winds (Freund et al., 2019;

756 Grothe et al., 2019). Currently, anthropogenic forcings are postulated to affect global climate, 757 especially in the Pacific tropics, altering the geographical distribution, frequency and intensity 758 of storms (Cai et al., 2021) and strengthening trade-winds (Collins et al., 2010). Storminess, 759 including cyclogenesis, would potentially be increased in the central Pacific, with rising sea 760 surface temperatures and weakening of vertical wind shear predicted for the end of the 21st 761 century (Bramante et al., 2020). For the late 20th century, climate observations and 762 reconstructions revealed a significant increase in the central Pacific ENSO activity, at a rate of 763 2.5 to 9 events per 20 years. Similarly, in response to increased intensity of the ENSO regime 764 in the next decades, cyclones are expected to become more frequent (about 20-40 %) during 765 El Niño phases, but significantly less frequent during La Niña episodes (Chand et al., 2017).

Cyclones, known as one of the major causes of coral decline around the world (Harmelin-766 767 Vivien, 1994; De'ath et al., 2012), are expected to become potentially more destructive with 768 ocean warming (Dixon et al., 2022). Knutson et al. (2020) reviewed knowledge regarding 769 model predictions of global cyclone activity in response to human-induced warming. At 2 °C 770 warmer than the pre-industrial times, global cyclogenesis will become more intense. In the 771 central South Pacific, ENSO events tend to move the mean cyclone genesis loci eastwards, 772 potentially resulting in cyclone influence in French Polynesia (Bramante et al., 2020). South 773 poleward migration 1° latitude (about 100 km) per decade (Kossin et al., 2014; Studholme et 774 al., 2022) may increase cyclone frequency in the remote south-eastern Tuamotu region. 775 However, with the projected expansion of the tropical climate zone, there will have a potential 776 reduction of cyclone activity (Bramante et al., 2020).

Large waves generated by storms and cyclones and wave amplification are significant hazards
in the tropical Pacific. The largest extreme wave heights are active within the latitudinal 15°–
25° south band. Model predictions indicated that the doubling of extreme El Niño frequency

in the next decades would have drastic effects on wave climate, particularly when combined
with sea-level rise (Stephen and Ramsay, 2014). Median extreme wave heights across the
entire south Pacific range from 7 to 11 m (Stephen and Ramsay, 2014) and, more specifically,
in French Polynesia (Canavesio, 2014).

784 Unfortunately, there is no available region-specific model projections of the cyclone behavior 785 in French Polynesia for the mid to late 21st century. However, some general trends, in part 786 speculative, emerge, based on climate models from the south-western Pacific (Knutson et al., 787 2020) that could be applied to French Polynesia. Frequency of severe category 4 and 5 and 788 lower category cyclone as well could decrease by about 15–20 %. Average cyclone intensity 789 is expected to increase 2 %, at medium-to-high confidence levels. The resilience of coral reefs 790 would be more severely threatened by increasing cyclone intensity. However, wave surges, 791 generated by cyclones or other extreme marine hazard events, are known to impact patchily 792 coral reefs (Done, 1992; Harmelin-Vivien, 1994; Cheal et al., 2002, 2017). This may result in 793 preservation of undamaged coral-colonized zones from which abundance of coral 794 communities can recover, usually 10-20 years after impacts (Hamelin-Vivien, 1994; Halford 795 et al., 2004). In a number of locations, coral populations need particularly long periods for 796 recovery after an extreme cyclone damage. In the Tuamotu, recovery of coral communities is 797 estimated to average about 70 years (Cheal et al., 2017).

Sea-level rise projections suggest that globally the rise would be around 0.50 m under optimistic scenarios and outpass 1.30 m under pessimistic ones (Horton et al., 2020). These predictions are in line with expectations of sea-level rise in the Tuamotu, where the rise in sea level would be about 0.80 to 1 m higher relative to 2010 at the end of the 21st century (Botella, 2015). Accordingly, sea-level rise will result in higher storm flooding levels, but
probably will play a subordinate role compared to marine hazards able to generate swells as
high as 12 m (Dalmalian et al., 2014).

805 Other disturbances to which coral reefs are exposed will be amplified (Cheal et al., 2017): 806 loss of coral calcification potential (D'Olivio et al., 2019; Cornwall et al., 2021) due to 807 increasing ocean acidification in relation to higher atmospheric CO_2 content; increasing sea 808 surface temperatures; especially long duration (several months) of marine heat waves 809 (Holbrook et al., 2019), some resulting in more coral bleaching and mortality episodes as 810 those recorded during 1982–1983 (Hoegh-Gulberg and Salvat 1995), 1997–1998 (Mumby et 811 al., 2001), and 2015–2016 in French Polynesia (Hédouin et al., 2020). Interacting effects of 812 various disturbances may exacerbate lethal impacts and will increase the vulnerability of coral 813 reefs to long-term degradation. All these will alter the capacity of coral communities to grow 814 and thus diminish coral cover.

815 As a summary, in the south-eastern Tuamotu end, potential future change in extreme ENSO 816 events may have profound impacts on atoll islet maintenance. Projected global increases in 817 ENSO strength, cyclone intensity, sea level, combined with pH drop and decrease in coral 818 recovery rate, will act to further enhance the impacts of future storm wave surge risk. Based 819 on the review by Knutson et al. (2020), it appears obvious that the combined effects of rapid 820 sea-level rise and increased cyclone activity will result in higher average storm inundation 821 levels, assuming all other factors equal. Cyclone-generated inundation events would be less 822 frequent, about a maximum of 1–2 per century, maybe less, but more destructive. Regarding 823 the other marine hazard events, there is no specific available information about their 824 behaviour over the next decades. Global warming will lead to strengthening of trade winds in 825 the Pacific (Li et al., 2019) and of austral, distant-source swells. Under pessimistic sea-level 826 rise scenarios, the inundated areas by distant swell surges would increase by up to 90 % by

827 2100, as modelled in Fiji (Wandress et al., 2020). Given different locations will likely respond 828 differentially, according to exposure to the arrival direction of marine hazards (Damlamian et 829 al., 2013), there is a need for assessment of site-specific impacts. On South-Marutea Atoll, the 830 present findings show that the north-eastern and south-eastern reef-rim sectors may be most 831 susceptible to be impacted and to suffer damage than the other areas. However, it is difficult 832 to assess the carbonate budget of atoll islets, increase or decrease, in response to climate 833 change.

834 5.6. Lessons from the past.

How may reconstructing the accretional mode of atoll-islets aid to illuminate their future 835 836 behaviour in the face of changing climate? First, the atoll-islet development at South-Marutea 837 occurred over the past 5,000 years, irrespective of sea-level position, as sea level rose about 1 838 m from 5,000 to 3,500 cal.yr then dropped close to its present position from 3,500 cal.yr to 839 the last centuries. This suggests that sea level was neutral, did not and will not play a 840 significant role in restricting or promoting islet accretion. If correct, if sea level will rise to up 841 to 1 m at the end of the 21st century, the position of sea level will not contribute to the 842 maintenance or destruction of atoll islets in the region considered. Second, according to 843 observations over the past millennia and historical records, future ENSO variability will 844 promote increasing cyclone activity, with stronger category cyclones, but their frequency will 845 be similar to the recent past, not exceeding 1 to 5 per century. Similarly, as emphasized by 846 Lau et al. (2016), if sea surface temperatures will increase through the current century as 847 projected by IPCC, higher temperatures will be favourable to increasing cyclogenesis and 848 storminess in the central South Pacific. However, the way in which atoll islets will respond in 849 the future is difficult to be clearly appreciated to uncertainties in the effects of cyclone impact. 850 A same cyclone is known to both contribute to building and destruction of low-lying reef

851 islets from a same atoll according to changing trajectories (Scoffin, 1993; Etienne, 2012). 852 Probably, such as during the last millennia, the final budget will be accretional even if 853 flooding episodes will be more frequent in response to increasing cyclone activity. The actual 854 unknown comes from how reefal coral communities as sources of coral clasts will react to 855 increases in water temperatures and ocean acidification. Any drop in coral cover and any shift 856 to non-constructional communities will disturb or preclude coral-clast inputs to islets. As 857 previously suggested (Montaggioni et al., 2021), it is noteworthy that conglomerate platforms, 858 particularly in areas where these exceed 1 m in elevation, may contribute to the persistence of 859 low-lying islets.

860 **6. Conclusions**

861 Several points arise from the chronostratigraphical analysis of rim islets from South-Marutea862 Atoll.

863 Islet lithostratigraphy is characterized by alternations of unorganized, mixed coral boulder to 864 pebble and skeletal sand beds. Coarser-grained deposits consist dominantly of individual 865 acroporid and pocilloporid colonies, together with subordinate merulinid and poritid detritus 866 as known to house the adjacent forereef zones. Sand-grained sediments are mixtures of 867 various reef-dwelling carbonate producers, especially, larger soritid foraminifera. As 868 supported by substantial clast age inversion and local interbedding of cobbles and pebbles, 869 substantial sediment reworking and redeposition took place at lagoonside settings, hence 870 expressing occasional intense wave agitation of lagoonal waters.

871 Contrary to Takapoto atoll islets in the north-western Tuamotu, emplaced during the last
872 2,500 years as sea level was falling (Montaggioni et al., 2019), islet initiation at South873 Makatea sites occurred from about 5,000 cal.yr. Islet development apparently occurred

independently of the mid to late Holocene sea-level course. In northern sectors, islet accretion 874 875 slowed down significantly from 4,000 to 2,000 cal.yr, likely in response to weakening El 876 Niño activity. By contrast, in reef-rim areas oriented to due south, islet building acted 877 continuously and even peaked in the 4,000–2,000 cal.yr interval, may be in response to 878 increasing storminess from the deep south regions. Between 5,000 and 3,000 cal.yr, islet 879 accretion responded contrastingly at the local scales, very active on the southern atoll-rim and 880 ineffective in the northern areas. Availability rate of coral-dominated sediment stocks and 881 frequency and intensity of marine hazard events are regarded as the key factors for islet 882 building.

The clast-age distributional pattern suggests that, over the last 5,000 years, high-energy wave
events occurred at frequency of one to five per century, in accordance with the historical
records in French Polynesia, occasionally interrupted by 200 to 300 yr-long quiescence times.
The outer shingle ridges may have been reshaped during the last millennium, at least ten
times, based on clast dating.

888 The evolution of atoll-rim islets on South-Marutea in the future is difficult to predict, mainly, 889 because model climate projections are missing in the considered region. In the next few 890 decades, based on non-deposition of mega-boulders on the atoll over the last centuries, it is 891 unlikely that extreme marine hazard events will impact the atoll. Later, as the zone of cyclone 892 influence is moving polewards and cyclone intensity is increasing, but frequency decreasing, 893 South-Marutea and the nearby Gambier Island Group could possibly be impacted by stronger, 894 but fewer cyclones prior to the end of the 21st century Of course, actual damaging effects on 895 islets would depend upon the arrival direction and heights of generated wave surges and, as 896 recently, the southern rim sectors would risk to be most disturbed than other. A future sea 897 level at about +1m relative to present would not increase the disturbing effects of storms

898 predicted to generate waves of up to 10 m high. Assuming a return time of 50 to 100 years for 899 stronger storm events and a predicted coral recovery time averaging 70 years, the potential 900 detritus stocks used to rebuild islets may be reduced drastically over a few centuries. Up to 1 901 m high, conglomerate platforms could serve as natural flood defense and thus contribute to 902 islet durability.

903 Acknowledgements

904 This work was partly supported by the POLYCONE (Integrated and Sustainable Regulation of Cones in Eastern Polynesia) research project. Field work was conducted from 20th November 905 to 26th November 2021, by BS, GP and JMZ. BS conceived the original project, through 906 907 discussions and exchanges with LFM. U/Th datations were performed by EPB. LFM, the 908 corresponding author, was in charge of interpretating all the collected data and of writing the 909 manuscript. He leads the manuscript development, in collaboration with all co-authors. BS 910 and GP provided field pictures. Figures were conceived by LFM and BM-G and drawn by 911 BM-G.

912 The authors warmly thank the following colleagues for their contribution, particularly, 913 Tamatoa Bambridge, coordinator of POLYCONE at the French Polynesian level. Field work has 914 benefited from logistical and financial support and help by Robert Wan, the owner of South-915 Marutea Atoll, Johnny-John R. Atger-Wan, his atoll manager. The atoll team members, Mike 916 Tahai and Claudio Temauri, are acknowledged for effective engineering of the excavations in 917 Aramu and Vainono atoll sites. Many thanks to the anonymous reviewers whose comments 918 have significantly helped improving an early version of the manuscript. The three anonymous 919 reviewers and Editor-in-Chief Xinyu Wang are warmly thanked for their helpful criticism and 920 suggestions for improvement.

921 **Declaration of competing interest**

922 The authors declate to have no competing interest.

923 **References**

- 924 Adjas, A., 1988. Sédimentologie comparée de quelques modèles lagonaires actuels des milieux récifaux coralliens
- 925 du Pacifique (Nouvelle Calédonie, Polynésie). PhD Thesis. Aix-Marseille Univ., p. 340.
- 926 Amores, A., Marcos, M., Le Cozannet, G., Hinkel, J., 2022. Coastal flooding and mean sea- level rise allowances
- 927 in atoll island. Science Reports 12, 1281.
- 928 Andrefoüet, S., Ardhuin, F., Queffeulou, P., Le Gendre, R., 2012. Island shadow effect and the wave climate of
- the Western Tuamotu Archipelago (French Polynesia) inferred from altimetry and numerical model data. Marine
 Pollution Bulletin 65, 415e424.
- 931 Bard, E., Hamelin, B., Arnold, M., Montaggioni, L.F., Cabioch, G., Faure, G., Rougerie, F., 1996. Deglacial sea-
- 932 level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241-244.
- Barry, S.J., Cowell, P.J., Woodroffe, C.D., 2007. A morphodynamic model of reef-island de- velopment on atolls.
 Sedimentary Geology 197, 47-63.
- 935 Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97, 163–172.
- 936 Biribo, N., Woodroffe, C.D., 2013. Historical area and shoreline change of reef islands around Tarawa Atoll,
- 937 Kiribati. Sustainability Science 8, 345-362.
- Botella, A., 2015. Past and future sea level changes in French Polynesia. University of Ottawa, Canada, MSc
 thesis, p. 94.
- 940 Bourrouilh-Le Jan, F.G., Talandier, J., 1985. Sédimentation et fracturation de haute énergie en milieu récifal:
- 941 tsunamis, ouragans et cyclones et leurs effets sur la sédimentologie et la géomorphologie d'un atoll: motu et hoa,
- 942 Rangiroa, Tuamotu, Pacifique SE. Marine Geology 67, 263–272.
- 943 Bramante, J.F., Ford, M.R., Kench, P.S., Ashton, A.D., Toomey, M.R., Sullivan, M.R., Karnauskas, K.B.,
- 944 Ummenhofer, C.C., Donnelly, J.P., 2020. Increased typhoon activity in the Pacific deep tropics driven by Little
- 945 Ice Age circulation changes. Nature Geoscience 13, 806–811.
- 946 Cai, W., Santoso, A., Collins, M., Dewitte, B., et al., 2021. Changing El Niño-Southern Oscillation in a warming
- 947 climate. Nature Reviews Earth & Environment 2, 628–644.
- 948 Canavesio, R., 2014. Estimer les houles cycloniques à partir d'observations météorologiques limitées : exemple de
- 949 la submersion d'Anaa en 1906 aux Tuamotu (Polynésie Française). VertigO, 14, 1–18.

- 950 Canavesio, R., 2019. Distant swells and their impacts on atoll and tropical coastlines. The exemple pf submersions
- 951 produced by lagoon water filling and flushing currents in French Polynesia during 1996 and 2011 mega swells.
- 952 Global and Planetary Change 177, 116-126.
- 953 Chand, S.S., Tory, K.J., Ye, H., Walsh, K.J.E., 2017. Projected increase in El-Niño driven-tropical cyclone
- 954 frequency in the Pacific. Nature Climate Change 7, 123-127.
- 955 Cheal, A.J., Coleman, G., Delean, S., Miller I., Osborne, K., Sweatman, H., 2002. Responses of coral and fish
- 956 assemblages to a severe but short-lived tropical cyclone on the Great Barrier Reef, Australia. Coral Reefs 21, 131-
- 957 142.
- 958 Cheal, A.J., Macneil, M.A., Emslie, M.J., Sweatman, H., 2017. The threat to coral reefs from more intense
- 959 cyclones under climate change. Global Change Biology doi: 10.1111/gcb.13593
- 960 Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J.D., Hellstrom, J., Wang,
- 961 Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E., 2013. Improvements in ²³⁰Th dating, ²³⁰Th and ²³⁴U half-
- 962 life values, and U/Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry.
- 963 Earth Planetary Science Letters 371-372, 82-91.
- 964 Chivas, A., Chappell, J., Polach, H., Pillans, B., Flood, P., 1986. Radiocarbon evidence for the timing and rate of
- 965 island development, beach-rock formation and phosphatization at Lady Elliot Island, Queensland, Australia. 966
- Marine Geology 69, 273-287.
- 967 Clement, A.C., Seager, R., Cane, M.A., 2000. Suppression of El Niño during the mid-Holocene by changes in the
- 968 Earth's orbit. Paleoceanography 15, 731-737.
- 969 Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F., Jochum, M., Lengaigne, M., Power, S.,
- 970 Timmermann, A., Vecchi, G., Witenberg, A., 2010. The impact of global warming on the tropical Pacific Ocean
- 971 and El Niño. Nature Geoscience 3, 391-397.
- 972 Connell, J., 2013. Islands at risk? Environments, Economies and Contemporary Change. Edward Elgar Publishing, 973 Cheltenham, UK, p. 351.
- 974 Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M., 2008. Holocene changes in eastern
- 975 tropical Pacific climate inferred from a Galapagos lake sediment record. Quaternary Science Reviews 27, 1166-
- 976 1180.
- 977 Cornwall, C.E., Comeau, S., Kornder, N., Lowe, R. J., 2021. Global declines in coral reef calcium carbonate
- 978 production under ocean acidification and warming. PNAS, 118, e2015265118.
- 979 Costa, M. B., Macedo, E. C., Siegle, E., 2017. Planimetric and volumetric changes of reef islands in response to
- 980 wave conditions. Earth Surface Processes and Landforms 42, 2663-2678.

- 981 Damlamian, H., Kruger, J., Turagabeci, M., Kumar, S., 2013. Cyclone wave inundation models for Apataki,
- 982 Arutua, Kauehi, Manihi and Rangiroa Atolls, French Polynesia. SPC Applied Geoscience and Technology Division
- 983 (SOPAC) Technical report PR176.
- 984 De'ath, G., Fabricius, K.E., Sweatman, H., Puotinen, M., 2012. The 27-year decline of coral cover on the Great
- 985 Barrier Reef and its causes. PNAS 109, 17995–17999.
- 986 Dickinson, W. R., 2009. Pacific atoll living: how long already and until when. GSA Today 19, 4.
- 987 Dixon, A. M., Puotinen, M., Ramsay, H. A., Beger, M., 2022. Coral reef exposure to damaging, tropical cyclone
- 988 waves in a warming climate. Earth's Future 10, e2021EF002600.
- 989 D'Olivio, J.P., Ellwood, G., DeCarlo, Th.M., McCulloch, M.T., 2019. Deconvolving the long-term impacts of
- 990 ocean acidification and warming on coral biomineralisation. Earth Planetary Science Letters 526, 115785.
- Done, T.J., 1992. Effects of tropical cyclone waves on ecological and geomorphological structure.s of the Great
 Barrier Reef. Continental Shelf Research 12, 859–872.
- Dupon, J.-F., 1987. Les atolls et le risque cyclonique : le cas de Tuamotu. Cahiers des Sciences Humaines 23,
 567-599.
- Dupuy, C., Vidal, Ph., Maury, R.C., Guille, G., 1993. Basalts from Mururoa, Fangataufa and Gambier islands
 (French Polynesia): Geochemical dependence on the age of the lithosphere. Earth and Planetary Science Letters
 117, 89–100.
- Duvat, V.K.E., 2019. A global assessment of atoll island planform changes over the Past decades. WIREs Climate
 Change 10, e557.
- Duvat, V.K.E., Pillet, V., 2017. Shoreline changes in reef islands of the central Pacific: Takapoto Atoll, Northern
 Tuamotu, French Polynesia. Geomorphology 282, 96-118.
- 1002 Duvat, V. K. E., Salvat, B., Salmon, C., 2017a. Drivers of shoreline change in French Pacific atoll reef islands.
 1003 Global and Planetary Change, 158, 134–154.
- 1004 Duvat, W.K.E., Magnan, A.K., Russell, R.M., Hay, J.E., Fazey, I., Hinkel, J., Stojanovic, T., Yamano, H., Ballu,
- 1005 V., 2017b. Trajectories of exposure and vulnerability of small islands to climate change. WIREs Climate Change,
 1006 e478.
- Duvat, V.K.E., Pillet, V., Volto, N., Terorotua, H., Laurent, V., 2020. Contribution of moderate climate events to
 atoll island building. Geomorphology 354, 107057.
- 1009 Emile-Geay, J., Cobb, K.M., Carré, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S.P., Corrège, T.,
- 1010 McGregor, H.V., Collins, M., Driscoll, R., Elliot, M., Schneider, B., Tudhope, A., 2016. Links between tropical
- 1011 Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience 9, 168–173.

- 1012 Etienne, S., 2012. Marine inundation hazards in French Polynesia: geomorphic impacts of Tropical Cyclone Oli in
- 1013 February 2010. Geological Society, London, Special Publication 361, 21-39.
- 1014 Etienne, S., Buckley, M., Paris, R., Nandasena, A.K., Clark, K., Strotz, L., Chagué-Goff, C., Goff, J., Richmond,
- 1015 B., 2011. The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009
- 1016 South Pacific tsunamis. Earth-Science Reviews 107, 76–90.
- 1017 Ford, M., 2012. Shoreline changes on an urban atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands.
- 1018 Journal of Coastal Research 28, 11–22.
- 1019 Ford, M., 2013. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite
- 1020 images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment 135, 130-140.
- 1021 Ford, M. R., Kench, P. S., 2014. Formation and adjustment of typhoon-impacted reef islands interpreted from
- 1022 remote imagery: Nadikdik Atoll, Marshall Islands. Geomorphology, 214, 216–222.
- 1023 Ford, M.R., Kench, P.S., 2015. Multi-decadal shoreline changes in response to sea level rise in the Marshall
- 1024 Islands. Anthropocene 11, 14-24.
- 1025 Fox-Kemper, et al., 2021. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science
- 1026 Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate
- 1027 Change [Masson-Delmotte, V., et al., Eds.]. Cambridge University Press, Cambridge, UK and New York, USA,
- 1028 1211–1362.
- Freund, M.B., Henley, B.J., Karoly, D.J., McGrgor, H.V., Abram, N.J., Dommenget, D., 2019. Higher frequency of
 central Pacific El Niño events in recent decades relative to past centuries. Nature Geoscience 12, 450–455.
- 1031 Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., et al., 2019. Enhanced El Niño-
- 1032 Southern Oscillation variability in recent decades. Geophysical Research Letters 46, e2019GL083906.
- 1033 Halford, A., Cheal, A.J., Ryan, D., Williams, D.M.C.B., 2004. Resilience to large-scale disturbance in coral and
- 1034 fish assemblages on the Great Barrier Reef. Ecology 85, 1892–1905.
- 1035 Hallmann, N., Camoin, G., Eisenhauer, A., Botella, A., Milne, G.A., Vella, C., Samankassou, E., Pothin, V.,
- 1036 Dussouillez, P., Fleury, J., Fietzke, J., 2018. Ice volume and climate changes from a 6000 year sea-level record in
- 1037 French Polynesia. Nature Communication 9, 285.
- 1038 Hallmann, N., Camoin, G., Eisenhauer, A., Samankassou, Vella C., Botella, A., Milne, G. A., Pothin, V.,
- 1039 Dussouillez, P., Fleury, G., Fietzke, J., Goepfert, G., 2020. Reef response to sea level and environmental changes
- 1040 in the Central South Pacific over the past 6000 years. Global and Planetary Change 195, 103357.
- 1041 Hameed, S.N., Dachao, J., Thilakan, V., 2018. A model for Super El Niños. Nature Communications 9: 2528,
- 1042 doi:10.1038/s41467-018-04803-7.

- 1043 Harmelin-Vivien, M.L., 1994. The effects of storms and cyclones on coral reefs: a review. Journal of Coastal
- 1044 Research Special Issue 12, 211e231.
- 1045 Harmelin-Vivien, M.L., Laboute, P., 1986. Catastrophic impact of hurricanes on atoll outer reef slopes in the
- 1046 Tuamotu (French Polynesia). Coral Reefs 5, 55–62.
- 1047 Hédouin, L., Rouzé, H., Berthe, C., Pérez-Rosales, G., Martinez, E., Chancerelle, Y., Galand, P.E., Lerouvreur, F.,
- 1048 Nugues, M.M., Pochon, X., Siu, G., Steneck, R., Planes, S., 2020. Contrasting patterns of mortality in Polynesian
- 1049 coral reefs following the third global coral bleaching event in 2016. Coral Reefs 39, 939–952.
- 1050 Heinrich, Ph., Guibourg, S., Roche, R., 1996. Numerical modeling of the 1960 Chilean Tsunami. Impact in French
- 1051 Polynesia. Physics and Chemistry of the Earth 21, 19–25.
- 1052 Hoegh-Guldberg, O., Salvat B. 1995. Periodic mass-bleaching and elevated sea temperatures: bleaching of outer
- 1053 reef slope communities in Moorea, French Polynesia. Marine Ecology Progress Series 121, 181–190.
- 1054 Hoeke, R. K., McInnes, K. L., Kruger, J. C., McNaught, R. J., Hunter, J. R., Smithers, S. G., 2013. Widespread
- 1055 inundation of Pacific islands triggered by distant-source wind-waves. Global Planetary Change 108, 128–138.
- 1056 Holbrook, N.J., Scannell, H.A., Gupta, A.S., Benthuysen, J.A., Feng, M., Oliver, E.C.J., Alexander, L.V.,
- 1057 Burrows, M.T., Donat, M.G., Hobday, A., J., Moore, P.A., Perkins-Kirkpatrick, S.A., Smale, D.A., Straub, S.C.,
- 1058 Vernberg, Th., 2019. Nature Communication 10, 2624.
- 1059 Horton, B.P., Khan, N.S., Cahill, N., Lee, J.S.H., Shaw, T.A., Garner, A.J., Kemp, A.C., Engelhart, S.E.,
- 1060 Rahmstorf, S., 2020. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert
- 1061 survey. Climate and Atmospheric Science 3, 18.
- 1062 Hubbard, D., Gischler, E., Davies, P., Montaggioni, L.F., Camoin, G., Dullo, C.W., Storlazzi, C., Field, M.,
- Fletcher, C., Grossman, E., Sheppard, C., Lescinsky, H., Fenner, D., McManus, J., Scheffers, S., 2014. Island
 outlook: warm and swampy. Science 345, 6203.
- Ito, G., McNutt, M., Gibson, R.L., 1995. Crustal structure of the Tuamotu Plateau, 15°S, and implications for its
 origin. Journal of Geophysical Research 100, 8097–8114.
- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision measurements of half lives and specific activities of ²³⁵U and ²³⁸U. Physical Review 4, 1889–1906.
- 1069 Kao, H.Y., Yu, J.Y., 2009. Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of Climate 22,
 1070 615-632.
- 1071 Kench, P.S., 2014. Developments in coral reef and reef island geomorphology: editorial. Geomorphology 222, 1–2.
- 1072 Kench, P.S., McLean, R.F., Nichol, S.L., 2005. New model of reef-island evolution: Maldives, Indian Ocean.
- 1073 Geology 33, 145–148.

- 1074 Kench, P. S., Brander, R. W., 2006. Response of reef island shorelines to seasonal climate oscillations: South
- 1075 Maalhosmadulu atoll, Maldives. Journal of Geophysical Research 111, F01001. doi: 10.1029/2005JF000323
- 1076 Kench, P.S., Chan, J., Owen, S.D., McLean, R.F., 2014a. The geomorphology, development and temporal dynamics
- 1077 of Tepuka Island, Funafuti atoll, Tuvalu. Geomorphology 222, 46–58.
- 1078 Kench, P.S., Owen, S.D., Ford, M.R., 2014b. Evidence for coral island formation during rising sea level in the
- 1079 central Pacific Ocean. Geophysical Research Letters 41, 820–827.
- 1080 Kench, P.S., Owen, S.D., Beetham, E.P., Mann, Th., McLean, R.F., Ashton, A., 2020. Holocene sea level
- dynamics drive formation of a large atoll island in the central Indian Ocean. Global Planetary Change 195,
 1082 103354.
- 1083 Knutson, Th., Camargo, S.J., Chan, J.C.L., Emanuel, K., Ho, Ch.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi,
- 1084 M., Walsh, K., Wu, L., 2020. Tropical cyclones and climate change assessment. Part II: projected response to
- 1085 anthropogenic warming. Bulletin of the American Meteorological Society. doi:10.1175/BAMS-D-18-0194.1
- 1086 Kopp, R.E., Simmons, F.J., Mitrovica, J.X., Maloof, A.C., Oppenheimer, M., 2009. Probablistic assessment of sea
 1087 level during the last interglacial stage. Nature 462, 863–867.
- 1088 Kossin, J., Emanuel, K.A., Vecchi, G.A., 2014. The poleward migration of the location of tropical cyclone
- 1089 maximum intensity. Nature 509, 349–352.
- 1090 Koutavas, A., de Menocal, P.B., Olive, G.C., Lynch-Stieglitz, J., 2006. Mid-Holocene El Niño-Oscillation (ENSO)
- 1091 attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 993-996.
- 1092 Laboute, P., 1985. Evaluation des dégâts causés par les passages des cyclones de 1982-1983 en Polynésie
- 1093 Française sur les pentes externes des atolls de Tikehau et de Takapoto (Archipel des Tuamotu). Proceeding of the
- 1094 Fifth International Coral Reef Congress 3, 323–329.
- 1095 Larrue, S., Chiron, Th., 2010. Les îles de Polynésie Française face à l'aléa cyclonique. VertigO 10.
- 1096 https://doi.org/10.4000/vertigo.10558.
- 1097 Lau, A.Y.A., Terry, J.P., Switzer, A.D., Lee, Y., Etienne, S., 2016. Understanding the history of extreme wave
- 1098 events in the Tuamotu Archipelago of French Polynesia from large carbonate boulders on Makemo Atoll, with
- 1099 implications for future threats in the central South Pacific. Mar. Geol. 380, 174-190.
- Laurent, V., Varney, P., 2014. Histoire des cyclones de Polynésie Française de 1831 à 2010, ISBN 978-2-95229461-4, p. 172. Météo-France.
- Lawman, A.E., Di Nezio, P.N., Partin, J.W., Dee, S.G., Thirumalai, K., Quinn, T.M., 2022. Sciences Advances 8,
 eabm4313.
- 1104 Lecacheux S., Bulteau T., Pedreros R., Delvallée E., Paris F., 2013. Projet ARAI 3 : évaluation probabiliste des
- 1105 houles et des surcotes cycloniques en Polynésie Française. Rapport BRGM/RP-61888-FR, p. 122.

- 1106 Le Cozannet, G., Garcin, M., Yates, M., Idier, D., Meyssignac, B., 2014. Approaches to eval- uate the recent
- 1107 impacts of sea-level rise on shoreline changes. Earth-Science Reviews 138, 47-60.
- 1108 Li, Y., Chen, Q., Liu, X., Li, J., Xing, N., Xie, F., Feng, J., Zhou, X., Cai, H., Wang, Z., 2019. Long-term trend of
- 1109 the tropical Pacific trade winds under global warming and its causes. Journal of Geophysical Research: Oceans
- 1110 124, 2626–2640.
- 1111 Magnan, A.K., Ranché, M., Duvat, V.K.E., Prenveille, A., Rubia, F., 2018. L'exposition des populations des atolls
- 1112 de Rangiroa et de Tikehau (Polynésie française) au risque de submersion marine. VertigO 18, 1-35.
- 1113 Magnan, A.K., Oppenheimer, M., Garschagen, M., Buchanan, M. K., Duvat, V. K. E., Forbes, D. L., Ford, J. D.,
- 1114 Lambert, E., Petzold, J., Renaud, F. G., Sebesvari, Z., van de Wal, R. S. W., Hinkel, J., Pörtner, H-O., 2022. Sea
- 1115 level rise risks and societal adaptation benefits in low-lying coastal areas. Science Reports 12, 10677.
- 1116 McGregor, H.V., Fischer, M.J., Gagan, M.K., Fink, D., Phipps, S.J., Wong, H., Woodroffe, C.D., 2013. A weak El
- 1117 Niño-Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nature Geoscience 6, 949–953.
- 1118 McLean, R. F., Stoddart, D. R., Hopley, D., Polach, 1978. Sea level change in the Holocene on the Northern Great
- 1119 Barrier Reef. Philosophical Transactions of the Royal Society of London A 291, 167–186.
- 1120 McLean, R.F., Woodroffe, C.D., 1994. Coral atolls. In: Carter, R.W.G., Woodroffe, C.D. (Eds.), Coastal
- Evolution: Late Quaternary Shoreline Morphodynamics. Cambridge Univ. Press, Cambridge, United Kingdom, pp.
 267-302.
- 1123 McLean, R.F., Kench, P., 2015. Destruction or persistence of coral atoll islands in the face of 20th and 21st
- 1124 century sea-level rise? WIREs Climatic Change 6, 445–463.
- 1125 Montaggioni, L.F., Salvat, B., Aubanel, A., Eisenhauer, A., Martin-Garin, B., 2018. The mode and timing of
- 1126 windward reef-island accretion in relation with Holocene sea- level change: a case study from Takapoto Atoll,
- 1127 French Polynesia. Geomorphology 318, 320–335.
- 1128 Montaggioni, L.F., Salvat, B., Aubanel, A., Pons-Branch, E., Martin-Garin, B., Dapoigny, A., Goeldner-Gianella,
- 1129 L., 2019. New insights into the Holocene development history of a Pacific low-lying coral island: Takapoto Atoll,
- 1130 french Polynesia. Quaternary Science Reviews 223, 105947.
- 1131 Montaggioni, L.F., Martin-Garin, B., Salvat, B., Aubanel, A., Pons-Branchu, E., Paterne, M., Richard, M., 2021.
- 1132 Coral conglomerate platforms as foundations for low-lying, reef islands in the French Polynesia: new insights into
- 1133 the timing and mode of formation. Marine Geology 437, 106500.
- 1134 Montaggioni, L.F., Baltassat, J.-M., Le Cozannet, G., Innocent, Ch., Martin-Garin, B., Salvat, B., 2022. Reef-rim
- 1135 structure and building history, Rangiroa, an uplifted Atoll, French Polynesia: the role of morphotectonics and
- 1136 extreme marine hazard events. Marine Geology 445, 106748.

- 1137 Mumby P, Chisholm J, Edwards A, Clark C, Roark E, Andrefouet S, Jaubert, J., 2001. Unprecedented bleaching-
- 1138 induced mortality in Porites spp. at Rangiroa atoll. French Polynesia. Marine Biology 139, 183-189.
- 1139 Moy, Ch., M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño-Southern Oscillation
- 1140 activity at millennial timescales during the Holocene epoch. Nature 420, 162–165.
- 1141 Müller, R. D., Roest, W. R., Royer, J-Y., Gahagan, L. M., Sclater, J. G., 1997. Digital isochrons of the world's
- 1142 ocean floor. Journal of Geophysical Research 102, 3211–3214.
- 1143 Nott, J.F., 2011. Tropical cyclones, global climate change and the role of Quaternary studies. Journal of
- 1144 Quaternary Science 26, 468–473.
- 1145 Pala, C., 2014. Warming may not swamp islands. Science 345, 496–497.
- 1146 Pedreros, R., Krien, Y., Poisson, B., 2010. Programme ARAI 2. Caractérisation de la submersion marine liée aux

1147 houles cycloniques en Polynésie française. Rapport BRGM/RP- 58990-FR, 64 p.

- 1148 Perry, C.T., Kench, P.S., Smithers, S.G., Riegl, B., Yamano, H., O'Leary, M.J., 2011. Implications of reef ecosystem
- 1149 change for the stability and maintenance of coral reef islands. Global Change Biology 17, 3679-3696.
- 1150 Pirazzoli, P.A., Montaggioni, L.F., 1986. Late Holocene sea-level changes in the northwest Tuamotu Islands, French
- 1151 Polynesia. Quaternary Research 25, 350–368.
- 1152 Pirazzoli, P.A., Montaggioni, L.F., 1987. Les îles Gambier et l'atoll de Temoe (Polynésie Française) : anciennes

1153 lignes de rivage et comportement géodynamique. Géodynamique 2, 13-25.

- 1154 Pirazzoli, P.A., Montaggioni, L.F., 1988a. Late Holocene sea-level changes in French Polynesia. Palaeogeography,
- 1155 Palaeoclimatology, Palaeoecology 68, 153–175.
- 1156 Pirazzoli, P.A., Montaggioni, L.F., Salvat, B., Faure, G., 1988b. Late Holocene sea level indicators from twelve
- 1157 atolls in the central and eastern Tuamotus (Pacific Ocean). Coral Reefs 7, 57-68.
- 1158 Pons-Branchu, E., Douville, E., Dumont, E., Branchu, P., Thil, F., Frank, N., Bordier, L., Borst, W., 2014. Cross-
- 1159 dating (U/Th and lamina counting) of modern carbonate deposits in underground Paris, France. A new archive for
- 1160 urban history reconstructions: case study of anthropic Rare Earth and Yttrium release. Quaternary Geochronology
- 1161 24, 44e53.
- 1162 Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf,
- 1163 S., Löschke, S., Möller, V., Okem, A., B. Rama, R. (eds.), 2022. IPCC: climate change 2022: impacts, adaptation
- 1164 and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental
- 1165 Panel on Climate Change Cambridge University Press. Cambridge University Press, Cambridge, UK and New
- 1166 York, NY, USA, 3056 pp. doi:10.1017/9781009325844.
- 1167 Purkis, S. J., Gardiner, R., Johnston, M. W., Sheppard, C. R. C., 2016. A half-century of coastline change in
- 1168 Diego Garcia the largest atoll island in the Chagos. Geomorphology 261, 282–298.

- 1169 Rankey, E. C., 2011. Nature and stability of atoll island shorelines: gilbert Island chain, Kiribati, equatorial
- 1170 Pacific: atoll shoreline change, equatorial Pacific. Sedimentology 58, 1831–1859.
- 1171 Reymond, D., Hyvernaud, O., Okal, E.A., 2013. The 2010 and 2011 tsunamis in French Polynesia: operational
- 1172 aspects and field surveys. Pure and Applied Geophysics 170, 1169–1187.
- 1173 Richmond, B.M., 1992. Development of atoll islets in the central Pacific. Proc. Seventh International Coral Reef
- 1174 Symposium 2, pp. 1185–1194.Rohling, E. J., Grant, K., Hemleben, Ch., Siddall, M., Hoogakker, B. A. A.,
- 1175 Bolshaw, M., Kucera, M., 2007. High rates of sea-level rise during the last interglacial period. Nature Geoscience
- 1176 1, 38–42
- Roy, P., Connell, J., 1991. Climatic-change and the future of atoll States. Journal of Coastal Research, 7, 1057–
 1178 1075.
- 1179 Sadler, P.M., 1999. The influence of hiatuses on sedimentation accumulation rates. GeoResearch Forum 5, 15-40.
- 1180 Scoffin, T.P., 1993. The geological effects of hurricanes on coral reefs and the interpretation of storm deposits.
- 1181 Coral Reefs 10, 203–221.
- 1182 Seurat, L. G., 1904. Observations sur la structure, la faune et la flore de l'île de Marutea du Sud (Archipel des
- 1183 Tuamotu). Journal Officiel des Établissements Français d'Océanie 53, 156–161.
- 1184 Shope, J. B., Storlazzi, C. D., Erikson, L. H., Hegermiller, C. A., 2016. Changes to extreme wave climates of
- islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with
- 1186 implications for island vulnerability and sustainability. Global and Planetary Change, 141, 25-38.
- 1187 Shope, J. B., Storlazzi, C. D., Hoeke, R. K., 2017. Projected atoll shoreline and run-up changes in response to sea-
- 1188 level rise and varying large wave conditions at wake and Midway Atolls, Northwestern Hawaiian Islands.
- 1189 Geomorphology 295, 537–550.
- 1190 Shope J.B., Storlazzi, C.D., 2019. Assessing morphologic controls on atoll island alongshore sediment transport
- 1191 gradient due to future sea-level rise. Frontiers in Marine Science 6, 245.
- 1192 Sladen, A., Hebert, H., Schindele, F., Reymond, D., 2007. Evaluation off airfield tsunami hazard in French
- 1193 Polynesia based on historical and numerical simulations. Natural Hazards and Earth Systems Sciences 7, 195e206.
- 1194 Smithers, S. G., Hoeke, R. K., 2014. Geomorphological impacts of high-latitude storm waves on low-latitude reef
- 1195 islands observations of the December 2008 event on Nukutoa, Takuu, Papua New Guinea. Geomorphology 222,
- 1196 106-121.
- 1197 Stephens, S.A., Ramsay, D.L., 2014. Extreme cyclone wave climate in the Southwest Pacific Ocean: influence of
- 1198 El Niño-Southern Oscillation and projected climate change. Global and Planetary Change 123, 13-26.
- 1199 Stoddart D.R., 1971. Coral reefs islands and catastrophic storms, In J.A. Steers (Ed.). Applied Coastal
- 1200 Geomorphology, Macmillan, London, p. 155–197.

- 1201 Stoddart D.R., Steers J.A., 1977. The nature and origin of coral reef islands, p. 59–105. In: O.A. Jones et R.
- 1202 Endean (eds.) Biology and geology of coral reefs, Academic Press, New York, vol. 4, Geology 2.
- 1203 Stoddart, D.R., McLean, R.F., Hopley, D., 1978. Geomorphology of reef islands, northern Great Barrier Reef.
- 1204 Philosophical Transactions of the Royal Society of London B 284, 39–61.
- 1205 Storlazzi, C. D., Elias, E. P. L., Berkowitz, P., 2015. Many Atolls may be uninhabitable within decades due to
- 1206 climate change. Science Report, 5, 14546.
- 1207 Studholme, J., Fedorov, A.V., Gulev, S.K., Emanuel, K., Hofges, K., 2022. Poleward expansion of tropical
- 1208 cyclone latitudes in warming climates. Nature Geoscience 15, 14-28.
- 1209 Terry, J.P., Goff, J., 2014. Megaclasts: proposed revised nomenclature at the coarse end of the Udden-Wentworth
- 1210 grain-size scale for sedimentary particles. Journal of Sedimentary Research 84, 192–197.
- 1211 Terry, J.P., Etienne, S., 2011. Stones from the dangerous winds: reef platform mega-clasts in the tropical Pacific
- 1212 Islands. Natural Hazards 56, 567–569.
- 1213 Wandress, M., Aucan, J., Espejo, A., Jackson, N., De Ramon N'Yeurt, A., Damlamian, H., 2020. Distant-source
- 1214 swells cause coastal inundation on Fiji's coral coast. Frontiers in Marine Science 7, 546 doi:
- 1215 10.3389/fmars.2020.00546
- 1216 Webb, A. P., Kench, P. S., 2010. The dynamic response of reef islands to sea- level rise: evidence from multi-
- 1217 decadal analysis of island change in the Central Pacific. Global and Planetary Change 72, 234-246.
- 1218 Woodroffe, C.D., 2008. Reef-island topography and the vulnerability of atolls to sea-level rise. Global and
- 1219 Planetary Change 62, 77–96.
- 1220 Woodroffe, C.D., McLean, R.F., Smithers, S.G., Lawson, E.M., 1999. Atoll reef-island formation and response to
- 1221 sea-level change: West Island, Cocos (Keeling) Islands. Marine Geology 160, 85-104.
- 1222 Woodroffe, C.D., Morrison, R.J., 2001. Reef-island accretion and soil development, Makin Island, Kiribati,
- 1223 Central Pacific. Catena 44, 245–261.
- 1224 Woodroffe, C. D., Biribo, N., 2011. Atolls. In D. Hopley (Ed.), Encyclopedia of Modern Coral Reefs: Structure,
- 1225 Form and Process. Springer, the Netherlands, pp. 51-71.
- Woodruff, J.D., Irish, J.F., Camargo, S.J., 2013. Coastal flooding by tropical cyclones and sea- level rise. Nature
 504, 45-52.
- 1228 Yamano H, Kayanne H, Yamaguchi T, Kuwahara Y, Yokoki H, Shimazaki H, Chicamori M, 2007. Atoll island
- 1229 vulnerability to flooding and inundation revealed by historical reconstruction: Fongafale Islet, Funafuti Atoll,
- 1230 Tuvalu. Global and Planetary Change 57, 407–416.
- 1231 Yamano, H., Cabioch, G., Chevillon, C., Join, J.L., 2014. Late Holocene sea-level change and reef-island
- 1232 evolution in New Caledonia. Geomorphology 222, 39–45.

- 1233 Yasukochi, T., Kayanne, H., Yamaguchi, T., Yamano, H., 2014. Sedimentary facies and Holocene depositional
- 1234 processes of Laura Island, Majuro Atoll. Geomorphology 222, 59-67.
- 1235 Yates, M. L., Le Cozannet, G., Garcin, M., Salaï, E., Walker, P., 2013. Multidecadal Atoll shoreline change on
- 1236 Manihi and Manuae, French Polynesia. Journal of Coastal Research 289, 870-882.
- 1237 Zhang, Z., Leduc, G., Sachs, J.P., 2014. El Niño evolution during Holocene revealed by a biomarker rain gauge in
- 1238 the Galapagos Islands. Earth Planetary Sciences Letters 40, 420-434.

1239 Figure captions

- 1240 Fig. 1. (a) Location map of South-Marutea Atoll in the Gambier Island Group, south-eastern
- 1241 Tuamotu Archipelago, French Polynesia, central south Pacific; (b) Google Earth map of
- 1242 South-Marutea Atoll showing the location of the studied site areas (boxes): Motu Aramu (see
- 1243 Fig. 1c), with location of excavations (star symbols); Motu Vainono (see Fig. 1d), with
- location of excavations (star symbols), and ocean-facing shingle-ridge profile (Fig. 4a); Motu
- 1245 Aranui (see Fig. 1e) with location of dated coral-clast samples (open circle symbols); Motu
- 1246 Oire (see Fig. 1f) with location of outer shingle-ridge profile (Fig. 4b); Motu Tekava (see Fig.
- 1247 1g) with location of dated coral-clast samples (open-circle symbols).
- 1248 Fig. 2. Wind rose for Mangareva site altitude: +91 m; 23°07'48" S, 134°57'55"W –,
- 1249 Gambier island, south-eastern Tuamotu, showing the dominant wind directions from the north
- 1250 and north-east sectors. Based on records from Météo-France and reprinted with the
- 1251 permission of Météo-France. Data duplication and redistribution are prohibited except with
- 1252 the prior agreement of Météo-France.
- 1253 Fig. 3. Tracks of some tropical cyclones within the south-eastern Tuamotu region since the
- 1254 beginning of the twentieth century. Modified from Laurent and Varney (2014).
- 1255 Fig. 4. Transverse topographic profiles across outer shingle ridges of the reef- rim and islet,
- 1256 South-Marutea Atoll, showing the different geomorphic components. (a) south-east of Motu

1257 Vainono – see fig. 1 d for location –; (b) west of Motu Oire – see fig. 1f for location. The
1258 location of the dated coral-clast samples is indicated. Ages are given in years before present
1259 (before 2022). See Table 1 for dating parameters.

Fig. 5. Conglomerate platforms from the reef rim, South-Marutea Atoll; (a) overview of the two-layer, 1.10 m thick conglomerate pavement, hoa side, south of Motu Oire; (b) close-up picture of the 1.20 m thick conglomerate bed, reef-flat side, west of Motu Oire – see fig. 1f for location –; (c) close-up picture of the two-layer, 1.20 m thick conglomerate pavement, west of Motu Aranui – see fig. 1b and 1e for location. The location of the dated coral-clast samples is indicated. Ages are given in years before 2022. See Table 1 for details on dating parameters.

Fig. 6. Aerial view of the south-south-east side of Motu Vainono, southern reef-rim area of South-Marutea Atoll, showing, from the ocean landwards, the reef-flat zone, about 200 m wide, the conglomerate-platform front line (brown colour), the outer beach (white colour), the successive shingle ridges (grey colour) and the vegetation-covered islet bench. See fig. 1d for location and fig. 4a for geomorphic profile.

Fig. 7. Close-up picture of the upper part of the ocean-facing shingle ridge, composed of
blocky, pocilloporid and acroporid coral clasts, south-east of Motu Vainono, southern reefrim area, South-Marutea Atoll.

Fig. 8. Transverse topographic profile across Motu Aramu, north-north-eastern reef-rim area,
South-Marutea Atoll, showing the location and lithostratigraphy of excavations A, B and C,
with location and radiometric ages of the dated coral-clast samples. See figure 1b, c for
location of excavations and Table 1 for dating parameters. Ages are given in calendar years

1279 – relative to 2022, the year of analysis. See Table 1 (Supplementary material) for details on

1280 dating parameters. WL: water-table level.

Fig. 9. Transverse topographic profile across Motu Vainono, south-south-western rim area,
South-Marutea Atoll, showing the location and lithostratigraphy of excavations D, E and F,
with location and radiometric ages of the dated coral-clast samples. See fig. 1b, d for location
of excavations and Table 1 for dating parameters. Ages are given in calendar years (relative to
2022. the year of analysis). See Table 1 (Supplementary material) for details on dating
parameters. WL: water-table level.

Fig. 10. Plot of the U/Th dated coral-clast samples *versus* their respective topographic or
stratigraphic location across or within the studied motu sites – see figs. 1b to 1g, 4a, 4b, 8 and
9 for location. Ages are given in calendar years (relative to 2022, the year of analysis).
Vainono excavations: note the decreasing age trend from the ocean-facing islet side
lagoonwards. Aramu excavations: note a similar, but less continuous age decreasing trend,
due to both younger clast deposits at the ocean-facing islet site and hiatus in clast supply
between 4,000 and 2,000 calendar yr.

1294 Fig. 11. Views of the internal structure and lithostratigraphy of the sedimentary piles, from 1295 excavations through Motu Aramu and Motu Vainono, respectively; (a) Excavation A, ocean-1296 facing islet margin, showing the upper 1 m section, composed of pebble-dominated, sand 1297 supported material; (b) Excavation C, lagoon-facing islet margin, showing the whole section, 1298 composed of sand-dominated, pebble-rich sediments, overtopped by a dark, organic bed. The 1299 level of the water table is about 0.20 m above the excavation bottom; (c) excavation D, ocean-1300 facing islet margin, showing the lower section composed of cobble-to pebble-dominated, sand 1301 to pebble-supported detritus. The level of the water table is about 0.10 m above the

excavation bottom; (d) excavation F, lagoon-facing margin, showing the whole section,
composed of sand-dominated, pebble-rich material. The top section exhibits an about 0.50 m
thick organic deposit. The level of the water table is about 0.25 m above the excavation

1305 bottom.

1306 Fig. 12. Relationships between the main islet accretional phases on South-Marutea Atoll,

1307 regional changes in sea level and in ENSO-controlled cyclogenesis over the past 5,000 years;

1308 (a) accretional phases at Aramu and Vainono sites, based on the number of dated coral-clast

1309 samples; (b) regional sea level curve, modified from Pirazzoli and Montaggioni (1987), and

1310 Hallmann et al. (2020); (c) record of ENSO activity based on measurement of sand percentage

1311 in Juna Crater Lake, Galapagos, modified from Conroy et al., 2008; (d) record of ENSO

1312 activity based on sediment laminae light-intensity from a core extracted from Laguna

1313 Pallcacocha, Ecuador, modified from Moy et al., 2002.

Fig. 13. Cross-section through Motu Aramu, north-eastern rim area, South-Marutea Atoll,
showing the successive phases of islet accretion. The dashed lines refer to accretion
isochrons, given in years before present and are defined from time intervals between the dated
coral-clast samples. Are indicated the location of the excavation and of the dated coral
samples extracted from conglomerates.

Fig. 14. Cross-section through Motu Vainono, southern rim area, South-Marutea Atoll,
showing the successive phases of islet accretion. The dashed lines refer to accretion
isochrons, given in years before present and are defined from time intervals between the dated
coral-clast samples. The location of the excavation and of the dated coral samples extracted
from conglomerates are indicated.

Fig. 15. View of the south-east-facing, outer shingle ridge, Motu Tekava, east-south-eastern
rim area, South-Marutea Atoll, clearly showing that coral-clast deposits are in process of
rapid cementation, probably under the control of percolating vadose fresh waters.

1327 Fig. 16. Planimetric reconstruction of Motu Aramu (north-eastern rim area) and Motu 1328 Vainono (southern rim area), South-Marutea Atoll, showing the expected successive phases 1329 of islet accretion over the last 5,000 years. Isochrons delineate the expected surface areas of 1330 initial depocentres and incipient islets through time. Interrogation points relate to the younger accretional sections from which there are insufficient age records. From 5,000 to about 3,000 1331 1332 calendar yr at Aramu and from 5,000 to about 1,500 calendar yr at Vainono, spaces between 1333 adjacent depocentres and incipient islets are interpreted to have acted as hoa prior to have been sealed. 1334

Fig. 17. Age distribution of identified wave-surge events over the last 5,000 years, based on U/Th dating of coral-clast samples extracted from conglomerate platforms, islet excavations and surficial deposits. The last 2,000 years, i.e. the Common Era, is also expressed in a centurial scale to facilitate comparison between the historical record of marine hazard events and the wave-surge events recorded in the present study.

1340 **Table 1 (Supplementary material)**

1341 Uranium–Thorium data of coral samples from South-Marutea Atoll. Are given successively

1342 laboratory sample codes, field sample (SAT) numbers, uranium and thorium contents,

1343 isotopic composition with statistical errors – two standard deviations of the mean – and ages.

1344 Uranium and thorium contents and isotopic ratios. $\delta^{234}U_M = \{[(^{234}U/^{238}U)_{sample}/(^{234}U/^{238}U)_{eq}]$ -

1345 1} x 1000, where $(^{234}U/^{238}U)_{sample}$ is the measured atomic ratio and $(^{234}U/^{238}U)_{eq}$ is the atomic

1346 ratio at secular equilibrium. $\delta^{234}U_{(T)}$ is the initial value and is calculated by the equation:

1347	$\delta^{234}U_{(0)} = \delta^{234}U_{meas} \exp^{(\lambda 234t)}$, where t is the age in years and λ_{234} is the decay constant for
1348	234 U. Ages were corrected for authigenic 230 Th using 230 Th/ 232 Th) of the detrital fraction = 10
1349	\pm 5. Note that, for Samples M103, M123 and M129, uranium content is significantly lower
1350	than classical values for uranium content within aragonitic corals. M103 is a conglomerate
1351	and not massive coral. Calcite primary deposition could explain the low U content value for
1352	this sample. For Samples M123 and M129, the very low U content could be a clue of
1353	diagenetic alteration (with U loss during the well-known aragonite to calcite transformation).
1354	These two ages could be considered with caution, because a hypothetical U loss could have
1355	biased the relevant age (with an apparent age being too old). Ages are expressed in both
1356	calendar years, relative to the year of sample analysis (2022) corrected for detrital content
1357	using a 230 Th/ 232 Th isotopic ratio = 7 ± 50 % and conventional ages BP (Before Present,
1358	relative to 1950).
1359	

NNW

MOTU VAINONO (SOUTH)

MOTU VAINONO (SOUTH)

NNW

SSE

MOTU VAINONO (SOUTH)

HIGHLIGHTS

- North of Rangiroa Atoll, due to a former uplift, the top of the Miocene carbonate basement peaks at depths of less than 10 m beneath the modern reef-rim surface.
- Unusual, extreme marine hazard events were essential drivers of early atoll rim-island accretion.
- Island accretion started by about 6,000 calendar years, 3,500 years before it did in nearby subsiding atolls.

3,5