
HAL Id: hal-04094847
https://hal.science/hal-04094847v2

Submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

About versioning ontologies or any digital objects with
clear semantics

Clement Jonquet, María Poveda-Villalón

To cite this version:
Clement Jonquet, María Poveda-Villalón. About versioning ontologies or any digital objects with
clear semantics. DaMaLOS 2023 - 3rd Workshop on Metadata and Research (objects) Management
for Linked Open Science, L. J. Castro; S. Schimmler; J. Dierkes; D. Dessì; D. Rebholz-Schuhmann,
May 2023, Hersonissos (Crète), Greece. �10.4126/FRL01-006444994�. �hal-04094847v2�

https://hal.science/hal-04094847v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

About versioning ontologies or any digital objects
with clear semantics

Clement Jonquet1,2[0000-0002-2404-1582] María Poveda-Villalón3[0000-0003-3587-0367]

1 LIRMM, University of Montpellier & CNRS, France
2 MISTEA, University of Montpellier, INRAE & Institut Agro, France

3 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
clement.jonquet@inrae.fr

mpoveda@fi.upm.es

Abstract. The article discusses the process of versioning for ontologies and semantic
artefacts developed using Semantic Web technologies. We describe methods for encod-
ing versioning and other relevant information in metadata properties and we illustrate
with examples from the MOD2.0 specification. Building on our experiences with the
AgroPortal ontology repository and the Linked Open Vocabularies, we raise several
questions, such as which metadata properties to use, how metadata values should be
coordinated, and what stay the same over versions, and what should change. We pro-
pose recommendations for better versioning ontologies with clear semantics –identifi-
ers, descriptions, status, dates, links– and suggests that the recommendations can be
generalized to any digital objects that need to be versioned and semantically described.

Keywords: versioning, ontologies, semantic artefacts, metadata.

1 Introduction
Versioning is the process to produce a new version of a digital object. In our case, we focus
on one type of digital object: ontologies and more largely semantic artefacts –a broader term
to include ontologies, terminologies, taxonomies, thesauri, vocabularies, metadata schemas
and metadata standards– developed with semantic web technologies (e.g., OWL, RDF-S or
SKOS) and that we can describe with metadata properties –typically on the owl:Ontology
or skos:ConceptScheme objects.

In software development, versioning is mainly viewed as the process of "assigning either
unique version names or unique version numbers to unique states of computer software.”1
The numbering can even encode a certain “semantics” with the number changes meaning
something2 e.g., going from v2.2 to v2.3 corresponds to a more significant change than going
from v2.2 to 2.2.1. In this article, we are not going to focus on such guidelines or practice but
rather on the methods to encode such a versioning information –and much more– in relevant
metadata properties. For instance, the versioning information is typically encoded in a se-
mantic artefact with a property coming from the myriad of existing metadata vocabularies
such as owl:versionInfo or pav:version or schema:version or omv:version
oboinowl:hasVersion. In fact, we are not going to discuss neither which metadata prop-
erty to use but focus on which value to give them and how to consistently edit them. We will

1 https://en.wikipedia.org/wiki/Software_versioning
2 https://semver.org/spec/v2.0.0.html

2 Jonquet and Poveda-Villalón (2023) About versioning ontologies

illustrate our speech with the default suggested properties in the MOD2.0 specification [1]

(https://github.com/FAIR-IMPACT/MOD) –a proposed standard to describe ontologies and
semantic artefact metadata– which includes the relevant “mappings” to other metadata prop-
erties. For instance, in MOD 2.0, the suggested property to encode the version information is
owl:versionInfo.

In fact, multiple metadata properties need to be filled in to properly encode the process of
versioning; we will see there are a bunch of metadata properties that are linked to or affected
by versioning such as identifiers, status, download links, relations to earlier versions, dates.
And of course, these metadata properties should evolve logically when a new version of an
artefact is produced. Then, multiple questions can be raised when thinking about versioning
and metadata:

• Is it so different to encode the version information with a number (v1.4.2) than en-
coding it with a date (v2022-12-22)?

• Which dates are supposed to changes and which dates are supposed to stay the same
when a new version of a resource is produced?

• What is the difference between an URI and a versioned URI? How does it impact
external identifiers such as a DOI?

• How to encode a description or some notes specific to an ontology version distin-
guishing from a description “stable” over the versions?

• When a new ontology version is produced are the other ones deprecated or retired?
Can an ontology be deprecated while keeping a production status?

• How metadata values need to be coordinated? So that, for example, the deprecated
status and date of validity are coherent.

• How can metadata property values be “automatically” assigned when a new version
is produced?

The bad news is that it is the responsibility of the ontology developer to pay attention to the
completeness, accuracy and coherence of the metadata values. The good news is that it can
be very well automated.

Building AgroPortal [2] (https://agroportal.lirmm.fr), a vocabulary and ontology reposi-
tory (aka. semantic artefact catalogue) for agri-food, and managing the Linked Open Vocab-
ularies (LOV) server [3], a widely used repository of semantic web vocabularies and ontolo-
gies, we constantly face situations where ontology developers need guidelines or recommen-
dations on how to manage versioning. This situation has significantly increased when we
developed an enriched and harmonized metadata model [4] and later used it to automatically
evaluate the level of FAIRness of semantic resources hosted in AgroPortal [5, 6]. Fig. 1 to
Fig. 4 illustrate some problematic situations which occur(ed) in AgroPortal or LOV. For ex-
ample, different uses of the property version info (Fig. 1), same version information for dif-
ferent release dates (Fig. 2), not providing modifications date information (Fig. 3 and 4) and
not providing modification dates updates for newer versions (Fig. 4).

In this paper, we propose recommendations to better versioning ontologies with clear se-
mantics. Indeed, despite uncomplete elements in recent FAIRness assessment related pa-
pers [6–9], we have not found a complete set of guidelines such as for instance for service-
oriented systems [10]. Looking at it at-posteriori, our analysis and recommendations are not
necessarily limited to ontologies or semantic artefacts but can be generalized to any digital
objects (dataset, publication, software, workflow, etc.) that need to be versioned and be se-
mantically described as discussed in the last Section.

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 3

Fig 1. Variety of values for the version information in AgroPortal (screenshot from the administra-
tion interface) (left) and LOV SPARQL endpoint (right).

Fig 2. Case of the Food Ontology (FOODON)

which does not include any versioning infor-
mation inside the source file nor modification

dates, and that has not been curated (yet).

Fig 3. Case of the Relation Ontology (RO)

which uses a date as a versioning information but
does not provide the modification date in the ap-

propriate field.

2 Related work
In the literature, ontology versioning refers to the process of managing and tracking changes
–and their effects– made to an ontology [11]. As ontologies evolve over time, it is essential
to keep track of their changes to maintain compatibility with existing applications and data.
Ontology versioning has always been identified as a key element of ontology manage-
ment [12] and the need to track metadata related to versioning (our subject of interest here)
was identified in early systems such as OntoView [13]. Multiple research studies looked into
the type, frequency and representation of changes in ontologies such as [14] or [15].

4 Jonquet and Poveda-Villalón (2023) About versioning ontologies

Fig 4. Case of AGROVOC which does not include versioning information and dates in the source

file and for which curation was made by AgroPortal’s team until version 2022-09.

In this last paper, the authors propose an ontology versioning framework capable to maintain
the relationship among different version of ontology explicit by representing changes at “term
level.” The “meta level” is also identified and examples of metadata properties (from classic
metadata vocabularies) are given, but without policy on how to fil them and make them co-
herent. Recently, we can also cite the Knowledge Graph Change Language (KGCL)3 devel-
oped to describing change operations for ontologies or knowledge graphs.

In [16], the authors present the idea of an HTTP-based versioning mechanism that aims to
provide a simple and efficient way to manage changes in Linked Data or for Web resources
in general. Here again the authors identified metadata properties that should be used to
properly track versioning information and the relation between these properties (our subject
of interest here) appear e.g., of previous/next versions coherent information.

Another set of work related to versioning and ontologies is reported in [17], where the
authors review the different approaches to version control (similar to what’s done for soft-
ware) for RDF data. However, this is not related to how to encode and what to encode at the
ontology metadata level for better versioning information.

3 Recommendations to better versioning ontologies

3.1 How to use URIs, versioned URIs and external identifiers?

Ontologies, as any resource in the semantic web shall be assigned a Uniform Resource Iden-
tifier (URI) or Internationalized Resource Identifier (IRI). IRIs are minted and under the re-
sponsibility of the organization creating them; they are usually globally unique, but their
persistent and resolvable characteristics are not guaranteed. One can follow good practices
for URIs e.g., W3C best practices4 and/or consider using PURLs or W3IDs. The reader can
also check Section 2 of Garijo & Poveda’s recommendation [18]. Typically, the IRI of an
ontology shall not be versioned i.e., it must not contain any version information (number,
date, text) but shall stay the same through versions. The idea is that the IRI, as an identifier,

3 https://incatools.github.io/kgcl
4 https://www.w3.org/2011/gld/wiki/223_Best_Practices_URI_Construction

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 5

shall not change so that users do not need to update their reference to the re-used ontology
(or each object inside the ontology) each time a new version is available.

In addition, a property owl:versionIRI can be used to store the specific IRI of the
version. The OWL specification says:5 “Each ontology may have an ontology IRI, which is
used to identify an ontology. If an ontology has an ontology IRI, the ontology may addition-
ally have a version IRI, which is used to identify the version of the ontology.” The difference
comes when the IRIs are dereferenced: the versionIRI shall always resolve to a specific
source file corresponding to the specific ontology version or another relevant page (depend-
ing on content negotiation);6 whereas the ontology IRI shall redirect to the latest owl:ver-
sionIRI in order to resolve to the latest ontology source file available. It means that each
time a new ontology version is created, developers must change the IRI resolving mechanism
(e.g., simple HTTP redirects) to update the target of the ontology IRI as illustrated in Fig. 5.

In some cases, ontologies can be assigned an additional Permanent IDentifier (PID) by an
external organization such as a DOI. When it comes to the external identifier, it is up to the
ontology developer to self-inform when it is required to create a new identifier for a new
version for an object. For example, DataCite recommends creating a new DOI “if there is
major change to the content being shared”.7 AgroPortal has taken the convention that external
identifiers shall always be different than URIs to reflect the principle that this “second iden-
tifier” is assigned by an external body, independently of the developing organization. Be-
cause the ontology IRI is not a “property’ but the RDF resource identifier, in MOD, another
metadata property (mod:URI) was explicitly created to manipulate the URI value as any other
metadata property and the property dct:identifier is used to encode another “external”
identifier. The following statements are therefore recommended to declare identifiers:8

<https://w3id.org/example> rdf:type owl:Ontology ;
 mod:URI "https://w3id.org/example" ;
 owl:versionIRI <https://w3id.org/example/1.0> ;
 dct:identifier "10.15454/1.4656E12" .

And when a new version is produced:

<https://w3id.org/example> rdf:type owl:Ontology ;
 mod:URI "https://w3id.org/example" ;
 owl:versionIRI <https://w3id.org/example/2.0> ;
 dct:identifier "10.15454/1.4656E12" .

5 https://www.w3.org/TR/owl2-syntax/#Ontology_IRI_and_Version_IRI
6 Section 3.6 presents the dcat:accessURL and dcat:downloadURL that can be used to store the target URLs for
resolving the ontology versionIRI with content negotiation.
7 https://support.datacite.org/docs/versioning
8 Examples are continued from Garijo & Poveda’s 2020 paper [18].

6 Jonquet and Poveda-Villalón (2023) About versioning ontologies

Fig. 5. Illustration of some metadata properties stability or update between two versions inside the

source code. The figure also illustrates the target Web server files of URIs dereferencing.

3.2 How to describe the ontology, version information, changes between versions?

Providing a description, typically with dct:description is a good thing. It is usually a
short paragraph of text which explains what is this ontology and why it was created, etc. The
description typically “stays for long” and does not need to change at each new version of the
ontology. However, describing a versioned ontology requires a bit more of information. It is
appropriate to add an owl:versionInfo metadata property each time an ontology devel-
oper releases a new version so that anyone reusing the ontology knows exactly which version
he/she is using. But this metadatum must only contain the version and no other information
(dates, comments or creators as illustrated in Fig. 1). As Garijo & Poveda 2020, we do en-
courage to use semantic versioning (https://semver.org), rather than dates or miscellaneous
strings or mixed of characters and numbers. Mostly because, in addition of carrying a seman-
tics, a standard format like semver can also be parsed and automatically processed. Using the
date as a version information is not recommended although possible, as there could be ambi-
guity on what the date exactly represent (see later section on dates). Plus, dates are hardly
exploitable (see variety of date formats in Fig. 1) and hide if this is a major or minor release.
Because of their importance, in AgroPortal (historically in BioPortal), both dct:descrip-
tion and owl:versionInfo are two mandatory properties for each ontology versions.

In addition, the properties rdfs:comments and vann:changes may be used to respec-
tively describe something specific to a given version and document or refer to the list (pos-
sibly expressed in a formal language)9 of changes in the new version (e.g., classes/properties
added or removed, etc.). In AgroPortal, or with the Widoco documentation generation

9 A recent initiative for that is KGCL: https://github.com/INCATools/kgcl

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 7

tool [19], the changes are automatically computed with the Bubastis Ontology diff tool10 and
the results can be use as the value of the vann:changes property.

<https://w3id.org/example> rdf:type owl:Ontology ;
 dct:description "Global description of example ontology which
stays for long."@en ;
 owl:versionInfo "1.0" ;
 rdfs:comment "Specific comment or note about v1.0 of example on-
tology."@en .

And when a new version is produced:

<https://w3id.org/example> rdf:type owl:Ontology ;
 dct:description “Global description of example ontology which
stays for long."@en ;
 owl:versionInfo"2.0" ;
 rdfs:comment "Specific comment or note about v2.0 of example on-
tology. "@en ;
 vann:changes "Description of changes or reference to a resource
that describes the changes between v1.0 and v2.0 of example ontol-
ogy"@en .

3.3 How to inform about the ontology status and what to do when an ontology
becomes obsolete?

When describing a versioned ontology, it might be relevant to inform about the different
production phases and clearly describe the status especially if it becomes obsolete or depre-
cated. In MOD, mod:status, a property (and its values) inherited and adopted from the
Ontology Metadata Vocabulary (OMV) [20] indicates the different production phases (al-
pha, beta, production, retired) and the property owl:deprecated (boolean11) indi-
cates if the ontology is deprecated. Using two properties (rather than one additional sta-
tus=deprecated) allows to express the idea that an ontology can be deprecated – i.e., not
maintained anymore, tolerated or supported but not recommended– but not necessarily re-
tired – i.e., not supported any more, possibly even not available anymore at its original
source.12 However, these two properties are linked one another and should be used consist-
ently inside a given ontology version and through multiple versions:

• For any version, if status=retired then deprecated=true but not the opposite.
• If the status of an ontology version is retired then the status of all the previous versions

shall also certainly be retired. With the exception of a new version produced before a
rollback to the previous one.

• If a new ontology version is created it must have deprecated=false or nothing. In
some cases, all the previous version can then have deprecated=true (but not nec-
essarily retired=true), for instance if the ontology developer does not recommend
to use the previous version(s) at all. This might not be always the case, as in software

10 https://github.com/EBISPOT/bubastis
11 Even though the owl:deprecated annotation property’s range is defined as rdfs:Resource, it is a common
practice to provide boolean values when using the owl:deprecated predicate.
12 Depreciation and retirement are two notions which meaning varies depending on the object concerned. We have
not found a formal, standard or recognized definition when it comes to ontologies or semantic artefacts.

8 Jonquet and Poveda-Villalón (2023) About versioning ontologies

engineering, it might happen that a new version does not mean the old one is not
maintained or supported anymore.

An example of situation with three successive versions of an ontology is:
<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "1.0" ;
 mod:status "retired" ;
 owl:deprecated "true"^^xsd:boolean .

Then:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "2.0" ;
 mod:status "production" ;
 owl:deprecated "true"^^xsd:boolean.

Then:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "3.0" ;
 mod:status "production" ;
 owl:deprecated "false"^^xsd:boolean.

3.4 How to encode dates appropriately?

When implementing the new metadata model for AgroPortal [4], the authors reviewed 15
metadata vocabularies and found out a strong overlap in all the vocabularies which more or
less all redefine things that have already been described several times before, such as dates
for which 25 properties are available. In the following, we propose to use three specific date
properties for versioning to capture: (i) when an ontology has been originally created or re-
leased (dct:created), typically this date should be the same through ontology versions
unless a major change occurred and the developer wants to make a time stamp e.g., typically
with the Semver approach, a change of the first digit in the version; (ii) when an ontology
has been modified (dct:modified), typically this date should be changing at each version;
(iii) when an ontology version has/will become invalid (dct:valid), typically deprecated
and/or replaced by another one. Here again, those three dates shall be coherent one another
and with the status previously discussed:

• The modification date must always be after or equal to the creation date and usually
before or equal to the validity date.

• The modification date of a new version must be after or equal to the modification and
validity date of the previous version.

• For any version, if deprecated=true then validity date should be before or equal
the current date i.e., it should capture when an ontology became deprecated.

• Reversely for any version, if a validity date is before the current date then depre-
cated=true.

The following code excerpts exemplify how to encode creation, modification and validity
dates for three consecutive ontology versions according to the guidelines above-mentioned.

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "1.0" ;

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 9

 owl:deprecated true ;
 dct:created "2020-01-01" ;
 dct:modified "2020-01-01" ;
 dct:valid "2020-12-12" .

Then:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "2.0" ;
 owl:deprecated true ;
 dct:created "2020-01-01" ;
 dct:modified "2021-01-01" ;
 dct:valid "2022-01-05" .

Then:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo "3.0" ;
 owl:deprecated false ;
 dct:created "2020-01-01";
 dct:modified "2022-01-05" ;
 dct:valid "2024-12-31" .

In AgroPortal (in Fig. 2 to 4), dct:created is called ‘Released’ and dct:modified is
called ‘Modified’. Plus, AgroPortal uses another property to store the date when a new ver-
sion (called ‘submission’ in the system) is uploaded to the portal (called “Uploaded” in the
figures) and it is automatically generated. In MOD, such an information could be represented
with dct:dateSubmitted. It also uses the date property pav:curatedOn to inform when
an ontology has been curated or evaluated but this is not related to versioning.

3.5 How to encode the relations between multiples versions?

Properly defining the metadata of a research object also means formally encoding the relation
between this object and others. This applies to semantic artefact too. The MOD metadata
model does provide 20 properties to describe relations between ontologies (imports, special-
ization/generalization, alignment, similarity, etc.), a few of them are relevant when version-
ing an ontology. The OWL specification recommends to declare explicitly the link to the
unique previous version of the ontology with the property owl:priorVersion –one can
also declare backward compatibility or incompatibility– and Dublin Core offers the mecha-
nism to link back to all the previous versions with the property dct:hasVersion.13 For
these properties, one must use the owl:versionIRI values; in our example this gives:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionIRI <https://w3id.org/example/2.0> ;
 owl:priorVersion <https://w3id.org/example/1.0> ;
 owl:backwardCompatibleWith <https://w3id.org/example/1.0> .

Then:

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionIRI <https://w3id.org/example/3.0> ;

13 Also available in the provenance vocabulary PAV13 and recently being adopted by DCAT v3.

10 Jonquet and Poveda-Villalón (2023) About versioning ontologies

 owl:priorVersion <https://w3id.org/example/2.0> ;
 owl:backwardCompatibleWith <https://w3id.org/example/2.0> ;
 owl:incompatibleWith <https://w3id.org/example/1.0> ;
 dct:hasVersion <https://w3id.org/example/1.0> ,
 <https://w3id.org/example/2.0> .

3.6 How to update related links when a new version is created?

Beyond IRIs that shall be resolvable/dereferenceable (but in reality, are often not), a semantic
artefact can contain multiple links (i.e., URLs to specific web pages or web resource) to re-
lated information or the actual source file(s) corresponding to the semantic artefact. Some of
them may change when versioning an ontology. Here, we follow the DCAT vocabulary ap-
proach which provides multiple metadata properties to: (i) link to a web landing page “that
can be navigated in a Web browser” (dcat:landingPage), which provides general infor-
mation, documentation, links, etc. for the given ontology and typically does not change
through ontology versions; (ii) link to a web page or service where a specific ontology ver-
sion can be accessed / browsed / queried / visualized (dcat:accessURL); (iii) link(s) to
file(s) where a specific ontology version “distribution” can be downloaded in a specific for-
mat or language (dcat:downloadURL). Typically, dcat:accessURL and dcat:down-
loadURL maybe used to store within the ontology source file, the URLs used to dereference
the owl:versionIRI with content negotiation.

<https://w3id.org/example> rdf:type owl:Ontology ;
 owl:versionInfo “2.0” ;
 dcat:landingPage
 <https://www.myorganization.org/website/ontologies> ;
 dcat:accessURL
 <https://sparql.myorganization.org/query> ;
 dcat:downloadURL
 <https://myorganization.org/ontologies/example_2.0.owl> ,
 <https://myorganization.org/ontologies/example_2.0.csv> .

4 Summary check-list when creating a new ontology version
In Table 1, we summarize the metadata related actions to do when creating a new ontology
version. This can be used as a “check list”. We assign a recommendation (M for Must and R
for recommended) based on our appreciation of the importance.

5 Extension of the recommendations to any digital object
In this section (Table 2), we generalize our recommendations to extend them to any kind of
digital objects. As done with MOD for semantic artefact, here we cannot rely on a harmo-
nized metadata model that would work for any kind of digital objects; however, we can rely
on multiple general metadata vocabularies such as Dublin Core, DCAT or Schema.org that
will apply to multiple types of digital resources. Another challenge is to deal with objects not
necessarily described or encoded with semantic web technologies – i.e., with no URIs.

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 11

Table 1. Check list of TODOs when creating a ‘new’ ontology version from a ‘previous’ version.

TODO in previous
version

Rec. TODO in new version Metadata
property

 M � Assign the same URI than the previous
version.

Ontology IRI

 R � Duplicate the URI with an explicit
metadata property.

mod:URI

 M � Assign a specific resolvable version
URI.

owl:versionIRI

 R � Check the external PID provider policy
if a new identifier is required

dct:identifier

 M � Update version info (following con-
vention e.g., Semver)

owl:versionInfo

 M � Include a description, possibly inde-
pendent of the versioning.

dct:description

 R � Include a comment or note specific to
this version.

rdfs:comment

 R � Include a list of the changes or refer-
ence to a resource that describes the
changes between previous and new ver-
sion.

vann:changes

� Update previous
status in consequence
if needed.

R|M � Change or maintain the status. mod:status

� Depreciate the pre-
vious version(s)
(true) if necessary.

R|R � Assign depreciation flag (mostly
false).

owl:deprecated

 M � Assign the same creation date than the
previous version; except if major change
requires a new time stamp.

dct:created

 M � Assign the current date as modification
date.

dct:modified

� Update the validity
date to the creation
date of the new ver-
sion if necessary.

R|R � If you already know the future date of
the next version, assign new version an
end of validity date.

dct:valid

 M � Assign ‘prior version’. owl:priorVer-
sion

 R � Inform of backward compatibility or
incompatibility with previous versions.

owl:backward-
CompatibleWith
owl:incompati-
bleWith

 R � Add the previous version to the list of
previous.

dct:hasVersion

 M � Include a landing page, possibly inde-
pendent of the versioning.

dcat:landingPag
e

 R � Assign one or several access URL
where the new version can be accessed /
browsed / queried / visualized.

dcat:accessURL

 M � Assign one or several download URL
where the new version can be down-
loaded in multiple formats.

dcat:down-
loadURL

12 Jonquet and Poveda-Villalón (2023) About versioning ontologies

The recommendations that hold for other digital objects are listed below including the
metadata property used for semantic artefact (in bold before “:”) and other possible properties
to use (listed after “:”):

• dct:description: dct:description; schema:description
• rdfs:comment: rdfs:comment adms:versionNotes
• dct:created: dct:created, pav:createdOn, prov:generatedAtTime, schema:dateCreated
• dct:modified : dct:modified, pav:lastUpdateOn, schema:dateModified
• dct:valid: dct:valid, prov:invalidatedAtTime, schema:temporalCoverage
• owl:priorVersion: dcterms:isVersionOf, prov:wasRevisionOf, adms:prev
• dct:hasVersion : dct:hasVersion, pav:hasVersion
• dcat:landingPage: dcat:landingPage, foaf:page, vann:usageNote
• dcat:accessURL: :accessURLschema:url
• dcat:downloadURL: dcat:downloadURL, schema:distribution

Table 2. Extending the versioning recommendations (Table 1) to any digital objects using alternative
metadata properties (not exhaustive).

Metadata property
used for semantic
artefact

Comment / Generalization Other possible
property to use

Ontology IRI,
mod:URI,

owl:versionIRI,

dct:identifier

If the object does not have a URI, identification fully re-
lies on the PID assigned by an external body. Some iden-
tifiers scheme does support versioning e.g., the HAL
publication archive includes the version number at the
end of the identifier14 other data repository recommends
specific policies e.g., Zenodo [21]. Thus, follow or check
the PID provider policy if a new identifier is required for
this new version of the digital object.

dct:identifier

schema:identi-

fier

owl:versionInfo This recommendation holds for other digital objects.
schema:version

pav:version

vann:changes
This recommendation holds for other digital objects; ex-
cept that the type of changes and/or the formal language
to express them will be different.

vann:changes

mod:status These recommendations hold for other digital objects;
except that the list of possible status might be different.

adms:status

idot:state

owl:deprecated
These recommendations hold for other digital objects; the
owl:deprecated property cand even be used as it can
be applied to any web resource.

owl:deprecated

idot:obsolete

owl:backward-

CompatibleWith,

owl:incompati-

bleWith

These recommendations are specific to ontologies or se-
mantic artefacts.

N/A

14 e.g., https://hal-lirmm.ccsd.cnrs.fr/lirmm-03208544v2 is the versioned identifier of a citation mainly identified
with https://hal-lirmm.ccsd.cnrs.fr/lirmm-03208544

DaMaLOS@ESWC. PUBLISSO-Fachrepositorium. DOI: 10.4126/FRL01-006444994 13

6 Conclusion
We have presented a set of recommendations to follow when versioning an ontology or a
semantic artefact developed using Semantic Web technologies. We have illustrated pieces of
information to properly encode with 20 metadata properties to semantically describe version-
ing. We have also shown the logics and dependencies between metadata properties. We sug-
gest that the recommendations can be generalized to any digital objects that need to be ver-
sioned and semantically described, although further studies will be required for each type of
objects. In AgroPortal, we are currently revisiting the metadata model to reinforce the rec-
ommendations discussed here typically by assigning unambiguous types and applying vali-
dators to property values. We are also continuing the metadata curation work with the edito-
rial team and report to and/or try to involve the ontology developers.

Acknowledgement
This work has been supported by the Data to Knowledge in Agronomy and Biodiversity pro-
ject (D2KAB – www.d2kab.org – ANR-18-CE23-0017), the Horizon Europe FAIR-
IMPACT project (grant #101057344) and COGITO project (grant # 958310).

References
1. Dutta, B., Toulet, A., Emonet, V., Jonquet, C.: New Generation Metadata vocabulary

for Ontology Description and Publication. In: Garoufallou, E., Virkus, S., and Al-
emu, G. (eds.) 11th Metadata and Semantics Research Conference, MTSR’17. , Tal-
linn, Estonia (2017). https://doi.org/10.1007/978-3-319-70863-8_17.

2. Jonquet, C., Toulet, A., Arnaud, E., Aubin, S., Dzalé Yeumo, E., Emonet, V.,
Graybeal, J., Laporte, M.-A., Musen, M.A., Pesce, V., Larmande, P.: AgroPortal: A
vocabulary and ontology repository for agronomy. Comput Electron Agric. 144,
126–143 (2018). https://doi.org/10.1016/j.compag.2017.10.012.

3. Vandenbussche, P.-Y., Atemezing, G.A., Poveda-Villalon, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web.
Semant Web. 1, 1–5 (2014). https://doi.org/10.3233/SW-160213.

4. Jonquet, C., Toulet, A., Dutta, B., Emonet, V.: Harnessing the power of unified
metadata in an ontology repository: the case of AgroPortal. Data Semantics. 7, 191–
221 (2018). https://doi.org/10.1007/s13740-018-0091-5.

5. Amdouni, E., Bouazzouni, S., Jonquet, C.: O’FAIRe: Ontology FAIRness Evaluator
in the AgroPortal Semantic Resource Repository. 19th Extended Semantic Web Con-
ference, Poster and demonstration, Hersonissos, Greece. pp.89-94,. 13384 LNCS,
89–94 (2022). https://doi.org/10.1007/978-3-031-11609-4_17.

6. Amdouni, E., Bouazzouni, S., Jonquet, C., O’faire, C.J.: O’FAIRe makes you an of-
fer: Metadata-based Automatic FAIRness Assessment for Ontologies and Semantic
Resources. (2022). https://doi.org/10.13039/501100001665.

7. Poveda-Villalón, M., Espinoza-Arias, P., Garijo, D., Corcho, O.: Coming to Terms
with FAIR Ontologies. In: Keet, M.C. and Dumontier, M. (eds.) 22nd International
Conference on Knowledge Engineering and Knowledge Management, EKAW’20.
pp. 255–270. Springer Science and Business Media Deutschland GmbH, Bolzano,
Italy (2020). https://doi.org/10.1007/978-3-030-61244-3_18.

14 Jonquet and Poveda-Villalón (2023) About versioning ontologies

8. Garijo, D., Poveda-Villalón, M.: Best Practices for Implementing FAIR Vocabular-
ies and Ontologies on the Web. In: Cota, G., Daquino, M., and Pozzato, G.L. (eds.)
Applications and Practices in Ontology Design, Extraction, and Reasoning. IOS
Press (2020). https://doi.org/10.3233/SSW200034.

9. Coxid, S.J.D., Gonzalez-Beltranid, A.N., Magagna, B., Marinescu, M.-C.: Ten sim-
ple rules for making a vocabulary FAIR. (2021). https://doi.org/10.1371/jour-
nal.pcbi.1009041.

10. Marc Novakouski, Grace Lewis, William Anderson, Jeff Davenport: Best Practices
for Artifact Versioning in Service-Oriented Systems. (2022).

11. Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: First Interna-
tional Conference on Semantic Web Working Symposium (SWWS’01). pp. 75–91. ,
Stanford (2001).

12. Noy, N.F., Musen, M.A.: Ontology versioning in an ontology management frame-
work. IEEE Intell Syst. 19, 6–13 (2004). https://doi.org/10.1109/MIS.2004.33.

13. Michel Klein, Atanas Kiryakov, Damyan Ognyanoff, Dieter Fensel: Finding and
specifying relations between ontology versions. In: Workshop on Ontologies and Se-
mantic Interoperability. , Lyon, France (2022).

14. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge ba-
ses. In: Virbitskaite, I. and Voronkov, A. (eds.) 6th International A. Ershov Memorial
Conference, PSI’06, LNCS 4378. pp. 55–69. Springer, Novosibirsk, Russia (2007).
https://doi.org/10.1007/978-3-540-70881-0_8.

15. Patel, A., Jain, S.: Ontology Versioning Framework for Representing Ontological
Concept as Knowledge Unit. In: International Semantic Intelligence Conference
(ISIC 2021). pp. 114–121. CEUR, New Delhi, India (2021).

16. Herbert Van de Sompel, Robert Sanderson, Michael Nelson, Lyudmila Balakireva,
Harihar Shankar, Scott Ainsworth: An HTTP-Based Versioning Mechanism for
Linked Data. In: C. Bizer, T. Heath, T. Berners-Lee, and M. Hausenblas (eds.) Work-
shop on Linked Data on the Web (LDOW2010). CEUR, Vol. 628, Raleigh, North
Carolina, USA (2010).

17. Fiorelli, M., Pazienza, M.T., Stellato, A., Turbati, A.: Version control and change
validation for RDF Datasets. In: 11th International Conference on Metadata and Se-
mantic Research (MTSR’17). pp. 3–14. Springer, Tallinn, Estonia (2017).
https://doi.org/10.1007/978-3-319-70863-8_1.

18. Garijo, D., Poveda-Villalon, M.: Best Practices for Implementing FAIR Vocabular-
ies and Ontologies on the Web. 39–54 (2020). https://doi.org/10.3233/SSW200034.

19. Garijo, D.: WIDOCO: A wizard for documenting ontologies. In: 16th International
Semantic Web Conference, ISWC’17. pp. 94–102. Springer, Vienna, Austria (2017).
https://doi.org/10.1007/978-3-319-68204-4_9.

20. Suarez-Figueroa, Hartmann, J., Sure, Y., Haase, P., Suarez-Figueroa, M.: OMV–
ontology metadata vocabulary. In: Welty, C. (ed.) Workshop on Ontology Patterns
for the Semantic Web, WOP’05. p. 9. Springer, Galway, Irland (2005).

21. Nowak, K., Ioannidis, A., Bigarella, C., Nielsen, L.H.: DOI Versioning Done Right.
(2018). https://doi.org/10.5281/ZENODO.1256592.

