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used in the study can be found on GitHub
(https://github.com/adupaix/Quantif_
impact_FAD).
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https://iotc.org/WGFAD/02/Data/04-
BU. French observers data are not yet
provided. Upon acceptance, the data will be
provided via IRD’s Ob7 at https://www.
ob7.ird.fr/en/pages/datacall.html

Ecosystems and biodiversity across the world are being al-
tered by human activities. Habitat modification and degra-
dation is among the most important drivers of biodiversity
loss. These modifications can have an impact on species
behavior, which can in turn impact their mortality. While
several studies investigated the impacts of habitat degra-
dation and fragmentation on terrestrial species, the extent
to which habitat modifications affect the behavior and fit-
ness of marine species is still largely unknown, particularly
for pelagic species. Since the early 1990s, industrial purse
seine vessels targeting tuna have started deploying artificial
floating objects –Drifting FishAggregatingDevices (DFADs)
– in all oceans to increase tuna catchability. Since then, the
massive deployment of DFADs has modified tuna surface
habitat, by increasing the density of floating objects, with
potential impacts on tuna associative behavior and mortal-
ity. In this study we investigate these impacts for yellowfin
tuna in the Indian ocean. Using an individual-based model
based on a correlated randomwalk and newly available data
on DFAD densities, we quantify for the first time how the
increase of floating object density, due to DFAD use, af-
fects the percentage of time that yellowfin tuna spend as-
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sociated, which in turn directly impacts their availability to
fishers and fishing mortality. This modification of tuna as-
sociative behavior could also have indirect impacts on their
fitness, by retaining tuna in areas detrimental to them or
disrupting schooling behavior. Hence, there is an urgent
need to further investigate DFAD impacts on tuna behav-
ior, in particular taking social behavior into account, and to
continue regulation efforts on DFAD use and monitoring.
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1 | INTRODUCTION35

In the context of global change, biodiversity and ecosystem functions are deteriorating under the pressure of several36

direct and indirect drivers (IPBES, 2019). In terrestrial and freshwater ecosystems, land-use increase, induced by37

agriculture, forestry and urbanization, is the driver with the largest relative impact, while direct exploitation of fish38

and seafood has the largest relative impact in the oceans (IPBES, 2019). Increased exploitation of land and sea directly39

impacts populations but also modifies natural habitat, e.g. by reducing its surface (Hooke and Martín-Duque, 2012;40

Neumann et al., 2016) or degrading and fragmenting it (IPBES, 2018). Such habitat modifications can impact wild41

species distribution, reproduction, behavior and ultimately their fitness (Mullu, 2016; Macura et al., 2019; Fischer and42

Lindenmayer, 2007). Hence, it is central to determine to what extent these modifications, driven by global change or43

direct exploitation of animals, can impact species fitness, both in terrestrial and marine ecosystems.44

The impact of landscape modification and habitat fragmentation have been extensively studied in terrestrial45

ecosystems (Fischer and Lindenmayer, 2007). For example, evidence shows that 82 % of endangered bird species46

are threatened by habitat loss, as are most amphibian species, with some of them now only breeding in modified habi-47

tats (IPBES, 2018). Anthropogenic disturbances also impact terrestrial ecosystem functions, reducing plant production48

(Hooper et al., 2012), and the impact of terrestrial habitat fragmentation on population connectivity is regularly as-49

sessed (IPBES, 2018).50

However, the extent to which habitat modifications determine the behavior, survival and fitness of marine species51

is still largely unknown (Hays et al., 2016). Research on the topic mainly focuses on estuaries and coastal marine52

ecosystems. Habitat modifications in coastal areas come from fisheries and development of infrastructures and aqua-53

culture (IPBES, 2019). Climate change is also an important driver, with most striking impacts in the poles and the54

tropics (Doney et al., 2012). Induced warming temperatures and ocean acidification are likely to drive the degradation55

of most warm-water coral reefs by 2040-2050 (Hoegh-Guldberg et al., 2017), and mangroves are predicted to move56

poleward (Alongi, 2015). Pollution is also a driver of marine habitat modification, through acidification, oil spills or57

plastics, which can lead to changes in population dynamics (IPBES, 2022, 4.2.1.6.5). Marine habitat modifications58

also impact benthic community composition and sensitivity (Neumann et al., 2016), and could affect fish recruitment59

(Macura et al., 2019).60
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In pelagic environments, fewer studies have assessed habitat modifications (Dupaix et al., 2021) and their impact61

on species behavior, condition and survival (Hallier and Gaertner, 2008). Detailed movement data can be more cum-62

bersome to acquire for marine than for terrestrial species, due to the limitations of satellite communication in the63

ocean. Currently, it is possible to record horizontal and vertical movements of pelagic species, but the deployment of64

such tracking devices is costly and operationally challenging (Ogburn et al., 2017). For example, using active acoustic65

tagging, one can have a good estimation of an individual trajectory but needs to follow the individual by boat. Pop-up66

satellite archival tags are also increasingly used and allow to record the movement and depth of marine animals with-67

out having to follow them. However, these tags, based onGlobal Location Sensors (GLS) only allow to trackmovement68

at a large geographical scale. Finally, presence-absence data can be obtained through passive acoustic telemetry, by69

deploying networks of acoustic receivers allowing the detection of tagged individuals when they are in the vicinity.70

Recently, such data has been used to demonstrate the impacts of habitat modifications on the behavior of tropical71

tuna (Pérez et al., 2020).72

Tropical tunas are of major commercial interest worldwide ($40.8 billion in 2018, McKinney et al., 2020) and are73

subject to an important fishing pressure (5 million tons of tuna caught annualy in 2017-2021, ISSF, 2023). Yellowfin74

tuna (Thunnus albacares, designated as YFT) is one of the three main targeted species, with the skipjack (Katsuwonus75

pelamis) and bigeye (Thunnus obsesus) tunas. The main fishing gear targeting tropical tunas is purse seining, which76

made around 66% of the global catch from 2017 to 2021 (ISSF, 2023). Many pelagic species, like tunas, are known77

to associate with floating objects (noted FOBs, Fréon and Dagorn, 2000; Castro et al., 2002), such as tree logs which78

are a natural component of their habitat. In the 1990s, tuna purse seine vessels started to deploy their own artificial79

floating objects, called Fish Aggregating Devices (FADs), to exploit this associative behavior.80

Since then, the deployment and use of drifting FADs (DFADs) has increased, and the last global estimate is be-81

tween 81,000 and 121,000 DFAD deployed in 2013 (Gershman et al., 2015). In the beginning of the 2010s, fishers82

started equipping DFADs with echosounder buoys, transmitting the position of the DFAD and an estimation of the83

tuna biomass under it (and designated as operational buoys when transmitting), further increasing their efficiency84

(Wain et al., 2021). In 2017-2021, around 56 % of global purse seine catch was performed on FOBs, representing85

around 1.8 million tons per year (ISSF, 2023), and this proportion can be much higher in some regions, e.g. with more86

than 85 % of purse seine catch around FOBs in the Indian Ocean (IOTC, 2022e). The use of DFADs directly impacts87

tuna populations, by increasing the proportion of juvenile yellowfin and bigeye tuna compared to free-swimming88

schools (Dagorn et al., 2013b). Furthermore, the massive deployment of DFADs can also have indirect impacts, affect-89

ing the behavior and natural mortality of tuna (Marsac et al., 2000; Hallier and Gaertner, 2008). Pérez et al. (2020)90

demonstrated, on arrays of anchored fish aggregating devices (AFADs), that a decrease of inter-AFAD distance leads91

to an increase in the percentage of time tuna spend associated. By comparing passive acoustic tagging data from three92

arrays with different inter-AFAD distances, the authors found that when the distance between AFADs decreases, tuna93

both spent more time associated to a given AFAD and less time between two associations. If an increase of DFAD94

density also increases the percentage of time tunas spend associated, it would strongly impact their catchability and95

therefore their mortality.96

Several acoustic tagging studies characterized the behavior of tuna around AFADs, both through active (Girard97

et al., 2004) and passive tagging (Pérez et al., 2020; Robert et al., 2012). These studies allowed to determine both98

residence times and duration between two associations. On DFADs, residence times were measured and showed99

important variations between oceans and species, ranging from 1.0 to 6.6 days, 0.2 to 4.6 days and 1.4 to 7.6 days100

for yellowfin, skipjack and bigeye tuna respectively (Dagorn et al., 2007; Govinden et al., 2021; Matsumoto et al.,101

2016). However, times between two DFAD associations are not known because neighbor DFADs are difficult to102

locate and exhaustively instrument with acoustic receivers. Without these measures, the percentage of time tuna103
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spend associated with DFADs cannot be assessed, nor can the consequences of an increase of DFAD density on104

tuna.105

This study investigates the impacts of pelagic habitat modifications, driven by industrial purse seine fisheries, on106

the behavior and mortality of yellowfin tuna in the Western Indian Ocean. In the Indian Ocean (IO), both the bigeye107

and yellowfin tuna stocks are currently overfished and subject to overfishing (IOTC, 2022a,b,c). One of the possible108

causes explaining the decline of these stocks is the important fishing pressure in the area. Tuna fisheries in the IO109

represent 1.2 Mt of tuna caught in 2021, 44 % of which are caught by PS fisheries (percentage over 2017-2021),110

followed by gillnet and baitboat (IOTC, 2022d; ISSF, 2023). Industrial purse seiners substantially rely on the use of111

DFADs, with the percentage of tuna caught at floating objects having increased from around 60 % (mainly on natural112

floating objects) in the 1980s, to more than 85 % lately (IOTC, 2022e). The massive use of DFADs observed in recent113

years increases the fishing mortality of juvenile yellowfin and bigeye tuna and could also induce other indirect impacts,114

by modifying their habitat and thus increasing their natural mortality (Marsac et al., 2000; Hallier and Gaertner, 2008).115

Recent studies investigated habitat modifications induced by the use of DFADs by industrial purse seine fleets in the116

Western IO (Dagorn et al., 2013a; Dupaix et al., 2021). Using data from observers onboard tuna purse seine vessels117

from 2006 to 2018, Dupaix et al. (2021) highlighted that DFADs multiplied the densities of FOBs by at least 2 and118

represented more than 85 % of the overall FOBs. On the other hand, quantitative estimates of how such habitat119

changes have affected the behavior of tuna and its availability to the fisheries were not possible, because of the120

high uncertainties on the total number of DFADs present in the open ocean and the lack of data on the movement121

behavior of tuna in arrays of DFADs. Since 2020, detailed information on the total number of DFADs equipped with122

echosounder buoys has been made available to scientists (IOTC, 2019) at a 1°/monthly scale. This new data allows123

for the first time to have quantitative estimates of the density of DFADs in the Indian Ocean. Furthermore, a recent124

study (Pérez et al., 2022) developed an individual-based model fitting the movement behavior of yellowfin tuna in125

an array of AFADs measured from acoustic telemetry data. In the following, we used this newly available dataset,126

combined with observers’ data and the outputs of the individual-based model from (Pérez et al., 2022), to predict the127

time that yellowfin tuna spend between two DFAD associations in theWestern IO. Using these predictions, we assess128

the impact of the modification of the pelagic habitat – FOB density increase due to the introduction of DFADs – on129

the percentage of their time YFT spend associated. This percentage of time spent associated has a direct impact on130

tuna availability to fishers and can thus affect their mortality due to fishing. Furthemore, we discuss how this habitat131

modifications can have other potential indirect impacts on tuna’s fitness.132

2 | MATERIAL AND METHODS133

In order to compare tuna behavior in modified habitats (due to the introduction of DFADs) relative to an unmodified134

environment (where only FOBs other than DFADs, either of natural or anthropic origin, noted LOGs, are present),135

we estimated the percentage of time tuna spend associated with floating objects (Pa ) in FOB arrays characterized by136

different FOB densities. Simulations were run to model tuna movements in arrays of FOBs, using an individual-based137

model calibrated on passive acoustic data recorded for yellowfin tuna (Pérez et al., 2022). These simulations allowed138

estimating a theoretical relation between the time spent by tuna between two consecutive FOB associations (named139

CAT, Continuous Absence Time) and the density of FOBs. Observers data, combined with data on the density of140

DFADs at a 1°/monthly scale, were used to estimate the total density of FOBs (DFADs and LOGs) and the density of141

FOBs in the environment not modified by DFAD use (LOGs only). Predictions of CATs obtained in the pristine and142

modified habitat, combined with acoustic telemetry data informing on the amount of time spent by tuna associated143
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with FOBs (named CRT, Continuous Residence Time) were used to estimate changes in Pa . A schematic view of the144

methodology developed is presented in Figure 1 and details of the model, methods and data are provided below.145

2.1 | Model of tuna movements in an array of FOBs146

Simulations were performed using the FAT albaCoRaW model v1.4 (Dupaix et al., 2023b), an individual-based model147

simulating tuna trajectories in an array of FOBs based on a Correlated RandomWalk (Pérez et al., 2022). This model is148

built upon three behavioral rules: (i) tuna display a random search behavior between two associations to FOBs, (ii) at a149

certain distance from FOBs (the orientation radius R0) tuna show oriented movements towards FOBs and (iii) the tuna150

association dynamics follow a diel rythm. The random search between two associations is based on three parameters:151

the time-step ∆t , determining the time interval between two positions, the speed v, determining the length of each152

displacement at each time step, and the sinuosity coefficient c, determining the sinuosity of the path, from strait to a153

simple random walk. These parameters were fitted on passive acoustic tagging data of 70 cm long YFT in arrays of154

AFADs, in Pérez et al. (2022) (Table 1). We considered twelve different FOBdensities (noted ρ), ranging from 1.00×10−4155

to 4.44 × 10−3 FOB.km−2. These densities correspond to a distance to the nearest neighbor in a regular square lattice156

ranging from 100 to 15 km respectively (Table 1). For each of these densities, 100 different random arrays were157

generated, with FOB longitude and latitude being randomly picked. A thousand individual tunas were released from158

a random FOB in each of these arrays. As in Pérez et al. (2020), we define a Continuous Absence Time (CAT) as the159

time spent between two associations to a FOB. A tuna was considered associated when it was located at less than160

500 m from a FOB, which corresponds to the distance at which a tagged tuna can be detected by an acoustic receiver.161

CATs were separated into two categories: (i) CATd i f f when the movement occurred between two different FOBs and162

(ii) CATr etur n when the tuna returned to its departure FOB after more than 24 h. Studies processing experimental163

acoustic tagging data of tropical tuna relied on a Maximum Blanking Period of 24 h, i.e. below a temporal separation164

of 24 h between two subsequent acoustic detections at the same FOB, the fish is considered to be still associated165

(Capello et al., 2015; Pérez et al., 2022). Hence, each time a CATr etur n of less than 24 h was recorded, this movement166

was discarded and the simulation time was reset to the beginning. The simulation was stopped when the individual167

either performed a CATd i f f , a CATr etur n or after 1,500 days of simulation. The obtained Continuous Absence Time168

(CAT) was saved. A total of 100,000 CATs were simulated per FOB density, totaling 1,200,000 simulated CATs.169

2.2 | CAT trends for different FOB densities170

For each FOB density, the mean Continuous Absence Time (noted CAT ) was considered, based on the individual CAT171

values simulated above. Because the CATd i f f and CATr etur n were demonstrated to follow different processes (Pérez172

et al., 2020), we assessed the relationship between these two metrics and FOB density separately. The CATd i f f (in173

days) was related to FOB density (ρ) as follow:174

CATd i f f (ρ ) =
ad

ρbd
(1)

with (ad , bd ) ∈ Ò2
+. By construction, a CATr etur n cannot be shorter than 24h (Pérez et al., 2022; Capello et al., 2015).175

Hence, CATr etur n (in days) was related to ρ as follow:176
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CATr etur n (ρ ) = 1 + ar

ρbr
(2)

with (ar , br ) ∈ Ò2
+. Then, themeanContinuous Absence TimeCAT (ρ ) can be expressed as follow (see Supplementary177

Materials 1 for more details):178

CAT (ρ ) = R (ρ )CATd i f f (ρ ) + CATr etur n (ρ )
R (ρ ) + 1

(3)

where R = A
B , the ratio between the number of CATd i f f (A) and that of CATr etur n (B ). The ratio R as a function of ρ179

was fitted based on the following equation:180

R (ρ ) = aρc exp(b × ρ ) (4)

with (a, b, c ) ∈ Ò3
+. The values of ad , bd , ar , br , a , b and c were determined using the nls function of the R package181

stats v3.6.3.182

2.3 | FOB density calculation in the IO183

Echosounder buoy density data from January to December 2020, provided by the Indian Ocean Tuna Commission184

(IOTC, the regional fisheries management organisationmanaging tuna fishing in the IndianOcean), was used as a proxy185

for DFAD data (IOTC, 2021b). This dataset contains the monthly mean of the number of textitoperational buoys, i.e.,186

the echosounder buoys whose GPS position is remotely transmitted to one or several fishing vessels, for each 1°×1°187

cell of the Indian Ocean. This value was divided by the sea area of each cell, to obtain a mean monthly DFAD density188

(ρDF AD ). Densities were then averaged over 5° cells to predict CATs (for more elements on the spatial and temporal189

resolution choice see Supplementary Materials 2).190

FOB and LOG densities were calculated combining DFAD densities with data recorded by scientific observers191

on board French purse seine vessels (2014-2019). Observer data include the date, time, and location of the main192

activities of the fishing vessel (e.g. fishing sets, installation or modification of FOBs, searching for FOBs). For every193

activity occurring on a FOB, the type of operation (e.g. deployment, removal, and observation of a FOB) and the type194

of floating object (DFAD or LOG) are recorded. Using the methodology developed in Dupaix et al. (2021) applied to195

these observations, we calculated a mean monthly ratio m =
nLOG
nDF AD

(with nLOG and nDF AD the number of LOG and196

DFAD observations respectively) per 5° cell which was used to calculated the density of FOBs (ρFOB = (1+m )ρDF AD )197

and the density of LOGs (ρLOG = mρDF AD ). Because observers data are only available in areas where purse seine198

vessels are actively fishing, the calculation of the m ratio restricted the study area to the purse seine fishing zones.199
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2.4 | Prediction of mean Continuous Absence Time and Percentage of time associated in200

the IO201

Using the density values calculated above and the coefficients of the models fitted in section 2.3, monthlyCAT values202

were predicted for each 5° cells in 2020.203

The percentage of time a tuna spends associated with a FAD (noted Pa ) can be expressed as follow :204

Pa (ρ ) =
CRT

CRT + CAT (ρ )
× 100 (5)

with CRT the mean Continuous Residence Time, defined as continuous bouts of time spent at the same FAD205

without any day-scale absence (>24 h, Capello et al., 2015). Pérez et al. (2020) showed that CRT depends on AFAD206

density but to a lesser extent than CAT . Hence, CRT was considered constant and estimated to be 6.64 days, as207

measured on YFT at DFADs in theWestern Indian Ocean by Govinden et al. (2021). Using this value and the predicted208

CAT (ρ ) , we predicted themonthly values of Pa (ρ ) in each 5° cells in 2020, for each floating objects categories (DFAD,209

FOB, LOG). Because the calculation of them ratio reduced greatly the study area, we first predictedCAT and Pa values210

based on the density of DFADs (ρDF AD ). However, to determine the impact of DFADs on the predicted associative211

behavior, we compared the predicted values of CAT and Pa obtained with ρFOB and ρLOG . This comparison allows212

to determine the impact of the DFADs induced habitat modification on tuna availability to fishers.213

3 | RESULTS214

3.1 | Simulated Continuous Absence Time trends215

Simulated CAT , CATd i f f and CATr etur n values varied from 0.89 to 30.77 days, from 0.88 to 37.84 days, and from216

1.88 to 10.85 days, respectively. Shorter values were obtained for higher densities (Figure 2 & Table 2). The ratio R217

between the number of CATd i f f and that of CATr etur n was always above 1, meaning that the majority of CATs were218

performed between two different FOBs (CATd i f f ). It varied from 2.82, for the lowest density (ρ = 1.00 × 10−4 km−2),219

with CATr etur n representing 26.18 % of the number of CAT , to 87.11 for the highest density (ρ = 4.44 × 10−3 km−2),220

with CATr etur n representing 1.13 % of the total number of simulated CAT . Hence, when ρ decreases, tuna tend to221

return to the FOB of departure more often. Consequently, CAT values were shorter than CATd i f f for lower densities,222

due to the higher proportion of CATr etur n , but were almost exclusively driven by CATd i f f for high densities (Figure223

2 & Table 2). The parameters of the fits of CATd i f f (ρ ) , CATr etur n (ρ ) and R (ρ ) are presented in Table 3224

3.2 | DFAD densities225

Buoy densities obtained from the IOTC data, considered as DFAD densities (ρDF AD ) are presented in Figure 3. The226

maximum observed density in a 1° cell was ρ = 8.39 × 10−3 km−2, in August, which corresponds to 84 operational227

buoys in a 100 km × 100 km square and a mean distance to the nearest neighbor (in a regular square lattice) of 10.9228

km. After averaging the densities on a 5° grid, highest observed density was ρ = 2.8 × 10−3 km−2, corresponding229

to 28 operational buoys in a 100 km × 100 km square. Mean density over the whole area was ρ = 3.45 × 10−4230

km−2, corresponding to 3.45 buoys per 100 km × 100 km square. Areas with highest buoys densities were different231

according to the month, moving from the West to the East of the Seychelles from January to April. Highest buoys232
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densities could then be observed in the Arabian Sea, from May to July. In September and forward, highest densities233

were observed around the Seychelles and East of the Somalian EEZ. Finally, a high number of buoys around the234

Maldives was present in May and December, suggesting a high number of DFADs drifting towards the Eastern IO235

during this period (Figure 3E&L).236

3.3 | Predictions of Continuous Absence Time and Percentage of time associated237

Predicted CAT (ρDF AD ) values in 5° cells are presented in Figure 4 (see Supplementary Materials 3 for predictions238

of CATd i f f (ρDF AD ) , CATr etur n (ρDF AD ) and R (ρDF AD ) , and Supplementary Materials 4 for predictions on ρFOB239

and ρLOG ). Minimum CAT (ρDF AD ) predicted value was 1.06 days in February 2020. The area with shortest pre-240

dicted CAT (ρDF AD ) was spatially conserved through time: low values were observed from the North of the Mozam-241

bique Channel to the Arabian Sea, and from the African coast to 65°E. However, for each month, a peak of short242

CAT (ρDF AD ) was observed and moved from the South of the area to the North, from January to June (Figure 4A-243

F), and back to the South of the area from June to December (Figure 4F-L). The percentage of time spent by tuna244

associated with a DFAD (Pa (ρDF AD )) displayed similar spatial patterns as CAT (ρDF AD ) (Figure 5).245

3.4 | Impact of DFAD on tuna availability246

The comparison of the predictions obtained with FOB and LOG densities is presented in Figure 6 and Table 4. The247

mean density of all types of FOBs (ρFOB = 1.32 × 10−3 km-2) was 6.6 times higher than the mean LOG density248

(ρLOG = 2.00 × 10−4 km-2), resulting in much shorter CAT with mean values, averaged over cells and months, of 5249

and 46 days predicted from FOB and LOG densities, respectively. The strong density increase induced by DFADs250

resulted in a increase of the predicted proportion of time tuna spent associated (Pa ), from Pa (ρLOG ) = 20 % for the251

environment without DFADs, to Pa (ρFOB ) = 68 % for the environment modified by the introduction of DFADs.252

4 | DISCUSSION253

Human induced habitat modifications can impact species behavior and ultimately their fitness (Swearer et al., 2021).254

Continuous Absence Times (CATs) and Continuous Residence Times (CRTs) are two behavioral metrics allowing to255

assess the impact of the modification of one habitat component – the density of floating objects – on pelagic species.256

Several studies measured CATs (Robert et al., 2012, 2013; Rodriguez-Tress et al., 2017) or CRTs (Robert et al., 2013,257

2012; Govinden et al., 2013) in arrays of anchored FADs. CRTs were also measured at drifting FADs (Matsumoto258

et al., 2016; Tolotti et al., 2020; Govinden et al., 2021). However, experimentally measuring CATs in an array of FADs259

requires the equipment of the whole array with acoustic receivers. When these FADs are drifting, finding, equipping260

and recovering them is difficult and has never been achieved. Another challenge is related to the availability of reliable261

data on DFAD densities. In the Indian ocean, this data deficiency could only be overcome recently, with the provision262

of the number of operational buoys by the IOTC secretariat. This study is, to our knowledge, the first to give estimates263

of CATs of yellowfin tuna (YFT) in arrays of DFADs. These estimates show a strong influence of fisheries-induced264

habitat modifications on tuna associative behavior in the Western Indian Ocean (WIO). By modifying tuna habitat,265

purse seine fisheries increase the percentage of time tuna spend associated (Pa ), which has a direct influence on YFT266

availability to fishers, which can impact fishing mortality and tuna’s fitness.267

Numerous factors could affect the obtainedCAT and Pa predictions. Predictionsweremade based on operational268
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buoys densities deployed on FOBs (IOTC, 2021b), which is a proxy of the actual DFAD density in the ocean. Among269

the instrumented FOBs, those for which the buoy was remotely deactivated (and thus could not transmit its position270

anymore), are not present in the data. Moreover, if most Contracting Parties provided their buoys’ positions to the271

IOTC, some countries did not share their data (IOTC, 2021b), so densities could be underestimated.272

The other datasets used for the predictions are French observers data and measurement of CRTs. The use of273

French observers data restricted the study area, highlighting the need to better share this data among countries, as274

it is done for instrumented buoys, and to increase observers coverage. Only the mean CRT value for the WIO was275

used in our study (measured in Govinden et al., 2021) and we considered CRT as constant. This approximation could276

influence the predictions, as it was demonstrated that CRTs also depend on FAD density, even if to a lesser extent277

than CATs (Pérez et al., 2020). CRT measurements on DFADs also showed a variability between oceans as well as278

strong inter-individual variations (Tolotti et al., 2020; Govinden et al., 2013, 2021; Matsumoto et al., 2016). Further279

measurements of CRTs at DFADs and some modelling approach would then be needed to take this variability into280

account. However, Pérez et al. (2020) found that, as AFAD density increases, CRT also increases, suggesting that the281

increase in catchability observed in this study should be conserved or even intensified.282

The model used for the predictions was fitted on passive acoustic tagging data from YFT of fork length 70±10 cm,283

tagged in an array of AFADs (Pérez et al., 2022). At DFADs, two main size classes of YFT are found: individuals around284

50 cm and individuals around 120 cm (IOTC, 2022e, p. 52). Fitting the model on bigger individuals (70 cm instead285

of 50 cm) should not change drastically the obtained parameters, but could change slightly individual speed (fitted286

value v = 0.7m.s−1 in Pérez et al., 2022). Also, as tuna orient themselves towards FADs several kilometers away (4 to287

17 km, Girard et al., 2004), it was suggested that they could detect FADs using acoustic stimuli (Pérez et al., 2022).288

Although FAD design has not been identified to influence the attractiveness of FADs (Fréon and Dagorn, 2000), there289

might be a difference in detectability between anchored, which are composed of a bigger structure containing a metal290

chain, and drifting FADs. Hence, both the type of FAD (anchored or drifting) and tuna size class could change some291

model parameters, such as the orientation radius (R0, fitted value of 5 km) and swimming speed (v , fitted value of 0.7292

m.s-1). To account for these uncertainties, we also performed predictions using other parameters (v = 0.5 m.s−1 and293

R0 = 2 km). The obtained CAT were longer, resulting in smaller Pa values (see Supplementary Materials 5). However,294

it should be noted that changing the parameters do not change the observed trend: the habitat modification induced295

by DFAD increases YFT catchability, whatever the parameter set considered.296

Since 2016, in the IO, more than 80% of purse seine catch on tropical tuna wasmade on floating objects, reaching297

a maximum of almost 95 % in 2018 (see Figure 5 in IOTC, 2022e). YFT caught by industrial purse seine vessels on298

FOBs in the IO has steadily increased since 2008 and represented around 22% of the total YFT catch, by all gear types,299

in 2021 (ISSF, 2023; IOTC, 2022e). The predicted Pa were very high in theWestern IO, with amean of 68% (calculated300

on all FOBs), mainly due to DFAD introduction (mean prediction without DFADs of 20 %). As the habitat modification301

induced by DFADs strongly increases the percentage of their time YFT spend associated with floating objects, it302

increases their vulnerability to purse seine sets. In the IO, the YFT stock is currently overfished (i.e. the biomass is303

below the biomass reference point corresponding to the maximum sustainable yield) and subject to overfishing (i.e.304

the fishing mortality is above the reference point corresponding to the maximum sustainable yield; IOTC, 2021a).305

The Indian Ocean Tuna Commission (IOTC) imposes limits on the number of operational buoys (buoys which transmit306

DFAD position and other information to fishers) at 300 per vessel at any one time (IOTC, 2019). The present results307

show that limiting the number of floating objects and of operational buoys directly affects tuna catchability by purse308

seine vessels. Therefore, if the yellowfin tuna stock is to remain overfished, efforts should be made to further limit309

the number of floating objects in the ocean, through limits on operational buoy numbers and on DFAD deployments.310

In addition to the increase of fishing availability to fishers, the observed increase of the percentage of time as-311
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sociated (Pa ) could also have indirect impacts (i.e. not linked with fishing mortality) on YFT and other associated312

species. One of the main hypothesis to explain the association of tuna with floating objects is the meeting-point hy-313

pothesis (Fréon and Dagorn, 2000). Under this hypothesis, tuna would use FOBs as meeting-points to form larger314

schools. Fish schools can be viewed as an evolutionary trade-off: increasing school size would increase protection,315

mate choice and information, but would also increase inter-individual competition and the propensity to be detected316

by predators (Maury, 2017). The increase of FOB density, inducing an increase of Pa , could result in a disruption of317

schooling behavior and provoke the dispersion of individuals among FOBs. Capello et al. (2022) developed a model318

to study school behavior in a heterogeneous habitat, using tuna and FADs as a case study. Using several social sce-319

narios, they demonstrated that social behavior has an influence on how the fraction of schools which are associated320

varies with FAD density. Considering social behavior could help further understanding tuna behavior and its link with321

fitness. Echosounder buoys data allow to determine tuna aggregation dynamics (Baidai et al., 2020), and could be322

used to assess the impact of DFADs on tuna association dynamics, taking their social behavior into account.323

Also, Marsac et al. (2000) suggested that DFADs could act as ecological traps on tropical tuna. This hypothesis was324

based on another behavioral hypothesis, the indicator-log, which suggests that tuna associate with FOBs to select rich325

areas. Natural FOBs would be located mainly in rich areas because they originate from rivers and accumulate in rich326

frontal zones (Castro et al., 2002). Bymodifying the distribution of FOBs, DFADs could attract or retain individual tuna327

in areas that are detrimental to them and ultimately impact their fitness. Recent evidence, using a condition indicator328

as a proxy for tuna’s fitness, tend to suggest that DFADs did not act as an ecological trap in the WIO. However,329

DFAD impact could have been couteracted by other environmental effects or could have act on other biological330

processes than condition (Dupaix et al., 2023a). Tuna associative behavior can also be influenced by climate change,331

which modifies prey abundance and physical characteristics of the environment (Arrizabalaga et al., 2015; Druon et al.,332

2017). Nevertheless, the increase of FOB density increases Pa and FOB array connectivity (increase of R , i.e. of the333

proportion of CATd i f f ). Added to previous evidence suggesting that an increase of FAD density induces an increase334

of tuna residence times around FADs (Pérez et al., 2020), it suggests that DFAD use could retain tuna in some areas.335

Whether these areas can be considered poor for tropical tuna and the impact this retention can have on tuna’s fitness336

– through other biological parameters than condition – still needs to be investigated further.337

5 | CONCLUSION AND PERSPECTIVES338

Human activities impact species habitat, potentially impacting their fitness (IPBES, 2019). Several studies assessed339

the direct impact of habitat modifications on species fitness, or on fitness proxies (Mullu, 2016; IPBES, 2018). These340

impacts on fitness can also be behaviorally mediated, e.g. through ecological traps (Swearer et al., 2021; Gilroy and341

Sutherland, 2007; Dwernychuk and Boag, 1972; Marsac et al., 2000). Hence, there’s a need to assess the impact342

of habitat modifications on species behavior and mortality. In the case of exploited species, such as tuna, behavioral343

change can have even greater impacts on fitness because it can also increase their availability to fishers and hence their344

catchability and fishing mortality. Yellowfin tuna and Drifting Fish Aggregating Devices are an important case-study,345

as they allow to assess the impact of the modification of one habitat component, FOB density, on the associative346

behavior of a commercially important species, this behavior being strongly linked to survival. The simple modelling347

framework used here could predict such impacts and can be used as a tool to take into account indirect impacts of348

fisheries on tuna’s mortality. This framework can also be used as a base to assess how more complex processes such349

as social behavior and environmental changes could impact species survival and their vulnerability to human activities.350
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Figures372

F IGURE 1 Schematic representation of the methodology used in the study, which allowed the calculation of Paboth for the densities of all floating objects (all FOBs, habitat modified by DFADs) and for floating objects other than
DFADs (LOGs only, habitat not modified). Figure number illustrating different steps of the study are indicated on the
scheme. Pa : percentage of time spend associated. CAT: Continuous Absence Time; CRT: Continuous Residence
Time.
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F IGURE 2 Continuous Absence Times (CATs) trends as a function of FOB density, obtained from the simulations.
(A) CATd i f f fitted according to Equation 1. (B) CATr etur n fitted according to Equation 2. (C) Ratio between the
number of CATd i f f and the number of CATr etur n (R ) fitted according to Equation 4. Parameter values are available
in Table 3. (D) Mean CAT . The blue line is obtained from the fits in panels A,B and C and from Equation (3). ρ: FOB
density.
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F IGURE 3 Mean monthly buoy densities per 1° cells in the western Indian Ocean calculated from IOTC (2021b), expressed in buoys.km−2. Buoy densities are
considered as DFAD densities, see details in section 2.3
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F IGURE 4 Mean monthly Continuous Absence Times of individual yellowfin tunas predicted using DFAD density (CAT (ρDF AD ) , in days) per 5° cells in the
western Indian Ocean in 2020. The color scale is log transformed. CAT (ρDF AD ) longer than 30 days were not represented.
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F IGURE 5 Mean monthly percentage of time spent associated by individual yellowfin tunas predicted using DFAD density (Pa (ρDF AD )) per 5° cells in the
Western Indian Ocean in 2020.
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F IGURE 6 Comparison between predictions performed on the density of all FOBs (ρFOB , in red) and LOGs only
(ρLOG , in blue) density. Monthly mean density of floating object (A), predicted mean monthly Continuous Absence
Time (CAT (ρ )) (B) and percentage of time spent associated (Pa (ρ )) (C), per 5° cell.
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Tables373

TABLE 1 Parameters used in the simulations, performed using Dupaix et al. (2023b) and based on the calibration
in Pérez et al. (2022). ∆t : time-step; v : speed; R0: orientation radius; c: sinuosity coefficient; D : mean inter-FOB
distance.

∆t v R0 c D

100 s 0.7 m.s−1 5 km 0.99 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 km

TABLE 2 Values of CATs for each of the simulated FOB density. D: mean inter-FOB distance in a regular square
lattice (in km); ρ: FOB density (in km−2); CAT : mean Continuous Absence Time (in days); CATd i f f : mean Continuous
Absence Time when the movement occurred between two different FOBs (in days); CATr etur n : mean Continuous
Absence Time when the individual returned to the departure FOB (in days); R: ratio between the number of CATd i f fand the number of CATr etur n .

D ρ CAT CATd i f f CATr etur n R
100 1.00 × 10−4 30.77 37.84 10.85 2.82
90 1.23 × 10−4 24.81 29.81 9.56 3.04
80 1.56 × 10−4 19.69 23.16 8.02 3.36
70 2.04 × 10−4 15.09 17.26 7.05 3.71
60 2.78 × 10−4 11.15 12.37 5.83 4.35
50 4.00 × 10−4 7.77 8.35 4.67 5.33
40 6.25 × 10−4 5.04 5.23 3.77 6.98
35 8.16 × 10−4 3.89 3.96 3.30 8.59
30 1.11 × 10−3 2.91 2.92 2.87 11.41
25 1.60 × 10−3 2.08 2.05 2.51 16.52
20 2.50 × 10−3 1.40 1.38 2.13 29.97
15 4.44 × 10−3 0.89 0.88 1.88 87.11
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TABLE 3 Summary of the fitted parameter values.

Metric Formula Fitted values Standard Error
CATd i f f ad × ρ−bd ad = 1.8 × 10−3 1.10 × 10−4

bd = 1.08 1.40 × 10−2

CATr etur n 1 + ar × ρ−br ar = 1.7 × 10−2 1.35 × 10−3

br = 6.9 × 10−1 1.78 × 10−2

R aρc exp(b × ρ ) a = 150 16

b = 422 7

c = 4.5 × 10−1 1.5 × 10−2

TABLE 4 Summary of monthly CAT and Pa values per 5° cell in the Indian Ocean in 2020, predicted using FOB
and LOG densities (ρFOB and ρLOG ).

FOB type ρ (km−2) CAT (days) Pa (%)
mean SE mean SE mean SE

FOB 1.32 × 10−3 4.52 × 10−6 4.97 6.30 × 10−2 68.3 8.00 × 10−2

LOG 2.00 × 10−4 3.38 × 10−6 46.3 3.43 × 10−1 20.5 8.30 × 10−2
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