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Abstract: Ensuring safety in human–robot collaboration is one of the main challenges in mobile
robotics today. Semantic maps are a potential solution because they provide semantic knowledge
in addition to the geometric representation of the environment. They allow robots to perform their
basic tasks using geometric representation, mainly localization, path planning and navigation, and
additionally allow them to maintain a cognitive interpretation of the environment in order to reason
and make decisions based on the context. The goal of this paper is to briefly review semantic
mapping for a single mobile robot in indoor environments, and then focus on collaborative mobile
semantic mapping. In both contexts, the semantic mapping process is divided into modules/tasks,
and recent solutions for each module are discussed. Possible system architectures are also discussed
for collaborative semantic mapping. Finally, future directions are highlighted.

Keywords: semantic scene understanding; cooperating robots; data fusion; cognitive human–robot
interaction

1. Introduction

Mapping is an important task in mobile robotics on which many other tasks depend.
Most of the existing mapping approaches aim at building either a metric map or a topologi-
cal map of the robot environment. The difference between these two representations is that
a metric map provides a geometric representation of the objects in the environment in a
global reference system, while a topological map represents the environment as a graph,
where nodes represent locations and edges represent relationships between them [1]. These
two representations are mainly used by the robot to localize itself, plan its trajectory, avoid
obstacles and navigate in the environment. However, they do not allow it to understand its
environment as a human does. For example, it is unable to distinguish the kitchen from the
living room, or to know which objects make up a specific room.

Over the past few years, mobile robots are increasingly sharing the same space as
humans in various applications, especially service robots. Therefore, the challenge of en-
dowing robots with cognitive interpretation capabilities of the environment has increased
and many researchers have been addressing it. Some of them considered that the most
appropriate way to achieve this is through semantic mapping, which consists of integrat-
ing semantic attributes about the objects and places encountered into a map, namely, a
semantic map (SM). Consequently, the semantic map is an enhanced representation of
the environment, which includes both geometric information and high-level features [2].
Thus, while a geometric map stores the geometric features that the robot needs for its basic
tasks (localization and navigation), the high-level features represent common knowledge
concepts about shapes, places, objects and even the relationships between them. The de-
ployment of this map in mobile robots facilitates their interaction with humans and extends
their capabilities, especially navigation [3,4] and task-planning capabilities [5–7].
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There are a few previous works in the literature that have reviewed topics related
to semantic mapping. The study [8] is one of the first reviews on semantic mapping. It
focuses on highlighting its trends and main applications in indoor and outdoor scenes.
Next, Qiang et aI. [9] proposed a review focusing on visual semantic mapping. They
focus on semantic-information extraction techniques based on visual data through feature
extraction, object/place recognition and semantic representation methods. Subsequently,
semantic mapping is discussed as one of many map representations in the more general
review [10], which focuses on the history and trends of the simultaneous localization and
mapping (SLAM) problem. In the recent review [11], the authors reviewed works on
semantic mapping and focused on the application to semantic navigation, which involves
performing navigation using high-level commands such as “go to the bathroom”. Finally,
the most recent study proposed in [12], reviewed the process of semantic mapping and
focused on indoor scenes. It mainly presents semantic-mapping modules and different
techniques to implement them, as well as current challenges and future directions.

This review has four main differences from previous works. First, the main difference
is that all previous works focus on reviewing single-robot semantic mapping, where a
single robot is used for semantic mapping. However, recently, some works have started
to address this problem in a collaborative mode using a fleet of robots. To the best of our
knowledge, no previous work has examined collaborative semantic mapping. Indeed, there
are works that have addressed collaborative geometric mapping, including collaborative
SLAM [13], but not collaborative semantic mapping. Second, for the single-robot mode, this
work focuses only on recent work on semantic mapping in indoor environments. Indeed,
the perspective of this study is to use semantic mapping for successful human–robot
interaction (HRI) in indoor environments, namely, domestic and industrial environments, so
works interested in semantic mapping in outdoor environments [14–16] are not addressed
in this paper, but there are some previous papers that have examined this topic [2,8,17].
For the collaborative mode, since there is much less work available, both indoor and
outdoor semantic mapping are reviewed to give a better overview of what is carried out in
the literature. Third, this work shows the main modules of the semantic-mapping process
in single-robot and collaborative mode. It highlights the differences between them and
the different solutions to implement these modules. The main contribution of this work is
to explore the multi-robot data association and fusion module for the collaborative mode.
Thus, it studies and classifies the different solutions available to deal with the problem
of integrating data from different robots into a single semantic map. Fourth, this paper
highlights the main remaining challenges in the field of single-robot and collaborative
semantic mapping.

This paper is organized as follows: Section 2 is reserved for single-robot semantic
mapping. We first present this process and its main modules/tasks. Then, we present
solutions to implement each module, mainly geometric mapping, semantic data acquisition
and map representation. In Section 3, we study collaborative semantic mapping. First,
we present the mapping process, then we study the possible architectures to implement
it in a collaborative setting. Finally, we focus on the different solutions proposed for the
multi-robot data association and fusion module. In Section 4, we detail the remaining
challenges in semantic mapping for future directions. Lastly, we conclude with the main
contributions of this paper.

2. Single-Robot Semantic Mapping

Single-robot semantic mapping is the process in which a single robot explores the
environment and builds its semantic map. As shown in Figure 1, this process is mainly
composed of two major tasks: data acquisition and processing, and data representation.
Regarding the first task, the robot collects two types of data: geometric data and semantic
data. Geometric data is usually acquired by the robot’s sensors and is processed to generate
a geometric map of the environment. Semantic data can be acquired from different sources
and is used to add semantic meanings to the mapped features. The three main sources of
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semantic data are the extraction of interesting features from sensor data, the incorporation
of data through HRI, and the extraction of data from a knowledge database, which is a
model of the concepts involved in the explored environment and the relationships between
them. As for the representation task, it consists of organizing those geometric and semantic
data in a structured representation, namely, the semantic map, so that the robot can exploit
them to understand its environment. In what follows, we study in depth the solutions
proposed in the literature to solve these two tasks. It is important to mention that this work
does not cover semantic SLAM systems [18–20], which benefit from object recognition to
tightly integrate metric and semantic information in map localization and estimation [21].
However, it focuses on approaches that extract metric and semantic information in two
separate processes and then merge the results into a semantic map.

Data 
Acquisition

&
Processing

Data 
representation

Sensors

HRI

Knowledge 
database

Semantic 
information

Geometric 
representation

SM

Figure 1. The single-robot semantic-mapping process.

2.1. Data Acquisition and Processing

In the single-robot semantic-mapping process, there are mainly three data-acquisition
methods: perception-based data acquisition, HRI-based data acquisition and reasoning-
based acquisition.

2.1.1. Perception-Based Data Acquisition

Sensor observations are used to represent the geometry of the environment and
extract its semantics autonomously. The geometric representation is usually obtained
using state-of-the-art SLAM methods, which consist of simultaneously estimating the
state of a robot and building a model of the environment perceived by its sensors [10].
In contrast, semantic information is mainly extracted using object-detection and semantic-
segmentation techniques.

Regarding systems integrating object detection, Qi et al. [4] proposed an approach to
create a semantic occupancy map of a home environment. The sonar-based SLAM method
proposed in [22] is used to create an occupancy grid map. Then, using odometry and a
stereo camera, a method based on object detection and triangulation was used to add the ob-
ject’s topological area with its category to the occupancy map. In addition, Zender et al. [23]
proposed a system to create a multi-layer map of an indoor environment. The laser-based
EKF-SLAM algorithm [24] was used to create the low-level layers, and then receptive field
cooccurrence histograms (RFCH) [25], an RGB camera-based object-recognition algorithm,
was used to collect the physical feature categories and establish links to the high-level layer.

A recent trend in object detection is semantic segmentation, a paradigm that assigns
a class label to pixels in an input image [26]. The semantic-mapping approach proposed
in [27] incorporates semantic segmentation using a video stream from a monocular camera
for 3D reconstruction of indoor and outdoor environments. The monocular semi-dense
SLAM algorithm [28], which is effective in indoor and outdoor environments, is used to
represent the geometric structure of the environment. In parallel, a pre-trained convolu-
tional neural network (CNN) is used for 2D semantic segmentation. In addition, Niko
et al. [29] proposed an approach that uses an RGB-D camera to map a 3D environment and
reconstruct models of the detected objects on the fly. ORB-SLAM2 [30] is used to perform
mapping and camera localization on each RGB-D image. In parallel, objects are detected on
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the RGB images using a CNN and the associated point cloud is segmented in 3D. In [27,29],
image-based deep-learning techniques were used for semantic information acquisition due
to their great progress in object detection and segmentation based on 2D images.

In addition to these systems that perform object recognition and classification from
visual data, there are other works that use geometric data from laser sensors to extract high-
level information. Pronobis and Jensfelt [31] proposed a system that combines visual cues
and laser range data using SVM classifiers to distinguish indoor areas (hallway, kitchen,
meeting room, etc.). Geometric feature extraction was used to determine the shape and
size properties of the environment, and visual feature extraction was used to obtain the
appearance and objects present in the environment.

Although exploring object-detection and segmentation techniques is not the main
focus of this work, they are necessary to understand how semantic mapping works. For in-
terested readers, there are recent reviews of deep-learning-based semantic segmentation
that provide a comprehensive survey on the topic. These reviews cover almost all pop-
ular image datasets and semantic segmentation methods, and for all modalities, such as
RGB [32,33], RGB-D [34] and 3D data [35,36].

Since perceptions are used in semantic mapping to extract both geometric and seman-
tic information, the choice of appropriate sensors, therefore, depends mainly on the type of
geometric representation to be obtained (a 2D/3D map, a point cloud, etc.) and the level
of the semantic description of the environment. The most popular sensors for geometric
mapping are 2D/3D lasers, and, recently, RGB-D cameras are increasingly used [12]. These
cameras are relatively inexpensive and can provide an RGB image and a depth map simul-
taneously. The depth map provides precise information on the distance of the detected
elements. The visual sensors are frequently chosen for the acquisition of semantic infor-
mation because they allow a perception of the environment close to that perceived by the
human eye. They also allow the collection of low-level data, such as points, and high-level
data, such as object categories [9].

2.1.2. HRI-Based Data Acquisition

According to [3], the automatic extraction of semantic information from sensors is
limited and not robust enough. Indeed, object and place recognition are complex tasks
for robots. That is why some techniques integrate the human in the process of identifying
objects or places in order to create an augmented map [11,12].

In [3], the authors guided the robot through a tour of the environment to map it.
The RBPF-SLAM algorithm [37,38] based on laser data and odometry data was used to
generate an occupancy map in real time. At the same time, the user has an IFLYTEK-based
voice application on their cell phone to label the visited places on the map. In order to
avoid errors in the recognition of voice commands given by the operator, a confirmation
step is applied. In the same way, in [23], the robot has a prior knowledge of spatial concepts,
and the user’s role is to assist it in the process of labeling places. Indeed, while walking
with the robot, the user expresses what they considers relevant, for example: “This is the
corridor” or “This is the charging station”.

In another approach [39], as shown in Figure 2, the robot is guided by the user in a
tour of the operational environment. It perceives its environment and detects the object
that the user is pointing to with a commercial laser. Then, this object is segmented in the
image and the robot estimates its position and orientation. Finally, it receives its description
from the user via a speech-recognition module and associates it with its position to build
the object representation to be added to the map. In [40], Bastianelli et al. improved this
approach by implementing a system that enables adding new objects to the representation
through continuous and online interaction with the user after the initial semantic mapping.
Indeed, knowledge is acquired as needed by the robot and added progressively to the
environment representation. For example, if the user gives a voice command indicating
an unknown location for the robot, an integrated Petri net acquisition process is launched.
During this process, the user can guide the system with voice commands such as “Turn
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right”, “Follow me” or “Go to the kitchen”. When the robot is in front of the new location or
object, the user can point to the object with the laser then tell the robot its label, e.g., “This is
the emergency door”.

Figure 2. Adding semantic data to the map by tagging objects with a comercial laser pointer and
giving a natural language description [40]. (a) The laser pointer is used to mark the object. (b) The
point is detected in HSV color space. (c) The object is located in reference to the robot laser scan
(represented by black pixels).

Pronobis and Jensfelt [31] proposed an algorithm that combines information about
the presence of objects with the semantic properties of places, such as size and appearance,
to classify rooms. During the mapping process, the user can input additional information
about objects in the room using a graphical interface on the computer used by the robot.
For example, if the user provides information about the existence of an object, the robot
treats it as an additional source of information. The work of Crespo et al. [41] implemented
natural language dialogues between the user and the robot through a voice interface and
the keyboard. Therefore, it can add object categories and their semantic relations to the
map. For example, the robot can ask the user about the possible uses of an object or about
the possibilities of interaction with objects in the environment.

In conclusion, using HRI-based methods, the map representation can be enriched with
various semantic information. Thus, by interacting with the robot via a mobile application,
voice commands, or a user interface, an operator can include information about the objects
in the scene (the categories of objects, the space they occupy, and their presence in a
room), information about the locations (the categories of rooms and their characteristics),
and information about the semantic relationships between the objects (the utility of an
object). Moreover, while most works focus only on mapping static scenes, few works
propose HRI-based data acquisition techniques to update the representation of dynamic
features [40].

2.1.3. Reasoning-Based Semantic Data Acquisition

Reasoning is a way that allows the robot to acquire significant knowledge of its en-
vironment. It consists of using data already obtained by other methods and a knowledge
database to infer new information about the environment. In general, the knowledge
database contains common-sense knowledge, that is, knowledge that all humans possess
and that they have acquired since their birth without even being aware of it [42]. This
database is usually represented as a structure composed of concepts describing the environ-
ment linked by rules. For example, Galindo et al. [43] proposed a hierarchical structure of
conceptual information modeled by the NeoClassic language [44]. The lowest level of this
structure is composed of symbols related to physical elements detected in the environment.
The conceptual structure is composed of laws that link these symbols to concepts and link
concepts together to allow reasoning about symbols of known categories. For example,
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if a detected physical element is related to the symbol “oven-1”, and the symbol is related
to the concept “oven”, and the concept “oven” is related to the concept “kitchen” by a link
“contains”, then the robot’s current location can be concluded as the kitchen.

In the case of [23], common-sense knowledge about an indoor office environment is
modeled in the ontology shown in Figure 3a. An ontology is a data model representing
a set of concepts in a domain and relationships between them. Based on this description,
the system uses a reasoning software to derive more specific categories for known topologi-
cal areas. Indeed, as shown in Figure 3b, if an area is classified as a room (“area1”) and it
contains a coffe machine, thus, using the conceptual knowledge given by the ontology, this
area can be classified as a kitchen instance. Similarly, a semantic ontology is used in [45] to
create a task scheduling strategy for service robots. In this ontology, the concept “objects” is
separated into “static objects” and “dynamic objects”. Then, the static objects are linked to the
dynamic objects by probabilistic relations which allow to obtain the approximate positions
of the dynamic objects by reasoning.

Figure 3. The example of reasoning-based data acquisition in [23]. (a) Illustration of a part of the
common-sense ontology of an indoor office environment, (b) combining different types of knowledge
in the conceptual map.

Furthermore, the authors of [31] propose a probabilistic conceptual structure where the
rules linking the concepts can be predefined, acquired or inferred and can be probabilistic
or not. The categories and properties of elements in the environment are estimated together
using a probabilistic chain graph model. Room properties such as objects, appearance,
area, and shape are extracted from sensors, then used with room–object relationships
provided by the Open Mind Indoor Common Sense knowledge database to infer room
categories. The authors of [41] proposed a relational model that allows to easily store
information about the environment in tables managed by a reasoning engine. The design
of this model implicitly defines the relationships between entities. Therefore, it is not
necessary to manually define rules between them as for other structures. Using this model,
if the robot identifies objects in the same room that have a common utility, it is possible
to infer that these objects are located in a room where the robot could find other objects
with related utilities. Thus, new room categories are created autonomously. In addition,
the identification of objects and rooms allows the detection of possible inconsistencies.
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In conclusion, a reasoning system can be implemented in the semantic-mapping
process to infer additional semantic information. This system includes a common-sense
knowledge database describing the application environment and a reasoning engine to
exploit this knowledge. In general, the knowledge database is composed of predefined
data and can be completed with data acquired by the robot during the mapping process.

2.2. Semantic-Map Representation

In order to exploit the semantic data extracted by the above methods, it is necessary
to organize them in a structure suitable for the application, which is the output semantic
map. There are two main options for the representation: either to attach the semantic
information to the features detected in the geometric map, or to organize the geometric and
semantic information in a hierarchical structure with different levels of abstraction. These
two options are described in detail below.

2.2.1. Visual Geometric-Semantic Representations

This simply consists of attaching semantic information directly to the associated
physical features in the geometric map. For example, Sunderhauf et al. [29] use ORB-
SLAM2 to create a point cloud of the environment, and the points associated with each
object are modeled by a different color. In [4], a semantic occupancy map is created by
adding minimum bounding rectangles (MBRs), which represent objects’ occupied spaces,
to their topological areas in the map. The different object categories are represented by
different colors. Zhao et al. [3] also used ROS’s Gmapping module to create an occupancy
map of the environment. During the process, as the robot receives semantic information, it
combines it with its position and adds a new semantic node to the map.

These methods provide maps that enable direct interpretation of semantic information
in positions. Therefore, they can be easily deployed in mobile robot navigation systems to
perform semantic navigation tasks. However, such simple representations are insufficient
to allow robots to perform complex tasks such as mission reasoning.

2.2.2. Hierarchical Representations

In order to allow robots to perform a reasoning process, more interesting representa-
tions have been proposed, namely, hierarchical representations, where specific information
is placed in the lower levels and abstract information in the higher levels. Pronobis et al. [31]
proposed a representation, shown in Figure 4, that gives the robot the ability to infer the
categories of places using the properties of the space, including appearance, surface, shape
and objects. They represent the spatial knowledge by a four-layer hierarchical structure:
the sensory layer, the place layer, the categorical layer and the conceptual layer. The low-
est level of the structure contains sensor perception data and the fourth level contains
abstract conceptual knowledge. The sensory layer contains a metric map of the environ-
ment. The place layer contains a topological graph with nodes representing locations and
edges encoding the path to other nodes. The categorical layer contains objects, landmarks,
and both geometric and visual models. Finally, the conceptual layer contains a static
common-sense knowledge ontology and the links between the concepts in this ontology
and the low-level knowledge obtained from the other three layers. This structure not only
allows the robot to classify rooms, but also to predict the existence of objects, properties of
the space and unexplored spaces.
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Figure 4. The layered structure of the spatial representation and a visualization of an extract of the
conceptual-layer ontology proposed in [31].

While the environment in [31] is represented by a single hierarchical structure, in [43],
a representation with two hierarchical structures was proposed: the first to represent spatial
knowledge and the second to represent conceptual knowledge. On one side, the spatial hi-
erarchy is composed of three levels. The first and the lowest level contains local occupancy
maps, locations and images, stored by the robot. The second level contains a topological
graph of the environment. In addition, the third level contains an abstract node that repre-
sents the whole environment. On the other hand, the conceptual hierarchy is composed
of four levels. It is hand-coded in advance with the NeoClassic language. The top level
contains a node called “Thing” from which two branches, “Parts” and “Objects”, emerge.
The third level contains object and room categories, and the lowest level contains object and
room instances recognized by the robot. These two hierarchies are linked by the anchoring
process, which consists of linking the entities recognized at different levels of the spatial
hierarchy to the corresponding symbols that represent them in the conceptual hierarchy.
These links allow the robot to exploit semantic information to determine localization errors
by reasoning of the objects’ expected locations and to perform semantic navigation tasks.

Similarly, in [40], the robot knowledge is divided into two parts: world knowledge,
which represents the specific knowledge of a certain environment, and domain knowledge,
which is the general knowledge of the application domain. The world knowledge is
composed of the following elements: an occupancy grid, cell maps to represent local
locations, a topological graph of the global environment and instances of recognized
physical elements with their categories and properties. On the other hand, the domain
knowledge is composed, as in [43], of the concepts involved in the environment as well
as their properties and relationships. For this work, the main purpose of adding domain
knowledge is to associate each perceived object with its spatial and functional properties in
order to allow the robot to reason about the tasks related to these objects.
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In conclusion [12], the representations that consist of visualizing the semantic informa-
tion by different colors on the map allow to show results of semantic knowledge acquisition,
but they are not easily implemented in the robots’ tasks. On the other hand, the repre-
sentations based on hierarchical structures do not allow to visualize this knowledge on a
map, but they allow to structure and organize knowledge by levels of abstraction to make
a robot able to reason. Table 1 provides a summary of all the previous sections, including
the different semantic-mapping approaches used in works in the context of single-robot
semantic mapping, the different methods used for semantic data acquisition, and the main
data collected on objects and places.

Table 1. Summary of the reviewd works in relation to the single-robot semantic-mapping framework.

Ref. Year
Semantic Data

Sources
Approach

Collected Semantic Data

About Objects About Places

[23] 2008
Perception - HRI

Reasoning

Vision-based SLAM,

object recognition

Categories,

instances

Categories,

instances

[31] 2012
Perception - HRI

Reasoning

EKF-SLAM ,

recognition and instance reasoning,

properties classification

Categories,

relationships with other

concepts

Appearance,

surface, shape

[40] 2013 HRI Incremental approach by HRI
Categories, positions,

sizes, properties

Categories,

robot positions

[3] 2015 HRI RBPF-SLAM, voice recognition _ Categories

[27] 2016 Perception
Monocular LSD-SLAM,

2D segmentation with CNN
Categories _

[41] 2017 Reasoning _
Instances, categories,

utilities, characteristics,

relationships with places

Instances,

categories

[29] 2017 Perception
RGBD-based ORB-SLAM2,

Object Detection,

3D Segmentation with CNN

Categories,

instances
_

[4] 2020 Perception
Sonar-based SLAM, object detection,

triangulation
Categories Categories

[45] 2022 Perception–reasoning Monocular SLAM, object detection

Categories,

relationships with other

concepts

Categories

3. Collaborative Semantic Mapping

Recently, collaborative robotics—which involves multiple agents, including robots,
smart machines, and operators, working together to accomplish a task, as presented in
Figure 5—has gained increasing interest in the research community. This collaboration
provides a great opportunity to improve the performance of a fleet of robots. Indeed, at the
individual level, it allows to increase the accuracy and robustness of a robot’s estimations
by integrating data collected by other agents and also to reduce its computing resources by
distributing and parallelizing tasks. At the second level, it improves the efficiency of the
fleet by task parallelization and by allowing the robots to substitute each other in case of
a robot failure. However, on the other hand, this introduces some complexity in robotic
systems and presents new challenges, especially in terms of inter-robot communication
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and multi-robot data processing [46]. For example: data exchange, data association and data
representation in a global map.

Robot R1
Sub-task 1

Robot R2
Sub-task 2

Robot Rn
Sub-task 3

Server

Sensor S1

HRI

Inter-robot
data exchange

Server-robot
data exchange

S1 data

Figure 5. An example of a collaborative robotics setting.

In this context, over the past few years, a few researchers have started working on
the multi-robot semantic-mapping problem, where a fleet of robots work together, while
exchanging data, to create a global semantic map of the environment. These works are
based on the progress made in various previous works on single-robot semantic mapping
and take advantage of the advances made in the field of collaborative robotics, such as
inter-robot communication methods and different data-allocation architectures to propose
new consistent collaborative semantic-mapping approaches [47]. It is worth mentioning
that all the works found and reviewed in this paper focus on multi-robot solutions since
they only use mobile robots for mapping. Thus, in the rest of the paper, the use of the term
“collaborative” refers to “multi-robot”.

In the following sections, we first present a description of the multi-robot semantic-
mapping system, then we detail the different tasks/data allocation architectures and
existing strategies for multi-robot data association and fusion. It is important to mention
that in this work, the focus is not on the works that treat the multi-robot semantic SLAM
problem where object detection and recognition techniques are used to solve a SLAM
problem, the focus is only on works that solve the collaborative semantic-mapping problem.

3.1. Multi-Robot Semantic-Mapping Pipeline

The multi-robot semantic-mapping system is mainly composed of the same main
modules as the single-robot semantic-mapping system (Section 2). First, the geometric
mapping module is in charge of creating the geometric representation of the environment.
Then, the semantic segmentation or object-recognition module is in charge of understanding
the environment and collecting semantic data. Last, the map-representation module is in
charge of creating and updating the model of the environment.

Nevertheless, the collaborative semantic-mapping system includes an additional mod-
ule, which can be called the data association and fusion module. It treats the problem of
associating and fusing multi-robot data into a coherent global model. In addition, this
system is generally characterized by three main features: the task and data distribution
scheme, the communication policy and the multi-robot data association and fusion strategy.

The task and data distribution scheme: defines the system architecture, its components,
the connections between them and the tasks assigned to each component.
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The communication policy:

• Defines the topology of the exchanges: the different agents with which each robot has
the physical possibility and the authorization to communicate;

• Defines the type of communicated data: sensor data or partial semantic maps;
• Plans the exchanges: which information to send, to which robot and at which time.

The multi-robot data association and fusion strategy: is the solution used to integrate the
multi-robot exchanged data into a global semantic map.

3.2. Tasks and Data Allocation Architectures

Regarding the tasks and data distribution scheme, there are two main architectures
that can be used to implement a collaborative semantic-mapping system: a centralized
or a distributed architecture. They are different in several aspects, including the system
components, the distribution of modules and the topology of exchanges between the
different components.

3.2.1. Centralized Semantic-Mapping Architecture

The centralized architecture, presented in Figure 6, is composed of two main agents:
the robots and the server. Indeed, the tasks are distributed and the data is exchanged
between these two components in order to establish the semantic mapping. It is mainly
used when the robots in the fleet have insufficient processing power to run the deployed
system and when the communication infrastructure is always available and can support
the necessary bandwidth [48]. In this case, the communication topology between the robots
and the server can be a unidirectional or bidirectional communication. The first one consists
in sending data in one direction only, from the robots to the server, and it is mainly used
when the semantic map created by the server will not be used by the fleet of robots for
their tasks and will be directly exploited for other server-related tasks. On the other hand,
bidirectional communication is used to exchange data in both directions between the server
and the robots. It is usually used to send the global semantic map created to the robot fleet
so that they can use it in their tasks such as semantic navigation or location classification.
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Figure 6. Representation of the distribution of a semantic-mapping system in a centralized architec-
ture. (a) Robots play the role of sensors and the whole process of semantic mapping is performed in
the server, (b) each robot implements a complete semantic-mapping system and the server manages
the fusion and association of the multi-robot local maps.

Figure 6 presents two potential centralized formalizations of the collaborative semantic-
mapping problem. They mainly depend on the degree of autonomy granted to the mobile
robot and the degree of task integration in the server. For the first case, the robots are
considered as mobile sensors. Their only task is to acquire data from the environment
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using their sensors, and then send them to the server for processing and estimation of the
global semantic map. More specifically, all the single-robot semantic-mapping modules,
of each robot, are implemented in the server, mainly the SLAM task and the semantic
data acquisition task. In addition, the server determines the correspondences between the
data of different robots and fuses them in order to maintain a consistent global semantic
map. In this case, the robots are very dependent on the server and have a low degree of
autonomy. If the server or communication breaks down, the robot loses contact with the
other robots.

In the second case, a complete semantic-mapping system is implemented in each
robot, as described in Section 2. Then, the robots communicate their individual semantic
maps to the server where only the inter-robot tasks are performed, namely, the multi-robot
semantic-map association and fusion. In this case, the knowledge database is removed
from the inputs of the single-robot semantic-mapping system and generally implemented
in the server to be shared among all robots. This formalization makes the robots more
autonomous, as they always have their own representations in case of server or communi-
cation failures. However, in some cases, the robot does not build a complete individual
semantic map. Indeed, it runs basic modules such as the SLAM algorithm to collect geomet-
ric data and an object-recognition or semantic-segmentation algorithm to collect semantic
data, but it does not create a local semantic map. Then, the data exchanged here is coupled
with semantic and geometric information and not local maps. Therefore, the multi-robot
data association and fusion module, implemented in the server, must process the corre-
spondences and inconsistencies of the incoming data from several robots and integrate
them into a single representation of the environment (Section 3.3.2).

Considering these formalizations, we can conclude that three types of data can be com-
municated by the robots to the server: sensor row data, separate geometric and semantic
data, and local semantic maps. Therefore, each case has its specific requirements in terms
of communication bandwidth latency and robot processing power.

In the literature, there are a few works that use a centralized architecture for semantic
mapping, which covers the second case presented in Figure 6b. In this work [49], the authors
proposed a server–client architecture for mapping a domestic environment. On the one
hand, the client implements four main components: an object-recognition module, an object
information-processing module, a robot-localization module and a communication module.
Indeed, the object-recognition module is used to detect the robot’s environment and the
objects within it. The output of this component is used as input of the object information-
processing module, which collects and packages information such as the object category, its
size, its 3D position in the robot frame, its orientation and its confidence score. Meanwhile,
the localization module is in charge of localizing the robot on a predefined map and
collecting its position information. Then, a communication module transmits the resulting
semantic and geometric informations to the server. On the other hand, the server is
composed of several elements, the main ones being: the general manager, the object
manager, the ontology manager and the graphical user interface. The general manager
handles the data flow by creating connections with the clients. The object manager processes
the received object detections and creates or updates objects in a virtual environment.
The ontology manager manages the model containing the semantic informations. Finally,
the graphical user interface allows an operator to adjust and modify the resulting map.

3.2.2. Distributed Semantic-Mapping Architecture

While a centralized architecture is composed of agents and a server, the distributed
architecture, shown in Figure 7, is composed only of a set of robots that work together
to estimate the global map. Indeed, each robot runs its own semantic-mapping system.
Then, the multi-robot data association and fusion process is performed by a single robot
or by each member of the fleet depending on the application, the processing power of
the robots and the communication constraints, in order to fuse the resulting individual
semantic maps.



Appl. Sci. 2022, 12, 10316 13 of 24

Robot R1

Single-Robot semantic 
mapping system

Robot R1

Single-Robot semantic 
mapping system

Robot R2

Single-Robot semantic 
mapping system

Robot Rn

Data association and fusion
Global SM

Single-Robot semantic 
mapping system

R1 local SM

Robot R2

Robot Rn

R2 SM

Data association and fusion
R1 Global SM

Single-Robot semantic 
mapping system

Data association and fusion
R2 Global SM

Robot R2

R2 SM

Single-Robot semantic 
mapping system

Data association and fusion
Rn Global SM

Robot R2

(a) (b)

R2 local SM

Rn local SM

R1 local SM

R2 local SM

Rn local SM

Figure 7. Representation of the distribution of a semantic-mapping system in a distributed architec-
ture. (a) Each robot collects data from neighboring robots and establishes data association and fusion
to create its global semantic map, (b) a single robot collects maps from neighboring robots, creates
the global semantic map and distributes it to other robots.

This architecture is considered the appropriate technique when the bandwidth is lim-
ited and the robots have heterogeneous needs and capabilities [48], or when the application
requires to maintain local autonomy for decision making (security, robustness, etc.). How-
ever, it is more challenging for inter-robot communication than the centralized architecture
because the topology becomes unstructured, it can change dynamically depending on
whether the other robots are in proximity or not, and also because of the data correlation
problem that may occur in the case of a cyclic communication between robots. The main
advantage of this architecture is that it ensures flexibility and autonomy of the robot fleet.
Thus, in the case of a centralized architecture, when the server fails, all robots fail, whereas
in a decentralized architecture, even if one robot fails, the other robots can continue their
task using their own semantic maps and existing data from the other robots.

Figure 7 shows the two possible formalizations of the semantic-mapping problem
in a distributed architecture. In Figure 7a, each robot builds its own local semantic map,
and then receives the maps of its neighbors. Indeed, it receives data from robots with
which communication is physically possible and within communication range at the time
of multi-robot data gathering, to associate and merge them with its own map. In contrast,
in the second scheme of Figure 7b, each robot builds its own local semantic map, but only
one robot collects all the maps of the neighboring robots and runs the data association and
fusion algorithm to create the global map, and then sends it to the robots that are within its
range and needed for their task. This case is very similar to the second formalization of
the centralized architecture, where each robot creates its local semantic map, and then the
fusion is executed in the server. The only difference here is that the task of data association
and fusion is performed by a robot instead of the server. In general, if the robots in the fleet
are not identical, the robot with the highest computational power performs this task. It is
also possible to have a third option by combining the two schemes of the Figure 7, where
each robot maintains a global map and the global maps are exchanged between the robots.

In the literature, the majority of works that are interested in proposing a collaborative
semantic-mapping system used a distributed architecture. For example, Yue et al. [47,50]
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used the Husky Clearpath mobile robots, equipped with powerful controllers. Each robot
estimates its local map and updates it incrementally using the partial maps received from
the other robots. In [51], 12 marine robots were used, where each robot creates its local
semantic model of an ocean environment, and then a fusion algorithm is run by any robot
in the fleet that has collected the maps from the other robots in order to fuse them into a
global map. The authors specify in this paper that this algorithm can be also implemented
in a server and executed manually by an operator each time a new match is needed, but it
is computationally light enough to be implemented by any robot in the fleet.

3.3. Multi-Robot Data Association and Semantic Maps Fusion

The data association and fusion process can be performed in two modes, either a “real-
time incremental mode” or a “one-shot mode”. In the first, the individual robots incrementally
create their partial semantic maps and communicate them in real time to a fusion module
to progressively build the global semantic map. In the second mode, the semantic maps of
individual robots are created in advance and then fed to the fusion module to create the
global semantic map in one step. Table 2 specifies the fusion mode for the reviewed works
and provides an overview of the input data type of the fusion module, the methods used
to solve this task, and the resulting map representation.

Table 2. Different data association and fusion techniques used in collaborative semantic mapping.

Ref. Year Fusion Mode Input Data
Data Association and Fusion Methods

Map Representation
Data association Fusion

[52] 2019 Incremental
Local grid-based

multi-modal maps
Point-to-point matching Map alignment

Global grid-based

multi-modal map

[53] 2019 One-shot Local OSTM [54] Graph matching Graph merging Global OSTM

[47] 2020 Incremental 3D Octree local maps [55] Voxel-to-voxel matching Bayesian fusion
3D Octree global

map

[51] 2021 One-shot
BNP-ROST unsupervised

learning models [56]

Matching topics developed in

individual robot models

Associating a single

label to similar topics

Global semantic

occupancy model

[49] 2021 Incremental
Coupled geometric

and semantic informations

Grouping labels associated with

the same physical element

under a common virtual object

Assigning a parent label to

each virtual object and

linking it to the ontology

Labeled 3D virtual

environment + Ontology

This process can be viewed as two main sub-problems: the data-association problem
and the fusion and optimization problem. Thus, the data-association problem consists of
establishing correspondences between local semantic maps using geometric and semantic
data. In addition, the fusion and optimization problem consists in integrating multi-
robot data into a global representation by using data associations and dealing with data
dissimilarities. In what follows, we review the techniques proposed to address these
two problems.

3.3.1. Data Association

The data-association techniques proposed in the reviewed papers are designed accord-
ing to the type of semantic map generated by the single robot. Indeed, the local map type
defines the kind of correspondences to be established between these maps. Moreover, these
techniques depend on the characteristics of the mapped environment, such as whether it is
dense or flat, static or dynamic, and feature-rich or feature-less. For example, it is easier
to match data when the environment contains distinctive features than when it contains
similar repeating patterns. Below, we classified the techniques used for semantic-map asso-
ciation into three main categories: metric–semantic maps matching, topological–semantic
maps matching, and grouping data referring to the same element.
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Metric–semantic maps matching: This category includes methods where the data-association
problem is to match semantic-occupancy maps, specifically by determining point-to-point
correspondences in the case of 2D local maps and voxel-to-voxel correspondences in the case
of 3D local maps. For example, Yue et al. [47] focused on matching 3D semantic-occupancy
grid maps to construct a global map of an indoor–outdoor environment. They consider that
existing works using only geometric data, such as planes, lines and points, to establish data
association between local maps are not very effective in feature-less environments. Therefore,
they propose to match local maps using both semantic and geometric data. To this end,
as shown in Figure 8, each robot follows a trajectory and performs a semantic-mapping
system proposed by [55] in a part of the environment. Then, the generated local semantic
maps, which are 3D occupancy maps divided into voxels (3D Octree maps), are merged.
Indeed, each of these voxels has an occupancy probability and a semantic-class probability
computed by applying the Bayes rule. In order to determine the data association, each
robot receives the maps of the neighboring robots according to a certain permutation and
calculates the relative transformation matrix between the received map and its own map
using the matching algorithm proposed in [50]. Then, the expectation-maximization (EM)
algorithm [57] is used to infer the hidden data association. This algorithm is divided into two
steps: the E-step and M-step. The E-step establishes the correspondences between the robot
map and the received map by computing the minimum relative distances using geometric and
semantic data, and the M-step uses these correspondences to update the occupancy and the
semantic-class probabilities of the robot global map voxels. In this work, the main advantage
is that the EM algorithm can assign a probabilistic data association and update it iteratively
instead of assigning hard decisions.

Figure 8. An example of collaborative semantic mapping in mixed indoor–outdoor environment.
Red trajectory is robot 1, and orange trajectory is robot 2. Top: local semantic maps generated by two
robots. Bottom: collaboratively generated global semantic map [47].

In [47], voxel-to-voxel correspondences were established to associate local 3D semantic
maps; in [52], point-to-point correspondences were established to associate local 2D seman-
tic maps. This work is different from other works because it proposes a method to establish
the association of data coming from heterogeneous robots, namely, an aerial vehicle map
and a ground vehicle map. This method is specifically designed for the agricultural con-
text, where the generated maps are typically composed of similar and repetitive patterns.
Specifically, the aerial vehicle can quickly provide a coarse reconstruction of a large area,
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which can be updated with portions of more detailed, higher resolution maps generated by
the ground vehicle visiting selected areas. First, a 2D grid map is created for each robot
using its colored point cloud generated from the collected GPS/IMU-tagged RGB images.
This map is composed of a multi-modal semantic representation of the environment, where
each cell stores the vegetation index and height information of the local surface. Then,
the idea to match these two maps is to find a dense flow of point-to-point correspondences
between them using the large diplacement dense optical flow (LDOF) system [58]. The key
intuition for using this method is that points belonging to one cloud locally share similar
displacement vectors that associate them with points in the other cloud. The LDOF system
is modified to fit the environment specificity by including the vegetation index and the
geometric properties of the surface in the calculation of the cost function.
Topological–semantic maps matching: In this method, the data-association problem is
defined in a different way. Indeed, the type of local maps is a graph augmented with
semantic information. The problem is, therefore, to match the nodes of these graphs using
semantic and geometric data. This issue is addressed in [53], where the authors propose a
different technique for matching topological–semantic maps. They did not use the state-
of-the-art sub-graph fusion techniques based on combining geometric and topological
information [59,60], but instead proposed a new technique based solely on semantic and
topological information. It does not require the global or relative pose of the robots to merge
the maps. Each robot builds its partial oriented semantic topological map (OSTM) using the
exploration algorithm [54]. This map is a semantically structured topological graph of the
environment, where vertices represent locations in a building (room, hallway) and edges
connect locations with a direction to traverse them. Then, to merge the sub-graphs, a bio-
inspired algorithm [61], called inverse Warrington’s object recognition model (IWORM),
is used. It makes the correspondences between the two subgraphs using two comparison
layers. The first layer, called semantic categorization, compares the two sub-graphs in terms
of node orientation and semantic label. The second layer, called perceptual categorization,
compares the two sub-graphs in terms of local structure, such as the number of neighbors
of a vertex and the connections between those neighbors, in order to address labeling and
orientation errors that may occur during the single-robot semantic-mapping process.
Grouping labels referring to the same element: In this third category, the main objective
of the data association is to group together the labels develeped by different robots and
referring to the same physical element of the environment. For example, this method is
used in [49], where the authors proposed a server–client system to build and maintain a
semantic map of a dense domestic environment. This system generates a 3D environment
reconstructed under Unity 3D, where each detection is added as a label to the virtual
environment and linked to a semantic concept in an ontology. In effect, each robot processes
its detections to determine object categories, 3D positions, dimensions and confidence
scores. Then, it sends these data with its position to the server. The latter first determines
the global positions of all detected objects in the reference system of the virtual environment.
Then, it establishes multi-robot data correspondences using the physics provided by Unity
3D. It actually detects when virtual objects are close to each other or even in contact with
each other with respect to a distance threshold. In the case of a collision, if they also share
the same labels, then they are considered to refer to the same object. This method of data
association is quite simple, but its main difficulty lies in the definition of the threshold
distance allowing to consider the existence of a collision or not, because the objects in the
environment have variable sizes. Thus, in some cases, the distance between two labels can
be large enough to consider that they refer to two distinct objects, while in reality they refer
to the same large object.

In the same spirit, the data-association method proposed in [51], consists of estimating
the number of unique phenomena developed by different marine robots after completely
exploring their area of the environment. As shown in Figure 9, each robot develops its
individual semantic model of the environment, and then the correspondences between
them are resolved into a global semantic map. While in [49], a pre-trained deep-learning
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model is used for semantic mapping, so that the labels are known; in this work, the online
unsupervised BNP-ROST model [56] is used, so that the detected features are developed as
topics without associated labels (Topic 1, Topic 2, . . . ) and are different from one robot to
another. To establish the data association, the designed algorithm uses the final models of
all robots to compute a topic similarity matrix to identify when the robots have developed
semantically equivalent topics. Then, noisy topic similarities are removed in a two-step
process. In the first step, similarity weights below a defined threshold are removed to
obtain the noisy association graph. Then, in the second step, the obtained noisy association
graph is rectified using the CLEAR algorithm [62] to generate the final cluster graph, where
the topics belonging to the same cluster represent a unique phenomena. This method is
very interesting for collaborative exploration of unknown environments, but it is highly
dependent on the performance of individual robot models, which do not require pre-
training, but need to be well-tuned by many varying parameters depending on the mission,
which is not such a simple task.

Figure 9. The fusion of two different semantic models developed by two robots in the same environ-
ment [51].

3.3.2. Fusion and Optimization

In order to integrate multi-robot local semantic maps into a global representation, it
is important to have a module that handles inconsistencies and dissimilarities between
them. The fusion and optimization process is responsible for this task. Indeed, it is
performed after the data-association process and builds the global semantic map using the
established correspondences. The solutions proposed in the literature address several types
of dissimilarities, mainly dissimilarities caused by multiple view-point errors, annotation
errors, and localization errors, as presented in Table 3.
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Table 3. Sources of dissimilarity addressed in the reviewed works in relation to the collaborative
semantic-mapping framework.

Ref. Year

Sources of Dissimilarity
Multiple

View-Points
Errors

Annotation
Errors

Localization
Errors

[52] 2019 X X X
[53] 2019 - X -
[47] 2020 X - -
[51] 2021 - - -
[49] 2021 X - -

The most addressed type is dissimilarities caused by sensing the environment from
multiple viewpoints. In that case, the detected features may have different semantic labels
and some variation in their positions in the corresponding maps. For example, in [47],
the authors consider that the same object can be observed from different viewpoints by
different robots, and voxels representing the same object can have different semantic
classes. Therefore, the fusion method they propose is capable of correcting false labels
and improving true labels. After computing the exact transformation matrix between the
neighboring robot’s 3D Octree map and its own map, the robot uses it to perform pair-wise
voxel fusion. Since each voxel is considered as a Gaussian distribution, the problem of pair-
wise voxel fusion consists of integrating two Gaussian distributions. Therefore, the fusion
of 3D Octree maps consists of integrating multi-dimensional Gaussian distributions into a
global representation. For this purpose, the authors used the 3D statistical fusion method
proposed in [63]. The experiments conducted in this paper demonstrate that this fusion
method can obtain a high-quality 3D Octree map in dense and large environments.

This same problem is addressed in [49], where identical mobile robots explore the
environment at different times following the same trajectories, but the only difference
between them is that the camera’s point of view is changed. Each robot sends its detections
to the server. Then, the server checks whether this object has been detected before or not,
as explained in Section 3.3.1. If the object is detected for the first time, it is added to the
virtual environment as a 3D bounding box with its respective dimension and is represented
in the ontology as an instance of its associated category or concept. Nevertheless, if it
has been detected before, the properties of all detections are merged to obtain a virtual
parent object that encapsulates: the category of the item, the average confidence score,
the number of items that have been merged and the union of the child bounding boxes.
After that, the corresponding instance of the object in the ontology is updated with the new
properties of the virtual parent. However, a record of all previous detections is maintained
by entering each of them as an instance of the parent object. It is important to mention
that this work is one of the few papers that address the problem of merging semantic-map
representations containing a conceptual part (the ontology), as other works only treat the
merging of annotated spatial representations.

Regarding dissimilarities caused by localization and annotation errors, the proposed
method in [52] addresses various related problems such as local inconsistencies, global
deformation and relatively large initial misalignment. For this purpose, after comput-
ing the dense set of point-to-point correspondences between an air-vehicle map and a
ground-vehicle map, the largest set of correspondences with consistent and similar flows
is identified and used to infer a preliminary alignment transformation between the maps.
This step deletes dissimilarities resulting from local inconsistencies that may be caused
by detection or communication errors. Then, in order to deal with the global deforma-
tion resulting from the inaccuracy of the location and orientation data provided by GPS
(Global Positioning System) and AHRS (Attitude and Heading Reference System), a non-
rigid point-set registration algorithm is used to estimate an affine transformation. Finally,
the global semantic map is obtained by performing robust point-to-point registration on the
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input point clouds using only the points belonging to the vegetation in the local semantic
maps. In another work [53], the global semantic map is a topological graph connecting
many robot sub-graphs. In this particular work, only semantic data is used to match the
maps, so there are no errors caused by metric data, but there are dissimilarities caused by
labeling errors, such as the association of a wrong label or the absence of a node.

Finally, in addition to the automatic fusion systems described above, some works have
proposed a system based on human intervention to optimize and maintain the resulting
global representation. Indeed, in [49], since the robots map the environment at different
times, the authors considered that the location of an object mapped by the first robot can
be modified before the other robot maps the environment. This case is not solved by
the automatic system designed to merge dissimilarities caused by multiple viewpoints.
Therefore, they included the option for the operator to modify the final reconstructed
labeled 3D map by replacing or deleting erroneous labels. It is also important to mention
that some works do not focus on the fusion and optimization part but only on solving
the data-association problem. For example, in [51], after clustering the topics associated
with the unique phenomena explored in the ocean, the positions of the marine robots are
considered error-free, so the fusion part consists only of concatenating the local semantic
maps and segmenting the topics referring to the same phenomena with the same color.

In conclusion, the fusion and optimization methods proposed in the literature mainly
deal with multiple viewpoint errors and annotation errors in order to integrate local
semantic maps into a global map. The majority of works consider that robot positions
exist and attempt to optimize the detection positions by resolving inconsistencies in the
corresponding maps. Meanwhile, few works take into account dynamic objects in the
fusion process.

4. Open Problems and Ongoing Trends

Although many semantic-mapping systems have been proposed, there are still chal-
lenges and possible improvements in the state-of-the-art solutions for both single-robot
systems and collaborative systems. In this section, we highlight some of the potential
improvements and remaining challenges.

4.1. Semantic Data Gathering Challenges

Currently, sensors such as lasers and RGB/RGBD cameras are widely used in the
semantic-mapping process. In order to extract the semantic information, this input data
must be processed. However, it is possible to equip the robot with additional specific
sensors to directly extract the semantic information. For example, a temperature sensor
to collect temperature values or a humidity sensor to collect humidity values. Regarding
collaborative semantic mapping, most works collect semantic data using a fleet of mobile
robots. However, it is possible to add static sensors to collect specific semantic data,
for example, a camera implementing a people-detection algorithm to calculate the number
of people in a scene, or a temperature sensor to provide the temperature variation over time
within a scene, giving continuous data of a scene instead of a limited set of data collected
when the robot explores that local area.

4.2. Map Representation Challenges

There are several challenges that can be addressed at the representation level. For example:

4.2.1. Task-Oriented Map Representation

The semantic-mapping process is generally designed with consideration of the map
representation needed to accomplish the task. Today, there are many proposed represen-
tations, but they solve only a few specific tasks, mainly semantic navigation and room
classification. Indeed, it is still difficult to implement these maps to solve more complex
problems, such as task planning. For example, the robot uses the map to execute a com-
mand such as “Bring me a cup”, where it must use the map to navigate to the kitchen, find
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the exact location of the cup, pick it up, and bring it to the user. In addition, if it finds
the kitchen door closed, it is able to understand it and open the door to continue its task.
In order to perform this, the map representation must contain the data needed to plan the
task, and the robot must have the appropriate reasoning system to interpret its commands
and make a decision among a set of possible actions depending on the situation.

4.2.2. Context-Aware Map Representation

Some of the existing semantic-mapping systems build metric semantic maps, such
as semantic occupancy grid maps, which allow the robot to interpret the positions of
represented elements using their associated labels. Other works build hierarchical semantic
maps, which give a context-aware representation, where the detected features are associated
using their labels to a common-sense database giving a more detailed description of the
context, especially about the concepts involved in the environment and the relationships
between them. For single-robot semantic-mapping systems, there are many works that
focus on building a context-aware map representation, but for collaborative systems, most
of the existing works focus on fusing local geometric-semantic maps and do not focus on
building a shared contextual database of the environment. There are only a few works that
have built and maintained a common-sense database on the server that is shared by all
robots. This database is populated using data collected by multiple robots. Therefore, this
can cause some problems due to multi-robot data dissimilarities, but it permits to build
a much detailed and extensive description of the environment to expand the knowledge
database of individual robots.

4.2.3. Knowledge Database Representation

Despite the variety in the hierarchical representations proposed, most works use an
ontology model to describe the contextual knowledge database. There are few works that
use other structures as the relational semantic model proposed in [41]. Indeed, a possible
direction in future works could be to explore other data representation models in order to
optimize the reasoning system or to facilitate the reuse of semantic-mapping systems in
different environments. In current works focusing on domestic and office environments,
the models include concepts and connections specific to these environments, such as
“kitchen” and “living room” as room categories, “supplies” and “offices” as object categories,
and “oven is in the kitchen” as an object–place relationship. When transferring the semantic-
mapping system to another environment with a different context, it is necessary to design a
new ontology. For example, for an industrial environment, new concepts and relationships
are needed in the model, such as “workshop” and “warehouse” as place categories, “machine”
and “container” as object categories, and “container is in the warehouse” as an object–place
relationship. In other cases [41], the semantic relational model can be directly adapted to
the industrial environment because the relationships between the concepts are implicitly
included in the model design. It is, therefore, sufficient to modify the information on the
domestic environment by information on the industrial environment to adapt it to the
new context.

4.3. Semantic Mapping of Dynamic Environments

Although many single-robot semantic-mapping systems have been proposed, most
of the works focus on static environments. The majority of them propose a process to
create the initial map of the environment, but they do not consider maintaining it. Only
a few works designed a system to update the map to take into account moving objects,
newly introduced objects, and deleted objects. To perform this process, these systems are
not autonomous and require the assistance of an operator. Moreover, only a few works
considered collecting semantic data about humans in the environment, which can be
interesting in a collaborative context. Similarly, in collaborative semantic-mapping systems,
the majority of works focus on static scenes, and only a few works considered updating
the dynamic feature representation after the mapping process. Updating the map through
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an autonomous process is a challenging task that could be addressed in future works
on semantic mapping. Indeed, such a system is very important for mapping a dynamic
environment, where the structure changes at a high frequency. For example, in an industrial
environment, where the human and the robot share the same workspace and where objects
can be introduced and removed every second [64], a real-time semantic map is needed to
give the robot real-time information about its environment and to ensure the safety of the
human–robot collaboration.

4.4. Collaborative Semantic Mapping of Indoor Environments

While many works on single-robot semantic mapping focus on indoor environments,
the few recent works that address collaborative semantic mapping focus primarily on
outdoor environments. Indeed, in these environments, the area to be mapped is large
and using a fleet of robots has many potential advantages, such as distributing tasks
to reduce work time and obtaining a more accurate representation of the environment.
For indoor environments, work in the literature focuses on the semantic mapping of office
and domestic environments to facilitate the integration of robots into these environments
and extend their capabilities. In these settings, a single service robot is typically used, so the
collaborative approach is not very interesting, but in other indoor environments that could
be explored in future work, there may be benefits. For example, in industrial environments,
where high precision is required, a collaborative approach can provide a more accurate
representation of the environment.

4.5. Semantic-Map Fusion Challenges

While some data-fusion problems have been addressed, such as dissimilarities caused
by multiple viewpoints or mislabeling, many other problems can still be explored. While
currently most works address the problem of merging local semantic maps of the same type,
a first possible challenge to be explored in future works is the merging of heterogeneous
semantic maps. This solution can be very interesting when the robots in the fleet have
different sensing capabilities. Moreover, in most works, the final global map output has the
same type of local semantic map, so another challenge is to build a different representation
of the output map. For example, in a centralized architecture, the map representation can
benefit from the server data in addition to the local maps of the robots to build a better
map representation. Finally, it is possible to consider optimization challenges such as the
optomization of the data exchanged between the robots to reduce the processing power
and increase the performance of the system, especially in real-time applications.

5. Conclusions

This paper reviews recent work on single-robot semantic indoor mapping and col-
laborative semantic mapping. In general, for single-robot semantic mapping, state-of-the-
art SLAM solutions are used to generate a geometric representation of the environment.
Then, several semantic-data acquisition methods are used to augment this representation.
In recent works, object detection/recognition techniques and deep-learning-based seg-
mentation techniques are widely used for semantic-information extraction from RGB or
RGB-D images. Alternatively, HRI-based acquisition methods integrate the human into the
semantic-mapping process in order to label the physical features perceived by the robot
or to introduce additional information about the features already detected by the sensors
using different human–robot interfaces. Reasoning-based acquisition methods allow the
robot to infer new information useful to its mission using previously acquired data and
a knowledge database about the environment. To achieve a semantic map, there are two
possible representations, either by directly visualizing the semantic information on its area
in the geometric representation, or by organizing the semantic and geometric information
in a hierarchical structure, which is more suitable for semantic-map applications such
as semantic navigation and task planning. Regarding collaborative robotics, this review
shows that there are few works that address collaborative semantic mapping. Most of these
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works focus on two main topics: proposing a centralized or distributed semantic-mapping
architecture, and addressing the challenge of multi-robot data association and fusion.
The proposed solutions mainly focus on outdoor environments. They are dependent on the
environment and the characteristics of the fleet of robots. Although considerable progress
has been made in the field of semantic mapping in recent years, this paper shows that
there are still some challenges to be addressed, including semantic data gathering, map
representation, environment and collaboration challenges.

Author Contributions: Supervision: A.A., H.A.-A., Y.D. and M.E.Z.; writing—original draft prepara-
tion, A.A.; writing—review and editing, A.A., H.A.-A., Y.D. and M.E.Z.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, F.; Zhang, C.; Tang, F.; Jiang, H.; Wu, Y.; Liu, Y. Lightweight Object-level Topological Semantic Mapping and Long-term

Global Localization based on Graph Matching. arXiv 2022, arXiv:2201.05977.
2. Nüchter, A.; Hertzberg, J. Towards semantic maps for mobile robots. Robot. Auton. Syst. 2008, 56, 915–926. [CrossRef]
3. Zhao, C.; Mei, W.; Pan, W. Building a grid-semantic map for the navigation of service robots through human–robot interaction.

Digit. Commun. Netw. 2015, 1, 253–266. [CrossRef]
4. Qi, X.; Wang, W.; Yuan, M.; Wang, Y.; Li, M.; Xue, L.; Sun, Y. Building semantic grid maps for domestic robot navigation. Int. J.

Adv. Robot. Syst. 2020, 17. [CrossRef]
5. Galindo, C.; Fernández-Madrigal, J.A.; González, J.; Saffiotti, A. Robot task planning using semantic maps. Robot. Auton. Syst.

2008, 56, 955–966. [CrossRef]
6. Kantaros, Y.; Pappas, G.J. Optimal temporal logic planning for multi-robot systems in uncertain semantic maps. In Proceedings

of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4127–4132.

7. Kantaros, Y.; Kalluraya, S.; Jin, Q.; Pappas, G.J. Perception-based temporal logic planning in uncertain semantic maps. IEEE
Trans. Robot. 2022. [CrossRef]

8. Kostavelis, I.; Gasteratos, A. Semantic mapping for mobile robotics tasks: A survey. Robot. Auton. Syst. 2015, 66, 86–103.
[CrossRef]

9. Liu, Q.; Li, R.; Hu, H.; Gu, D. Extracting semantic information from visual data: A survey. Robotics 2016, 5, 8. [CrossRef]
10. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of

simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
11. Crespo Herrero, J.; Castillo Montoya, J.C.; Martínez Mozos, Ó.; Barber Castaño, R.I. Semantic information for robot navigation: A

survey. Appl. Sci. 2020, 10, 497. [CrossRef]
12. Han, X.; Li, S.; Wang, X.; Zhou, W. Semantic Mapping for Mobile Robots in Indoor Scenes: A Survey. Information 2021, 12, 92.

[CrossRef]
13. Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 2016,

33, 3–46. [CrossRef]
14. Wolf, D.F.; Sukhatme, G.S. Semantic mapping using mobile robots. IEEE Trans. Robot. 2008, 24, 245–258. [CrossRef]
15. Bernuy, F.; Ruiz del Solar, J. Semantic mapping of large-scale outdoor scenes for autonomous off-road driving. In Proceedings of

the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 35–41.
16. Bai, Y.; Fan, L.; Pan, Z.; Chen, L. Monocular Outdoor Semantic Mapping with a Multi-task Network. In Proceedings of the 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1992–1997.
17. Lang, D.; Friedmann, S.; Hedrich, J.; Paulus, D. Semantic mapping for mobile outdoor robots. In Proceedings of the 2015 14th

IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; pp. 325–328.
18. Atanasov, N.; Zhu, M.; Daniilidis, K.; Pappas, G.J. Semantic Localization Via the Matrix Permanent. In Proceedings of the

Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014; Volume 2, pp. 1–10. Available online: https://www.x-mol.
com/paper/1477015746142314496 (accessed on 10 September 2022).

19. Reid, I. Towards semantic visual SLAM. In Proceedings of the 2014 13th International Conference on Control Automation
Robotics & Vision (ICARCV), Singapore, 10–12 December 2014; p. 1.

http://doi.org/10.1016/j.robot.2008.08.001
http://dx.doi.org/10.1016/j.dcan.2015.09.002
http://dx.doi.org/10.1177/1729881419900066
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1109/TRO.2022.3144073
http://dx.doi.org/10.1016/j.robot.2014.12.006
http://dx.doi.org/10.3390/robotics5010008
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.3390/app10020497
http://dx.doi.org/10.3390/info12020092
http://dx.doi.org/10.1002/rob.21620
http://dx.doi.org/10.1109/TRO.2008.917001
https://www.x-mol.com/paper/1477015746142314496
https://www.x-mol.com/paper/1477015746142314496


Appl. Sci. 2022, 12, 10316 23 of 24

20. Kundu, A.; Li, Y.; Dellaert, F.; Li, F.; Rehg, J.M. Joint semantic segmentation and 3d reconstruction from monocular video. In
Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 703–718. Available
online: https://link.springer.com/chapter/10.1007/978-3-319-10599-4_45citeas (accessed on 10 September 2022).

21. Bowman, S.L.; Atanasov, N.; Daniilidis, K.; Pappas, G.J. Probabilistic data association for semantic slam. In Proceedings of the
2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1722–1729.

22. Lee, K.; Lee, S.J.; Kölsch, M.; Chung, W.K. Enhanced maximum likelihood grid map with reprocessing incorrect sonar measure-
ments. Auton. Robot. 2013, 35, 123–141. [CrossRef]

23. Zender, H.; Mozos, O.M.; Jensfelt, P.; Kruijff, G.J.; Burgard, W. Conceptual spatial representations for indoor mobile robots. Robot.
Auton. Syst. 2008, 56, 493–502. [CrossRef]

24. Folkesson, J.; Jensfelt, P.; Christensen, H.I. Vision SLAM in the measurement subspace. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 30–35.

25. Ekvall, S.; Kragic, D. Receptive field cooccurrence histograms for object detection. In Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 84–89.

26. Miyamoto, R.; Adachi, M.; Nakamura, Y.; Nakajima, T.; Ishida, H.; Kobayashi, S. Accuracy improvement of semantic segmentation
using appropriate datasets for robot navigation. In Proceedings of the 2019 6th International Conference on Control, Decision
and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 1610–1615.

27. Li, X.; Belaroussi, R. Semi-dense 3d semantic mapping from monocular slam. arXiv 2016, arXiv:1611.04144.
28. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on

Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849. Available online: https://link.springer.com/chapter/
10.1007/978-3-319-10605-2_54 (accessed on 10 September 2022).

29. Sünderhauf, N.; Pham, T.T.; Latif, Y.; Milford, M.; Reid, I. Meaningful maps with object-oriented semantic mapping. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 5079–5085.

30. Mur-Artal, R.; Tardós, J.D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM. In Proceed-
ings of the Robotics: Science and Systems, Rome Italy, 13–17 July 2015, Volume 2015. Available online: https://www.researchgate.
net/publication/282807894_Probabilistic_Semi-Dense_Mapping_from_Highly_Accurate_Feature-Based_Monocular_SLAM
(accessed on 10 September 2022).

31. Pronobis, A.; Jensfelt, P. Large-scale semantic mapping and reasoning with heterogeneous modalities. In Proceedings of the 2012
IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3515–3522.

32. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A review on deep learning techniques
applied to semantic segmentation. arXiv 2017, arXiv:1704.06857

33. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A
survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef]

34. Wang, C.; Wang, C.; Li, W.; Wang, H. A brief survey on RGB-D semantic segmentation using deep learning. Displays 2021,
70, 102080. [CrossRef]

35. Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A review of deep learning-based semantic segmentation for point cloud. IEEE Access 2019,
7, 179118–179133. [CrossRef]

36. Xie, Y.; Tian, J.; Zhu, X.X. Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geosci. Remote
Sens. Mag. 2020, 8, 38–59. [CrossRef]

37. Grisetti, G.; Stachniss, C.; Burgard, W. Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals
and selective resampling. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona,
Spain, 18–22 April 2005; pp. 2432–2437.

38. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

39. Randelli, G.; Bonanni, T.M.; Iocchi, L.; Nardi, D. Knowledge acquisition through human–robot multimodal interaction. Intell.
Serv. Robot. 2013, 6, 19–31. [CrossRef]

40. Bastianelli, E.; Bloisi, D.D.; Capobianco, R.; Cossu, F.; Gemignani, G.; Iocchi, L.; Nardi, D. On-line semantic mapping. In
Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November
2013; pp. 1–6.

41. Crespo, J.; Barber, R.; Mozos, O. Relational model for robotic semantic navigation in indoor environments. J. Intell. Robot. Syst.
2017, 86, 617–639. [CrossRef]

42. Darlington, K. Common Sense Knowledge, Crucial for the Success of AI Systems. OpenMind BBVA 2020.
43. Galindo, C.; Saffiotti, A.; Coradeschi, S.; Buschka, P.; Fernandez-Madrigal, J.A.; González, J. Multi-hierarchical semantic maps for

mobile robotics. In Proceedings of the 2005 IEEE/RSJ International Conference On Intelligent Robots and Systems, Edmonton,
AB, Canada, 2–6 August 2005; pp. 2278–2283.

44. Patel-Schneider, P.F.; Abrahams, M.; Resnick, L.A.; McGuinness, D.L.; Borgida, A. Neoclassic Reference Manual: Version 1.0;
Artificial Intelligence Principles Research Department, AT&T Labs Research: 1996. Available online: http://www.bell-labs.com/
project/classic/papers/NeoTut/NeoTut (accessed on 26 July 2022).

https://link.springer.com/chapter/10.1007/978-3-319-10599-4_45citeas
http://dx.doi.org/10.1007/s10514-013-9340-5
http://dx.doi.org/10.1016/j.robot.2008.03.007
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_54
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_54
 https://www.researchgate.net/publication/282807894_Probabilistic_Semi-Dense_Mapping_from_Highly_Accurate_Feature-Based_Monocular_SLAM
 https://www.researchgate.net/publication/282807894_Probabilistic_Semi-Dense_Mapping_from_Highly_Accurate_Feature-Based_Monocular_SLAM
http://dx.doi.org/10.1109/TPAMI.2021.3059968
http://dx.doi.org/10.1016/j.displa.2021.102080
http://dx.doi.org/10.1109/ACCESS.2019.2958671
http://dx.doi.org/10.1109/MGRS.2019.2937630
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1007/s11370-012-0123-1
http://dx.doi.org/10.1007/s10846-017-0469-x
http://www.bell-labs.com/project/classic/papers/NeoTut/NeoTut
http://www.bell-labs.com/project/classic/papers/NeoTut/NeoTut


Appl. Sci. 2022, 12, 10316 24 of 24

45. Wang, Z.; Tian, G. Hybrid Offline and Online Task Planning for Service Robot Using Object-Level Semantic Map and Probabilistic
Inference. Inf. Sci. 2022, 593, 78–98. [CrossRef]

46. Dubois, R.; Eudes, A.; Frémont, V. Sharing visual-inertial data for collaborative decentralized simultaneous localization and
mapping. Robot. Auton. Syst. 2022, 148, 103933. [CrossRef]

47. Yue, Y.; Zhao, C.; Li, R.; Yang, C.; Zhang, J.; Wen, M.; Wang, Y.; Wang, D. A hierarchical framework for collaborative probabilistic
semantic mapping. In Proceedings of the 2020 IEEE international conference on robotics and automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 9659–9665.

48. Martins, G.S.; Ferreira, J.F.; Portugal, D.; Couceiro, M.S. MoDSeM: Modular framework for distributed semantic mapping.
In Poster Papers; 2019; p. 12. Available online: https://www.ukras.org.uk/publications/ras-proceedings/UKRAS19/pp12-15
(accessed on 10 September 2022).

49. Fernandez-Chaves, D.; Ruiz-Sarmiento, J.R.; Petkov, N.; Gonzalez-Jimenez, J. ViMantic, a distributed robotic architecture for
semantic mapping in indoor environments. Knowl.-Based Syst. 2021, 232, 107440. [CrossRef]

50. Yue, Y.; Wen, M.; Zhao, C.; Wang, Y.; Wang, D. COSEM: Collaborative Semantic Map Matching Framework for Autonomous
Robots. IEEE Trans. Ind. Electron. 2021, 69, 3843–3853. [CrossRef]

51. Jamieson, S.; Fathian, K.; Khosoussi, K.; How, J.P.; Girdhar, Y. Multi-Robot Distributed Semantic Mapping in Unfamiliar
Environments through Online Matching of Learned Representations. In Proceedings of the 2021 IEEE International Conference
on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8587–8593.

52. Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-ground collaborative 3D mapping for
precision farming. IEEE Robot. Autom. Lett. 2019, 4, 1085–1092. [CrossRef]

53. Rincon, J.L.S.; Carpin, S. Map Merging of Oriented Topological Semantic Maps. In Proceedings of the 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), New Brunswick, NJ, USA, 22–23 August 2019; pp. 202–208.

54. Rincon, J.L.S.; Carpin, S. Time-constrained exploration using toposemantic spatial models: A reproducible approach to measurable
robotics. IEEE Robot. Autom. Mag. 2019, 26, 78–87. [CrossRef]

55. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

56. Girdhar, Y.; Dudek, G. Modeling curiosity in a mobile robot for long-term autonomous exploration and monitoring. Auton. Robot.
2016, 40, 1267–1278. [CrossRef]

57. Dellaert, F. The Expectation Maximization Algorithm. Technical Report; Georgia Institute of Technology, 2002. Available online:
https://ieeexplore.ieee.org/document/543975 (accessed on 10 September 2022).

58. Hu, Y.; Song, R.; Li, Y. Efficient coarse-to-fine patchmatch for large displacement optical flow. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5704–5712. Available online:
https://ieeexplore.ieee.org/document/7780984 (accessed on 10 September 2022).

59. Huang, W.H.; Beevers, K.R. Topological map merging. Int. J. Robot. Res. 2005, 24, 601–613. [CrossRef]
60. Bonanni, T.M.; Della Corte, B.; Grisetti, G. 3-d map merging on pose graphs. IEEE Robot. Autom. Lett. 2017, 2, 1031–1038.

[CrossRef]
61. Warrington, E.K. The selective impairment of semantic memory. Q. J. Exp. Psychol. 1975, 27, 635–657. [CrossRef]
62. Fathian, K.; Khosoussi, K.; Tian, Y.; Lusk, P.; How, J.P. Clear: A consistent lifting, embedding, and alignment rectification

algorithm for multiview data association. IEEE Trans. Robot. 2020, 36, 1686–1703. [CrossRef]
63. Yue, Y.; Senarathne, P.N.; Yang, C.; Zhang, J.; Wen, M.; Wang, D. Hierarchical probabilistic fusion framework for matching and

merging of 3-d occupancy maps. IEEE Sens. J. 2018, 18, 8933–8949. [CrossRef]
64. Macenski, S.; Jambrecic, I. SLAM Toolbox: SLAM for the dynamic world. J. Open Source Softw. 2021, 6, 2783. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2022.01.058
http://dx.doi.org/10.1016/j.robot.2021.103933
https://www.ukras.org.uk/publications/ras-proceedings/UKRAS19/pp12-15
http://dx.doi.org/10.1016/j.knosys.2021.107440
http://dx.doi.org/10.1109/TIE.2021.3070497
http://dx.doi.org/10.1109/LRA.2019.2894468
http://dx.doi.org/10.1109/MRA.2019.2923452
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1007/s10514-015-9500-x
https://ieeexplore.ieee.org/document/543975
https://ieeexplore.ieee.org/document/7780984
http://dx.doi.org/10.1177/0278364905056348
http://dx.doi.org/10.1109/LRA.2017.2655139
http://dx.doi.org/10.1080/14640747508400525
http://dx.doi.org/10.1109/TRO.2020.3002432
http://dx.doi.org/10.1109/JSEN.2018.2867854
http://dx.doi.org/10.21105/joss.02783

	Introduction
	Single-Robot Semantic Mapping
	Data Acquisition and Processing
	Perception-Based Data Acquisition
	HRI-Based Data Acquisition
	Reasoning-Based Semantic Data Acquisition

	Semantic-Map Representation
	Visual Geometric-Semantic Representations
	Hierarchical Representations


	Collaborative Semantic Mapping
	Multi-Robot Semantic-Mapping Pipeline
	Tasks and Data Allocation Architectures
	Centralized Semantic-Mapping Architecture
	Distributed Semantic-Mapping Architecture

	Multi-Robot Data Association and Semantic Maps Fusion
	Data Association
	Fusion and Optimization


	Open Problems and Ongoing Trends
	Semantic Data Gathering Challenges
	Map Representation Challenges
	Task-Oriented Map Representation
	Context-Aware Map Representation
	Knowledge Database Representation

	Semantic Mapping of Dynamic Environments
	Collaborative Semantic Mapping of Indoor Environments
	Semantic-Map Fusion Challenges

	Conclusions
	References

