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Supplementary methods 1 

Ethics statement 2 

Human samples were obtained through the Centre de Ressources Biologiques (CRB) Santé of Rennes 3 

(ID in the national biobank infrastructure: BB-0033-00056). The research protocol was conducted 4 

according to French legal guidelines and fulfilled the requirements of the local institutional ethics 5 

committee. Informed consent was signed by each patient. 6 

 7 

Histological staining 8 

Additional samples of each ccRCC were fixed for 24h in 4% paraformaldehyde-PBS and paraffin 9 

embedded following standard protocols. Microscopic H&E features were acquired on the CaseViewer 10 

v2.2 software. 11 

 12 

Tissue dissociation and tumor cell enrichment assessment 13 

For each tumor, punches were performed in locally distinct tumor areas without necrosis, fibrosis or 14 

edema. Punches were pooled and dissociated following a previously described protocol [1]. Briefly, 15 

samples were first subjected to enzymatic and mechanical disaggregation (tumor dissociation kit, 16 

Miltenyi Biotec) before undergoing red blood cell lysis and low-speed centrifugation steps to remove 17 

debris and dead cells while maintaining tumor cells (Fig. 1A, step1). Partial depletion of CD45 (an 18 

immune cell marker) positive cells was performed using the Miltenyi kit (CD45 MicroBeads, human) 19 

to enrich the samples in malignant/stromal cells and remove circulating and tumor-infiltrating immune 20 

cells (step2). 21 

 22 

https://paperpile.com/c/nl2Nr3/tkmND


2 

Microscopic observations 23 

Cell suspension quality was assessed using an Olympus IX70 microscope from Olympus-Lifesciences. 24 

Cells were stained with Trypan blue to estimate mortality rate and cells were counted with a 25 

hemocytometer. 26 

 27 

Freezing and thawing of cells 28 

Approximately 300,000 cells were transferred in 1ml freezing solution consisting of 70% RPMI 1640, 29 

20 % fetal bovine serum (FBS), 10 % DMSO (Sigma) and immediately placed at -20°C for 1h before 30 

their temperature was progressively lowered (-1°C/min) to -80°C for storage. Cells were then 31 

transferred to liquid nitrogen for long-term storage. Frozen samples were hand-thawed (at 37°C) and 32 

immediately diluted with 14 ml RPMI 1640 in a 15 ml conical tube. With the exception of RCC4_f, 33 

scRNA-Seq was performed on freshly harvested samples without prior freezing. 34 

 35 

Flow cytometry 36 

Cells were collected at two stages in the protocol: 1- after tissue disaggregation, RBC lysis, and low-37 

speed centrifugation steps; and, 2- after partial CD45 depletion. Cells were preserved on ice for up to 2 38 

hours before co-staining with anti-human CD45-FITC/CD34-PE monoclonal antibodies and 7-AAD 39 

(BD Biosciences, San Jose, CA) for 15 minutes at -4°C in the dark. Cell suspensions were washed twice 40 

in PBS. Samples were acquired with a LSR Fortessa X-20 (Becton Dickinson) cytometer using BD 41 

FACSDiva software v8. The data were analyzed using FlowLogic v7.2.1 software. 42 

 43 

Estimation of tumor-infiltrating immune cells 44 

The proportion of infiltrating leukocytes was estimated in tumors from scanned images of H&E and 45 

LCA (Leukocyte Common Antigen which recognizes CD45; DAKO - ref: M0701) 46 
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immunohistochemical staining, using the ImageJ suite. Five counting zones were randomly selected 47 

within the tumor tissue, and an average proportion of stained cells was calculated for each tumor. 48 

Unstained cells were considered as non-immune and identified as blue nuclei with the following color 49 

parameters : Hue ranging from 128 to 192; Saturation ranging from 32 to 255; and Brightness ranging 50 

from 128 to 255. Stained cells appearing as intense brown cells were scored as Immune cells and 51 

identified with the following color parameters : Hue ranging from 0 to 255; Saturation ranging from 0 52 

to 255; and Brightness ranging from 0 to 128. For both counts, the image was changed to 8-bit. 53 

Watershed function was applied to distinguish cells within aggregates. Particles corresponding to either 54 

immune or non-immune cells were then automatically counted using the Analyze particle function, 55 

excluding particles under 35 and 50 pixels2 for immune cells and non-immune cells, respectively. 56 

 57 

Data analysis of a single-cell atlas composed of 13 samples 58 

Pre-processing, quality controls, integration and normalization. Demultiplexed raw sequencing reads 59 

were processed, mapped to the GRCh38 human reference genome and quantified based on unique 60 

molecular identifiers (UMIs) with the Cell Ranger pipeline (v3.0.2, 10x Genomics). The resulting raw 61 

count matrices from the 7 individual samples were then merged. The cell-calling algorithm from Cell 62 

Ranger, which relies on the EmptyDrops method [2], was also used to establish a first set of potential 63 

valid cells. Subsequently, the scater R package. (v1.10.1) was used to remove outlier cells by using 64 

several cell features including the proportions of reads mapping to mitochondrial and ribosomal genes 65 

[3]. In parallel, doublets were filtered out independently in each individual matrix by using the 66 

DoubletFinder R package (v.2.0.2) [4]. Next, raw count matrix files from the scRNA-seq dataset 67 

published by Young and colleagues were downloaded from their online supplementary data [5]. Cells 68 

with fewer than 200 detected genes and genes detected in fewer than 10 cells were removed. Cells from 69 

both datasets were assigned a cell cycle phase by using both the Scran R package (v1.10.2) [6] and the 70 

Seurat v3.1.5 package [7]. Each dataset was individually normalized using the NormalizeData function 71 

implemented in Seurat. The two datasets were merged and batch-effect corrected using the CCA method 72 

implemented in the Seurat package to regress out technical covariates between datasets. This procedure 73 

https://paperpile.com/c/nl2Nr3/c7S1h
https://paperpile.com/c/nl2Nr3/1FA6y
https://paperpile.com/c/nl2Nr3/jgtIZ
https://paperpile.com/c/nl2Nr3/sZu3p
https://paperpile.com/c/nl2Nr3/tXVpn
https://paperpile.com/c/nl2Nr3/86nR2
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is based on the FindIntegrationAnchors and IntegrateData functions with the following parameters: 74 

anchor.features=3000 and dims=30. 75 

Pseudobulk analysis. A “pseudobulk” count matrix resulting from the aggregation of counts of all 76 

selected cells of each sample was used to calculate pearson correlation coefficients and perform 77 

pairwise comparisons between samples. The “pseudobulk” count matrix was also used to perform a 78 

principal component analysis based on the FactoMineR package [8]. 79 

Reduction of dimensionality and clustering. The 3000 integration anchors identified by the 80 

FindIntegrationAnchors function were used to perform a principal component analysis with the 81 

RunPCA function implemented in Seurat. Cells were then clustered by using the FindNeighbors and 82 

FindClusters functions on the top-30 principal components, with default parameters. Finally, we used 83 

the uniform manifold approximation and projection (UMAP) method implemented in Seurat to project 84 

single cells in a reduced 2D space. 85 

Cluster annotation and differential gene expression analysis. Cell clusters were annotated using a set 86 

of known marker genes complemented with genes that were significantly differentially expressed 87 

between cell clusters. Differentially expressed genes were identified with the FindAllMarkers function 88 

implemented in Seurat, with default parameters. 89 

 90 

Copy Number Variation analysis and phylogenetic tree construction 91 

The inferCNV R package (InferCNV of the Trinity CTAT Project: 92 

https://github.com/broadinstitute/InferCNV) was used to evaluate copy number variations (CNV) in 93 

malignant cells based on single‐cell RNA‐seq raw counts (InferCNV of the Trinity CTAT Project: 94 

https://github.com/broadinstitute/InferCNV). Inference was run separately on each individual sample, 95 

using nonmalignant cells as reference. The cutoff parameter was set to 0.1, and parameters denoise, 96 

cluster_by_groups and HMM were set to TRUE. The tool returns a matrix with a CNV score 97 

corresponding to the relative intensity of gene expression for a particular cytoband in a given cell. We 98 

https://paperpile.com/c/nl2Nr3/VTiQn
https://github.com/broadinstitute/InferCNV
https://github.com/broadinstitute/InferCNV
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also calculated an overall CNV burden score for each cell corresponding to the weighted mean of the 99 

absolute CNV scores taking into account the cytoband size, using the following formula: 100 

with n being the number of cytobands, C the corresponding CNV score of cytoband i, and S the size of 101 

cytoband i.  102 

A differential CNV score analysis was performed by comparing the CNV scores of normal tubular 103 

epithelial cells and malignant cells using a Wilcoxon test. The p value was then adjusted with the 104 

Benjamin Hochberg method and significant CNV scores in malignant cells were considered for further 105 

analysis. The phylogenetic tree was constructed from the outputs of inferCNV by using Uphyloplot2 106 

[36] with parameter c = 1. 107 

 108 

Single-cell RNA data analysis of malignant cells and tubular epithelial cells 109 

Selection of malignant cells and tubular epithelial cells. Cell populations belonging to clusters 110 

associated with “malignant cells” (c2, c3, c5, c10, c16, c20, c30, c31) and “tubular epithelial & 111 

malignant cells” (c8, c12) were selected for further analysis. The Seurat object was reduced to those 112 

selected cells by using the subset function implemented in Seurat. The ultimate aim of this analysis 113 

being to infer a single-cell trajectory for each individual tumor sample, no batch-effect correction was 114 

applied in order to avoid overcorrection [9]. Moreover, such batch-effect correction (CCA) was 115 

performed but did not reveal major changes (especially regarding the identification of the five RCC2 116 

malignant subpopulations) (data not shown). 117 

Reduction of dimensionality and clustering. A multi-factorial analysis (MFA) was performed with the 118 

single-cell transcriptomic data (based on the top-3000 most varying genes) and the single-cell CNV 119 

matrix inferred by InferCNV (based on the cytobands with variance>0) (see Copy Number Variation 120 

analysis and phylogenetic tree construction) by using the FactoMineR package [8]. Cells were then 121 

clustered by using the FindNeighbors and FindClusters functions on the top-30 principal components 122 

https://paperpile.com/c/nl2Nr3/amXo
https://paperpile.com/c/nl2Nr3/VTiQn
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of the MFA, with default parameters. Finally, we used the uniform manifold approximation and 123 

projection (UMAP) method implemented in Seurat to project single cells in a reduced 2D space based 124 

on those top-30 MFA components. 125 

Cluster annotation and differential gene expression analysis. Cell clusters were annotated using a set 126 

of known marker genes complemented with genes that were significantly differentially expressed 127 

between cell clusters. Differentially expressed genes were identified by pairwise comparisons between 128 

all clusters using the FindMarkers function implemented in Seurat, with default parameters. 129 

Single-cell trajectory inference and pseudotime analysis. Malignant cell trajectories were inferred with 130 

Monocle3 [10] on the uncorrected scRNA-seq data. Each tumor sample was used as a distinct partition. 131 

Pseudotimes were estimated using the pseudotime function by indicating as starting cells those with the 132 

least chromosomal aberrations, i.e. the lowest CNV burden (see Copy Number Variation analysis 133 

and phylogenetic tree construction). 134 

 135 

Processing of the Cancer Genome Atlas Kidney Renal Cell Carcinoma (TCGA-KIRC) data 136 

Bulk RNA datasets of ccRCCs. The raw count expression matrix from The Cancer Genome Atlas 137 

Kidney Renal Cell Carcinoma (TCGA-KIRC) and the associated clinical data (tumor stage, survival, 138 

last day of follow-up etc.) were downloaded using the TGCABiolink R package and the Broad Institute 139 

TCGA-GDAC (http://gdac.broadinstitute.org/), respectively. The gene prognostic annotations were 140 

derived from the TCGA-KIRC database. 141 

Survival analysis. Survival analysis was performed using the Survival R package [11] (version 3.2-13). 142 

First, clinical data were censored according to the last day of follow-up and whether the patient was 143 

still alive or not. For the gene prognostic analysis, patients were categorized in either low or high 144 

expression groups according to the lowest Log Rank Test p-value. As defined by the Human Protein 145 

Atlas, p value < 0.001 reflects significant differences in survival outcomes between the two groups and 146 

defines the gene as prognostic. 147 

https://paperpile.com/c/nl2Nr3/iijg5
http://gdac.broadinstitute.org/
https://paperpile.com/c/nl2Nr3/Rl8BW
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Selection of favorable and unfavorable sets of genes. Significantly favorable and unfavorable genes 148 

for survival were defined by comparing the survival probability at 2000 days between the two 149 

expression groups. 150 

 151 

Selection of gene sets of interest 152 

In addition to the sets of favorable and unfavorable (see previous section) genes, we also selected genes 153 

involved in the epithelial-mesenchymal transition (EMT), using a comprehensive collection of EMT-154 

related genes via a web-accessible resource called dbEMT [12]. This database consists of a core dataset 155 

of 1,184 human genes involved in the EMT retrieved from 2,665 PubMed abstracts.  156 

 157 

RNA deconvolution and survival model 158 

Bulk RNA deconvolution was performed with the MuSiC R package v0.2.0 [13] on HTSEQ raw counts 159 

of TCGA bulk data, using single-cell RNA-seq data from either RCC2 malignant subpopulations or 160 

somatic cells across all patients. The proportion of each RCC2 malignant subpopulation and each 161 

somatic cell type was then inferred in each TCGA tumor sample. To avoid a bias related to the balance 162 

between cell populations in each TCGA sample, we used the relative proportion of each RCC2 163 

malignant subpopulation (such as “Relative c8”) defined as the proportion of the considered RCC2 164 

malignant subpopulation as compared to the proportion of all RCC2 malignant subpopulations. 165 

 166 

Survival analysis 167 

Survival analysis was performed using the Survival R package (version 3.2-13) as previously described 168 

(The Cancer Genome Atlas Kidney Renal Cell Carcinoma (TCGA-KIRC) processing section). 169 

Two statistical methods were implemented for the deconvolution-based survival analysis: the Cox 170 

Proportional-Hazards Model method, and the Log Rank Test in which patients were categorized as 171 

https://paperpile.com/c/nl2Nr3/yiZhI
https://paperpile.com/c/nl2Nr3/zwQKk
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having either a low or high proportion of a given cell type according to the lowest Log Rank Test p-172 

value - method similar to that implemented in The Human Protein Atlas [14]. P-value < 0.01 reflects 173 

significant differences in survival outcomes between the two groups and defines the cell type as 174 

prognostic. Finally, survival analysis curves were produced using the Kaplan-Meier model. 175 

 176 

Genomic features of ccRCCs 177 

Somatic mutations. Genes with somatic mutations in TCGA-KIRC patients were downloaded from the 178 

supplementary data published by Chen et al. [15]. Those genes were complemented by two other genes 179 

(CSMD3, TSC2) described in Turajilic et al. [16] for which somatic mutations were inferred by using 180 

the TCGA biolinks R package [17]. Mutated genes were next reported in Table S10. 181 

VHL and CDKN2A methylation status.  Methylation status of VHL and CDKN2A (p16) were 182 

downloaded from the supplementary data provided by Chen et al. [15]. Methylation status of VHL and 183 

CDKN2A (p16) were reported in Table S10. 184 

Chromosomal abnormalities. CNV data (Affymetrix SNP 6.0 arrays) provided by the TCGA 185 

consortium were downloaded with the TCGA biolinks R package [17]. Briefly, for each TCGA-KIRC 186 

sample and each chromosomal arm, we calculated the weighted mean value of all copy number 187 

segments belonging to a given chromosomal arm, with weights equal to the lengths of the copy number 188 

segments. Chromosomal arms showing a weighted mean >0.3 and <-0.3 were counted as “gained” and 189 

“lost”, respectively as reported in Table S10. 190 

Weighted genome instability index (wgII). For each TCGA-KIRC sample, the weighted genome 191 

instability index (wGII) was calculated as described in previous studies [18,19]. Briefly, the ploidy of 192 

a given TCGA-KIRC tumor sample was determined as the weighted median integer copy number, with 193 

weights equal to the lengths of the copy number segments. For each autosomal chromosome of a given 194 

TCGA-KIRC sample, the number of bases deviating from the ploidy of the corresponding sample was 195 

added, and this sum was divided by the size of the chromosome in question. Finally, the wGII score of 196 

a given TCGA-KIRC sample is defined as the average of this percentage value over the 22 autosomal 197 

https://paperpile.com/c/nl2Nr3/TJQtD
https://paperpile.com/c/nl2Nr3/lyCf
https://paperpile.com/c/nl2Nr3/PwQe
https://paperpile.com/c/nl2Nr3/VZi2
https://paperpile.com/c/nl2Nr3/lyCf
https://paperpile.com/c/nl2Nr3/VZi2
https://paperpile.com/c/nl2Nr3/Q8j5+e9N1
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chromosomes. Based on a survival analysis, we next categorized TCGA-samples as having either a low 198 

(<12.8%) or high (>12.8%) wGII score according to the lowest Log Rank Test p-value corresponding 199 

to p < 1.5e-3 (Table S10, Fig. S10). 200 

Genomic subtypes of ccRCC. The association between TCGA-KIRC samples with one of the nine RCC 201 

genomic subtypes (among which CC-e.1, CC-e.2, CC-e.3 which are enriched in ccRCC cases) described 202 

in Chen et al. [15] was downloaded and reported into Table S10. 203 

 204 

Functional analysis 205 

The AMEN suite of tools [20] was used to calculate the Fisher exact probability and the Gaussian 206 

hypergeometric test was used to identify significantly enriched terms from the Gene Ontology as well 207 

as from the selected sets of genes (see previous section). A specific term was considered enriched in a 208 

group of coexpressed genes if the adjusted (Benjamini–Hochberg procedure) p value was ≤ 0.05 and 209 

the number of genes bearing a given annotation was ≥3. 210 

The hypergeometric statistical test was also used to identify significantly enriched RCC genomics 211 

features in TCGA-KIRC patients which were classified according to their low or high proportion of 212 

each deconvolved subpopulation (as previously defined in the Survival analysis section). This analysis 213 

was independently performed on all patients, low-risk patients (T1 and T2) and high-risk patients (T3 214 

and T4) from the TCGA-KIRC dataset (Table S11, Fig. S12). 215 

 216 

Heatmap and spot plot 217 

Spot plots were generated using the FlexDotPlot package [21]. Heatmaps were generated with the 218 

pheatmap package v1.0.12 (https://CRAN.R-project.org/package=pheatmap). 219 

 220 

https://paperpile.com/c/nl2Nr3/lyCf
https://paperpile.com/c/nl2Nr3/Jg83m
https://paperpile.com/c/nl2Nr3/Movlt
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Data availability 221 

Raw data are available on the EGA (European Genome-Phenome Archive) portal under accession 222 

number EGAS00001006534. Processed single-cell RNA-seq and available on ArrayExpress portal 223 

under accession number E-MTAB-11310. All processed data are also available via the web-based portal 224 

UncoVer (The Uro-oncogenomics Viewer at https://uncover.genouest.org) (Lecuyer, Saout et al. in 225 

preparation).  226 

https://uncover.genouest.org/
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Supplementary results 227 

Section 1 : Tumors displayed various clinical features 228 

Tumors were classified from pT1a to pT3b and from ISUP grade 2 to 4, according to the TNM and 229 

2017 WHO/ISUP classification systems, respectively (Table S1; Fig. S1). Four samples came from 230 

distinct primary ccRCC patients (RCC1 to RCC4) and two samples consisting of matched primary 231 

tumor and distant vena cava tumor thrombus came from the same patient (RCC5 and RCC5_t, 232 

respectively). Macroscopic examinations revealed various appearances with heterogeneous patterns of 233 

vascularization, hemorrhagic and necrotic remodeling (Table S1; Fig. S2A). These features of 234 

heterogeneity led us to sample each tumor in up to 9 distinct macroscopic areas, depending on the size 235 

of the lesion (Fig. S2B-C). 236 

 237 

Section 2 : Experimental approach to enrich malignant cells in cell suspensions from ccRCC 238 

tumors 239 

Tumor samples were processed following a preset protocol including tissue dissociation followed by 240 

low-speed centrifugation, referred to as step1; and depletion of CD45+ cells so as to remove circulating 241 

and infiltrating immune cells (IC) and enrich malignant cells (MCs), referred to as step-2 (Fig. 1A). In 242 

order to assess the impact of cryo-preservation, we froze part of the RCC4 cell suspension (RCC4_f) 243 

and then processed it the same way as the fresh samples. As scRNA-seq is a sensitive technique 244 

requiring thorough cell dissociation with a high preservation of cell viability, we first evaluated cell 245 

viability and proportions of various cell subsets at the different steps of the protocol as illustrated with 246 

RCC4 in Fig. S3A-B. Microscopic examination at each step revealed well individualized and diverse 247 

cells, in terms of shape and size (Fig. S3A). To further confirm the distribution and integrity of different 248 

cell types , we used flow cytometry to analyze immune cells (CD45+), endothelial cells (CD34+), 249 

stromal and MCs (CD45-/CD3-) and viability (7AAD) (Fig. S3B). Cell counts decreased from step 1 250 

to step 2 in each sample, sometimes dramatically (Fig. S3C), while global cell viability slightly 251 

decreased (Fig. S3D). However, the proportion of viable cells remained the same in each of the 252 
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monitored cell types (Fig. S3F), suggesting the decrease in cell viability could be due to the removal of 253 

ICs given their relatively high rate of viability. ICs are globally predominant in the samples (Fig. S3B-254 

E) and highly viable (above 90%) in each sample. Malignant, stromal and endothelial cells were 255 

efficiently enriched by the immune depletion (Fig. S3B-E). With the exception of RCC5, the most 256 

clinically advanced tumor (pT3b), the cell viability rate exceeded the 70% minimum viability threshold 257 

recommended for single-cell RNA sequencing experiments (Fig. S3D). Among the different cell types, 258 

endothelial cells were the most impacted by the tissue dissociation, with less than 50% cell viability at 259 

step 1 and 2, whereas malignant and stromal cells remained highly viable. To assess the impact of 260 

cryopreservation, we froze dissociated single cells from 6 ccRCCs, including RCC4_f already frozen 261 

and thawed, and observed a slight decrease in their overall viability, suggesting that cells may be harmed 262 

by freezing (Fig. S3H). However, malignant and stromal cells still presented a viability rate above 75%. 263 

To better document the nature of the depleted ICs, we compared their proportion by flow cytometry at 264 

step 1 and immunohistochemistry prior to dissociation (Fig. S3D and Fig. S4). In comparison, the 265 

estimated proportion of ICs by flow cytometry was ~8-23 times higher than by IHC (ranging from 3–266 

10%) (Table S2). This difference could result from the resistance and individualized state of ICs, 267 

facilitating their selection during dissociation, or contrasted sensitivities of the two techniques. 268 

However, given the large difference, these results suggest that a substantial proportion of ICs detected 269 

by flow cytometry may correspond to circulating ICs coming from blood circulation in the tumor 270 

sample. 271 

 272 

Section 3 : Single-cell RNA-seq uncovers the cellular composition of ccRCC tumors 273 

The final set of samples was composed of seven samples from our lab (RCC1-5, RCC4_f and RCC5_t) 274 

complemented with three ccRCC samples (RCC6-8) and three healthy samples (RCC[6-8]_n) published 275 

by Young and colleagues [5]. After quality controls, the entire dataset contained the expression levels 276 

of 37,832 genes in 54,812 cells (Fig. 1B). The number of detected cells per sample ranged from 2,354 277 

and 4,549 in our dataset (sd = 796), and from 2,001 to 14,769 in the additional dataset (sd = 4,912) 278 

(Table S2). The median number of detected genes per sample ranged from 572 to 2,917, with more 279 

https://paperpile.com/c/nl2Nr3/sZu3p
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genes in our dataset as compared to that of Young et al. (median of 1,719 versus 868), probably as a 280 

result of deeper sequencing.  281 

In order to get an overview of the transcriptomic proximity between samples, we first aggregated their 282 

cells’ transcriptomes and performed pairwise comparisons between the resulting pseudobulk samples 283 

(Fig. S5A). Samples sharing the same experimental and biological background were strongly correlated 284 

and distributed in three groups, consisting of samples from our dataset (RCC1 to RCC5), and tumor or 285 

normal samples from additional dataset (RCC6 to RCC8). From this “pseudobulk” expression matrix, 286 

we projected samples on the first two components of the PCA (Fig. S5B). Accordingly, the first 287 

component distinguishes samples depending on which dataset they belong to, suggesting differences in 288 

their experimental processing. Interestingly, strong correlations are observed between biologically 289 

related samples such as RCC4/RCC4_f (0.99) and RCC5/RCC5_t (0.96). Given the differences between 290 

tumor samples, the dataset was batch-effect corrected using IntegrateData function in Seurat.  291 

The transcriptomic signal was then analyzed at the single cell resolution by performing dimensionality 292 

reduction on the single-cell count matrix and projecting single cells on a UMAP (Uniform Manifold 293 

Approximation and Projection) 2D space (Fig. 1C). The resulting single-cell transcriptomic atlas gives 294 

a general idea of the overall cell diversity of the ccRCC samples. We annotated single cells according 295 

to their sample of origin, which revealed various levels of intra-tumor heterogeneities, as each sample 296 

contained three or more broad cell populations. In accordance with the pseudobulk analysis, RCC5 297 

primary and thrombus derived cells, although distinguishable, appeared to be similarly distributed. 298 

More remarkably, fresh and frozen cells from RCC4 perfectly overlapped (Fig. 1D), demonstrating that 299 

the freezing step in our experimental protocol has little to no impact on single-cell transcriptomes. This 300 

indicates the feasibility of performing scRNA-Seq on frozen ccRCC dissociated cells, enabling the 301 

simultaneous analysis of samples that would normally be acquired at different time points, such as 302 

matched primary tumor and metastasis samples. Alternatively, single-nuclei RNA-seq techniques may 303 

be optimal to analyze frozen samples with only a slight decrease in sensitivity [22]. 304 

To identify cell types present in ccRCC, we performed clustering on the top-30 components of the PCA 305 

matrix, and identified 35 cell clusters (denominated c1-c35) (Fig. 2A) which were annotated based on 306 

https://paperpile.com/c/nl2Nr3/WRK3S
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the expression of well known cellular markers (Fig. 2B-C). MCs (associated with eight cell clusters) 307 

were identified based on the expression of CA9 and NNMT, two well-known canonical markers [23,24]. 308 

Fourteen clusters were classified as ICs (as they expressed canonical markers such as PTPRC) including 309 

T cells (CD8A, CD4; c6, c7, c22, c24), NK cells (KLRD1; c17, c19, c25), macrophages (CD68; c13, 310 

c14, c21), mast cells (MS4A2; c35) and B/plasma cells (MS4A1, MZB1; c9, c11, c35). Interestingly, 311 

the vast majority of B/plasma cells (c9, c11) belong to RCC4 but are PTPRC negative (Fig. 2B), which 312 

explains why they were not depleted in our protocol. The remaining clusters were classified as 313 

endothelial cells based on CD34 and PECAM1 (c1, c15, c27, c28, c29); pericytes based on ACTA2 and 314 

PDGFRB (c4, c23); myofibroblasts based on LUM, DCN and residual expression of pericytes markers 315 

(c34); collecting duct epithelial cells based on UMOD (c26, c33); tubular epithelial cells based on 316 

GATM (c8); erythrocytes based on HBB (c18); and finally cluster c12 exhibiting both expression of 317 

tubular epithelial cell markers (GATM, GPX3) and MC markers (CA9 and NNMT) that corresponds to 318 

an intermediate status between the two cell types. 319 

To confirm the identity of MCs and further characterize them, we used inferCNV (inferCNV of the 320 

Trinity CTAT Project. https://github.com/broadinstitute/inferCNV) and checked the 3p chromosomal 321 

arm status across normal and MCs, as its deletion is a key initial event resulting in VHL loss of function 322 

in more than 90% of ccRCCs [25,26]. This approach confirmed the 3p deletion and revealed its 323 

occurrence in almost all of the cells identified as malignant (Fig. S6), although the sequencing depth 324 

and coverage were too weak to categorically confirm this observation in the RCC7 MCs. Interestingly, 325 

we also found some of the most common CNVs such as 5q and 5p gains (found in 60% and 26% of 326 

ccRCC, respectively) or 13q loss (24% of ccRCC) [26] (Fig. S7). Hence, the inference appeared to 327 

accurately reflect the CNV landscape of tumor cells and constitutes an additional marker of 328 

heterogeneity in the MCs. Interestingly, we also uncovered poorly described chromosomal aberrations 329 

with an heterogeneous distribution across the tumors, such as a very specific gain in chromosome 16 330 

for RCC5 primary MCs as compared to RCC5 thrombus MCs, or a significant loss in 18p for RCC2 331 

and RCC5. 332 

 333 

https://paperpile.com/c/nl2Nr3/Ygjr0+Vrpp7
https://github.com/broadinstitute/inferCNV
https://paperpile.com/c/nl2Nr3/NvXD6+erm5z
https://paperpile.com/c/nl2Nr3/erm5z
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Section 4: Generation of a single-cell atlas of malignant cells in ccRCCs 334 

We assembled a single-cell atlas of MCs by selecting all the cells belonging to clusters associated with 335 

MCs (c2, c3, c5, c10, c16, c20, c30, c31) and normal tubular epithelial cells (TECs) (c8, c12) and 336 

reanalyzed the resulting cells (15,471 MCs and 3,737 TECs). The dimensionality reduction was 337 

performed by using a multi-factorial analysis (MFA) based on the scRNA-seq data and the inferred 338 

CNV data. Finally cells were projected on a 2D space (UMAP) and partitioned into 24 cell clusters. 339 

 340 

Section 5: CNV heterogeneity in RCC2 malignant cells 341 

Losses in 3p21-26 and 13q33-34, as well as gains of 1q21-22, 7q36, 10p14-15 and 5q were observed in 342 

all RCC2 MC clusters, designating them as early events in its initiation (Fig. S9A). Although the rate 343 

of gain was approximately the same, the losses increased with pseudotime, culminating in c8, in 344 

accordance with the global CNV burden. Based on this CNV accumulation we used UphyloPlot2 [27] 345 

to construct a phylogenetic tree (Fig. S9B), which revealed a branched evolution from a common 346 

ancestor (A) to distinct malignant clones (P, O, L, K, H, G, E and D). Interestingly, we observed that 347 

CNV-based clones overlap with transcriptomic clusters. In accordance with previous observations, the 348 

loss of 3p and the gain of 5q appeared to be common to all clones whereas some specific events were 349 

restricted, like the numerous specific aberrations in branch H, corresponding to c23. The phylogenetic 350 

tree, although probably incomplete, gives a broad idea of the diversity and the relationships between 351 

the MCs within RCC2, further supporting the idea of diverse behaviors.  352 

The 3p arm, lost in all MCs, carries several genes involved in ccRCC carcinogenesis, such as SETD2, 353 

BAP1 and PBRM1, whose losses and their consequences are widely observed and well documented in 354 

ccRCC [25]. The 3q arm was also lost to various extents in certain MC clusters; larger proportions were 355 

affected in c23, c8 and c9 than in c3 and c10. In particular, band 3q26, lost at the end of the tumor 356 

lineage, carries the PIK3CA oncogene, which was found to be mutated in different ccRCC cohorts [28]. 357 

Interestingly, PIK3CA is part of the same biological pathway as PTEN, a common tumor suppressor on 358 

band 10q23, which happens to also be lost specifically in c23, c9 and c8. Additionally, part of c8, 359 
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harbors a unique 9p loss (Fig. S9B), which carries CDKN2A (9p21), an important suppressor gene. 360 

Interestingly, the loss of 9p21 is observed in larger proportions of metastases than primary tumors which 361 

makes it a likely cause of metastasis in ccRCC [28]. Altogether, RCC2 MC clusters carry the most 362 

chromosomal alterations, in particular in c8, which could infer to it particularly aggressive properties. 363 

 364 

Section 6: Dynamics of the transcriptional landscape across the RCC2 tumor lineage 365 

In total we identified 2,229 genes differentially expressed between tubular epithelial cells (TECs) and 366 

RCC2 malignant cells (MCs) as well as along the RCC2 tumor lineage which were subsequently 367 

distributed into nine expression patterns (P1-9) (Fig. 4C, Table S5). Genes belonging to patterns P1 are 368 

preferentially expressed in TECs as compared to MCs. Patterns P2, P8 and P9 contain genes whose 369 

expression profiles are shared by several adjacent MC clusters: P2 contains genes expressed in all MCs; 370 

P8 includes genes expressed in c23 onwards; and, P9 regroups genes that are specifically down-371 

regulated in c8. Patterns P3, P4, P5, P6 and P7 include genes that are preferentially expressed in c3, 372 

c10, c23, c9 and c8, respectively. The functional analysis revealed a progression towards an increasingly 373 

unfavorable score (corresponding to the significant over-representation of unfavorable genes within a 374 

given expression pattern) from P3 to P8, which reflects a gain in aggressive features along the tumor 375 

clonal lineage. Conversely the favorable score was globally higher in the first expression patterns (P2-376 

6) and in P9 than in P7-8. With the exception of P5, all expression patterns corresponding to MC clusters 377 

displayed a significant enrichment of genes involved in the EMT. Gene ontology (GO) analysis revealed 378 

826 GO terms that were significantly enriched in at least one expression pattern (Table S6).  379 

The pattern P1, comprising 107 DEGs preferentially expressed in TECs, was enriched in genes involved 380 

in metabolic processes such as ATP (13 genes, adjusted p value < 3.3e-7), carboxylic acid (26, 8.6e-381 

11), and fatty acid metabolic processes (12, 5.5e-5). P2 comprised 400 genes associated to mRNA (47, 382 

1.3e-7), pyruvate (11, 2.9e-2), ATP (28, 3.9e-9), NADH (6, 2.6e-2) and nucleotide (29, 1.3e-4) 383 

metabolic processes, as well as intracellular protein transport (56, 2.3e-7), suggesting an overall 384 

energetic reprogramming in MCs as compared to TECs. No specific biological processes were found 385 

https://paperpile.com/c/nl2Nr3/YGY85
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to be enriched in P3 (81 genes). P4 (233 genes) was found to be enriched in genes associated with 386 

cellular response to cytokine stimuli (34, 1.5e-3) and response to type I interferon (9, 1.2e-2), indicating 387 

innate immune activity in c10; genes belonging to P5 (335 genes) were over-represented in organic acid 388 

(39, 3.4e-3) metabolic process, secretion (46, 1.8e-2) and programmed cell death (59, 1.3e-2); P6 genes 389 

(196) were significantly associated with cytokine-mediated signaling pathways (22, 6.5e-3), antigen 390 

processing and presentation (11, 8.2e-3), and more precisely T cell mediated cytotoxicity (5, 1.7e-2) 391 

suggesting the organization of an adaptive immune response in c9. Interestingly, P6 was also 392 

characterized by genes involved in programmed cell death (42, 3.9e-3), and is further linked to cell 393 

adhesion (34, 3.3e-3), secretion (30, 3.2e-2), and cellular responses to hypoxia (10, 1.0e-2), the initiation 394 

stage of angiogenesis [29]. As expected, P7 (354 DEGs) was found to be enriched in terms linked to 395 

aggressive tumor states, including inflammatory responses (33, 1.3e-4), blood vessel morphogenesis 396 

(31, 2.9e-5), cell cycle (51, 2.6e-2), cell migration (54, 1.0e-4), programmed cell death (79, 1.3e-8), cell 397 

adhesion (47, 3.7e-3), cytokine-mediated signaling pathway (40, 1.3e-6) and secretion (39, 4.9e-2); P8 398 

(391 DEGs) was over-represented in genes involved in programmed cell death (68, 3.0e-3) and cell 399 

migration (53, 8.0e-3) illustrating a globally more aggressive state from c23 cluster onwards. Finally, 400 

P9 (132 DEGs) was characterized by a significant association with genes involved in xenobiotic (7, 401 

1.2e-2), cellular amino acid (11, 7.6e-3) and fatty acid (15, 1.1e-4) metabolic processes, suggesting that 402 

c8 has an altered metabolic state and may respond differently to therapy. 403 

Gene level analysis corroborates previous observations regarding the aggressiveness of patterns P7 and 404 

P8 (Table S7). Amongst the 2,229 DEGs, we found well-known oncogenes already described in renal 405 

cell carcinoma such as JUN/JUNB (P7) and AR (P8), the epithelial growth factor receptor (EGFR, P7) 406 

or CXCR4 (P8). A total of 228 genes were linked to EMT, including 92 in the P7 and P8 patterns. There 407 

were 628 genes associated with at least one GO term among angiogenesis, cell migration, cell adhesion 408 

or programmed cell death, including 253 for the P7 and P8 patterns. Twenty-seven of them were 409 

associated with all terms, including 16 genes in the P7 and P8 patterns, such as CCL2 [30] and CAV1 410 

[31] that have been reported in ccRCCs. Among genes that haven't been previously described in RCCs, 411 

108 were unfavorable in the TCGA cohort. For instance, RRAS and CALR (P8) were associated with 412 
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the regulation of cell migration and adhesion as well as with angiogenesis (RRAS) and programmed 413 

cell death (CARL), warranting deeper characterization of their impact in ccRCC. A total of 10 genes 414 

coded proteins that are targeted by FDA-approved drugs, including three gene products already targeted 415 

in kidney cancer (AXL, NTRK2 and MET). AXL (P8), in particular, showed peak expression in c23, 416 

c9 and c8, suggesting its inhibition with cabozantinib could counter the effects of the most aggressive 417 

MC clusters in RCC2. Similarly, 24 gene products, although not targeted by drugs currently used to 418 

treat ccRCCs, are reported to facilitate the action of FDA-approved drugs (“Tclin”), warranting further 419 

characterization of their status in ccRCCs. Among other notable genes, P8 contains MMP7, the 420 

metalloproteinase involved in extracellular matrix (ECM) degradation that promotes the invasion of 421 

MCs into the ECM [32], and PIK3R1 (Phosphatidylinositol 3-kinase regulatory subunit alpha), which 422 

is part of the highly activated PI3K/AKT pathway promoting cell proliferation in renal cell carcinomas 423 

[33]. P8 contains TGFBI (transforming growth factor beta induced), a cell adhesion inhibitor in the 424 

ECM [34] and MDK which is involved in cancer progression and EMT, notably modulating cell 425 

adhesion and migration [35]. Altogether, the functional analysis (Table S6) and the RCC2 DEGs 426 

annotations (Table S7) demonstrate the heterogeneous and aggressive states of the RCC2 tumor from 427 

the molecular standpoint. We also illustrate here a global method to identify relevant targets, warranting 428 

single-cell transcriptomics profiling efforts to support the design of novel targeted therapies. 429 

Section 7: Deconvolution of RCC2 malignant cell subpopulations are associated with patient 430 

survival 431 

Based on log rank tests run on all the patients, we established groups having low versus high proportions 432 

of the deconvolved cell types by selecting the percentile displaying the most significant outcome 433 

difference (Table S9), for instance in c8 (percentile: 43.69; mean percentage in low group: 17.13%, 434 

CI[15.30-19.04] versus 70.10% [68.12-72.01] in high group), c9 (48.2; 23.70% [21.8,25.61] versus 435 

64.73% [63.42,66.04]), or endothelial cells (19.80; 12.72 [12.28,13.16 versus 37.83 [35.65,40.01]). 436 

Outcome was significantly unfavorable (p value < 0.01) among all the patients for those having high 437 

proportions of c8 among MCs (called “Relative c8”, see supplementary materials; p < 6.5e-7), and to a 438 

lesser extent myofibroblasts (<1.14e-5) and B cells (<1.5e-5) (Fig. 5B). Conversely, high proportions 439 
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of relative c9 (<7.1e-8), endothelial cells (<4.55e-10) as well as relative c10 (<7.5e-7), despite its low 440 

levels, were significantly favorable factors. These associations with survival were also significant 441 

according to the Cox regression test. In high-risk patients (T3-T4), all previous cell types but B cells 442 

had a significant association with survival (data not shown). However, these patients most probably 443 

received therapies impacting their survival, which confounds the analysis. Very interestingly though, 444 

when considering low-risk patients (T1-T2), endothelial (p < 9.0e-3), but most significantly relative c8 445 

(< 9.62e-4) and c9 (< 9.42e-5) remained predictive of survival, further discriminating them. For 446 

instance, patients displaying a high relative c8 had an approximately 25% lower 5-year survival 447 

probability than those with a low relative c8. Taking into account the confidence intervals, patients 448 

displaying more than 23.5% of relative c8 might be considered at higher risk than expected amongst 449 

T1-T2 patients. Overall the relative proportions of c8 and c9 among MCs constituted the two best poor 450 

and good prognostic factors, respectively, for survival in low-risk patients. 451 

 452 

Section 8: Deconvolved RCC2 malignant subpopulations are associated with specific genomic 453 

features 454 

To further characterize the deconvolved RCC2 malignant subpopulations and explore their aggressive 455 

potential, we next investigated their association with either recurrent genomic features described in 456 

ccRCC (CNVs, mutational status of 22 genes, methylation status of VHL and CDKN2A/p16) [15–17], 457 

RCC genomic subtypes as defined by Chen and colleagues, or genome instability as defined by Burrell 458 

and colleagues [18,19] (Table S10). RCC genomic subtypes include nine patient survival groups of 459 

TCGA samples among which CC-e.1 (intermediate prognosis), CC-e.2 (better) and CC-e.3 (worse) 460 

(Table S10). TCGA-KIRC samples were also classified into two categories, low-wGII and high-wGII 461 

samples, based on a survival analysis on their weighted genome instability index (wGII) (p < 1.5e-3) 462 

(c.f. supplementary methods). We performed an enrichment analysis (Table S11) which revealed 463 

significant associations of specific CNVs with TCGA-KIRC samples showing high or low proportion 464 

of RCC2 malignant subtypes (c8, c9 and c10) (high- or low-[c8,c9,c10] samples) (Fig. S11) including 465 
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recurrent CNVs (such as losses of 3p, 4q, 9p, and gains of 2q, 12p, 20q) [16]. When considering low-466 

risk patients (Fig. S11, Table S11), only loss of 3p in low-[c8], high-[c9] TCGA-KIRC samples, gain 467 

of chromosome 2 in high-[c10] samples, and gain chromosome 12 in high-[c8] samples remained 468 

significantly enriched. Interestingly, gain of chromosome 12 has been shown to be associated with 469 

aggressiveness and lower survival rates in ccRCCs [36,37]. This analysis revealed no significant 470 

associations of the methylation and mutational status with low- or high-[c8,c9,c10] TCGA-KIRC 471 

samples. Examination of RCC genomic subtypes and genome instability revealed a significant 472 

association of high-[c9,c10] and low-[c8] with the good prognosis CC-e.2 subtype but also the low-473 

wGII category, and, conversely, a significant association of low-[c9,c10] and high-[c8] with the poor 474 

prognosis CC-e3 subtype but also the high-wGII category (Fig. S11, Table S11). With the exception of 475 

low-[c10] and high-[c10] samples, it is noteworthy that these associations remained significant in low-476 

risk TCGA-KIRC patients. 477 

Based on these observations, we then performed a survival analysis in order to investigate whether the 478 

gain of chromosome 12, the RCC genomic subtypes, and the genome instability (wGII score) were 479 

predictive of survival in low-risk patients (Fig. S10, Fig. S12). Only the gain of 12p was found to be 480 

associated with survival in all TCGA-KIRC samples (p < 2.8e-3) but not in low-risk samples (p < 0.23). 481 

As expected, RCC genomic subtypes and wGII categories were significantly associated with patient 482 

survival (p < 1e-4 and 1.5e-3). However, contrary to the relative proportions of c8, c9 and c10, these 483 

features could not further stratify low-risk patients into two prognostic subgroups (p < 2.6e-1 and p < 484 

2.1e-2) (Fig. S10, Fig. S12). Overall, these results corroborate the observation that the c8 clone is 485 

aggressive and associated with poor survival, and further support its consideration as a biomarker of 486 

interest in ccRCC low-grade tumors.  487 
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