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Abstract 

BACKGROUND: Intra-tumor heterogeneity (ITH) is a key feature in clear-cell renal cell carcinomas 

(ccRCCs) which impacts outcomes such as aggressiveness, response to treatments or recurrence. In 

particular, it may explain tumor relapse after surgery in clinically low-risk patients who did not benefit 

from adjuvant therapy. Recently, single-cell RNA-seq (scRNA-seq) has emerged as a powerful tool to 

unravel expression intra-tumor heterogeneity (eITH) and might enable better assessment of clinical 

outcomes in ccRCC. 

OBJECTIVE: To explore eITH in ccRCC with a focus on malignant cells (MCs), and assess its 

relevance to improve prognosis for low-risk patients. 

DESIGN, SETTING AND PARTICIPANTS: We performed scRNA-seq on tumor samples from five 

untreated ccRCC patients ranging from pT1a to pT3b. Data was complemented with a published dataset 

composed of pairs of matched normal and ccRCC samples. 

INTERVENTION: Radical or partial nephrectomy on untreated ccRCC patients. 

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Viability and cell type 

proportions were determined by flow cytometry. Following scRNA-seq, functional analysis was 

performed and tumor progression trajectories were inferred. A deconvolution approach was applied on 

an external cohort and Kaplan-Meier survival curves were estimated with respect to malignant clusters 

prevalence. 

RESULTS AND LIMITATIONS:  

We analyzed 54,812 cells and identified 35 cell subpopulations. The eITH analysis revealed that each 

tumor contained various degrees of clonal diversity. The transcriptomic signatures of MCs in one 

particularly heterogeneous sample were used to design a deconvolution-based strategy which allowed 

to risk-stratify 310 low-risk ccRCC patients. 
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CONCLUSIONS: We described eITH in ccRCCs and used this information to establish significant cell 

population-based prognostic signatures and better discriminate ccRCC patients. This approach has the 

potential to improve the stratification of clinically low-risk patients and their therapeutic management. 

PATIENT SUMMARY: We sequenced the RNA content of individual cell subpopulations composing 

ccRCCs and identified specific malignant cells whose genetic information can be used to predict tumor 

progression. 
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Introduction 

Clear cell renal cell carcinoma (ccRCC) is the most frequent and lethal subtype of kidney cancer which 

represents 2.2% of all cancers and 180,000 deaths annually, worldwide [1]. It has a poor prognosis, as 

45% of diagnosed patients are or become metastatic [2], and 30% of those treated with surgery 

eventually relapse, including 10-25% of clinically low-risk patients with progressing disease (called 

low-risk progressors) [3–6]. Recent targeted therapies have provided significant benefits for patients in 

terms of progression-free and overall survival [7]. However, their efficacy is limited with 30% of 

responsive patients, contrasting responses within tumors, and long-term relapses in most cases [8–10]. 

These pitfalls are not only due to inter- but also, importantly, to intra-tumor heterogeneity (ITH) which 

underlies the emergence of novel malignant clones, allowing the tumor to proliferate, escape treatments 

or relapse after surgery [11–14]. Single-cell RNA sequencing (scRNA-seq) has become the method of 

choice to decipher expression intra-tumor heterogeneity (eITH) [15] by simultaneously profiling the 

individual transcriptome of thousands of cells from a dissociated tissue. It has contributed to demonstrate 

that eITH is critical for tumor maintenance and progression [15]. In ccRCCs, a pioneering single-cell 

study provided the first evidence of eITH and revealed differences in targetable signaling pathways 

between a primary tumor and its metastasis [16]. Other studies have used scRNA-seq to explore renal 

carcinomas [17–29], providing new insights into tumor subtypes [27], origin and differentiation of RCC 

cells [26,29], or characterization of the immune landscape [17,23,28]. Most of the datasets used by these 

studies comprise a large proportion of immune cells (ICs) and only a small fraction of malignant cells 

(MCs). Hence, there is still a need for single-cell atlases focusing on MC heterogeneity which might 

provide new insights into the ability of ccRCC to proliferate, escape treatments, metastasize, or relapse. 

Here we designed and validated a scRNA-seq protocol to characterize the MCs in ccRCC tumors from 

five patients ranging from pT1a to pT3b, which was complemented with a scRNA-seq dataset composed 

of three pairs of ccRCC and adjacent normal kidney samples [18]. The subsequent analysis revealed 

contrasted degrees of heterogeneity within tumors. One particular tumor displayed extensive clonal 

diversity, recapitulating aggressive features linked to epithelial-mesenchymal transition, cell migration, 

angiogenesis and cell adhesion. By applying an in silico deconvolution approach to a bulk RNA-seq 
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dataset of ccRCCs, we found that the predicted proportion of a specific MC cluster was a poor prognosis 

marker in low-risk progressors. Our results provide a valuable resource for the community that has been 

made available via the Uro-oncogenomics Viewer database (https://uncover.genouest.org) (Lecuyer, 

Saout et al., in preparation). 
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Patients and methods 

Tumor specimens 

Fresh tumor samples, ranging from pT1a to pT3b and ISUP 2 to 4, were collected from a total of five 

untreated patients who underwent either radical or partial nephrectomy for ccRCC at the urology 

department of the Rennes university-hospital center. Patients met the requirements of the local 

institutional ethics committee (see Supplementary methods). Detailed clinical information about each 

patient is provided in Table S1. 

Single-cell preparation, library preparation, sequencing and analysis 

For each tumor, ~2-9 punches were pooled and dissociated, and a partial depletion of ICs was performed 

to enrich the samples in MCs (Fig. 1A; Supplementary methods). Construction of single-cell libraries 

(Chromium™ Single Cell 3’ Library & Gel Bead Kit v2) was carried out according to the manufacturer’s 

instructions (10x Genomics). Single-cell libraries were quality-controlled using the Agilent 2100 

Bioanalyzer system and sequenced on an Illumina HiSeq 4000 instrument using a 2x100 paired-end 

sequencing protocol (Illumina, San Diego, CA). Data processing was performed in R as extensively 

detailed in Supplementary methods. 
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Results 

Validation of the experimental procedure 

We studied five samples (designated RCC1-5) each from separate untreated ccRCC patients with 

various clinical features, as well as one sample from a vena cava tumor thrombus from the RCC5 patient 

(RCC5_t) and a sample of RCC4 dissociated cells that were frozen (RCC4_f) (Fig. S1; Fig. S2; Table 

S1; Supplementary results [SR], Section 1). As our primary objective was to build a single-cell atlas of 

predominantly MCs, we designed and evaluated, by flow cytometry, a dedicated protocol that showed 

good dissociation, viability and cell type representativeness (Fig. 1A; Fig. S3; SR, SR-Section 2). 

Importantly, it allowed us to enrich the MC content of the samples by dramatically reducing the 

proportion of immune cells, and proved to only slightly affect viability in frozen dissociated cells (Fig. 

S3; Fig. S4). 

 

A single-cell atlas of ccRCCs composed of ~55,000 cells 

After confirming our ability to efficiently dissociate the tumor and enrich MCs, we sequenced the 

transcriptome of individual cells of seven samples (RCC1-5, RCC4_f and RCC5_t). Our dataset was 

complemented with three pairs of matched healthy renal and ccRCC tumor tissues (termed RCC[6-8]_n 

and RCC[6-8], respectively) [18] (Table S1; Table S2). Following data processing, a pseudobulk 

analysis revealed differences between both datasets (Fig. S5; SR, Section 3), prompting us to perform a 

batch effect correction. The final scRNA-seq dataset was composed of 54,812 cells (Fig. 1B; SR, Section 

3) which were projected on 2D UMAP spaces (Fig. 1C-D).  

 

Single-cell RNA-seq uncovers the cellular composition in ccRCC 

Cells were next partitioned into 35 cell clusters (termed c1-c35) (Fig. 2A) which were associated with 

eight broad cell types based on specific marker genes such as CA9 and NNMT for MCs [30,31] (Table 

S3; Fig. 2B-C; SR, Section 3). The balance between ICs and MCs across samples clearly distinguished 
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both datasets (Fig. 2D), stressing the relevance of our approach to enrich MCs. Remaining ICs in RCC4 

and RCC4_f were CD45- (PTPRC-) B/plasma cells, which explains their insensitivity to IC depletion 

(Fig. 2B). To further characterize MCs, we inferred their copy number variations (CNV) which 

confirmed the expected 3p loss in all samples and revealed sample-specific CNVs (Fig. S6; Fig. S7; SR, 

Section 3). Overall, these results confirm that ccRCC exhibits both intra- and inter-tumor heterogeneity 

(SR, Section 3). 

 

Malignant cells display clonal diversity at chromosomal and gene expression levels 

To deepen the analysis of MC diversity, we next focused the analysis on the 15,471 MCs and the 3,737 

tubular epithelial cells (or TECs; the normal cells from which MCs originate) which were subsequently 

partitioned into 24 clusters (termed c1-c24) (Fig. 3A; Table S4; SR, Section 4). With the exception of 

TECs (c1, c12 and c15), the vast majority of cell clusters did not mix across samples suggesting that 

each tumor had its own evolutionary history (Fig. 3A-B), as highlighted by the inter-tumor heterogeneity 

in chromosomal aberrations (Fig. S6; SR, section 3). Tumors also harbored various degrees of eITH 

(Fig. 3B-C). In particular in RCC2, MCs were distributed in five well delineated clusters; c3 (shared 

with RCC1, RCC3 and RCC4; Fig. 3D), c10, c23, c9 and c8, whereas other samples had a more 

homogeneous composition. Interestingly, the CNV analysis also revealed that the RCC2 sample carried 

higher intra-tumor CNV heterogeneity than the other tumors, in particular regarding 3q, 6p, 9q, 14q and 

18p, that were lost in c8 but had contrasted status in other RCC2 malignant clusters (Fig. S7). With the 

exception of c16 and c24, the cell cycle analysis revealed that all clusters were composed of a vast 

majority of cells in G1 and 9-36% in G2M (Fig. 3E), in accordance with typical observation in solid 

tumors [32]. Along with CA9 and NNMT, we uncovered specific markers of MCs such as EGLN3, CP, 

MT3, NPTX2 and TRIB3 (Fig. 3F-G). Expression of cell cycle markers (CKS2, CKAP2L and TOP2A) 

confirmed the cycling status of c16. As expected, we also found high expression of TEC markers such 

as ALDOB, MIOX, QDPR and GATM in c1, c12 and c15. We also noticed the expression of PTPRC 

and CD34 in two small cell clusters (c24 and c22, respectively) corresponding to residual contaminants 

by immune cells and endothelial cells, respectively. 
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The RCC2 tumor clonal lineage recapitulates important steps of carcinogenesis 

Given the variable degree of eITH observed in each tumor, we next tried to reconstruct tumor lineages 

within each sample (Fig. S8). RCC2 displayed the longest cellular trajectory going from c3 through c10, 

c23 and c9, up to c8 (Fig. S8). The chromosomal imbalance analysis revealed that the CNV burden 

increased along the pseudotime, indicating progressive and cumulative chromosomal alterations, which 

provides additional elements in favor of a c3 to c8 lineage progression (Fig. 4B). Fifty-two regions were 

found to be significantly gained or lost along the RCC2 pseudotime, which was further supported by a 

phylogenetic analysis (SR, Section 5; Fig. S9). We also found 2,229 differentially expressed genes 

(DEGs) across RCC2 MC clusters and tubular epithelial cells which were subsequently partitioned into 

nine expression patterns (termed P1-9) (Fig. 4C; Table S5). The functional analysis demonstrated the 

accumulation of aggressive features along the RCC2 lineage, with a notable peak in c8, related to 

epithelial-mesenchymal transition (EMT, a crucial initial stage of the metastatic process), angiogenesis, 

cell migration and cell adhesion (Table S6-S7; SR, Section 6). Overall these results suggest that MCs 

from RCC2 are linked together through a common tumor clonal lineage from indolent (c3) to aggressive 

(c8) MC clusters showing the sequential acquisition of typical molecular features corresponding to 

important steps of tumor progression. 

 

Deconvolution of specific malignant clusters is associated with tumor stages and survival in low-

risk patients 

We next hypothesized that the RCC2 lineage could represent an in vivo model of ccRCC carcinogenesis 

which could be used as a reference. To verify this, we deconvolved the proportions of somatic cell types 

and RCC2 MC clusters on the TCGA-KIRC bulk RNA-seq dataset (525 samples) of ccRCCs (Fig. 5A, 

Table S8). Substantial proportions of clusters c8 and c9 as well as non-immune microenvironment cells 

(endothelial cells, pericytes, myofibroblasts) were significantly detected, covering all four T stages. 

Despite their cellular proximity with MCs, TECs were not detected in ccRCC tumors, as expected. 
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Concerning MCs, the main deconvolved populations were c9 and c8 with opposite trends (Fig. 5A, 

Table S8), by respectively decreasing and increasing with tumor stages. We then evaluated the ability 

of deconvolved cell types to predict survival in either all or in T1-T2 low-risk ccRCC patients of the 

TCGA-KIRC cohort (SR, section 7, Fig. 5B, Table S9). When considering all patients, we found a 

significant association with poor prognosis of c8, and, to a lesser extent, of myofibroblasts and B cells. 

Conversely, c9, c10 and endothelial cells were three excellent predictors of good prognosis. When 

looking more specifically at low-risk patients, strikingly, only c8, c9 and c10, and, to a lesser extent, 

endothelial cells were still associated with survival. In addition, enrichment analysis of recurrent 

genomic features in TCGA-KIRC cohort (SR, section 8) revealed that the proportion of c8 was 

significantly associated with unfavorable tumors (CC-e.3 subtype and high genome instability) and the 

proportions of c9/c10 with favorable tumors (CC-e.2 and low genome instability), including in low-risk 

patients (Fig. S10, Fig. S11, Fig. S12, Table S10, Table S11). However, contrary to the relative 

proportions of c8, c9 and c10, previous RCC genomic prognosis subtypes and genome instability could 

not further stratify low-risk patients into two prognostic subgroups.  
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Discussion 

On the basis of conventional diagnosis, a significant proportion of patients considered to be at low-risk 

on the basis of conventional diagnosis will eventually relapse [6,33]. A major issue in the management 

of ccRCCs hence consists in improving patient stratification through early detection of those who will 

eventually relapse and could have benefited from specific surveillance and potential adjuvant treatments. 

Biomarkers can be used to stratify these patients, but they remain insufficient. Moreover, the differences 

between gene expression signatures and corresponding protein detection constitute an important gap for 

clinical diagnosis [34,35], prompting the use of alternative and complementary approaches, such as 

transcriptomics in future diagnostic tools. In this context, it remains important to improve our 

understanding of tumor progression in ccRCCs in order to enhance patient care and consider 

personalized therapeutic strategies. To address these issues, we used scRNA-seq to decipher eITH in 

ccRCCs, with a specific focus on the malignant compartment, hypothesizing that this information could 

notably contribute to improve the detection of low-risk progressors. 

Since published scRNA-seq datasets in ccRCCs are often focused on the characterization of the immune 

compartment [17,19,23,28], we established an experimental procedure to enrich the fraction of MCs by 

reducing the fraction of ICs. We also examined several punches per tumor to better capture eITH as 

suggested by Gerlinger and colleagues [14]. Samples from five ccRCC patients ranging from pT1a to 

pT3b enabled us to assemble an atlas composed of ~25,826 cells (including ~48.3% of MCs) which we 

complemented with 28,986 cells (including ~10.3% of MCs) published by Young et al. [18]. Despite 

common molecular events such as the truncal 3p loss, the analysis of MCs revealed an important 

heterogeneity across samples. Various degrees of eITH in the distinct samples were observed, from low 

(RCC1, 6 and 7) to very high (RCC2 and 5 to a lower extent). We also noticed that both the inter- and 

intra-tumor heterogeneities in the samples of Young et al were lower than in our dataset, possibly due 

to the difference in sequencing depths, the number of punches per tumor and/or the higher proportion 

of MCs in our samples. Those differences appear as potentially critical features to properly capture 

eITH. While the overall CNV detection also revealed differences between datasets and turns out to be 
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informative in our analysis, it should be considered with caution as CNVs were inferred from gene 

expression data and not from gold standard DNA analysis techniques (FISH, aCGH). Together these 

results suggest that ITH is not necessarily the rule, as pointed out in hepatocellular carcinoma [36]. 

Further works will be required to draw a complete picture of ccRCC heterogeneities notably by 

including more tumors along with their paired metastases but also by combining single-cell multiomics 

with spatial transcriptomics technologies. 

Among the different patients, we could identify a unique tumor sample (RCC2), displaying a yet never 

observed eITH consisting of five distinct MC subpopulations. Those were connected through a common 

lineage characterized by the progressive acquisition of highly aggressive features related to EMT, 

angiogenesis, cell migration and cell adhesion, as well as specific chromosomal abnormalities. RCC2 

was a localized and apparently low-grade tumor (pT2b) without clinical/histological markers of 

aggressiveness. Yet, the RCC2 patient is currently under surveillance after having developed a 

suspicious pancreatic nodule, a preferred site for ccRCC metastasis. We believe that the RCC2 MC 

lineage can therefore represent a valuable resource for the community as an in vivo and representative 

model of tumor progression. 

A landmark study used cell type deconvolution from TCGA data to successfully determine three groups 

of ccRCC patients according to lymphocyte T cell states and demonstrated their significant association 

with prognosis [21]. Here we used a similar approach based on MC subpopulations composing the RCC2 

tumor. Our results proved useful to predict survival and confirmed previous findings encouraging the 

consideration of eITH to identify predictive biomarkers [37]. The ability of this method to stratify 

ccRCC patients from bulk RNA-seq is remarkable, especially the capacity of the predicted proportion 

of c8 and c9 MC clusters to serve as poor and good prognostic factors, respectively. In c9, despite the 

expression of aggressive features, the marked organization of adaptive immunity seems to confer an 

overall good clinical outcome. Importantly, some deconvolved cell types constituting the tumor-

microenvironment are already known to be associated with survival [38–40]. Here, not only do we 

confirm these results, but we go further by obtaining refined and resolutive malignant signatures with 

superior predictive power, especially in low-risk patients. Furthermore, although significantly associated 
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with relevant RCC genomic subtypes defined by Chen et al. [41], we demonstrated that our MC-

deconvolved approach better stratify low-risk patients. Interestingly, the proportion of T1-T2 patients 

(~10%) with a relatively high proportion of c8 is similar to the proportions of clinically low-risk 

progressors (10-25%), suggesting a potential overlap between the predicted and actual populations with 

poor outcomes. Our results suggest that low-grade tumors exceeding ~25% of c8 cells warrant reinforced 

surveillance. Hence, we present here the first proof of concept for using MC expression signatures to 

improve clinical management of ccRCC patients. Importantly a tumor that better recapitulates the stages 

of carcinogenesis could also complement and/or update our current deconvolution-based strategy. In the 

future it will be interesting to develop nomograms including relevant MC clusters and compare their 

accuracy with other conventional nomograms such as one recently developed in ccRCCs, based on 

scRNA-seq data [42]. Finally, it will be necessary to explore, in dedicated cohorts, to what extent these 

deconvolution-based approaches can predict other features such as relapse, metastasis and treatment 

response. Therefore, we strongly encourage the use of transcriptomics in future clinical routine, 

especially since low-cost technologies such as BRB-seq [43] are now available and easily deployable, 

in order to enable the use of such predictive strategies and develop a personalized medicine. In this study 

we have assembled a valuable atlas of ccRCC MCs; we are committed to expanding this dataset and to 

making it available online via the UncoVer resource. Thanks to the single-cell profiling of a rare tumor 

showing a high eITH, we have established a reliable stratification approach for low-risk patients based 

on the deconvolution of specific MC subpopulations which could contribute to improving patient care. 

  

ACCEPTED MANUSCRIPT / CLEAN COPY

https://paperpile.com/c/FgS1Er/t6so
https://paperpile.com/c/FgS1Er/44tro
https://paperpile.com/c/FgS1Er/IgHe2


14 
 
Conclusion 

We described eITH in ccRCCs and used this information to establish significant cell population-based 

prognostic signatures and better discriminate ccRCC patients. This approach has the potential to improve 

the stratification of clinically low-risk patients and their therapeutic management.  
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Figure legends 

Figure 1. Single-cell analysis of ccRCC. (A) Flowchart depicting the experimental design for each 

ccRCC sample. Single-cell suspensions were assessed by flow cytometry at two steps in protocol: after 

tumor dissociation (step 1), and, after low centrifugations and immune cell removal (step 2). (B) Bar 

plots representing the number of cells and the median number of detected genes for each sample. Each 

sample corresponds to a distinct color, with normal samples shown in shades of gray. _f = frozen sample; 

_t = thrombus sample; _n = normal kidney. (C) UMAP plot of all cells from pooled samples colored 

according to panel B, in which nearby points represent transcriptionally similar cells. (D) Deconvolution 

of the global UMAP plot (panel C) per patient. In each UMAP plot, the cells are colored by sample 

according to panel B. 

Figure 2. Cellular diversity in ccRCC. (A) UMAP plot representing the cell type distribution (main 

colors) and clustering (shades of color) of all cells. (B) Expression levels of cell population markers. (C) 

Dot plot representing the expression of known cell type markers in each cell cluster. MCs = Malignant 

cells; TECs = Tubular epithelial cells; CDEC = Collecting duct epithelial cells. (D) Stacked bar plot 

illustrating the distribution of the main cell types in each sample. RCC4_f = frozen sample; _t = 

thrombus sample; _n = normal kidney sample. 

Figure 3. Characterization of ccRCC malignant cells and normal tubular epithelial cells. (A) 

UMAP plots and clustering of all malignant cells. (B) Deconvolution of the global UMAP plot (panel 

A) per patient. Cells are colored by sample as indicated previously (Figure 1B). MCs = Malignant cells 

; TECs = Tubular epithelial cells; TCs = Thrombus cells. (C) Distribution of clusters per sample. _t = 

thrombus sample; _n = normal kidney. (D) Distribution of samples per cluster. (E) Distribution of cells 

with S, G1 or G2M status per cluster. (F) Dot plot representing the expression of differentially expressed 

genes (DEGs) in malignant cell clusters. (G) Expression of DEGs as UMAP plots. Colors correspond to 

the scaled expression of panel F. 

Figure 4. Intra-tumor heterogeneity of RCC2 malignant cells. (A) UMAP plot showing pseudotime 

values as computed by Monocle3 in shades of red and the lineage trajectory in RCC2 malignant cells as 
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a black line. Here, the pseudotime is an abstract value describing the distance of a cell from the beginning 

of the lineage (green dot) in terms of transcriptomic variations, hence partially depicting tumor 

progression. (B) Violin plots of proportions of RCC2 MC clusters (left) and of the CNV burden (right) 

along the pseudotime. (C) Heatmap representation of the scaled expression values of 2,229 genes that 

are differentially expressed across RCC2 malignant cell and tubular epithelial cell clusters. These were 

ordered according to the pseudotime and were further colored given their CNV burden. DEGs are 

organized in seven patterns according to their expression in RCC2 malignant clusters. Enriched GO 

terms associated with each gene expression pattern are presented along with their associated adjusted p 

values. Shades of gray in annotation boxes on the left of heatmap correspond to different levels of 

significance for enrichment. Selection of genes for EMT and outcome (Favorable and Unfavorable) 

annotations is detailed in supplementary methods. 

Figure 5. Deconvolution and survival analysis. (A) Density plots showing the distribution of 

percentages of the most prevalent deconvolved cell types and RCC2 malignant cells in ccRCC TCGA 

patients divided into T stages. Malignant clusters c8, c9 and c10, correspond to relative malignant 

clusters as defined in supplementary methods. MCs = Malignant cells; TECs = Tubular epithelial cells. 

(B) Kaplan-Meier survival curves of patients according to their low (blue curves) or high (red curves) 

prevalence of the deconvolved cell types. The analysis was performed for either all ccRCC patients 

(upper plots) or on lower risk (T1-T2) patients (lower plots). Cell types with significant association (log 

rank p value inferior to 0.01, in bold) in all patients are presented. 
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Supplementary figure legends 

Fig. S1. Histology of the six primary ccRCC specimens used in the study. Sections were obtained 

from formalin-fixed, paraffin-embedded tissue stained with hematoxylin and eosin. ISUP = International 

Society of Urological Pathology ; pT = Pathological tumor. 

Fig. S2. Processing of macroscopic tumor samples. (A) Macroscopic view of tumor samples. (B) Up 

to 9 distinct macroscopic areas were sampled in each tumor specimen. (C) Each punch was separated 

into three parts : a quarter for snap freezing, a quarter for tissue fixation, and one half which was pooled 

with other half punches for tissue dissociation. 

Fig. S3. Assessment of quality at different dissociation steps as illustrated with the RCC4 sample. 

(A) Microscopic pictures (x10) of single cells after dissociation. (B) Flow cytometry cytograms of single 

cell suspensions. From left to right are the side scatter versus forward scatter gating, the live cell gating 

(side scatter versus 7AAD staining), and the proportions of different cell types based on the expression 

of CD34 (endothelial marker) and CD45 (immune cell marker). Malignant and stromal cells are negative 

for CD34 and CD45, hence located in the bottom left section. (C-D) Cell count and cell viability in each 

sample. (E-F) Proportions and cell viability of each monitored cell population before and after immune 

cell depletion. (G) Proportions of immune cells measured by flow cytometry after tumor dissociation or 

estimated by immunohistochemistry (IHC, prior to dissociation). (H) Cell viability of fresh versus frozen 

single cells (n=6). 

Fig. S4. Illustration of the automatic counting method performed on IHC sections (LCA immune 

cell labeling) using ImageJ software. (A) Raw picture. (B) Picture with detection (red) of labeled 

immune cells. (C) Picture with detection (red) of unlabeled non-immune cells. 

Fig. S5. Pseudo-Bulk analysis of scRNA-seq data. (A) Correlation matrix comparing all samples. _f 

= frozen sample; _t = thrombus sample; _n = normal kidney. (B) PCA space projection of all samples. 

_f = frozen sample; _t = thrombus sample; _n = normal kidney.  

Fig. S6. Heatmap representation of chromosome gains or losses estimated by inferCNV in all 

tumors. (A) CNV in malignant cells. f = frozen sample; _t = thrombus sample; _n = normal kidney. (B) 
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CNV in normal cells. f = frozen sample; _t = thrombus sample; _n = normal kidney. 

Fig. S7. CNVs in malignant and tubular epithelial cells. (A) UMAP plot and clustering of all 

malignant cells. Gray cells correspond to tubular epithelial cells whereas colored cells correspond to 

malignant cells. (B) Dot plot showing computed gains (red) or losses (blue) of chromosome arms in 

malignant cell clusters. (C) UMAP plots presenting the distribution of CNVs across malignants cells. 

Fig. S8. Lineage trajectories in malignant and tubular epithelial cells of each tumor, as computed 

with Monocle3. Lineages begin at the green dot corresponding to the cells with the least chromosomal 

aberrations. In the resulting trajectories, the degrees of branching match the levels of heterogeneity.  

Fig. S9. RCC2 malignant cells hierarchy. (A) Heatmap of CNV in RCC2 malignant cell clusters. (B) 

Phylogenetic tree of RCC2 malignant cells. The phylogenetic tree was constructed using the 

Uphyloplot2 R package and is based on imputed CNVs from inferCNV. Percentages in brackets indicate 

the overlap between malignant cells defined with Seurat and Uphyloplot2. (+) : chromosomal gain; (-) 

: chromosomal loss. 

Figure S10. Association of weighted genome instability index (wGII) and survival. Kaplan-Meier 

survival curves of TCGA-KIRC patients according to their weighted genome instability index (wGII).  

Figure S11. Enrichment of recurrent ccRCC genomic features inTGCA patients according to 

RCC2 deconvolved malignant subpopulations. Dot plot representing significantly enriched CNVs 

and RCC genomic subtypes (as defined by Chen et al. 2021) in the TCGA patients according to their 

low or high prevalence of deconvolved c8, c9 and c10 malignant subpopulations. The analysis was 

performed for either all ccRCC patients (All) or lower risk (T1-T2) patients (Low risk). Red stars 

indicate recurrent CNVs in ccRCC as described in landmark studies (Beroukhim et al., 2019; Cancer 

Genome Atlas Research Network, 2013). 

Figure S12. Association of enriched genomic features and survival. Kaplan-Meier survival curves 

of patients according to either their CNV profiles on chromosome 12, or RCC genomic subtypes (as 

defined by Chen et al. 2021). The analysis was performed for either all ccRCC patients (plots on the 

left) or on lower risk (T1-T2) patients (plots on the right).   
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Supplementary table legends 

Table S1. Clinical features of the patients' tumors. A total of 8 tumors were included in this study, 

from current (Saout et al.) and additional (Young et al.) datasets. ccRCC = clear cell renal cell carcinoma 

; ISUP = International Society of Urological Pathology ; pTNM = Tumor-Node-Metastasis. 

Table S2. Characteristics of single-cell RNA-seq samples. Both experimental and sequencing data 

are presented for each sample. RCC4_f = RCC4 frozen cells ; RCC5_t = RCC5 tumor thrombus ; 

RCC[6-8]_n = RCC[6-8] adjacent normal tissue ; IC = Immune Cells ; LCA = Leukocyte Common 

Antigen ; IHC = ImmunoHistoChemical. Step 1 and step 2 refer to the malignant cell enrichment 

protocol steps described in the Patients and Methods section. Step 1 is after tumor dissociation and step 

2 is after low speed centrifugations and immune cells removal. 

Table S3. Top differentially expressed genes (DEGs) between the 34 clusters in the total dataset. 

DEGs were identified using the FindAllMarkers command from R package Seurat with default 

parameters. Pct.1 = percentage. 

Table S4. Top differentially expressed genes (DEGs) in the 24 clusters of malignant and tubular 

epithelial cells. DEGs were identified using the FindAllMarkers command from R package Seurat with 

default parameters. 

Table S5. Top differentially expressed genes (DEGs) in the 5 clusters of malignant cells from 

RCC2. DEGs were identified by pairwise comparisons between clusters using the FindMarkers 

command from R package Seurat. 

Table S6. Top enriched gene ontology (GO) terms associated with gene expression patterns in 

RCC2 malignant cell clusters. Gene expression patterns were found to be enriched in 884 biological 

processes terms from the gene ontology. Custom terms related to TCGA prognostic and EMT 

involvement categories were tested for enrichment (see supplementary methods). r is the number of 

genes related to the GO term in a given pattern whereas R is the total number of genes related to the GO 

term. 
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Table S7. Details of annotations of RCC2 differentially expressed genes (DEGs). Genes are 

presented as being associated with different gene ontology (GO) terms and annotations. Genes in the 

EMT column are either tumor suppressors ("Tsup"), oncogenes ("Onco"), both ("Dual"), related to EMT 

("other") or not ("unrelated"). The number of pubmed references was determined with the search "renal 

cell carcinoma" and the gene name in PubMed. The TDL category designates genes expressing surface 

proteins (GESPs) with their level of Targetability development ("TDL" or "Target Development 

Level"). These genes encode proteins through which approved drugs act ("Tclin") (i.e., mode-of-action 

drug targets), or are either known to bind small molecules with high potency ("Tchem"), have well-

studied biology ("Tbio"), or are understudied ("Tdark"), as described elsewhere (PMID: 31898878). 

Genes were identified as favorable or unfavorable according to the processing of the Cancer Genome 

Atlas Kidney Renal Cell Carcinoma (TCGA-KIRC) data described in Supplementary Material. 

Table S8. Results of deconvolution of cell types in TCGA-KIRC cohort bulk RNA-seq data, using 

the Music R package. Cell type estimations are indicated in percentages. Among malignant cell 

clusters, "Others" correspond to few RCC2 malignant cells that were in clusters other than c3, c10, c23, 

c9 or c8. Relative malignant cell clusters are initial percentages of the considered malignant cells divided 

by the total number of RCC2 malignant cells. 

Table S9. Survival analysis results. Both the Cox Proportional-Hazards Model and Log Rank test 

methods were used to evaluate the significance of associations of deconvolved cell types with survival. 

An association was considered significant when the p value was inferior to 0.01. 

Table S10: Genomic features of TCGA-KIRC samples. Genomic features used in the study are listed 

in the table below. Details of their obtaining and calculations are provided in supplementary materials. 

Table S11. Enrichment analysis of genomic features in TCGA-KIRC data for malignant 

populations significantly associated with patient survival. Enrichment results for genomics features 

(mutations, CNVs and methylations), RCC subtypes and weighted genome instability index (wGII) in 

patients grouped based on the low or high prevalence of c8, c9 and c10 malignant population. Details 

of enrichment method and calculation are provided in supplementary methods.  
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Figures 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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