
HAL Id: hal-04094449
https://hal.science/hal-04094449v1

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Researcher’s Digest of GQL
Nadime Francis, Amelie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor
Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova,

Domagoj Vrgoč

To cite this version:
Nadime Francis, Amelie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, et al.. A
Researcher’s Digest of GQL. 26th International Conference on Database Theory (ICDT 2023), Mar
2023, Ioannina, Greece. �10.4230/LIPIcs.ICDT.2023.1�. �hal-04094449�

https://hal.science/hal-04094449v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Researcher’s Digest of GQL
Nadime Francis #

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Amélie Gheerbrant #

IRIF, Université Paris Cité, CNRS,
Paris, France

Paolo Guagliardo #

School of Informatics,
University of Edinburgh, UK

Leonid Libkin #

University of Edinburgh, UK
RelationalAI, France
ENS, PSL University, France

Victor Marsault #Ñ

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Wim Martens #

Universität Bayreuth, Germany

Filip Murlak #

University of Warsaw, Poland
Liat Peterfreund #

Laboratoire d’Informatique Gaspard Monge,
Université Gustave Eiffel, CNRS, France

Alexandra Rogova #

IRIF, Université Paris Cité, CNRS, Paris, France
Data Intelligence Institute of Paris, Inria

Domagoj Vrgoč #

University of Zagreb, Coratia
Pontificia Universidad Católica de Chile,
Santiago, Chile

Abstract
GQL (Graph Query Language) is being developed as a new ISO standard for graph query languages
to play the same role for graph databases as SQL plays for relational. In parallel, an extension of SQL
for querying property graphs, SQL/PGQ, is added to the SQL standard; it shares the graph pattern
matching functionality with GQL. Both standards (not yet published) are hard-to-understand
specifications of hundreds of pages. The goal of this paper is to present a digest of the language
that is easy for the research community to understand, and thus to initiate research on these future
standards for querying graphs. The paper concentrates on pattern matching features shared by GQL
and SQL/PGQ, as well as querying facilities of GQL.

2012 ACM Subject Classification Theory of computation → Database theory; Theory of computation
→ Database query languages (principles); Information systems → Graph-based database models;
Information systems → Structured Query Language

Keywords and phrases GQL, Property Graph, Query Language, Graph Database, Pattern matching,
Multi-Graph

Digital Object Identifier 10.4230/LIPIcs.ICDT.2023.1

Category Invited Talk

Funding This work is supported by: a Leverhulme Trust Research Fellowship; EPSRC grant S003800;
French ANR projects grants ANR-18-CE40-0031 (QUID), ANR-19-CE48-0019 (EQUUS), and ANR-
21-CE48-0015 (Verigraph); German Research Foundation (DFG) projects 431183758 and 369116833;
ANID Millennium Science Initiative Program, Code ICN17_002; ANID Fondecyt Regular project
1221799; NCN grant 2018/30/E/ST6/00042.

Acknowledgements The authors are grateful to members of the ISO/IEC JTC1 SC32 WG3 committee
and especially Fred Zemke for many comments on our formalization of the language.

© Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault,
Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Database Theory (ICDT 2023).
Editors: Floris Geerts and Brecht Vandevoort; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nadime.francis@univ-eiffel.fr
mailto:amelie@irif.fr
https://orcid.org/0000-0002-8936-9829
mailto:paolo.guagliardo@ed.ac.uk
https://orcid.org/0000-0003-0756-5787
mailto:l@libk.in
https://orcid.org/0000-0002-6698-2735
mailto:victor.marsault@univ-eiffel.fr
https://victor.marsault.xyz
https://orcid.org/0000-0002-2325-6004
mailto:wim.martens@uni-bayreuth.de
https://orcid.org/0000-0001-9480-3522
mailto:f.murlak@uw.edu.pl
https://orcid.org/0000-0003-0989-3717
mailto:liat.peterfreund@u-pem.fr
https://orcid.org/0000-0002-4788-0944
mailto:rogova@irif.fr
mailto:dvrgoc@math.hr
https://orcid.org/0000-0001-5854-2652
https://doi.org/10.4230/LIPIcs.ICDT.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Researcher’s Digest of GQL

1 Introduction

Graph databases have grown steadily in popularity this century. They handle data as
it is viewed conceptually, making them easily applicable in many tasks where traditional
relational databases are not easy or natural to use. While many early applications cited
social networks and the Semantic Web as the key motivation (since in both cases data is
naturally viewed as a graph), industry scale applications are much more diverse and include
fraud detection, network management, medical data management, knowledge management,
and even investigative journalism. There are several dozen graph database products on
the market, including the current leader Neo4j, as well as both established and upcoming
companies offering graph products (e.g., Oracle, Amazon, IBM, SAP, Redis, DataStax,
TigerGraph, Memgraph, etc.).

Graph databases’ widespread use happened without them having their lingua franca,
which is the role that SQL is playing for relational databases. The landscape of graph
languages – at least at first sight – is very varied. Neo4j has its own language called
Cypher [18], which is also implemented in other products, including SAP HANA and Amazon
Neptune. Oracle introduced its language PGQL [34]; TigerGraph has GSQL [13], and several
products use the non-declarative graph traversal language Gremlin [33]. However, upon a
closer examination, one discovers that declarative languages are more like different dialects
of the same language rather than different languages altogether. This led to a proposal to
define a new unifying standard for a Graph Query Language (GQL) [36]. The proposal was
given a go-ahead in 2019, and since then was taken up by the same committee that produces
and maintains the SQL Standard. It is known as ISO/IEC JTC1 SC32 WG3 within the
International Organization for Standardization, or ISO.

In fact, this committee develops two projects in parallel:
SQL/PGQ, a new Part 16 of the SQL Standard, that defines querying graphs specified
as views over a relational schema; it is expected to be published roughly at the time of
the EDBT/ICDT 2023 conference.
GQL, a standalone language for querying property graphs, that is expected to be published
in late 2023 or early 2024.

The language of the Standard, even when published (behind paywall) is hardly of the kind
that the research community is accustomed to. It consists of a grammar for the constructs,
supplemented with syntax and semantic rules, the latter written in natural language describing
an algorithm for computing the result of a particular operation (essentially a mix of prose and
pseudocode). Such descriptions are long, far from formal definitions suitable for initiating
research in the area, and often prone to misinterpretation. To researchers, such a text is
therefore much like a 500+ page legal document, instead of a workable definition that helps
them understand the essence of the language.

This motivates the goal of the present paper: to distill, in a form accessible to the database
research community, the principal elements of the forthcoming GQL Standard, and provide
their formal semantics.

The idea of finding calculi underlying programming languages and providing their formal
semantics is mainstream in the programming languages field. Recently we saw it extended to
database query languages, specifically to core fragments of SQL [10, 22, 7] and Cypher [18].
The present paper follows this trend. It provides a significant simplification of the GQL
Standard, which at the same time covers its key features, and yet is sufficiently simple to
provide its formal semantics, thereby enabling its further study and opening up new avenues
of research on graph query languages.

N. Francis et al. 1:3

owner: Jay
isBlocked: false

name: Jayp1

owner: Mike
isBlocked: true

name: Mike

p2owner: Scott
isBlocked: false

a2

owner: Aretha
isBlocked: false

a1
name: Ankh-Morpork

Yacht Club
address: Cable Street

c1

name: Emerald City
Yacht Club

address: Yellow Brick Rd

c2

Account, Person

Account, Person
Account

Account
YachtClub

YachtClub

amount: 2500000

amount: 3000000

amount: 3500000

amount: 2000000

Transfer

Transfer

Transfer

Transfer

t1

t2

t3

t4

Member
m1

Member
m2

Member
m3

Fraud
Social

Figure 1 A database with graphs Fraud and Social.

We do not follow GQL letter to letter, for two reasons. Firstly, the Standard itself is not
yet finalized, and what is written today may still change before it is published. Second, we
choose to simplify some of the idiosyncrasies of a real-life language to better highlight its
essential features. Queries presented here are close to the eventual features of the language –
even if they change somewhat in the meantime. They come with a formal grammar that is a
fragment of GQL’s grammar, and a formal semantics, that is suitable as a starting point of
new research in graph query languages. The paper focuses on read-only GQL queries, to
which we will simply refer as GQL queries. That is, we do not yet consider data updates.

Previous Academic Work on GQL

The two graph languages currently standardized – GQL and SQL/PGQ – share their pattern
matching facilities, which constitute the key part of any graph language. These were described
in [12], by a group that included members of ISO’s Standard group, as well as members of
LDBC’s Formal Semantics Working Group (FSWG), whose goal was to analyze and formalize
the design of the language. FSWG then produced a theoretical reconstruction of the GQL
and PGQ pattern language [16]. This paper is the next installment in the effort to distill
PGQ and GQL standards for the research community.

Apart from this recent work on GQL, we note that academic foundations already influenced
its design process. As seen in GQL’s influence graph [19], the language draws inspiration
from regular path queries [11, 30], STRUQL [14], GXPath [27], and regular queries [32].

2 GQL by Example

In this section we give a high-level description of GQL queries and their evaluation. The
graph database model used by GQL is simply a collection of one or more property graphs.
As an illustration, Figure 1 is a graph database consisting of two property graphs: the Fraud
graph has information about bank transactions that are to be investigated for fraud, and the
Social graph has information about people’s social activities such as membership in a yacht
club. Notice that these two graphs have a non-empty intersection: the nodes for Jay and
Mike belong to both graphs, but they are seen in a different way and therefore have different

ICDT 2023

1:4 A Researcher’s Digest of GQL

labels and properties. In Fraud, the nodes have label Account and properties owner and
isBlocked, indicating the status of the account. In Social, these nodes have label Person
and property name.

We start with a simple query that looks for large (over $1M) transfers into a blocked
account, and reports owners of accounts involved in such transfers:

1. USE Fraud
2. MATCH (x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)
3. RETURN x.owner AS sender, y.owner AS recipient

The reader familiar with Cypher will parse this query easily; it roughly follows Cypher’s
ascii-art syntax for expressing patterns, and also permits checking conditions on properties
inside patterns. Basically, the pattern in line 2, namely:

(x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)

asks for nodes x and y that are connected with an edge z that is labeled with Transfer.
Furthermore, the amount property of z should exceed one million and the isBlocked property
of y should be true. Such patterns, called path patterns in GQL, are the main building block
of GQL queries, and they roughly correspond to regular path queries (RPQs), which have
been well studied in the research literature [30].

Note also that the query is preceded by a USE clause stating explicitly in which graph
matches are sought. When evaluating a query, GQL keeps track of

the working graph, which is the current graph in the database on which we do pattern
matching and

the working table, which contains intermediate results of the query, up to the current
evaluation point.

Intuitively, the working table is a collection of records that gets passed from one part of the
query to another in order to compute the final result. Thus, while GQL is a graph query
language, it uses tables to represent intermediate and end-results of queries. In Section 4, we
also discuss a third ingredient that GQL keeps track of, namely the working record.

Coming back to our sample query, in the first line we write USE Fraud, which turns the
Fraud graph into our working graph. In line 2, we have our path pattern, preceded by the
keyword MATCH. This clause is the main workhorse of GQL, and it tells us to do the matching
of the pattern onto the working graph. When evaluating our query over the database from
Figure 1, after executing line 2 of the query, we will be left with the following working table:

x y z
p1 p2 t1

Continuing in line 3, the working table is modified by keeping only the owner attribute of the
nodes x and y, while renaming them, and the following is returned to the user:

sender recipient
Jay Mike

(1)

We next extend this query by checking for such transfers where both account owners are
members of the same yacht club, reporting this time the address for the yacht club to send
investigators to.

N. Francis et al. 1:5

1. USE Fraud {
2. MATCH (x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)
3. RETURN x.owner AS sender, y.owner AS recipient
4. THEN
5. USE Social
6. MATCH (x1) -[:Member]-> (z1:YachtClub) ,
7. (y1) -[:Member]-> (z1:YachtClub)
8. FILTER sender=x1.name AND recipient=y1.name
9. RETURN z1.address AS clubAddress

10. }

Here lines 1–3 repeat the previous query. The keyword THEN is used to pipe the result of
this query to the following subquery. While the curly braces extend the scope of USE Fraud
beyond THEN, in line 5 we switch the working graph to Social in order to match the pattern:

(x1) -[:Member]-> (z1:YachtClub) , (y1) -[:Member]-> (z1:YachtClub)

This pattern consists of two path patterns, separated by a comma. In GQL, the comma
performs a join on the results of the two path patterns. From a theoretical point of view, it
brings us in the realm of conjunctive (two-way) regular path queries. In GQL, such patterns
are called graph patterns. When this pattern is evaluated over the Social graph, we obtain
the following (fresh) working table:

x1 y1 z1
p1 p2 c1
p1 p1 c1
p2 p2 c1

(2)

this time with variables x1, y1, and z1. After evaluating the pattern, the MATCH statement
makes the natural join of table (2) with table (1), leading to

sender recipient x1 y1 z1
Jay Mike p1 p2 c1
Jay Mike p1 p1 c1
Jay Mike p2 p2 c1

In this case, this will be the Cartesian product since the two working tables have no variables
in common. The FILTER condition in line 8 selects only the first row of the latter table.
The RETURN statement in line 9 tells us to keep only the address attribute of z1, renamed as
clubAddress, resulting in:

clubAddress
Cable Street

This is also where our query ends, and the working table contains all the results to our query.
The examples we have seen thus far illustrate only a limited part of GQL since their

variables only bind to single nodes or edges. Next, we show what happens to variables that
can bind to lists and paths. Concerning lists, a query1 such as

USE Fraud
MATCH TRAIL (x) ((y)-[:Transfer]->()){1,} (x)
RETURN x AS source, y AS moneyTrail

would return the following table.

1 Notice that the query uses Cypher’s ascii-art () for nodes in the subexpressions (x), (y), and (), but
also uses () for indicating the subexpression over which {1,} is applied.

ICDT 2023

1:6 A Researcher’s Digest of GQL

source moneyTrail
p1 list(p1, p2, a2, a1)
p2 list(p2, a2, a1, p1)
a2 list(a2, a1, p1, p2)
a1 list(a1, p1, p2, a2)

Here, the variable y is bound to a list of nodes. The four outputs all describe the same trail,
which is the only Transfer-cycle in the graph, but the bindings use different start nodes for x
and therefore also order the nodes in the lists for y differently. Concerning paths, the query

USE Fraud
MATCH TRAIL p = (x) (-[:Transfer]->()){1,} (x)
RETURN x AS source, p AS path

would return the following table.

source path
p1 path(p1, t1, p2, t2, a2, t3, a1, t4, p1)
p2 path(p2, t2, a2, t3, a1, t4, p1, t1, p2)
a2 path(a2, t3, a1, t4, p1, t1, p2, t2, a2)
a1 path(a1, t4, p1, t1, p2, t2, a2, t3, a1)

The output is similar to the output of the previous example, but this time we have the entire
path instead of the list of nodes in each answer. We note that property graphs can have
multiple edges with the same end-nodes, so the list of nodes in a path is not sufficient to
determine the path.

3 Syntax of GQL

The full syntax of GQL queries is given in Figure 2 with G a set of property graphs, and the
following pairwise disjoint countable sets: L of labels, K of keys, Const of value constants
with a designated value null, and Vars of variables.

While somewhat intimidating at a first glance, the grammar can be roughly divided into
four parts:

path patterns, which mimic regular path queries [29, 30], but have additional features
such as two-way navigation and conditioning;
graph patterns, which generalize conjunctive two-way regular path queries [8] with the
ability to return different types of paths;
queries, which allow us to manipulate the results of graph patterns and combine their
evaluation over different graphs in the database; and
expressions and conditions, which allow filtering results obtained in previous three parts
of GQL.

Of course, each of these parts has many specific features. For instance, path patterns
allow using descriptors, which bind a node/edge to a variable, test its label or more complex
conditions (e.g. amount is greater than 1000000). Simple node/edge patterns can be combined
into regular expressions, by using concatenation, union or repetitions. Graph patterns, on the
other hand, allow specifying the subset of matched paths that is to be returned, or joining
path patterns into more complex queries. Finally, clauses/queries themselves allow us to
manipulate results obtained from graph patterns, much like what is possible in the relational.
Complex features such as iteration over the returned elements, passing the results to another
subquery, and changing the evaluation graph, are also supported.

N. Francis et al. 1:7

PATH PATTERN For x ∈ Vars, ℓ ∈ L, 0 ≤ n ≤ m ∈ N:

(descriptor) δ := x :ℓ WHERE θ x, :ℓ, and WHERE θ are optional

(path pattern) π := (δ) (node pattern)
| -[δ]-> | <-[δ]- | ~[δ]~ (edge pattern)
| π π (concatenation)
| π|π (union)
| π WHERE θ (conditioning)
| π{n,m} (bounded repetition)
| π{n,} (unbounded repetition)

EXPRESSION and CONDITION For x ∈ Vars, ℓ ∈ L, a ∈ K, c ∈ Const:

(expression) χ := x | x.a | c

(condition) θ := χ = χ | χ < χ | χ IS NULL

| x : ℓ | EXISTS { Q }

| θ OR θ | θ AND θ | NOT θ

GRAPH PATTERN For x ∈ Vars:

(path mode) µ := (ALL | ANY) [SHORTEST] [TRAIL | ACYCLIC]

(graph pattern) Π := µ [x =] π | Π, Π

CLAUSE and QUERY For k ≥ 0, ℓ ≥ 1, and x, y, x1, . . . , xk ∈ Vars, and G ∈ G:

(clause) C := MATCH Π
| LET x = χ

| FOR x IN y

| FILTER θ

(linear query) L := USE G L
| C L
| RETURN χ1 AS x1, . . . , χk AS xk

(query) Q := L
| USE G {Q1 THEN Q2 · · · THEN Qℓ}

| Q INTERSECT Q | Q UNION Q | Q EXCEPT Q

Figure 2 Syntax of GQL.

ICDT 2023

1:8 A Researcher’s Digest of GQL

Well-Formed Queries
The syntax of path patterns defined in Figure 2 is permissive as it allows expressions that do
not type-check. For example, (x)-[x]->() is syntactically permitted even though it equates
a node variable with an edge variable. Other patterns would provide great expressive power,
such as the graph pattern ()-[y]->{0,}(), ()-[y]->{0,}*(), which implicitly joins on lists.

We introduced in [16] a type system operating on a subset of the patterns described in
Figure 2. Its goal is to ensure that GQL path patterns and graph patterns do not exhibit the
pathological behavior illustrated above. Here, we will only describe the resulting syntactic
restrictions informally.

Each variable is given a type τ from the set T defined by the following grammar.

τ ::= Node | Edge | Path | Maybe(τ) | Group(τ)

The three atomic types are used for variables returning nodes, edges, and paths, respectively.
The type constructor Maybe is used for variables occurring on one side of a disjunction only,
while Group is used for variables occurring under repetition, whose bindings are grouped
together. As variables in pattern matching are never bound to data values, we do not need
the usual types like integers or strings here.

Types are computed in a bottom-up fashion as follows. Variables appearing in node pat-
terns (resp. in edge patterns, resp. as names of path patterns) are of type Node (resp. Edge,
resp. Path). Variables appearing on one side of a disjunction with type τ but not the
other are of type Maybe(τ). Variables appearing under a repetition with type τ are
of type Group(τ) higher-up in the syntax tree of the expression. Consider the pattern
(-[x]-> | -[y]->){0,}. The type of x is Edge in -[x]->, while it is Maybe(Edge) in
-[x]-> | -[y]->, and Group(Maybe(Edge)) in (-[x]-> | -[y]->){0,} .

A variable x appearing in a path/graph pattern ξ is called:
a singleton variable if its type is Node or Edge with respect to ξ

a conditional variable if its type is Maybe(τ) for some type τ ;
a group variable if its type is Group(τ) for some type τ ;
a path variable if its type is Path.

Here is a non-exhaustive list of the syntactic conditions a pattern must meet in order for its
semantics to be defined. A pattern ξ is well-formed if
1. Every variable appearing in a pattern ξ has one and only one type w.r.t. ξ.
2. In concatenation and join, variables appearing in both operands are singleton variables

with respect to each operand.
3. In a conditioned path pattern π WHERE θ, every variable appearing in θ must have a type

w.r.t. π.
4. In a graph pattern of the form µ π or µ x = π such that µ is ALL (which is possible

since all of SHORTEST, TRAIL, and ACYCLIC are optional), π must contain no unbounded
repetition, to avoid potentially infinite outputs.

5. For every repeated pattern π{n,m} or π{n,}, the minimum path length ∥π∥min of π,
defined below, is positive. This avoids applying repetitions to paths that do not match
an edge.

∥ν∥min = 0 ∥π WHERE θ∥min = ∥π∥min

∥η∥min = 1 ∥π1 | π2∥min = min(∥π1∥min, ∥π2∥min)
∥π{n, }∥min = ∥π{n, m}∥min = n · ∥π∥min ∥π1 π2∥min = ∥π1∥min + ∥π2∥min

Note that the local nature of types is important in item 2: implicit joins are allowed under
repetitions, as in ((a)-[]->(b)-[]->(a)-[]->){1,}. Moreover, item 1 implies the existence
of a schema, which is defined as follows:

N. Francis et al. 1:9

▶ Definition 1 (Schema). A schema of a well-formed pattern ξ is a function sch(ξ) : var(ξ) →
T, where var(ξ) is the set of variables appearing in ξ.

We will assume these syntactic restrictions to be in place when defining the semantics of
GQL queries in Section 4. Moreover, we define the semantics only when the computation
goes as expected, that is, when it satisfies preconditions we state explicitly. For instance,
we will assume that a variable is bound before being used, that we never run into clashes
in variable names, and that if a specific type is expected for an operation, then the value
will have that type at runtime. Some of the preconditions could be checked syntactically,
at the cost of a tedious type system. Some of the preconditions cannot be checked before
run-time because they depend on the data stored in the database. Deciding how to treat
those cases (static analysis, runtime exceptions, implicit casts) is outside the scope of this
paper. In some cases, the GQL standard describes how they should be treated, in others,
they are implementation-dependent.

4 Semantics

In this section we present the formal semantics of GQL. At a high level, when evaluating
a query, GQL keeps track of three things: (i) the working graph, which is the property
graph we are using to match our patterns currently; (ii) the working table, that stores the
information computed thus far; and (iii) the working record, which contains the tuple of
the result we are currently using. In this section we provide mathematical abstractions for
each of these concepts in order to define the semantics of GQL. We start by setting the
preliminary definitions, and then move to defining the semantics for each portion of the
language, as specified in Figure 2.

4.1 Preliminaries

Data model. We follow the formal definition adapted by the GQL Standard [20] to handle
databases that contain multiple graphs. To define property graphs we need, in addition to
the pairwise disjoint countable sets (L of labels, K of keys, and Const of constants) mentioned
in Section 3, the following fresh pairwise disjoint countable sets: N of node ids, Ed of directed
edge ids, and Eu of undirected edge ids.

▶ Definition 2 (Property Graph). A property graph is a tuple

G = ⟨NG, EG
d , EG

u , labG, endpointsG, srcG, tgtG, propG⟩

where

NG ⊂ N is a finite set of node ids used in G;

EG
d ⊂ Ed is a finite set of directed edge ids used in G;

EG
u ⊂ Eu is a finite set of undirected edge ids used in G;

labG : NG ∪ EG
d ∪ EG

u → 2L is a labeling function that associates with every id a (possibly
empty) finite set of labels from L;

ICDT 2023

1:10 A Researcher’s Digest of GQL

srcG, tgtG : EG
d → NG define source and target of a directed edge;

endpointsG : EG
u → 2N so that |endpointsG(e)| is 1 or 2 define endpoints of an undirected

edge;
propG : (NG ∪ EG

d ∪ EG
u) × K → Const is a partial function that associates a constant

with an id and a key from K.
If G is clear from the context, it will be omitted in the superscript. Recall that G denotes the
set of all property graphs.

We use node and edge to refer to node ids and edge ids, respectively, and call a node u

an ℓ-node iff ℓ ∈ lab(u); similarly for edges.

▶ Definition 3 (Graph Database). A (property) graph database is a tuple D = ⟨G1, . . . , Gk⟩
where each Gi is a property graph. We call the graph G1 the default graph.2

This is the most general definition of a database containing multiple graphs and it imposes
no restrictions whatsoever on how labeling, properties, and topology agree across different
graphs that share some node and edge ids. For example we may have the same id1 for a
person who has label employee and properties salary, department in a company graph and
label student and properties year, major in a university graph. In fact it is even possible that
the same edge id has different source and target in different graphs. We allow this complete
flexibility because it is orthogonal to the choice of operations in the language, and thus we
shall not impose restrictions that are not necessary for our purposes.

Paths and lists. GQL allows returning paths and lists as query answers. Here we define
them formally. We start with paths.

▶ Definition 4 (Path). A path is an alternating sequence of nodes and edges that starts and
ends with a node. We write paths as p = path(u0, e1, u1, e2, · · · en, un), where u0, . . . , un are
nodes, e1, . . . , en are (directed or undirected) edges, and n ≥ 0. We write src(p) for u0 and
tgt(p) for un, and len(p) for its length n. We denote the set of all paths by Paths.

For a property graph G, we say that p ∈ Paths is a path in G if each edge in p connects
the nodes before and after it in the sequence, that is, for each i ∈ {1, . . . , n}, at least one of
the following is true:
(a) src(ei) = ui−1 and tgt(ei) = ui in which case we speak of ei as a forward edge in the

path;
(b) src(ei) = ui and tgt(ei) = ui−1 in which case we speak of ei as a backward edge in the

path;
(c) endpoints(ei) = {ui−1, ui} in which case we speak of ei as an undirected edge in the path.
We denote the set of paths in G by Paths(G).

Note that we allow n = 0, in which case the path consists of a single vertex and no edges.
Note also that in the case of a directed self-loop, both (a) and (b) in the definition above are
true, hence the cases are not mutually exclusive.

▶ Definition 5 (Concatenation of Paths). Two paths p = path(u0, e0, . . . , uk) and p′ =
path(u′

0, e′
0, . . . , u′

j) concatenate if uk = u′
0, in which case their concatenation p · p′ is defined

as path(u0, e0, . . . , uk, e′
0, . . . , u′

j).

2 The default graph is used for evaluation when a specific graph is not declared by the query.

N. Francis et al. 1:11

Note that a path of length 0 is a neutral element of concatenation; that is, p · path(u) is
defined iff u = tgt(p), in which case p = p · path(u); likewise for path(u) · p and u = src(p).

▶ Definition 6 (List). We use the notation list(v1, . . . , vn) to denote the list containing the
objects v1, . . . , vn in this order. Lists can be empty, in which case we write list(). We use
Lists to denote the set of all lists with elements in N ∪ Ed ∪ Eu.

Bindings. To define the formal semantics we use bindings which specify how variables are
matched to values V of the input graph database. Intuitively, a binding is a mathematical
formalization of the concept of a working record in GQL. Formally, we set V as the union
Const ∪ N ∪ Ed ∪ Eu ∪ Paths ∪ Lists.

▶ Definition 7 (Binding). A binding µ is a partial function µ : Vars → V whose domain
Dom(µ) is finite. We denote bindings µ explicitly by (x1 7→ v1, . . . , xn 7→ vn) where x1, . . . , xn

are variables in Dom(µ), v1, . . . , vn are values in V, and for every i it holds that µ(xi) = vi.

Note that the domains of bindings are not ordered, hence for instance (a1 7→ v1, a2 7→ v2) =
(a2 7→ v2, a1 7→ v1). The empty binding, that is, the binding with an empty domain, is
denoted by ().

▶ Definition 8 (Compatibility of Bindings). Two bindings µ1, µ2 are said to be compatible,
denoted by µ1 ∼ µ2, if they agree on their shared variables, that is, for every x ∈ Dom(µ1) ∩
Dom(µ2) it holds that µ1(x) = µ2(x).

If µ1 ∼ µ2, we define their join µ1 ⋊⋉ µ2 as expected, that is Dom(µ1 ⋊⋉ µ2) = Dom(µ1) ∪
Dom(µ2) and (µ1 ⋊⋉ µ2) (x) = µ1(x) whenever x ∈ Dom(µ1) \ Dom(µ2), and (µ1 ⋊⋉ µ2) (x) =
µ2(x) whenever x ∈ Dom (µ2).

We remark here that our definition allows joins on variables that are bound to paths
or lists. However, as we will see, the syntactic restrictions on queries limit this feature
significantly.

4.2 Semantics of Path Patterns
We start by defining the semantics of path patterns. For the remainder of this subsection,
we consider a fixed property graph

G = ⟨NG, EG
d , EG

u , labG, endpointsG, srcG, tgtG, propG⟩.

Moreover, we assume that all queries are well-formed and all patterns considered are restricted
syntactically as described in Section 3. The semantics JπKG of a pattern π is a set of pairs
(p, µ) where µ a binding, and p is a path in G. In JπKG, G denotes the working graph in
GQL parlance (specified by the keyword USE), and the pairs (p, µ) model what is computed
over this working graph.

Semantics of Node and Edge Patterns

J()KG =
{

(n, ())
∣∣ n ∈ NG

}
J(x)KG =

{
(n, (x 7→ n))

∣∣ n ∈ NG
}

J(:ℓ)KG =
{

(n, ())
∣∣∣ n ∈ NG, ℓ ∈ labG(n)

}
Other cases are treated by moving the label and conditions outside of the node pattern. For
instance, (x:ℓ WHERE θ) is rewritten as (x) WHERE (x:ℓ AND θ).

ICDT 2023

1:12 A Researcher’s Digest of GQL

J-[]->KG =
{

(path(src(e), e, tgt(e)), ())
∣∣ e ∈ EG

d

}
J-[x]->KG =

{
(path(src(e), e, tgt(e)), (x 7→ e))

∣∣ e ∈ EG
d

}
J-[:ℓ]->KG =

{
(path(src(e), e, tgt(e)), ())

∣∣∣ e ∈ EG
d , ℓ ∈ labG(e)

}
Other cases of the forward edge patterns are treated by moving the label and conditions
outside of the edge pattern, just as for node patterns. Backward edge patterns and undirected
edge patterns are treated similarly, with the base cases given below.

J<-[]-KG =
{

(path(tgt(e), e, src(e)), ())
∣∣ e ∈ EG

d

}
J~[]~KG =

{
(path(u1, e, u2), ()), (path(u2, e, u1), ())

∣∣∣∣ e ∈ EG
u

{u1, u2} = endpointsG(e)

}
Semantics of Concatenation, Union, and Conditioning

Jπ1 π2KG

 (p1 · p2, µ1 ⋊⋉ µ2)

∣∣∣∣∣∣
(pi, µi) ∈ JπiKG for i = 1, 2
p1 and p2 concatenate
µ1 ∼ µ2

Note that since π1 π2 is assumed to be well-formed, all variables shared by π1 and π2 are
singleton variables (Condition 2 in Section 3). In other words, implicit joins over group and
optional variables are disallowed; the same remark will also apply for the semantics of joins.
▶ Remark 9. Consider the pattern

(x) (-[:Transfer]->()-[:Transfer]->(x)]){1,}

This pattern is disallowed in GQL because the leftmost x is a singleton variable, whereas the
rightmost x is a group variable. In GQL philosophy, the leftmost x will be bound to a node
and the rightmost x will be bound to a list of nodes, which is a type mismatch.

Jπ1 | π2KG = { (p, µ ∪ µ′) | (p, µ) ∈ Jπ1KG ∪ Jπ2KG }
where µ′ maps every variable in var(π1 |π2)\Dom(µ) to null. (Recall that var maps a pattern
to the set of variables appearing in it.)

Jπ WHERE θKG = { (p, µ) ∈ JπKG | JθKµ
G = true }

Semantics of Repetition

Jπ{n, m}KG =
m⋃

i=n

JπKi
G

Jπ{n, }KG =
∞⋃

i=n

JπKi
G

Above, for a pattern π and a natural number i ≥ 0, we use JπKi
G to denote the i-th power of

JπKG, which we define as

JπK0
G = { (path(u), µ) | u is a node in G }

where µ binds each variable in Dom(sch(π)) to list(), that is, the empty-list value; and

∀i > 0 JπKi
G =

{
(p1 · . . . · pi, µ′)

∣∣∣∣ (p1, µ1), . . . , (pn, µi) ∈ JπKG

p1, . . . , pi concatenate

}
where µ′ binds each variable in Dom(sch(π)) to list

(
µ1(x), . . . , µi(x)

)
. Recall that sch is

defined in Section 3.

N. Francis et al. 1:13

▶ Remark 10. Since π{n, } is assumed to be well-formed, it holds ∥π∥min ≥ 1. A simple
induction then yields that each pi in the definition above has positive length. A second
induction then yields that, given a path p, there are finitely many assignments µ such
that (p, µ) ∈ Jπ{n, m}KG. This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node u and no edges, and the pattern (a){0,}
which is not well-formed (the minimal path length of () is 0). For every i, the set J(a)Ki

G

contains (path(u), µi) where µi = (a 7→ list(u, . . . , u︸ ︷︷ ︸
i times

)); hence the union in the definition of

Jπ{n, }KG above would not only yield an infinite number of elements, but all of them would
be associated to the same path. As a result a graph pattern such as ALL SHORTEST (a){0,}
would have infinitely many results.

4.3 Semantics of Graph Patterns
We now define the semantics of graph patterns. We first fully define atomic graph patterns
and then define their joins.

Jx = πKG =
{

(p, µ ∪ {x 7→ p}) | (p, µ) ∈ JπKG

}
In the following we denote by π̃ a graph pattern that never uses the “,” operator, hence it is
of the form µ x= π, where µ is a path mode, x is a variable, π is a path pattern, and “x=“ is
optional.

JTRAIL πKG = { (p, µ) ∈ JπKG | no edge occurs more than once in p }
JACYCLIC πKG = { (p, µ) ∈ JπKG | no node occurs more than once in p }

JSHORTEST π̃KG =

 (p, µ) ∈ Jπ̃KG

∣∣∣∣∣∣ len(p) = min

 len(p′)

∣∣∣∣∣∣
(p′, µ′) ∈ Jπ̃KG

src(p′) = src(p)
tgt(p′) = tgt(p)

JALL π̃KG = Jπ̃KG

JANY π̃KG =
⋃

(s,t)∈X

{any({ (p, µ) | (p, µ) ∈ Jπ̃KG , endpoints(p) = (s, t) }}

where X = {
(
src(p), tgt(p)

)
| (p, µ) ∈ Jπ̃KG } and any is a procedure that arbitrarily returns

one element from a set; any need not be deterministic.

JΠ1, Π2KG = { (p̄1 × p̄2, µ1 ⋊⋉ µ2) | (p̄i, µi) ∈ JΠiKG for i = 1, 2 and µ1 ∼ µ2 }

Here, p̄1 = (p1
1, p2

1, . . . , pk
1) and p̄2 = (p1

2, p2
2, . . . , pl

2) are tuples of paths, and p̄1 × p̄2 stands
for (p1

1, p2
1, . . . , pk

1 , p1
2, p2

2, . . . , pl
2). Just as it is the case of concatenation, since Π1, Π2 is

well-formed, implicit joins can occur over singleton variables only.

4.4 Semantics of Conditions and Expressions
The semantics JχKµ

G of an expression χ is an element in V that is computed with respect to
a binding µ and a graph G. Intuitively, variables in χ are evaluated with µ and we use G to
access the properties of an element. It is formally defined as follows.

JcKµ
G = c for c ∈ Const

JxKµ
G = µ(x) for x ∈ Dom(µ)

Jx.aKµ
G =

{
propG(µ(x), a) if (µ(x), a) ∈ Dom(propG)
null else if µ(x) ∈ (N ∪ Ed ∪ Eu)

for x ∈ Dom(µ), a ∈ K

ICDT 2023

1:14 A Researcher’s Digest of GQL

▶ Remark 11. Recall that different graphs may share nodes and edges. Hence the condition
(µ(x), a) ∈ Dom(propG), above, does imply that µ(x) is a node or an edge in G, but does
not imply that it was matched in G.
The semantics JθKµ

G of a condition θ is an element in {true, false, null} that is evaluated with
respect to a binding µ and a graph G, and is defined as follows:

Jχ1 = χ2K
µ
G =

null if Jχ1K

µ
G = null or Jχ2K

µ
G = null

true if Jχ1K
µ
G = Jχ2K

µ
G ̸= null

false otherwise

Jχ1 < χ2K
µ
G =

null if Jχ1K

µ
G = null or Jχ2K

µ
G = null

true else if Jχ1K
µ
G < Jχ2K

µ
G

false otherwise

Jχ IS NULLKµ
G =

{
true if JχKµ

G = null
false otherwise

Jχ:ℓKµ
G =

{
true if JχKµ

G ∈ NG ∪ EG
u ∪ EG

d and ℓ ∈ labG(JχKµ
G)

false else if JχKµ
G ∈ N ∪ Ed ∪ Eu

Jθ1 AND θ2K
µ
G = Jθ1K

µ
G ∧ Jθ2K

µ
G

(∗)

Jθ1 OR θ2K
µ
G = Jθ1K

µ
G ∨ Jθ2K

µ
G

(∗)

JNOT θKµ
G = ¬ JθKµ

G
(∗)

(∗) Operators ∧, ∨, and ¬ are defined as in SQL three-valued logic, e.g. null ∨ true = true
while null ∧ true = null.

JEXISTS { Q }Kµ
G =

{
true if JQKG ({µ}) is not empty
false otherwise

4.5 Semantics of Queries
Clauses and queries are interpreted as functions that operate on tables. These tables are our
abstraction of GQL’s working tables.

▶ Definition 12. A table T is a set of bindings that have the same domains, referred to
as Dom(T).

Note that tables do not have schemas: two different bindings in a table might associate a
variable to values of incompatible types.

Semantics of Clauses

The semantics JCKG of a clause C is a function that maps tables into tables, and is parametrized
by a graph G. Patterns, conditions and expression in a clause are evaluated with respect to
that G.

JMATCH ΠKG (T) =
⋃

µ∈T

{
µ ⋊⋉ µ′ | (p, µ′) ∈ JΠKG , µ ∼ µ′}

Note that if Π uses a variable that already occurs in Dom(T), a join is performed. Unlike in
the case of path patterns and graph patterns, this join can involve variables bound to lists
or paths. While this is not problematic mathematically, it might be disallowed in future
iterations of GQL.

N. Francis et al. 1:15

If x /∈ Dom(T), then

JLET x = χKG (T) =
⋃

µ∈T

{µ ⋊⋉ (x 7→ JχKµ
G)}

JFILTER θKG (T) =
⋃

µ∈T

{
µ | JθKµ

G = true
}

.

If x /∈ Dom(T) and, for every µ ∈ T , µ(y) is a list or null,3 then

JFOR x IN yKG (T) =
⋃

µ∈T

{
µ ⋊⋉ (x 7→ v) | v ∈ µ(y)

}
.

Semantics of Linear Queries

JUSE G′ LKG (T) = JLKG′ (T)
JC LKG (T) = JLKG

(
JCKG (T)

)
JRETURN χ1 AS x1, . . . , χℓ AS xℓKG (T) =

⋃
µ∈T

{(x1 7→ Jχ1K
µ
G , . . . , xℓ 7→ JχℓK

µ
G)}

Semantics of Queries

The output of a query Q is defined as

Output(Q) = JQKG ({()}) ,

where {()} is the unit table that consists of the empty binding, and G is the default graph
in D. We define the semantics of queries recursively as follows.

JUSE G′ {Q1 THEN Q2 · · · THEN Qk}KG (T) = JQkKG′ ◦ · · · ◦ JQ1KG′ (T)

If Dom (JQ1KG (T)) = Dom (JQ2KG (T)), then we let

JQ1 INTERSECT Q2KG (T) = JQ1KG (T) ∩ JQ2KG (T)
JQ1 UNION Q2KG (T) = JQ1KG (T) ∪ JQ2KG (T)

JQ1 EXCEPT Q2KG (T) = JQ1KG (T) \ JQ2KG (T)

5 A Few Known Discrepancies with the GQL Standard

In pursuing the goal of introducing the key features of GQL to the research community, we
inevitably had to make decisions that resulted in discrepancies between our presentation and
the 500+ pages of the forthcoming Standard. In this section, we discuss a non-exhaustive
list of differences between the actual GQL Standard and our digest. To start with, in all our
formal development we assumed that queries are given by their syntax trees, which result
from parsing them. Hence we completely omitted such parsing-related aspects as parentheses,
operator precedence etc. Also we note that many GQL features, even those described here,
are optional, and not every implementation is obliged to have them all.

3 Note that null is treated just as list()

ICDT 2023

1:16 A Researcher’s Digest of GQL

The remaining discrepancies are divided into three main categories: syntactic restrictions
(Section 5.1), query evaluation (Section 5.2), and missing features (Section 5.3). The reader
must bear in mind that, as the GQL Standard is roughly one year from publication in its
final form, many aspects of the language may still change in a way that depends on the work
of the Committee, and thus is impossible to predict.

5.1 User-Friendly Syntactic Restrictions
The GQL Standard imposes restrictions on the syntax that aim at preventing unexpected
behavior, and that we generally did not describe. Two such examples are given below.

First, consider the queries Q1 = MATCH µ x=-[]->* and Q2 = MATCH µ x=-[]->*() for some
path mode µ (it does not matter which one). According to our semantics, both return one
binding, namely (x 7→ path(u)), for each node u in the graph; however, Q1 is syntactically
forbidden in the GQL Standard because no node pattern occurs. Another interesting syntactic
restriction concerns strict interior variables under selectors, such as c in the following:

MATCH ANY (:Person) -[]->* (c:Account) -[]->* (:Person),
ANY (:Person) -[]->* (c:Account) -[]->* (:Person)

The ANY selectors are evaluated independently, and before the implicit join on variable c.
Then, the node bound to the variable c by either path pattern is arbitrary, and joining on
them is very likely to fail. This situation was not deemed user-friendly by the Committee,
and therefore precluded.

5.2 Query Evaluation
Bag semantics. For simplicity, we described GQL as if it was following set semantics but,
in reality, GQL uses bags just like Cypher and SQL. In order to define clauses and queries
under bag semantics, small changes are needed:

tables should be defined as bags, rather than sets, of bindings;
unions (∪) over the elements of a table should be additive bag unions (⊎); and
set comprehensions should be replaced with bag comprehensions.

As an example, if we denote bags with double curly braces, then the semantics of RETURN is

JRETURN χ1 AS x1, . . . , χℓ AS xℓKG (T) =
⊎

µ∈T

{{(x1 7→ Jχ1K
µ
G , . . . , xℓ 7→ JχℓK

µ
G)}}

Note that GQL partially eliminates duplicates during pattern matching, which is reflected
here by the semantics of graph patterns: JΠKG is a set of path/binding pairs, while JMATCH ΠKG

returns a bag of bindings by projecting out the paths (see the definition of JMATCH ΠKG in
Section 4.5). Hence, different ways to compute the same path/binding pair will only contribute
to one copy of the binding in the output of JMATCH ΠKG. It is still possible to get multiple
copies of some binding in the output, but these come from pairs with different paths.

Partial deduplication is an effort to unify the multiplicies of queries that express the same
pattern in different ways. To see this, consider the queries

Q1: MATCH (a:Person)-[]->(b WHERE b:Person OR b:Account)
Q2: MATCH (a:Person)-[]->(b:Person) | (a)-[]->(b:Account)

and the path (v1, e1, v2) matched by either of them with the binding µ1 = (a → v1, b 7→ v2),
where v2 bears both labels Person and Account. As the disjunction in Q1 is expressed using
a Boolean condition, this query always returns a single copy of µ1. In Q2, however, the
disjunction is expressed with a union (|) of patterns; thus, if the semantics of | were defined
as a bag-union, the query would return two copies of µ1.

Finally, as in SQL, the operations INTERSECT, UNION, and EXCEPT remove duplicates in
GQL, while the variants INTERSECT ALL, UNION ALL, and EXCEPT ALL do not.

N. Francis et al. 1:17

Path bindings. In a nutshell, a path binding is a path where each element may be annotated
with variables, and it is inconsistent as soon as two different elements have the same an-
notation (see [12] for details). Thus, a path binding defines a single path/binding pair,
whereas a path/binding pair can define several path bindings. In GQL Standard, pattern
matching computes a set of consistent path bindings, while our semantics computes a set of
path/binding pairs, and the results are bags formed by projecting away paths. Consequently,
our semantics might sometimes return fewer results than GQL’s, but the difference only
affects multiplicity. For example, consider MATCH ()-[]->(a) | (a)-[]->() on a graph with
a single node u and a single (looping) edge. According to our semantics, only one copy of
(a 7→ u) is returned, while two occurrences of it are returned according to GQL Standard.

Postponed evaluation of conditions. In our treatment of the language, the semantics of
the following query is undefined:

MATCH ALL SHORTEST -[x]-> (()-[y]->() WHERE x.amount < y.amount){10,10}

Indeed, when the condition WHERE x.amount < y.amount is evaluated, the variable x is not yet
bound, as -[x]-> occurs in a different branch of the query’s syntax tree. In GQL Standard,
however, the above query is legal, because the evaluation of WHERE conditions is postponed
for as long as possible.4 While the meaning of the query is clear, its evaluation is non-trivial.
The context of each condition (here, y is bound to ten successive edge ids) must be recorded,
because it will be different when the evaluation occurs. Note that the evaluation of conditions
must occur before the evaluation of SHORTEST, hence queries like

MATCH -[x]->, ALL SHORTEST (-[y]-> WHERE x.amount < y.amount){10,10}

are not allowed in GQL.

Referencing the input table in conditions during pattern patching. In our semantics, the
input table is not passed on to pattern matching, so one cannot refer to variables from it in
WHERE conditions. As an example, the semantics of LET x=42 MATCH (a WHERE a.amount=x) is
undefined. It is not yet clear whether such a query is allowed in the GQL Standard or not.

5.3 Missing Features
Syntactic sugar. The GQL Standard includes a lot of syntactic sugar that we disregarded.
For instance, several other types of edge patterns exist, such as -[δ]-, which matches edges
regardless of their direction. Another example is the possibility of using * and + as shorthands
for {0,} and {1,}, respectively.

Complex label expressions. We only allow a single label in descriptors, but the GQL
Standard allows complex label expressions, as in MATCH (a:YachtClub|(Person&!Account)).
Using WHERE, this could be rewritten as

MATCH (a WHERE a:YachtClub OR (a:Person AND NOT a:Account))

Label expressions can also use the special atom “%” to check the nonemptyness of the label set.
For example, MATCH (a:%) matches nodes with at least one label and MATCH (a:!%) matches
node with no labels. Note that “%” cannot be used to define a regular expression of labels,
unlike its usage in the LIKE expressions of SQL.

4 This is orthogonal to left-to-right evaluation: -[x]-> could be placed on the right instead.

ICDT 2023

1:18 A Researcher’s Digest of GQL

Complex path modes. GQL allows more complex path modes than described here. Recall
that SHORTEST partitions matched paths by endpoints and returns the shortest paths for
each pair of endpoints. SHORTEST k GROUPS generalizes this: for each pair of endpoints, it
returns all paths of length at most ik, where i1 < i2 < · · · < ik are the k smallest lengths
of paths between these endpoints. SHORTEST k PATHS returns k shortest paths for each pair
of endpoints. Another mode present in GQL is SIMPLE: it is similar to ACYCLIC but allows
the first and the last node on a path to be the same, i.e., a simple cycle. There is also the
keyword WALK to explicitly indicate the absence of a path mode.

GQL’s TRAIL differs from Cypher’s trail semantics [18, 17]. The latter corresponds to
GQL’s match mode DIFFERENT EDGES, which is omitted in this digest. Indeed, Cypher’s
requirement that all matched edges must be different operates at the level of graph patterns,
whereas GQL’s TRAIL operates at the level of path patterns. Hence, while the GQL query
MATCH TRAIL ()-[e1]->(), TRAIL ()-[e2]->() will return bindings in which e1 and e2 are
equal, the Cypher query MATCH ()-[e1]>(), ()-[e2]->() would not; the latter behaviour is
captured by the GQL query MATCH DIFFERENT EDGES ()-[e1]>(), ()-[e2]->().

Finally, we only use path modes at the beginning of path patterns. GQL’s rules are more
involved, in that they allow TRAIL and ACYCLIC to be used inside patterns.

Projection clauses. The GQL Standard includes several clauses similar to RETURN, such as
YIELD, PROJECT, and SELECT. We ignored these because, although they are not allowed at the
same positions in queries, they can be simulated by simple rewritings in terms of RETURN.

Combination of queries. In addition to set operations (UNION, etc.) and bag operations
(UNION ALL, etc.), queries could be of the form Q1 OTHERWISE Q2. Its semantics is as follows:
JQ1 OTHERWISE Q2K (T) equals JQ1K (T) if table JQ1K (T) is non-empty, otherwise it equals
JQ2K (T).

Aggregation. The GQL Standard will feature two kinds of aggregation. The first one, much
like GROUP BY in SQL, groups together bindings under which the evaluation of an expression
produces the same value, then an aggregate value is computed for each group. The exact
details are still under development, but it appears likely that such aggregation will be limited
to RETURN statements, thus having a very relational character.

The second kind will aggregate along matched paths to compute a value, both during
and after pattern matching. Computing the length of a path is a typical example; one can
have more complex aggregates, such as the sum of the values n.amount for each node n in
the path. This is similar to reduce in Cypher. The use of this feature in pattern matching
requires strong syntactic restrictions for query evaluation to be decidable [16].

Subqueries. GQL has a facility to run subqueries through the CALL Q clause, the semantics
of which is roughly as follows: for each binding µ in the input table, JQKG ({µ}) is evaluated
in a sub-process, and the resulting table is left-joined with the current working table. An
important detail is that CALL can only expand bindings. It cannot remove columns from the
input table nor change the values in them. The existence of read-only columns matters in
clauses like RETURN, which cannot therefore be treated with our semantics as is. In GQL, this
is handled with a notion of working record.

Note also that CALL Q will make nondeterminism much harder to detect if updates happen
in Q. Tables are unordered sets (or bags) but in an update clause each binding causes changes
in the graph (see next item) and so it can modify the evaluation of the clause for the next
binding. In such cases, inconsistent changes may be detected [21].

N. Francis et al. 1:19

Updates. Graph database updates in GQL are outside the scope of this paper. They will
work similarly to Cypher updates [21], by using clauses that can add and remove elements
(INSERT and DELETE), or modify elements’ attributes (SET and REMOVE). Therefore, pattern
matching and updates can be mixed together and result in bulk updates to the graph based
on its contents, as in the example below:

MATCH (a:Account) -- match every Account a
INSERT (p:Person) -- create a new Person node for each a
SET p.name = a.owner -- set the name of the new node
INSERT (p)-[:Owns]->(a) -- create a new "Owns" edge from p to a
REMOVE a.owner -- remove the owner property from a

6 What the Future Holds

In this paper we have summarized the key elements of GQL, which is currently being developed
as a new standard graph query language (the timeline of ISO calls for the publication of
the Standard in either late 2023 or early 2024). At the time when the first version of the
SQL Standard was produced, many key elements of relational theory were already in place.
For GQL, the standardization work is well ahead of the academic developments it should
ideally be based upon. In what follows, we bring to the attention of the community several
directions of academic work that will facilitate the development of graph query languages
and their standardization.

Expressiveness and complexity. For relational query languages, the database research
community has uncovered a rich landscape of fragments (conjunctive queries, positive queries,
and queries with inequalities are some very well studied examples) and extensions (for
example, adding counting and aggregation, or adding recursion as in many instantiations
of datalog), see [1, 4]. For these, we understand the trade-off between their expressiveness
and the complexity of query evaluation. Here we have described a basic language for graphs,
essentially the core of GQL, akin to relational algebra and calculus. Now we need to develop
its theory, starting with understanding expressiveness and complexity and their trade-offs,
in a way similar to what we know about relational databases. For the pattern matching
facilities of GQL, shared with SQL/PGQ, some early results are available [16].

Query processing and optimization. Query processing and optimization is a central area
in relational database research that needs yet to be developed for GQL. In a more theoretical
level, the basis for understanding optimization is query equivalence and containment. We
know a thing or two about containment for (conjunctive) regular path queries [9, 15] and
extensions with data [26] but not for queries that resemble the real-life language. Moving to
more practical aspects, one needs efficient and practical algorithms and data structures for
processing graph queries in GQL, whether in a native system, or a relational implementation.
Of course there is significant work in this direction [37, 23, 5, 28, 35, 31, 25] but it needs to
be adjusted to languages that will dominate the practical landscape for decades.

Design decisions and alternatives. We explained in Remark 9 how GQL currently forbids
concatenating patterns that contain different kinds of variables. Notice, however, that this
current state reflects a design decision and it may be interesting to explore other avenues
for graph query languages. For instance, one could consider a semantics in which both
occurrences of x in Remark 9 should be bound to single nodes. Under such a semantics, the

ICDT 2023

1:20 A Researcher’s Digest of GQL

pattern would essentially perform a join on the even nodes of the path and would match
“flower” shaped paths centered around node x, consisting of Transfer-loops of length two.
Alternatively, one could consider a semantics in which, as soon as x occurs as a group
variable, all occurrences of x are considered to be group variable occurrences. In this case,
the query would match Transfer-paths of even length and bind x to the list of “even” nodes
on such paths. In line with this work would be the study of an automaton model with group
variables that would allow classical evaluation and automata-theoretic constructions such as
the product, determinization, etc. Since GQL is a complex language, there are many such
places in which fundamental research can either help to validate the current design decisions
or propose alternatives.

Updates. We have concentrated on the read-only part of the languages and have not
touched updates. Designing a proper update language is not a simple task: in Cypher, for
example, the initial design exhibited a multitude of problems [21]. GQL largely follows
Cypher, which means its updates and transaction processing facilities need to be designed
with care and subjected to the same research scrutiny as their relational counterpart.

Graph-to-graph queries. GQL, as its precursors including Cypher, is a very good tool for
turning graphs into relations. The ever reappearing issue in the field of graph languages is
how to design a graph-to-graph language whose queries output graphs. Queries are then
composable: a query can be applied to the output of a previous one. We also regain such
basic concepts as views and subqueries, taken for granted in relational databases, but very
limited in the current graph database landscape.

Metadata. Looking into the future, we need to have a good schema language for graphs, and
see how it interacts with graph query languages. Some efforts in this direction have already
been made: for example, the PG-Keys proposal introduces keys for property graphs [3] and
more recently proposed PG-Schema [2] specifies a schema language for property graphs
that should lead to future schema standards. As these are formulated, much theory needs to
be developed, for example semantic query optimization, as well as incremental validation of
schemas and constraints following work for relational and semistructured data [24, 6].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan

Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow,
Ognjen Savkovic, Michael Schmidt, Juan Sequeda, Slawek Staworko, Dominik Tomaszuk,
Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Dusan Zivkovic. PG-Schema: Schemas for
property graphs, 2022. arXiv:2211.10962.

3 Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan
Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman,
Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek Staworko, and Dominik To-
maszuk. PG-Keys: Keys for property graphs. In SIGMOD ’21: International Conference on
Management of Data, pages 2423–2436. ACM, 2021. doi:10.1145/3448016.3457561.

4 Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris. Database
Theory. Open source at https://github.com/pdm-book/community, 2022.

5 Jorge A. Baier, Dietrich Daroch, Juan L. Reutter, and Domagoj Vrgoč. Evaluating navigational
RDF queries over the web. In HT, pages 165–174. ACM, 2017. doi:10.1145/3078714.3078731.

http://arxiv.org/abs/2211.10962
https://doi.org/10.1145/3448016.3457561
https://github.com/pdm-book/community
https://doi.org/10.1145/3078714.3078731

N. Francis et al. 1:21

6 Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet, and Marcelo Arenas.
Efficient incremental validation of XML documents. In ICDE, pages 671–682. IEEE Computer
Society, 2004. doi:10.1109/ICDE.2004.1320036.

7 Véronique Benzaken and Evelyne Contejean. A coq mechanised formal semantics for realistic
SQL queries: formally reconciling SQL and bag relational algebra. In CPP, pages 249–261.
ACM, 2019. doi:10.1145/3293880.3294107.

8 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In KR, pages 176–185. Morgan Kaufmann,
2000.

9 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Reasoning
on regular path queries. SIGMOD Rec., 32(4):83–92, 2003. doi:10.1145/959060.959076.

10 Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. HoTTSQL: proving query
rewrites with univalent SQL semantics. In PLDI, pages 510–524. ACM, 2017. doi:10.1145/
3062341.3062348.

11 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A graphical query language
supporting recursion. In SIGMOD Conference, pages 323–330. ACM Press, 1987. doi:
10.1145/38713.38749.

12 Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra
Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Fred Zemke. Graph
pattern matching in GQL and SQL/PGQ. In SIGMOD Conference, pages 2246–2258. ACM,
2022. doi:10.1145/3514221.3526057.

13 Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. Aggregation support for modern
graph analytics in TigerGraph. In SIGMOD Conference, pages 377–392. ACM, 2020. doi:
10.1145/3318464.3386144.

14 Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. A query language for a
web-site management system. SIGMOD Rec., 26(3):4–11, 1997. doi:10.1145/262762.262763.

15 Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens, Matthias
Niewerth, and Tina Trautner. Containment of simple conjunctive regular path queries. In KR,
pages 371–380, 2020. doi:10.24963/kr.2020/38.

16 Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim
Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoč. GPC: A
pattern calculus for property graphs. In PODS’23, 2023. To appear.

17 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Martin Schuster, Petra Selmer, and Andrés Taylor.
Formal semantics of the language Cypher, 2018. arXiv:1802.09984.

18 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An
evolving query language for property graphs. In SIGMOD Conference, pages 1433–1445. ACM,
2018. doi:10.1145/3183713.3190657.

19 GQL influence graph. https://www.gqlstandards.org/existing-languages, 2023. Accessed:
2023-01-17.

20 Alastair Green, Paolo Guagliardo, and Leonid Libkin. Property graphs and paths in GQL:
Mathematical definitions. Technical Reports TR-2021-01, Linked Data Benchmark Council
(LDBC), October 2021. doi:10.54285/ldbc.TZJP7279.

21 Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan
Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt. Updating graph databases with
Cypher. Proc. VLDB Endow., 12(12):2242–2253, 2019. doi:10.14778/3352063.3352139.

22 Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its validation, and
applications. Proc. VLDB Endow., 11(1):27–39, 2017. doi:10.14778/3151113.3151116.

23 Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. Sparqling Kleene: Fast property
paths in RDF-3X. In GRADES. CWI/ACM, 2013. doi:10.1145/2484425.2484443.

ICDT 2023

https://doi.org/10.1109/ICDE.2004.1320036
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/959060.959076
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/38713.38749
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/262762.262763
https://doi.org/10.24963/kr.2020/38
http://arxiv.org/abs/1802.09984
https://doi.org/10.1145/3183713.3190657
https://www.gqlstandards.org/existing-languages
https://doi.org/10.54285/ldbc.TZJP7279
https://doi.org/10.14778/3352063.3352139
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/2484425.2484443

1:22 A Researcher’s Digest of GQL

24 A. Gupta and I.S. Mumick. Materialized Views: Techniques, Implementations, and Applications.
MIT Press, 1999.

25 Aidan Hogan, Cristian Riveros, Carlos Rojas, and Adrián Soto. A worst-case optimal join
algorithm for SPARQL. In ISWC (1), volume 11778 of Lecture Notes in Computer Science,
pages 258–275. Springer, 2019. doi:10.1007/978-3-030-30793-6_15.

26 Egor V. Kostylev, Juan L. Reutter, and Domagoj Vrgoc. Containment of queries for graphs
with data. J. Comput. Syst. Sci., 92:65–91, 2018. doi:10.1016/j.jcss.2017.09.005.

27 Leonid Libkin, Wim Martens, and Domagoj Vrgoč. Querying graphs with data. Journal of
the ACM, 63(2):14:1–14:53, 2016. doi:10.1145/2850413.

28 Wim Martens, Matthias Niewerth, Tina Popp, Stijn Vansummeren, and Domagoj Vrgoč.
Representing paths in graph database pattern matching, 2022. arXiv:2207.13541.

29 Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. Querying the world wide web. In
Proceedings of the Fourth International Conference on Parallel and Distributed Information
Systems, December 18-20, 1996, Miami Beach, Florida, USA, pages 80–91. IEEE Computer
Society, 1996. doi:10.1109/PDIS.1996.568671.

30 Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph databases.
SIAM J. Comput., 24(6):1235–1258, 1995. doi:10.1137/S009753979122370X.

31 Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q. Ngo, Christopher
Ré, and Atri Rudra. Join processing for graph patterns: An old dog with new tricks. In
GRADES, pages 2:1–2:8. ACM, 2015. doi:10.1145/2764947.2764948.

32 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theory Comput. Syst., 61(1):31–83, 2017. doi:10.1007/s00224-016-9676-2.

33 Marko A. Rodriguez. The Gremlin graph traversal machine and language. In DBPL, pages
1–10. ACM, 2015. doi:10.1145/2815072.2815073.

34 Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL: a
property graph query language. In GRADES, page 7. ACM, 2016. doi:10.1145/2960414.
2960421.

35 Domagoj Vrgoč. Evaluating regular path queries under the all-shortest paths semantics, 2022.
arXiv:2204.11137.

36 Wikipedia contributors. GQL graph query language, 2020. URL: https://en.wikipedia.
org/wiki/GQL_Graph_Query_Language.

37 Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. Query planning for evaluating SPARQL
property paths. In SIGMOD Conference, pages 1875–1889. ACM, 2016. doi:10.1145/2882903.
2882944.

https://doi.org/10.1007/978-3-030-30793-6_15
https://doi.org/10.1016/j.jcss.2017.09.005
https://doi.org/10.1145/2850413
http://arxiv.org/abs/2207.13541
https://doi.org/10.1109/PDIS.1996.568671
https://doi.org/10.1137/S009753979122370X
https://doi.org/10.1145/2764947.2764948
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2960414.2960421
http://arxiv.org/abs/2204.11137
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://en.wikipedia.org/wiki/GQL_Graph_Query_Language
https://doi.org/10.1145/2882903.2882944
https://doi.org/10.1145/2882903.2882944

	1 Introduction
	2 GQL by Example
	3 Syntax of GQL
	4 Semantics
	4.1 Preliminaries
	4.2 Semantics of Path Patterns
	4.3 Semantics of Graph Patterns
	4.4 Semantics of Conditions and Expressions
	4.5 Semantics of Queries

	5 A Few Known Discrepancies with the GQL Standard
	5.1 User-Friendly Syntactic Restrictions
	5.2 Query Evaluation
	5.3 Missing Features

	6 What the Future Holds

