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Abstract 

Photoinitiating systems activable under visible light are the focus of numerous studies, 

and this interest is directly related to the higher light penetration that can be obtained in this 

spectral range. Reactivity of the photoinitiating systems is another major concern of 

photopolymerists and this issue can be addressed by investigating new structures of dyes. In 

this field, naphthoquinones have only been scarcely examined as visible light photoinitiators 

of polymerization. Besides, since 2015, different strategies have been developed to design 

photoinitiators with naphthoquinone, and promising results have been obtained, positively 

paving the way for future developments. In this review, an overview of the different 

photoinitiators comprising a naphthoquinone unit is given and polymerization efficiencies of 

these new structures are compared to those of reference compounds.   
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 1. Introduction 

 During the past decade, an intense research activity has been devoted to design visible 

light photoinitiating systems. This research activity is supported by the numerous applications 

of photopolymerization, ranging from adhesives, 3D and 4D printing, solvent-free paints, 

microelectronics,  coatings and varnishes, or dentistry.[1–14] The effort to develop visible light 

photoinitiating system is also supported by the recent restrictions concerning UV light. Indeed, 

in 2013, the United Nations Environmental Program (UNEP) Minamata Convention on 

Mercury has totally banned Hg lamps and since 2020, Hg lamps are no longer allowed to be 

manufactured, imported or exported. Considering that UV irradiation setups are also 

expensive devices associated to high energy consumption, the current energy sobriety drive 

numerous European countries are currently facing on speeds up the end of UV 

photopolymerization. Parallel to this, UV light was also facing numerous safety concerns (eye 

damages and skin cancers) and the formation of ozone during photopolymerization is also 

mentioned as a severe drawback.[15,16] In fact, visible light photopolymerization exhibits 

several advantages such as a higher light penetration within the photocurable resins than that 

obtained in the UV range (See Figure 1).[17] Due to a higher light penetration, the access to 

thick samples but also to samples containing fillers is thus possible.[18]  
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Figure 1. Light penetration in a polystyrene latex with an average diameter of 112 nm. 

Reprinted with permission from Ref.[17] 

 Recently, a great deal of efforts has been devoted to develop visible light 

photoinitiating systems activable under low light intensity and in the visible range. In this aim, 

light-emitting diodes (LEDs) are devices of choice due to their low-cost, compactness, long 

operating lifetime and precise emission. If these different advantages can’t be denied, besides, 

visible light photopolymerization exhibits several drawbacks that speeds down its 

development. For instance, visible light photoinitiators are colored compounds that provide 

an undeniable color to the final polymer. This drawback was not existing with UV 

photoinitiators that typically were white powders, producing colorless coatings. At present, 

photoinitiators capable to bleach during photopolymerization are still scarce.[19,20] Another 

drawback concerns the reactivity of the visible light photoinitiating systems which is directly 

related to the lower energy to the visible light photons, compared to UV photons. To address 

this issue, the design of more reactive photoinitiating systems is indispensable in order to 

overcome this lower energy. In this aim, a wide range of structures have been examined since 

15 years, and among the most popular structures, organic structures such as 

benzophenones,[21–28] thioxanthones,[29–44] camphorquinones,[45,46] curcumin,[47–50] 

chromones and flavones,[51–53] acridine-1,8-diones,[54–56] pyrenes,[57–65] anthracenes,[66] 

carbazoles,[67–82] benzylidene ketones,[83–90] cyclohexanones,[91–94] chalcones,[9,95–110] 

cyanines,[111–117] push-pull dyes,[118–134] NIR dyes,[112,135] thiophenes,[136,137] 

bodipy,[29,138–142] coumarins,[143–156] phenothiazines,[157–159] furan derivatives,[160] 

naphthalimides,[161–179] iodonium salts,[29,161,180–188] anthraquinones,[189] 

perylenes,[190–193] diketopyrrolopyrroles[194] and quinoxalines,[195–209] have been 

examined. Investigations were not limited to purely organic compounds and metal complexes 

such as  iridium complexes,[210–218] copper complexes,[219–236] zinc complexes,[237] gold 

complexes[238] or iron complexes,[118,239–245] were also studied. Several inorganic 

structures such as perovskites,[246,247] metal organic frameworks (MOFs),[239,248,249] and 

polyoxometalates [250–252] were also tested. In terms of photoinitiation, two distinct 

mechanisms can be distinguished. The first one concerns Type I photoinitiators, namely, 

molecules that can photochemically cleave upon irradiation (See Scheme 1). In this field, 

various motifs have been examined, as exemplified with acyloximino esters, phosphine 

oxides, hexaaryl biimidazoles (HABIs), benzoin derivatives, α-aminoalkylacetophenones, 



oxime esters, trichloromethyl-S-triazine glyoxylates, α-haloacetophenones, benzylketals, 

hydroxyacetophenones, oxime esters or o-acyl-α-oximino ketones.[253–255] If the composition 

of the photocurable resins is greatly simplified by use of Type I photoinitiators, as drawback, 

photocleavage of the molecules results in an irreversible consumption of photoinitiators 

during irradiation so that the concentration decreases over time. Conversely, Type II 

photoinitiators are molecules that are not capable to initiate any polymerization alone. The 

presence of additives such as a co-initiator or a sacrificial amine is often required in order to 

generate initiating species.[256] These molecules can generate radicals by hydrogen 

abstraction from aromatic ketones in the presence of hydrogen donors or by photoinduced 

electron transfer towards an onium salt.[31,36,91,257–261] 

 
Scheme 1. Radical generation with Type I and Type II photoinitiators. 

While coming back to purely organic structures, naphthoquinone is a structural motif 

commonly found in numerous trees and plants and the most abundant naphthoquinones are 

undoubtedly lawsone, naphthazarin, flaviolin, lapachol, juglone, menadion, shikonin, 7-

methyljuglone, diospyrin, 3,3’-biplumbagin, α-lapachone, β-lapachone, plumbagin and Nor-

β-lapachone (See Figure 2).[262]  



 
Figure 2. Chemical structures of the most abundant naphthoquinones found in the Nature.  

Naphthoquinones have been extensively studied for anticancer, anti-inflammatory or 

antinociceptive activities.[263–266] Naphthoquinones, due to the presence of the strong 

electron-accepting quinone, are also strongly coloured compounds with a broad absorption 

band extending over the visible range.[267–270] Concerning photopolymerization, the first 

report mentioning the use of a naphthoquinone derivative as photoinitiator of polymerization 

was published in 2012 by Sokołowska and coworkers.[271] In this pioneering work, the 

naphthoquinone derivative was examined as a monocomponent system enabling to initiate 

the free radical polymerization (FRP) of acrylates. Since then, various structures have been 

proposed, and the scope of application has been extended to the cationic polymerization of 

epoxides or thiol-ene polymerization.[272] In this review, the different 1,4-naphthoquinones 

reported to date as photoinitiators of polymerization are presented. Comparisons with 

reference compounds are also given, highlighting the interest of this under-investigated family 

of photoinitiators. 

2. Naphthoquinones as photoinitiators of polymerization 

2.1. Monocomponent systems based on naphthoquinones 

 2.1.1. Naphthoquinones as monocomponent Type II photoinitiating systems 

 One of the first reports mentioning the use of naphthoquinones in photoinitiating 

systems was reported in 2015 by Podsiadły and coworkers (See Figure 3).[273] 



 
Figure 3. Chemical structures of mono-component naphthoquinone derivatives. 

 Chemical structures of compounds 1 and 2 were directly related to previous works 

reported in the literature by Yagci and coworkers and dealing with their thioxanthone 

analogues. In the case of the thio-substituted thioxanthone (TX-SH), TX-SH could serve both 

as a triplet photosensitizer and as a hydrogen/electron donor, enabling to generate thiyl 

radicals according to the mechanism depicted in the Scheme 2. [274]  

 
Scheme 2. Mechanism of photoinitiation with TX-SH. 

A different photoinitiating behavior could be evidenced for Th-SCH2COOH (See 

Scheme 3).[274,275] In this case, an intramolecular and an intermolecular electron transfer 

could undergo. Subsequent to a hydrogen abstraction reaction, alkyl radicals could be formed. 

Considering the remarkable performances of the different thioxanthone derivatives as 

monocomponent systems, their analogues were thus prepared with naphthoquinone as the 

chromophore.  

 

Scheme 3. Mechanism of photoinitiating with TX-SCH2COOH. 



 Compared to the parent naphthoquinone, substitution of the naphthoquinone core by 

various thio-substituted groups induced a redshift of the absorption maximum due to the 

electron-donating nature of the thio-substituent and the resulting intramolecular electron 

transfer (ICT). Major differences between the position of the absorption maxima were also 

detected, depending on the substituent introduced onto the naphthoquinone fragment. The 

most blue-shifted absorption was found for compound 2 bearing electron accepting groups, 

with an absorption maximum at 442 nm. On the opposite, due to the presence of electron 

donating groups on compounds 1, 3 and 4, a redshift by ca. 40 nm compared to compound 2 

was determined in acetonitrile, with absorption maxima peaking at 478, 482 and 493 nm for 1, 

3 and 4 respectively.   

 

Figure 3. UV-visible absorption spectra of naphthoquinones 1-4. Reproduced with 

permission of Ref. [273] 

Photoinitiating ability of the different naphthoquinones was examined during the free 

radical polymerization (FRP) of trimethylolpropane triacrylate (TMPTA) upon irradiation 

with a xenon lamp (490 ± 90 nm). Noticeably, upon increase of the concentration, an 

improvement of the monomer conversion could be evidenced with the four derivatives, 

suggesting the occurrence of a bimolecular process. Among the different dyes, compound 2 

proved to be the most efficient one, irrespective of the concentration. As shown in the Figure 

4, a monomer conversion around 60% could be obtained after 1000 s of irradiation. Following 

compound 2 in terms of monomer conversion, dye 3 proved to be the second most efficient 

dye, with a TMPTA conversion of 55%. However, contrarily to dye 2, a high sensitivity to the 

photoinitiator content could be evidenced. Finally, the worse candidate was dye 4, susbtitutted 

with thioethenylsulfanyl groups and providing a TMPTA conversion not exceeding 30%. In 

the case of dye 2, a mechanism of photoinduced radical generation via intermolecular electron 

transfer was evidenced, in line with the mechanism previously observed by Yagci and 

coworkers (See Scheme 4). In the case of dyes 1 and 4, the authors demonstrated the initiation 

to result from an intermolecular hydrogen transfer between molecules, also supporting the 

high sensitivity to the photoinitiator concentration, as shown in Figure 4 and Scheme 5.  



 

Figure 4. TMPTA conversions obtained upon irradiation with a xenon lamp for 1000 s. a) dye 

1, b) dye 2, c) dye 3, d) dye 4. reproduced with permission of Ref. [273]  

 

Scheme 4. Mechanism of photoinduced radical generation via intermolecular electron 

transfer. 

 

Scheme 5. Photoinduced radical generation via intermolecular hydrogen abstraction. 

Besides, in the case of dyes 3-5, occurrence of an intramolecular electron transfer, 

followed by a hydrogen abstraction step was also suggested, occurring in parallel to the 

previously mentioned intermolecular mechanisms (See Scheme 6). 



 

Scheme 6. Mechanism of radical generation via a photoinduced intramolecular electron 

transfer. 

 By polymerization of methyl acrylate (MA) using the different monocomponent 

systems, grafting of the dyes to the resulting polymers could be clearly evidenced, addressing 

in turn the photoinitiators extractability issue that is the focus of numerous safety concerns, 

especially for biological applications and food packaging.[253,276–279]  

2.1.2. Type I photoinitiators based on naphthoquinone-based imidazolyl esters 

 In the previous examples, dyes 1-4 could be used as monocomponent system due to 

the simultaneous presence of both the photoinitiator and the hydrogen donor. This strategy is 

typically based on the design of Type II photoinitiators. Another strategy consists in designing 

molecules that can homolytically cleave upon irradiation so that initiating radicals can be 

formed. Dyes exhibiting such a photocleavage ability are typically Type I photoinitiators. In 

this field, oxime esters are popular structures due to their easiness of synthesis and their good 

stability upon storage. Concerning oxime esters, the first structures to be published were 

reported as soon as 1904 by Piguet and coworkers.[280] Concerning photopolymerization, the 

first investigations were carried out by Peeters and coworkers in the 70s.[281] As interesting 

feature, oxime esters can undergo an homolytic cleavage of the N-O bond upon 

photoexcitation, producing iminyl and acyloxy radicals.[282,283] Following the fragmentation 

step, a decarboxylation reaction can occur, producing initiating radicals.[284–289] Interest of 

these structures that are capable to decarboxylate subsequent to fragmentation relies in the 

fact that the irreversibility of the decarboxylation reaction prevents from undesired back 

electron transfer or radicals recombination. Additionally, due to decarboxylation, the nature 

of the resulting radicals is totally modified, avoiding radical recombination and optimizing 

the initiation mechanism. To end, oxygen inhibition can also be efficiently prevented by 

saturating the resin with gas (CO2), impeding oxygen to diffuse within the resin. This point is 

of importance, especially for polymerization experiments done under air.[290] In 2022, Lalevée 

and coworkers proposed a series of naphthoquinones bearing an oxime ester-like 

photocleavable group (See Figure 5).[291] It has to be noticed that the imidazolyl ester function 

used for the design of these Type I photoinitiators was reported for the first time in this work 

as a photocleavable group. 



 

Figure 5. Chemical structures of naphthoquinone-based imidazolyl esters 

 Considering the peripheral position of the substituents, no significant influence on the 

absorption maxima was found so that an absorption at ca. 380 nm was found for dyes 1-11 and 

335 nm for dyes 12-15 (See Figure 6 and Table 1). Interestingly, introduction of the dimethoxy 

substituents contributed to significantly increase the molar extinction coefficients of dyes 12-

15, as shown in Figure 6. Considering their respective absorptions, polymerization tests could 

be carried out at 405 and at 455 nm.  

 

Figure 6. UV-Visible absorption spectra of dyes 1-15 in acetonitrile. Reproduced with permission of 

Ref. [291] 

 The different dyes were first examined as Type I photoinitiators of polymerization for 

the FRP of (oxybis(methylene))bis(2-ethylpropane-2,1,3-triyl) tetraacrylate (TA), using 0.5 wt% 

of dyes, in thin and thick films, upon irradiation at 405 and 455 nm (See Figure 7 and Table 2). 

 



Table 1. Light absorption properties of dyes 1-15 including maximum absorption wavelengths 

(λmax), molecular extinction coefficients at λmax, 405 and 455 nm. 

 

 

 

Figure 7. Chemical structures of monomers, additives and references compounds. 

 

 

 

 

Table 2. FCs using one component (0.5% w) photoinitiators after 100 s of irradiation with LED light (λ 

= 405 and 455 nm). 

PIs 
Thin Samples 

 (25 μm) 

 in laminate 

Thin Samples  

(25 μm)  

in laminate 

Thick Samples  

(1.4 mm)  

under air 

Thick Samples  

(1.4 mm) 

 under air 

PIs λmax (nm) εmax(M-1 cm-1) ε405 (M-1 cm-1) ε455 (M-1 cm-1) 

(1) 330 500 260 30 

(2) 380 1950 1500 90 

(3) 382 1350 1070 100 

(4) 378 1980 1510 40 

(5) 383 970 810 100 

(6) 388 2300 2010 260 

(7) 383 2000 1670 130 

(8) 382 1700 1360 170 

(9) 387 1800 1550 210 

(10) 385 1800 1630 570 

(11) 388 2370 2110 360 

(12) 333 3960 810 220 

(13) 334 6110 1100 120 

(14) 336 5700 960 70 

(15) 339 4670 1290 360 



@405 nm @455 nm @405 nm @455 nm 

TPO 90% 61% 95% 77% 
(1) 65% 48% 25% 1% 
(2) 82% 80% 78% 78% 
(3) 68% 71% 84% 81% 
(4) 81% 83% 83% 85% 
(5) 49% 55% 78% 74% 
(6) 34% 53% 48% 68% 
(7) 79% 76% 86% 80% 
(8) 88% 87% 88% 84% 
(9) 42% 24% 48% 65% 

(10) 18% 32% 54% 54% 
(11) 39% 32% 63% 66% 
(12) 56% 65% 76% 78% 
(13) 71% 73% 74% 78% 
(14) 68% 59% 78% 61% 
(15) 54% 48% 76% 67% 

 

 Noticeably, dye 1 which does not comprise a cleavable group only exhibited a low 

photoinitiating ability, indicating the crucial role of the ester moiety on the photoinitiation 

process. In this series of dyes, the most reactive dye was compound 8, capable to generate a 

methyl radical subsequent to the decarboxylation reaction. A monomer conversion of 88% 

could be determined during the FRP of TA at 405 nm in thin films (laminate) and in thick films 

(under air). This value is comparable to that obtained with diphenyl(2,4,6-

trimethylbenzoyl)phosphine oxide (TPO). While getting a deeper insight into the substituent 

effect, all compounds comprising alkyl substituents exhibited higher monomer conversions 

that those comprising an aryl substituent. A reduction of the monomer conversion was 

observed between thin and thick films, consistent with an inner filter effect occurring in the 

case of thick films. Similarly, a reduction of the monomer conversion was detected at 455 nm 

compared to 405 nm, attributable to lower molar extinction coefficients at 455 nm (See Table 

1). In the case of dyes 12-15 that exhibit higher molar extinction coefficients than the 2-11 series, 

lower monomer conversions could be clearly obtained, evidencing that the molar extinction 

coefficient was not the only parameter governing the polymerization efficiency. The cleavage 

yield and the reactivity of the resulting radicals have also to be considered. As interesting 

feature, numerous naphthoquinone derivatives could outperform the benchmark TPO, both 

in thin and thick films, evidencing the pertinence of the strategy. Especially, at 455 nm, TA 

conversion obtained with dye 8 was higher than that obtained with the two-component 

camphorquinone (CQ)/ethyl dimethylaminobenzoate (EDB) (0.5%/0.5% w/w) system or 

Titanocene (Irgacure 784) (0.5% w) (See Figure 8). A good stability of the TA resin prepared 



with dye 8 was also evidenced since an almost similar monomer conversion was obtained for 

the resin after one month of storage, compared to the freshly prepared one.  

 

Figure 8. Polymerization profiles of TA in laminate (thickness = 25 μm) using dye 8 (0.5% 

w/w), CQ/EDB (0.5%/0.5% w/w); TPO (0.5% w/w) and titanocene (0.5% w/w) upon irradiation 

at 455 nm. Reproduced with permission of Ref. [291] 

 By Fourier Transform Infrared spectroscopy (FTIR), occurrence of a decarboxylation 

reaction with the most reactive dye, namely dye 8, could be evidenced during the 

polymerization process, with the appearance of a CO2 peak at 2337 cm-1 (See Figure 9). 

 
Figure 9. Detection of CO2 released during photopolymerization using (8). Reproduced with 

permission of Ref. [291] 

 This ability to decarboxylate was notably demonstrated for all dyes comprising an 

alkyl group on the ester side. Formation of carbon-centered radicals in the case of alkoxy 

radicals was also confirmed by ESR experiments. Conversely, for all aryl-substituted 

imidazolyl esters, no decarboxylation reaction could be detected by FTIR, explaining thus the 

lower reactivity of these radicals. Considering that all naphthoquinones strongly absorb in the 

visible range, the different compounds were also investigated as Type II photoinitiators, in 

combination with an iodonium salt (Iod) or EDB. The different monomer conversions obtained 

with the different two two-component photoinitiating systems are summarized in Table 3. 



Table 3. Monomer conversions obtained during the FRP of TA using the different dyes as 

mono-component (0.1% w) photoinitiators and two-component (0.1%/1% w/w) 

photoinitiators with Iod or EDB after 100 s of irradiation with a LED at 405 nm. 

 Thickness (25 μm) in laminate Thickness (1.4 mm) under air 

 PI PI/Iod PI/EDB PI PI/Iod PI/EDB 

(1) 60% 28% 83% 16% 56% 64% 

(2) 43% 63% 74% 62% 84% 87% 

(3) 43% 48% 53% 69% 84% 85% 

(4) 37% 60% 61% 65% 85% 86% 

(5) 30% 27% 54% 58% 73% 84% 

(6) 48% 47% 67% 52% 70% 85% 

(7) 32% 56% 69% 64% 81% 86% 

(8) 29% 59% 73% 70% 84% 85% 

(9) 44% 38% 66% 47% 63% 88% 

(10) 45% 31% 62% 62% 76% 84% 

(11) 41% 61% 49% 66% 70% 86% 

(12) 39% 52% 55% 37% 46% 81% 

(13) 25% 48% 67% 48% 72% 80% 

(14) 23% 46% 51% 48% 75% 81% 

(15) 62% 46% 6% 42% 57% 78% 

 

 Interestingly, in the case of the two-component dye/Iod system, no improvement of the 

monomer conversion was detected with the different systems, excepted with dye 13 for which 

a two-fold enhancement of the monomer conversion was obtained (48% in two-component 

system vs. 25% as mono-component system in thin samples). A similar trend was also 

evidenced in thick samples, showing that dye 13 was efficient in photo-oxidation processes. 

When combined with EDB, an enhancement of the monomer conversion was observed for all 

dyes, with the best improvement for dye 13 (67% with EDB contrarily to 25% alone). As shown 

in equation (r1), a photoinduced electron transfer between EDB and the photosensitizer can 

occur in the excited state, generating EDB●(-H) subsequent to a hydrogen abstraction reaction.

  

1PI + EDB → PI●- + EDB●+ → PI●-H + EDB●(-H)   (r1) 

 Noticeably, when used as Type II photoinitiators with Iod, no decarboxylation reaction 

could be detected anymore for all alkyl-substituted imidazolyl esters, evidencing the photo-

induced electron transfer between the excited chromophore and the additive to be faster than 

the photocleavage. A different situation was found with EDB since the decarboxylation 

reaction could be still detected in the presence of the sacrificial amine, supporting the 

improvement of the monomer conversions in this case by the dual behaviors of Type I and 

Type II photoinitiators occurring concomitantly for all alkyl-substituted imidazolyl esters. 

2.2. Naphthoquinones in multicomponent photoinitiating systems 



2.2.1. Photoinitiating systems based on natural naphthoquinones. 

 Investigation of natural dyes as photoinitiators of polymerization is an active research 

field, as the use of photoinitiators issued from renewable resources could help at preserving 

the natural resources while potentially reducing the toxicity of photoinitiators. In this field, 

curcumin has been a popular photoinitiator.[47–50] A few structures based on 

naphthoquinones have also been proposed.[292] In 2020, Xiao and coworkers examined two 

natural naphthoquinones, namely 5-hydroxy-1,4-naphthoquinone (5HNQ, juglone) and 2-

hydroxy-1,4-naphthoquinone (2HNQ, lawsone) (See structures in Figure 2).[293] From the 

absorption viewpoint, if 5HNQ and 2-HNQ only differ by the position of the hydroxy group, 

a dramatic impact on the absorption properties could be detected, as shown in the Figure 10. 

Thus, if 2HNQ exhibited a UV-centered absorption with an absorption maximum at 330 nm, 

this value redshifted to 420 nm for 5HNQ. A long tail extending up to 525 nm could also be 

determined for 5HNQ. 

 

Figure 10. UV-visible absorption spectra of 2HNQ and 5HNQ in acetonitrile. Reproduced 

with permission of Ref. [293] 

 Investigation of their photoinitiating abilities using different additives revealed 5HNQ 

to exhibit a poor initiating ability in photo-oxidation processes (See Table 4). Thus, upon 

irradiation at 410 nm, 5HNQ/Iod2, 5HNQ/EDB and 5HNQ/NPG photoinitiating systems only 

furnished monomer conversions of 25, 30 and 36% respectively. No reaction was detected with 

phenacyl bromide (R-Br) (See Figure 11). The higher monomer conversion obtained with NPG 

was assigned to a decarboxylation process occurring on NPG, generating highly reactive 

carbon-centered radicals.[53] Logically, at 455 nm, a reduction of the monomer conversion 

could be evidenced, resulting from a reduction of the molar extinction coefficient at this 

wavelength. By examining different three-component photoinitiating systems, the best 

monomer conversion was obtained with the 5HNQ/Iod2/NPG combination (46% conversion 

vs. 42% with 5HNQ/Iod2/EDB at 410 nm). For comparison, a slightly higher conversion could 

be obtained with the reference system ITX/EDB (49% conversion at 410 nm). Conversely, the 

two-component Iod2/NPG combination was outperformed by the three-component 

5HNQ/Iod2/NPG system (47% vs. 42% for Iod2/NPG). 

 



Table 4. TMPTA conversions obtained in laminate upon exposure to LED emitting at 410 nm 

or 445 nm during 300 s in the presence of HNQ-based photoinitiating systems (HNQs, ITX: 0.5 

wt%; Iod2, EDB, NPG and R-Br: 2 wt%). 

 

Figure 11. Chemical structures of different monomers and additives used with 2HNQ and 

5HNQ. 

Upon addition of trimethylolpropane tris(3-mercaptopropionate) (trithiol) to the 

TMPTA-based resins using the two-component 5HNQ/NPG system, the TMPTA conversion 

could increase up to 70% (contrarily to 36% for TMPTA alone), resulting from the concomitant 

occurrence of two parallel mechanisms (homopolymerization of TMPTA and thiol-ene 

polymerization). Examination of the photoinitiating ability of 2HNQ at 410 nm revealed this 

dye to be less efficient than 5HNQ, irrespective of the photoinitiating system. Noticeably, due 

to the lack of absorption at 445 nm, no polymerization could be initiated with 2HNQ at this 

PISs LED@410 nm LED@445 nm 

Conversion Conversion 

5HNQ/EDB 30% 19% 

5HNQ/R-Br npb npb 

5HNQ/NPG 36% 29% 

5HNQ/Iod2 25% 15% 

Iod2/NPG 47% 33% 

ITX/EDB 49% 18% 

5HNQ/Iod2/NPG 46% 35% 

5HNQ/EDB/Iod2 42% 15% 

5HNQ/EDB/R-Br 31% 23% 

2HNQ/EDB npb npb 

2HNQ/R-Br npb npb 

2HNQ/NPG npb npb 

2HNQ/Iod2 npb npb 

2HNQ/Iod2/NPG 29% npb 

2HNQ/Iod2/EDB 18% npb 

2HNQ/EDB/R-Br npb npb 
a Double bond conversion after photopolymerization for 300 s. b np: no photopolymerization. 

 



wavelength. A different behavior was found during the cationic polymerization (CP) of 

triethyleneglycol divinyl ether (DVE-3). In this case, 2HNQ could outperform 5HNQ, in two-

component dye/Iod2 and in three-component dye/Iod2/NVK systems (See Table 5). Using the 

two-component 2HNQ/Iod2 system, a DVE3 conversion of 92% could be determined after 300 

s of irradiation at 410 nm. Noticeably, if no FRP could be initiated at 445 nm with 2HNQ, the 

CP of DVE3 remained possible, the monomer conversion only decreasing of 6% at 445 nm 

(86% conversion) compared to that obtained at 405 nm. 

Table 5. Monomer conversions obtained during the cationic polymerization of DVE-3 in 

laminate upon irradiation at 410 and 445 nm with LEDs for 300 s, using HNQ-P (HNQ: 0.5 

wt%; Iod: 2 wt%; NVK: 3 wt%). 

PISs LED@410 nm LED@445 nm 

Conversion Conversion 

5HNQ/Iod2 85% 59% 

5HNQ/Iod2/NVK 87% 64% 

2HNQ/Iod2 92% 86% 

2HNQ/Iod2/NVK 87% 83% 

 

2.2.2. Photocrosslinkable photoinitiators derived from natural naphthoquinones. 

 In 2021, Versace and coworkers went a step further by developing crosslinkable 

photoinitiators.[294] Lawsone was selected as the natural dye and the introduction of allyl and 

epoxy groups was examined. Two molecules derived from lawsone were proposed, namely 2-

(allyloxy)-1,4-naphthoquinone (HNQA) and (2-(oxiran-2ylmethoxy)-1,4-naphthoquinone 

(HNQE) (See Figure 12). By functionalizing the hydroxy group of lawsone (2HNQ), the 

corresponding derivatives could act as mono-component systems, contrarily to what was 

observed for 2HNQ. Indeed, in the previous works done by Xiao and coworkers, 2HNQ was 

unable to initiate any FRP or CP processes alone.[293] 

 

Figure 12. Chemical structures of the photopolymerizable photoinitiators HNQA and 

HNQE, monomers and additives. 

 In order the resins to be totally biosourced, soybean oil acrylate (SOA) and limonene 

1,2-epoxide (LME) were used as the monomers. Compared to the parent structure 2HNQ, no 

modification of the absorption maxima was found for HNQA and HNQE after 



functionalization of the hydroxy group, located at 335, 330 and 329 nm respectively in 

acetonitrile. Photolysis experiments done at 385 nm in acetonitrile revealed the photolysis rate 

to be insensitive to the presence of bis(4-methylphenyl)iodonium hexafluorophosphate (Iod3). 

Besides, polymerization experiments done at 385 and at 405 nm with LEDs revealed the use of 

Iod3 as a co-initiator to significantly improve the monomer conversion. In the case of HNQA, 

a two-fold enhancement of the monomer conversion could be evidenced, shifting from 34% to 

76% in the presence of Iod3 at 405 nm (See Table 6). This is typically indicative of the formation 

of phenyl radicals that constitute an additional source of radicals, in complement to the HNQA 

and HNQE radicals. The mechanism of radical generation is depicted in equations (r2) and 

(r3). 

2 HNQA (hv) → 2 HNQA* → HNQA• + ketyl radical   (r2) 

HNQA* + (MePh)2I+ → HNQA•+ + (MePh)2I• → HNQA•+  + MePh• + MePhI (r3) 

  

Table 6. Monomer conversions determined in laminate upon irradiation at 385 nm (I = 44 

mW/cm2) and 405 nm (I = 60 mW/cm2) with LEDs for 600s using HNQA (or HNQE) (0.5 wt%) 

or HNQA (or HNQE)/Iod3 (0.5%/2%, w/w). 

Photoinitiating Systems 

Acrylate Conversions (%) 

LED@385 nm LED@405 nm 

HNQE/SOA 51 63 

HNQE/Iod/SOA 81 83 

2HNQ/SOA - - 

2HNQ/Iod/SOA - - 

HNQA/SOA 30 34 

HNQA/Iod/SOA 62 76 

 

 The cationic polymerization of 3,4-(epoxycyclohexane)methyl-3,4-epoxycyclo-

hexylcarboxylate (EPOX), a reference epoxy monomer in photopolymerization was also 

examined at 385 nm and at 405 nm (See Figure 13). 

 



Figure 13. Polymerization profiles obtained during the CP of EPOX under air upon irradiation 

at (A) 405 nm and (B) 385 nm using (1) HNQA/Iod3 (0.5/2% w/w) and (2) HNQE/Iod3 (0.5/2% 

w/w). Reproduced with permission of Ref. [294] 

 At both wavelengths, a clear improvement of the monomer conversion for the 

HNQA/Iod system compared to the HNQE/Iod system was observed. Thus, after 600 s of 

irradiation, a conversion of 50% could be obtained with HNQA contrarily to only 30% with 

HNQE at 405 nm. Almost no modification of the monomer conversions was observed between 

those obtained at 385 nm and at 405 nm. Finally, the possibility to concomitantly initiate a 

cationic polymerization and a thiol-ene polymerization was examined with a limonene 1,2-

epoxide (LME)/trithiol blend under air and in laminate (See Table 7). After 600 s of irradiation, 

an almost quantitative conversion of LME could be evidenced, twice higher than that of 

trithiol. This high vinylic conversion is indicative of a thiol-ene polymerization process. Under 

air, lower trithiol conversion was detected, resulting from the oxygen inhibition. Indeed, thiyl 

radicals can react with oxygen, producing unreactive peroxyl radicals. Besides, thanks to the 

presence of trithiol, a proton transfer reaction can occur, regenerating thiyl radicals according 

to the mechanism depicted in the equations (r4, r5). 

  RS• + R’-CH =CH2 (LME) → R’-CH•-CH2-SR + RS-H → R’-CH2-CH2-SR + RS• (r4) 

R• + O2 → ROO • + RS-H → ROOH+ RS•      (r5) 

Table 7. Vinyl, thiol, and epoxy conversions determined after 600 s of irradiation of a 

limonene-1,2-epoxide/trithiol (50 wt %/50 wt%) blend at 385 nm (I = 44 mW/cm2) and at 405 

nm (I = 60 mW/cm2) under air and in laminate using the HNQA/Iod3 (0.5/2%, w/w) and 

HNQE/Iod (0.5/2%, w/w) systems. 

 Vinyl 

Conversions 

(%) 

Thiol 

Conversions 

(%) 

Photosensitive Formulations 385 nm 405 nm 385 nm 405 nm 

HNQA/Iod3/LME/trithiol 96 a 

98 b 

98 a 

98 b 

43 a 

64 b 

47 a 

53 b 

HNQE/Iod3/LME/trithiol 98 a 

98 b 

100 a 

100 b 

53 a 

62 b 

59 a 

58 b 
a under air, b in laminate. 

2.2.3. Photoinitiators based on 2-phenylamino-1,4-naphthoquinones. 

 As mentioned in the introduction section, the first report mentioning the design of 

photoinitiators based on the 1,4-naphthoquinone scaffold was reported by Sokołowska and 

coworkers in 2012 using different electron acceptors (A1-A5) and donors (D1, D2, D4).[271] 

The same structures were revisited one year later by the same authors using different 

hydrogen donors (D1’-D4’) (See Figure 14).[295] 



 

Figure 14. Chemical structures of 2-phenylamino-1,4-naphthoquinones, different electron 

donors and acceptors. 

 By UV-visible absorption spectroscopy, the authors evidenced the electron-donating 

groups such as methoxy or methyl groups to redshift the absorption of dyes I and II whereas 

the presence of halogens blue-shifted the absorption. All dyes exhibited an absorption 

maximum varying between 468 and 492 nm, depending on the substitution pattern. The most 

redshifted absorption was found for If and IIf bearing two halogen atoms. This redshift was 

assigned to the formation of intermolecular hydrogen bonds but also to the formation of 

hydrogen bonds with the solvent molecules. Polymerization experiments done on TMPTA 

using the different dye/electron donor and dye/electron acceptor combinations and a Xenon 

lamp revealed Ie/A2 and II/A2 to furnish the highest monomer conversions, namely all dyes 

bearing halogens. While examining the CP of cyclohexene oxide, only low monomer 

conversions were obtained. Interestingly, by using D1’-D4’, an improvement of the TMPTA 

conversion could be obtained, attributable to the decomposition of the peroxyl radicals 

according to a mechanism similar to that depicted in equation (r5). 

2.2.4. Photoinitiators based on naphthoquinone-imidazolyl derivatives. 

 In 2023, Lalevée and coworkers reported a series of ten naphthoquinone-imidazolyl  

derivatives differing by the electron donating groups (See Figure 15).[296] The different dyes 

could be used in multicomponent photoinitiating systems in combination with Iod and EDB. 



 
Figure 15. Chemical structures of dyes 1-dye 10. 

From the absorption viewpoint, this family of photoinitiators is interesting since the 

absorption was broad, extending between 300 and 550 nm in chloroform (See Figure 16 and 

Table 8). 

 
Figure 16. UV-visible absorption spectra of the different naphthoquinone-imidazolyl 

derivatives in chloroform. Reproduced with permission of Ref. [296] 

Table 8. Optical characteristics of the different naphthoquinone-imidazolyl derivatives: 

maximum absorption wavelengths λmax; extinction coefficients at λmax (εmax) and extinction 

coefficients at the emission wavelength of the LED@405 nm(ε@405nm) 

No. 
λmax 

(nm) 

εmax  

(M-1∙cm-1) 

ε@405nm  

(M-1∙cm-1) 

Dye 1 414 1840 1790 

Dye 2 430 1850 1540 

Dye 3 410 1470 1460 

Dye 4 380 1300 1000 

Dye 5 444 1930 1250 



Dye 6 401 1460 1450 

Dye 7 456 1890 1380 

Dye 8 405 1600 1600 

Dye 9 441 2510 2060 

Dye 10 413 19370 19000 

 In this series of dyes, the highest molar extinction coefficient was found for dye 10 

bearing the polyaromatic electron donor. Thus, if the molar extinction coefficient of all dyes 

were below 1500 M-1.cm-1, this value increased up to 19000 M-1.cm-1 for dye 10. Benefiting from 

the push-pull effect between the different electron donors and the electron accepting 

naphthoquinone, a broad intramolecular charge transfer (ICT) band was detected in the visible 

range, with an absorption maximum ranging between 401 nm for dye 6 up to 456 nm for dye 

7. Considering the position of the ICT band, photopolymerization experiments could be 

carried out at 405 nm. Photolysis experiments done in chloroform revealed the photolysis rate 

of the two-component dye/Iod and dye/EDB to be similar. In this series of dyes, the fastest 

photolyzes were obtained with dye 4. In fact, photolysis rates were determined as being 

comparable to that observed for ITX in the same conditions (ITX/Iod and ITX/EDB). When 

tested as photoinitiators during the FRP of TMPTA, the highest monomer conversions were 

obtained for dyes 4, 6 and 8 (See Figure 17).  

 

Figure 17. Monomer conversions obtained during the FRP of TMPTA under air upon 

irradiation at 405 nm with a LED using (a) dyes/Iod (0.2%/2% w/w); (b) dyes/EDB (0.2%/2% 

w/w) in thick films (2 mm). Irradiation starts at t = 10 s. Reproduced with permission of Ref. 

[296] 

 Using the two-component dye/Iod system, slightly higher monomer conversions were 

obtained compared to that obtained with the dye/EDB combination. However, as drawback, 

only five dyes could furnish a monomer conversion with Iod whereas all dyes could 

polymerize TMPTA with EDB, even if major differences of monomer conversions exist. By 

using the three-component dye/Iod/EDB (0.2%/2%/0.2% w/w/w) system, a slight improvement 

of the TMPTA conversion could be detected with dyes 4, 6, 8 already furnishing the highest 

monomer conversions (See Figure 18). Comparison with the reference Iod/EDB system 

revealed all three-component photoinitiating systems to furnish lower monomer conversions 

than the reference system (85% conversion after 400 s). Besides, as shown in the Figure 18, 

faster polymerization rates could be detected in the presence of dyes, thus demonstrating the 

contribution of the dyes in the photoinitiation process. Beyond the simple polymerization of 

TMPTA, differences could be detected for the different samples. As shown in the picture of 

a) b)



Figure 18, a strong shrinkage of the samples was found for all samples polymerized with the 

three-component systems, what was not observed for the two two-component systems. 

 
Figure 18. TMPTA conversions obtained under air upon irradiation at 405 nm with a LED 

using different photoinitiating systems : dyes (0.2 wt%)/Iod(2 wt%), dyes (0.2 wt%)/EDB(2 

wt%) and dyes (0.2 wt%)/Iod(2 wt%)/EDB(2 wt%); thickness at ~ 2 mm; the irradiation starts 

at t = 10 s. Reproduced with permission of Ref. [296] 

 Additional comparisons were established with 2-isopropylthioxanthone (ITX) and 

benzophenone (BP) which are both reference photoinitiators. As shown in the Figure 19, 

almost similar conversions could be obtained with dye 4, ITX and BP using Iod in two-

component systems. When combined with EDB, conversions obtained with dye 4 could be on 

par with that of ITX and could outperform BP, irrespective of the photoinitiator content. 

Interestingly, a high monomer conversion could be maintained, even for a photoinitiator 

content as low as 0.05 wt%. 

 

Figure 19. TMPTA conversions obtained at 405 nm under air using (a) dye 4/Iod(2 wt%), 

ITX/Iod(2 wt%), BP/Iod(2 wt%); (b) dye 4/EDB(2 wt%), ITX/EDB(2 wt%), BP/EDB(2 wt%); 

thickness at ~ 2 mm; the irradiation starts at t = 10 s. Reproduced with permission of Ref. [296] 

a) b)



Table 9. Summary of the properties of the different naphthoquinones reported in this review. 

Dye Absorption range  

(nm) 

Absorption maximum 

(nm) and molar 

extinction coefficient  

(M-1.cm-1) 

Irradiation conditions Additives Monomers Polymerization  

type 

Reference 

 

400-600 478 

(n.p.) 

xenon lamp (490 ± 90 nm) no additive TMPTA FRP 

(50% in 1000 s) 

 

[273] 

 

400-550 442 

(2800) 

xenon lamp (490 ± 90 nm) no additive TMPTA FRP 

(60% in 1000 s) 

[273] 

 

400-650 482 

(1700) 

xenon lamp (490 ± 90 nm) no additive TMPTA FRP 

(60% in 1000 s) 

[273] 

 

400-600 493 

(2900) 

xenon lamp (490 ± 90 nm) no additive TMPTA FRP 

(30% in 1000 s) 

[273] 

 

330-500 380 

(500) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(1950) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(1350) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 



 

330-500 380 

(1980) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(970) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(2300) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(2000) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(1700) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(1800) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(1800) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-500 380 

(2370) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-450 335 

(3960) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 



 

330-450 335 

(6110) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-450 335 

(5700) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

330-450 335 

(4670) 

LEDs at 405 and 455 nm no additive or 

two-component 

system with Iod 

or EDB 

TA FRP at 405 and 455 

nm 

[291] 

 

300-450 330 

(3227) 

 

LEDs at 410 and 455 nm EDB, Iod2, NPG, 

R-Br, use of two 

and three-

component 

systems 

TMPTA or 

trithiol/DVE-3 

FRP at 410 and 445 

nm or thiol-ene 

polymerization at 

410 and 445 nm 

[293] 

 

300-525 420 

(4014) 

LEDs at 410 and 455 nm EDB, Iod2, NPG, 

R-Br, use of two 

and three-

component 

systems 

TMPTA or 

trithiol/DVE-3 

FRP at 410 and 445 

nm or thiol-ene 

polymerization at 

410 and 445 nm 

[293] 

 

300-450 329 LEDs at 385 and 405 nm Iod3 EPOX or 

LME/trithiol 

CP of EPOX and 

thiol-ene 

polymerization at 

385 and 405 nm 

[294] 

 

300-450 330 LEDs at 385 and 405 nm Iod3 EPOX or 

LME/trithiol 

CP of EPOX and 

thiol-ene 

polymerization at 

385 and 405 nm 

[294] 



 

n.p. Ia : 487 

Ib : 494 

Ic : 502 

Id : 490 

Ie : 491 

If : 607 

Xenon lamp A1-A5, D1-D3, 

D1’-D4’ 

TMPTA FRP [271], [295] 

 

n.p. IIa : 490 

IIb : 495 

IIc : 503 

IId : 501 

IIe : 501 

IIf : 602 

Xenon lamp A1-A5, D1-D3, 

D1’-D4’ 

TMPTA FRP [271], [295] 

 

n.p. 487 Xenon lamp A1-A5, D1-D3, 

D1’-D4’ 

TMPTA FRP [271], [295] 

 

300-550 414 

(1840) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 430 

(1850) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 410 

(1470) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 380 

(1300) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 444 

(1930) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 



 

300-550 401 

(1460) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 456 

(1890) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 405 

(1600) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-550 441 

(2510) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

 

300-600 413 

(19370) 

LED at 405 nm Iod, EDB, use of 

two and three-

component 

systems 

TMPTA FRP [296] 

n.p. : not provided in the reference. 



Conclusion 

 To conclude, naphthoquinones have only been scarcely used as photoinitiators of 

polymerization to date. The first experiments were only carried out in 2013 whereas 

photopolymerization is extensively studied since the 60s. Even if only few structures have 

been examined to date, interesting structures have been designed and synthesized. Notably, 

numerous Type II and Type I monocomponent photoinitiating systems have been proposed, 

addressing the simplification of the photocurable resins. Especially, a series of imidazolyl-

based oxime esters has been proposed for the first time, exhibiting photoinitiating abilities 

comparable to that of the conventional oxime esters. Compared to other dyes, numerous 

derivatives could be prepared (introduction of crosslinkable groups, photocleavable groups), 

resulting from the presence of hydroxy groups that greatly facilitated the chemical 

modification of naphthoquinones. Natural presence of hydroxy groups enabling the covalent 

linkage of various groups is often observed in natural products, differentiating natural dyes 

from synthetic dyes. At present, several points remain to be improved. For instance, no 

photobleachable photoinitiators have been designed with naphthoquinones. However, the 

color imposed by visible-light photoinitiators is clearly a major issue speeding down the 

development of visible light photopolymerization. With aim at polymerization in greener 

conditions, no water-soluble naphthoquinones have been reported to date, opening the way 

towards the polymerization in water. Finally, the ideal situation would be to be capable to 

polymerize under sunlight or daylight. However, no naphthoquinones have been capable to 

initiate to date a polymerization process in these conditions. A lot of works remains thus to be 

done with naphthoquinones. 
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