
HAL Id: hal-04094405
https://hal.science/hal-04094405

Preprint submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Independent set reconfiguration: general and
RNA-focused parameterized algorithms

Théo Boury, Laurent Bulteau, Bertrand Marchand, Yann Ponty

To cite this version:
Théo Boury, Laurent Bulteau, Bertrand Marchand, Yann Ponty. Independent set reconfiguration:
general and RNA-focused parameterized algorithms. 2023. �hal-04094405�

https://hal.science/hal-04094405
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

Independent set reconfiguration: general and

RNA-focused parameterized algorithms

Théo Boury1,3, Laurent Bulteau2, Bertrand Marchand1,2

and Yann Ponty1

1LIX, Ecole Polytechnique, Palaiseau,France.
2LIGM, Université Gustave Eiffel, Marne-la-vallée,France.

3ENS Lyon, Lyon, France.

Contributing authors: theo.boury@ens-lyon.fr; laurent.bulteau@u-
pem.fr; bertrand.marchand@lix.polytechnique.fr;

yann.ponty@lix.polytechnique.fr;

Abstract

In this paper, we study the Independent Set (IS) reconfiguration problem
in graphs, and its applications to RNA kinetics. An IS reconfiguration is
a scenario transforming an IS L into another IS R, inserting/removing
one vertex at a time while keeping the cardinalities of intermediate sets
as large as possible. We focus on the bipartite variant where only start
and end vertices are allowed in intermediate ISs. Our motivation is an
application to the RNA energy barrier, a classic hard problem from bioin-
formatics, which asks, given two RNA structures given as input, whether
there exists a reconfiguration pathway connecting them and staying
below an energy threshold. A natural parameter for this problem would
be the difference between the initial IS size and the threshold (barrier).
We first show the para-NP hardness of the problem with respect to
this parameter. We then investigate two new parameters, the cardinal-
ity range ρ and a measure of arboricity Φ. ρ denotes the maximum
allowed size difference between an IS along the reconfiguration and
a maximum IS, while Φ is a measure of the amount of “branch-
ing” in the two input RNA structures. We show that bipartite IS
reconfiguration is XP for ρ in the general case, and XP for Φ
in the sub-case of bipartite graphs stemming from RNA instances.
We give two different routes yielding XP algorithms for ρ: The first
is a direct O(n2)-space, O(n2ρ+2.5)-time algorithm based on a sep-
aration lemma; The second builds on a parameterized equivalence

1

Springer Nature 2021 LATEX template

2 Parameterized Independent Set Reconfiguration for RNA kinetics

with the directed pathwidth problem, leading to a O(nρ+1)-space,
O(nρ+2)-time algorithm for the reconfiguration problem through an
adaptation of a prior result by Tamaki [1]. This equivalence is an
interesting result in its own right, connecting a reconfiguration prob-
lem (which is essentially a connectivity problem within a reconfigu-
ration network) with a structural parameter for an auxiliary graph.
For Φ, our O(nΦ+1)-algorithm stems from seeing the problem as
an instance of minimum cumulative-cost scheduling, and relies on
a merging procedure that might be of independent interest. These
results improve upon a partial O(n2ρ+2.5)-algorithm that only applied
to the RNA case. We also demonstrate their practicality of these
algorithms through a benchmark on small random RNA instances.

Keywords: reconfiguration problems - parameterized algorithms - RNA
bioinformatics - directed pathwidth - minimal cumulative cost scheduling

1 Introduction

Reconfiguration problems. Reconfiguration problems informally ask
whether there exists, between two configurations of a system, a reconfiguration
pathway entirely composed of legal intermediate configurations, connected by
legal moves. In a thoroughly studied sub-category of these problems, config-
urations correspond to feasible solutions of some optimization problem, and a
feasible solution is legal when its quality is higher than a specified threshold.

Examples of optimization problems for which reconfiguration versions have
been studied include Dominating Set, Vertex Cover, Shortest Path
or Independent Set, which is our focus in this article. Associated complexi-
ties range from polynomial (see [2] for examples) to NP-complete (for bipartite
independent set reconfiguration [3]), and even PSPACE-complete for many
of them [3, 4]. Such computational hardness motivates the study of these prob-
lems under the lens of parametrized complexity [4–7], in the hope of identifying
tractable sub-regimes. Typical parameters considered by these studies focus
on the value of the quality threshold (typically a solution size bound) defining
legal configurations and the length of the reconfiguration sequences.

Directed pathwidth. Directed pathwidth, originally defined in [8] and
attributed to Robertson, Seymour and Thomas, represents a natural extension
of the notions of pathwidth and path decompositions to directed graphs. Like
its undirected restriction, it may alternatively be defined in terms of graph
searching [9], path decompositions [10, 11] or vertex separation number [1, 12].
An intuitive formulation can be stated as the search for a visit order of the
directed graph, using as few active vertices as possible at each step, and such
that no vertex may be deactivated until all its in-neighbors have been acti-
vated. Although an FPT algorithm is known for the undirected pathwidth
[13], it remains open whether computing the directed pathwidth admits a FPT

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 3

algorithm. XP algorithms [1, 12] are known, and have been implemented in
practice [14, 15].

RNA energy barrier. RNAs are single-stranded biomolecules, which fold
onto themselves into 2D and 3D structures through the pairing of nucleotides
along their sequence [16]. Thermodynamics then favors low-energy structures,
and the RNA energy barrier problem asks, given two structures, whether
there exists a re-folding pathway connecting them that does not go through
unlikely high-energy intermediate states [17, 18]. Interestingly, the problem
falls under the wide umbrella of reconfiguration problems described above,
namely the reconfiguration of solutions of optimization problems (here, energy
minimization). An important specificity of the problem is that the probability
of a refolding pathway depends on the energy difference between intermediate
states and the starting point rather than the absolute energy value. Another
aspect is that since some pairings of the initial structure may impede the
formation of new pairings for the target structure, it induces a notion of prece-
dence constraints, and may therefore also be treated as a scheduling problem,
as carried out in [19, 20].

Problem statement. In our work, we focus on independent set reconfigu-
rations where only vertices from the start or end ISs (L and R) are allowed
within intermediate ISs. This amounts to considering the induced subgraph
G[L∪R], bipartite by construction. We write α(G) for the size of a maximum
independent set of G (recall that α(G) can be computed in polynomial time
on bipartite graphs).

Bipartite Independent Set Reconfiguration (BISR)
Input: Bipartite graph G = (V,E) with partition V = L ∪R; integer ρ
Parameter: ρ
Output: True if there exists a sequence I0 · · · I` of independent sets of G
such that

• I0 = L and I` = R;
• |Ii| ≥ α(G)− ρ, ∀i ∈ [0, `];
• |Ii4 Ii+1| = 1,∀i ∈ [0, `− 1].

False otherwise.

The vertices of L and R will typically respectively be called “start” and
“end” vertices. We further assume that when a bipartite graph G is given, a
specification of which side is L (the “start” set) and which is R (the “end”
set) is given. When we explicitly need to state which sets are the “start” and
“end” sets, we will write GL→R.

Figure 1 shows an example of an instance of BISR and a possible recon-
figuration pathway. We introduce the cardinality range (or simply range) ρ =
max1≤i≤` α(G)−|Ii| as a natural parameter for this problem, since it measures

Springer Nature 2021 LATEX template

4 Parameterized Independent Set Reconfiguration for RNA kinetics

a

b

c

d

e

f

g

h

i

|L|=5

a

b

c

d

e

f

g

h

i

|I1|=4

a

b

c

d

e

f

g

h

i

|I2|=3

a

b

c

d

e

f

g

h

i

|I3|=4

a

b

c

d

e

f

g

h

i

|I4|=5

a

b

c

d

e

f

g

h

i

|I5|=4

a

b

c

d

e

f

g

h

i

|I6|=3

a

b

c

d

e

f

g

h

i

|I7|=4

a

b

c

d

e

f

g

h

i

|I8|=3

a

b

c

d

e

f

g

h

i

|R|=4

i

|Ii|
−

− +

+ −

− + − +
3

4

5 α(G)

ρ

Fig. 1 Example of a bipartite independent set reconfiguration from L (blue) to R (red).
Selected vertices at each step have a filled background. All intermediate ISs have size at least
3, and the optimal IS has size 5, so this scenario has a range of 2; it can easily be verified
that it is optimal.

a distance to optimality. As mentioned above, another natural parameter for
RNA kinetics is the barrier, denoted k, and defined as k = max1≤i≤` |L|− |Ii|.
Intuitively, k measures the size difference from the starting point rather than
from an “absolute” optimum. Note that k = ρ − (α(G) − |L|), so one has
0 ≤ k ≤ ρ. Both parameters are obviously similar for instances where L is
close to being a maximum independent set, which is generally the case in
RNA applications, but in theory the range ρ can be arbitrarily larger than the
barrier k.

Our results. We first prove that in general, the barrier k may not yield
any interesting parameterized algorithm, since BISR is Para-NP-hard for this
parameter.

We thus focus on two other parameterizations, the range ρ, as defined above
and illustrated in Figure 1, and the arboricity Φ in the case of RNA instances,
as illustrated on Figure 7.

For the range ρ, we prove that BISR is in XP by providing two distinct
algorithmic strategies to tackle it. Our first algorithmic strategy stems from
a parameterized equivalence we draw between BISR parameterized by ρ and
the problem of computing the directed pathwidth of directed graphs. Within
this equivalence, ρ maps exactly to the directed pathwidth. This allows to
apply XP algorithms for Directed Pathwidth to BISR while retaining
their complexity, such as the O(nρ+2)-time, O(nρ+1)-space algorithm from
Tamaki [1] (with n = |V |). This equivalence between directed pathwidth and
bipartite independent set reconfiguration is itself an interesting result, as it
connects a structural problem, whose parameterized complexity is open, with a
reconfiguration problem of the kind that is routinely studied in parameterized
complexity [4–7].

The other algorithmic strategy for BISR parameterized by ρ is more direct,
and runs with a time complexity of O(n2ρ

√
nm) (m = |E|) but using only

O(n2) space. It relies on a separation lemma involving, if it exists, a mixed

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 5

((.....)(((.....))))

((((...((((((((........)))))))).....))))

((((((((.........)))))(((.......)))..)))
((((....)........)))

A B

Fig. 2 (A) Example of two RNA structures, and the corresponding value for the arboricity
Φ. Within this work, we consider only “conflict-free” secondary structures that can be seen as
well-parenthesized strings. Φ is then the number of “terminal” pairs of matching parentheses,
highlighted by gray shading. (B) Example of a conflict bipartite graph associated to two
input secondary structures. The arcs (base-pairs) of both structures are the vertices of the
graph, and two vertices are in conflict if the corresponding arcs are not nested in one another.
By “RNA instances of BISR”, we mean instances of BISR in which the bipartite graph is
such a conflict graph of two RNA structures.

maximum independent set of G containing at least one vertex from both parts
of the graph. In the specific case of bipartite graphs arising from RNA recon-
figuration, we improve the run-time of the subroutine computing a mixed MIS
to O(n2) (rather than O(

√
nm)), with a dynamic programming approach.

As for the arboricity Φ, we also show membership in XP of BISR restricted
to RNA instances, through dynamic programming over the sub-trees of T (S)
for one of the input structures S (see Figure 7).

We present benchmark results for all algorithms, on random instances of
general bipartite graphs as well as instances of the RNA Energy Barrier
problem. The approach based on directed pathwidth yields reasonable solving
times for RNA strings of length up to ∼ 150 nucleotides.

Techniques. The equivalence between BISR parameterized by ρ and directed
pathwidth is obtained by defining a directed graph from a maximum matching
of the input bipartite graph. Our more “direct” algorithm for the ρ parame-
terization is an example of the “bounded search-tree” technique [21], enabled
by a separation lemma.

As for the arboricity parameterization, the XP algorithm we present
involves seeing the problem in terms of cumulative cost-optimal scheduling [22].
In particular, we develop a merge procedure for combining optimal solutions
on disjoint graphs into an optimal solution for the union of the graphs. We
believe this merge procedure and its associated concepts (canonical solutions,
preferability criteria) can be of independent interest.

Springer Nature 2021 LATEX template

6 Parameterized Independent Set Reconfiguration for RNA kinetics

Outline. To start with, Section 2 presents some previously known results
related to BISR, and some notations and definitions we will use throughout
the article. Then, Section 3 shows that BISR is equivalent to the computation
of directed pathwidth in directed graphs. Section 4 presents the separation
lemma and merge procedure on which our direct XP algorithm in ρ and our
XP algorithm in Φ are based. The related concepts of canonical schedule and
preferability between schedules are also introduced in this section. Section 5
and Section 6 build on the technical results of Section 4 to present our direct XP
algorithm parameterized by ρ and our algorithm XP in Φ in the RNA case. To
finish, Section 7 explains some optimizations specific to RNA reconfiguration
instances, and presents our numerical results.

2 Preliminaries

2.1 State of the art

Computational hardness. Bipartite Independent Set Reconfigura-
tion was proven NP-complete in [3], through the equivalent k-Vertex Cover
Reconfiguration problem. Formulated in terms of RNAs, and restricted to
secondary structures (i.e. the subset of bipartite graphs that can be obtained in
RNA reconfiguration instances), it was independently proven NP-hard in [17].
To the authors’ knowledge, its parameterized complexity remains open.

Independent set reconfiguration in an unrestricted setting (allowing vertices
which are outside from the start or end independent sets, i.e. in possi-
bly non-bipartite graphs) when parameterized by the minimum allowed size
of intermediate sets has been proven W[1]-hard [4, 5], and fixed-parameter
tractable for planar graphs or graphs of bounded degree [6]. Whether this more
general problem is in XP for this parameter remains open. We note that in
this setting, parameter ρ seems slightly less relevant since it involves comput-
ing a maximal independent set in a general graph (i.e. testing if there exists a
reconfiguration from ∅ to ∅ with range ρ is equivalent to deciding if α(G) ≥ ρ).

Heuristics. Given the great practical importance of the RNA Energy barrier
problem in Bioinformatics (BISR in the RNA case), several heuristics [23, 24]
have been developped for it. In this paper, we assess the potential of param-
eterized algorithmics for the development of efficient exact algorithms for the
problem, starting with a simple energy model (corresponding to Bipartite
Independent Set Reconfiguration).

Exact algorithms. As for algorithms for BISR, the closest precedent is an
algorithm by Thachuk et al. [18]. It is restricted to RNA secondary structure
conflict graphs, and additionally to conflict graphs for which both parts L and
R are maximum independent sets of G. In this restricted setting, although
it is not stated as such, [18] provides an XP algorithm with respect to the
barrier parameter k which then coincides with the range parameter ρ that
we introduce. In this paper, we extend this line of study by showing the

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 7

Para-NP-hardness of BISR for k in the general setting. We further show that
generalizing k into ρ allows to retain membership in XP.

Recent unpublished work [19, 20] describe polynomial-time algorithm for
restricted input versions of BISR. More precisely, within RNA instances of
BISR, they tackle the Φ = 1 case, called “bipartite permutation graphs”
in [20] and “convex bipartite partial orders” in [19]. The specialization of XP
algorithm we describe for Φ yields a O(n3) algorithm in that case, improving
over the O(n6 log n) of [20].

2.2 Preliminary results

Restriction to the monotonous case. A reconfiguration pathway for
bipartite independent set reconfiguration is called monotonous or
direct if every vertex is added or removed exactly once in the entire sequence.
The length of a monotonous sequence is therefore necessarily: ` = |L ∪ R| =
|L|+ |R|. Theorem 2 from [3] tells us that if G, ρ is a yes-instance of bipartite
independent set reconfiguration, then there exists a monotonous reconfigura-
tion between L and R respecting the constraints. We will therefore restrict
without loss of generality our study to this simpler case. In the more restricted
set studied in [18], this was also independently shown.

Hardness for the barrier parameter. In the general case where L is
not necessarily a maximal independent set, the range and barrier parameters
(respectively ρ and k = ρ− (α(G)− |L|) may be arbitrarily different. The fol-
lowing result motivates our use of parameter ρ for the parameterized analysis
of BISR.

Proposition 1 BISR is Para-NP-hard for the energy barrier parameter k (i.e. NP-
hard even for a constant value of k, here with k = 0).

Proof We use additional vertices in R to prove this result. Informally, such a vertex
may always be inserted first in a realization: it improves the starting IS from |L| to
|L| + 1, so the lower bound on the rest of the sequence is shifted from |L| − k to
|L| − (k− 1), effectively reducing the barrier without simplifying the instance. Thus,
we build a reduction from the general version of BISR: given a bipartite graph G
with parts L and R and an integer ρ, we construct a new instance G′ with parts
L′ = L and R′ equal to R ∪ NR and ρ′ = ρ. NR is composed of |L| − (α(G) − ρ)
isolated vertices (we can assume without loss of generality that this quantity is non-
negative, otherwise (G, ρ) is a trivial no-instance), completely disconnected from the
rest of the graph.

Note that α(G′) = α(G) + |NR| = |L| + ρ, so the barrier in (G′, ρ′) is k =
ρ− (α(G′)− |L|) = 0. A realization for (G, ρ) can be transformed into a realization
for (G′, ρ) by inserting vertices from NR first, and conversely, vertices from NR can
be ignored in a realization for (G′, ρ) to obtain a realization for (G, ρ). Therefore,
since BISR is NP-Complete, it is also Para-NP-hard w.r.t the barrier k. �

Springer Nature 2021 LATEX template

8 Parameterized Independent Set Reconfiguration for RNA kinetics

2.3 Definitions

The following definitions and notations will be used throughout the paper.
They allow to link, at an intermediary step along a reconfiguration, the set of
processed vertices to the current independent set and its size.

Licit subsets. Given a subset X of vertices, we define I(X) = (L \X)∪ (R∩
X) = L∆X. We say that X is licit if I(X) is an independent set. Intuitively, in
a bipartite graph G with sides L and R, I(X) is the independent set obtained
after processing the vertices of X, starting from L (L ∩ X removed, R ∩ X
added).

Permutation formulation. An equivalent representation of a monotonous
reconfiguration pathway I0 . . . I` from L to R for a graph G is a permutation
S of L ∪ R. We will also use the term of schedule. The i-th vertex of the
permutation is the vertex that is processed (i.e. added or removed) between
Ii−1 and Ii (this formulation lightens the representation of a solution, from a
list of vertex sets to a list of vertices). We write P v S if P is a prefix of S,
and V (P) (or simply P if the context is clear) for the set of vertices appearing
in P . A permutation S is licit if V (P) is licit for each prefix P of S; note that
S is licit if and only if ∀r ∈ R, the neighborhood N(r) of r in G appears before
r in S.

Balance δ and ρ-realizations. Given a subset X of vertices, we write δ(X) =
|L∩X| − |R ∩X|. With this quantity, |I(X)| = |L| − δ(X). δ(X) is called the
balance of X, as it corresponds to the size difference between the initial IS L
and the current IS I(X). Then, S is a permutation (or schedule) of barrier k
if S is licit and for each prefix P v S, δ(V (S)) ≤ k. Equivalently, S is a ρ-
realization if S is licit and such that for each prefix P ⊆ S, |I(P)| ≥ α(G)− ρ
(i.e. δ(V (P)) ≤ ρ + |L| − α(G)). This is consistent with the fact that ρ =
k + α(G)− |L|.
Budget. Finally, given a bipartite graph G and a licit permutation S for G,
we write bg(S) for the barrier of S, i.e.

bg(S) = max
PvS
|I(P)| − |L| = max

PvS
δ(P)

The budget of a graph G is the best possible budget of a licit permutation of
G. Denoting by L(G) the set of licit permutations of G:

bg(G) = min
S∈L(G)

bg(S)

A related quantity is the best possible range of a graph G, which we write
ρ(G). It verifies ρ(G) = bg(G) + α(G)− |L|. Note that with these definitions,
the BISR problem can be equivalently defined as deciding, given a graph G
and an upper-bound ρ, whether ρ(G) ≤ ρ.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 9

3 Connection with Directed Pathwidth

We first present a parameterized reduction from bipartite independent set
reconfiguration to an input-restricted version, on graphs allowing for a perfect
matching. Then, this version of the problem is shown to be simply equivalent
to the computation of directed pathwidth on general directed graphs.

3.1 Definitions

Parameterized reduction. In this section, we provide a definition of directed
pathwidth, and then prove its parameterized equivalence to the bipartite inde-
pendent set reconfiguration problem. We say two problems P1 and P2 are
parametrically equivalent when there exists both a parameterized reduction
from P1 to P2 and another from P2 to P1. A sufficient condition to obtain a
parameterized reduction [21] from problem P to problem Q is to have a func-
tion ϕ from instances of P to instances of Q such that (i) ϕ(x) is a yes-instance
of Q ⇔ x is a yes-instance of P, (ii) ϕ can be computed in polynomial time
(iii) the parameter of x and the parameter of ϕ(x) are equal.

Interval representation. Our definition of directed pathwidth relies on inter-
val embeddings. Alternative definitions can be found, for instance in terms of
directed path decomposition or directed vertex separation number [1, 9, 12].

Definition 1 (Interval representation) An interval representation of a directed
graph H associates each vertex u ∈ H with an interval Iu = [au, bu], with au, bu inte-
gers. An interval representation is valid when (u, v) ∈ E ⇒ au ≤ bv. I.e, the interval
of u must start before the interval of v ends. If m,M are such that ∀u,m ≤ au, bu ≤
M , we define the width of an interval representation as maxm≤i≤M |{u|i ∈ Iu}| − 1

Definition 2 (directed pathwidth) The directed pathwidth of a directed graph H is
the minimum possible width of a valid interval representation of H. We note this
number dpw(H).

Nice interval representation. An interval representation is said to be nice
when no more than one interval bound is associated to any given integer, and
the integers associated to interval bounds are exactly [1 . . . 2 · |V (H)|]. Any
interval representation may be turned into a nice one without changing the
width by introducing new positions and “spreading events”. See Appendix B.1
for more details.

Directed graph from perfect matching. Given a bipartite graph G allow-
ing for a perfect matching M , we construct an associated directed graph H
in the following way: the vertices of H are the edges of the matching, and
(l, r)→ (l′, r′) is an arc of H iff (l, r′) ∈ G. Alternatively, H is obtained from
G,M by orienting the edges of G from L to R, and then contracting the edges
of M . We will denote this graph H(G,M), and simply call it the directed

Springer Nature 2021 LATEX template

10 Parameterized Independent Set Reconfiguration for RNA kinetics

graph associated to G,M . Such a construction is relatively standard and can
be found in [25, 26], for instance.

3.2 Directed pathwidth ⇔ Bipartite independent set
reconfiguration

Perfect matching case. Our main structural result regarding directed path-
width is the following. Its proof relies on interval representations, with the
intuition that the number of open intervals at a given position is the number
of dependencies that have been lifted, but not compensated for yet.

Proposition 2 Let G be a bipartite graph allowing for a perfect matching M . Then
G allows for a ρ-realization iff dpw (H(G,M)) ≤ ρ.
Conversely, given any directed graph H, there exists a bipartite graph G allowing for
a perfect matching M such that H = H(G,M) and G allows for a ρ-realization iff
dpw(H) ≤ ρ.

Proof We start with the first statement, the equivalence between dpw(H(G,M)) ≤ ρ
and the existence of a ρ-realization for G. First note that, since G allows for a perfect
matching, we have |L| = |R|, and by König’s theorem, if K is a minimum vertex
cover of G, |K| = |L| = |R|. Since α(G) = |L|+ |R| − |K| we have α(G) = |L| = |R|.
I.e. L and R are maximum independent sets of G.

⇒ If G allows for a ρ-realization, then ∃P ordering of the vertices of G such that
every prefix Xi of P verifies |I(Xi)| = |L|−δ(Xi) = α(G)−δ(Xi) ≥ α(G)−ρ.
Therefore δ(Xi) = |Xi ∩ L| − |Xi ∩R| ≤ ρ.
Consider a vertex (l, r) of H(G,M), with (l, r) an edge of M . We associate
to (l, r) the interval [a(l,r), b(l,r)] where a(l,r) is such that P [a(l,r)] = l. i.e, it
corresponds to the step in the reconfiguration where l is removed. Likewise,
b(l,r) is such that P [b(l,r)] = r.
For any edge (l, r)→ (l′, r′) of H, necessarily (l, r′) ∈ G, which implies that
in the reconfiguration sequence, l has to be removed before r′ is added. l
appears therefore earlier than l in P , and a(l,r) ≤ b(l′,r′). The intervals we
have defined therefore form a valid interval representation of H.
In addition, the intervals intersecting a given position i correspond to pairs
(l, r) where, at step i, l has already been removed while r is yet to be added.
Since the decrease in independent set size incurred by the removal of l is
compensated by the addition of its match r, the number of intervals inter-
secting position i is exactly δ(Xi), the imbalance of the i-prefix of P , which
by hypothesis is ≤ ρ.

⇐ Suppose the directed graph H(G,M) associated to G,M has directed
pathwidth ≤ ρ. Consider an optimal nice interval representation for H.
In this representation, a vertex (l, r) of H is associated to an interval
[a(l,r), b(l,r)]. Thanks to the structure of nice interval representation, we

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 11

simply define a permutation P of L ∪ R with, ∀(l, r) P [a(l,r)] = l and
P [b(l,r)] = r.
If (l, r′) is an edge of G, with r the match of l and l′ the match of r′, then
the construction above ensures that l is before r′ in P . For two matched
vertices, this is also immediate. Then, as for two matched vertices l, r, the
removal of l is compensated by the addition of r, for any prefix Xi of P , the
imbalance δ(Xi) is exactly the number of intervals intersecting position i.
By assumption, we therefore have δ(Xi) ≤ ρ and P is a ρ-realization.

For the second part of the statement, given a directed graph H, we construct a
bipartite graph G with sides L,R allowing for a perfect matching M in the following
way: for each vertex u ∈ H we introduce two vertices (lu, ru) in G. We assign lu to
L and ru to R, connect lu and ru and add the edge to the matching M . We now add
an edge from lu to rv in G for any (u, v) ∈ E(H). G now verifies H = H(G,M), and
by the result above, dpw(H) ≤ ρ iff G allows for a ρ-realization.

�

The first half of Proposition 2 is a parameterized reduction from an input-
restricted version of bipartite independent set reconfiguration to
directed pathwidth. The restriction is on bipartite graphs allowing for a perfect
matching. The second half is a parameterized reduction in the other direc-
tion. In both cases, the parameter value is directly transferred, which allows to
retain the same complexity when transferring an algorithm from one problem
to the other.

Non-perfect-matching case. In the case where G does not allow for a per-
fect matching, we construct G′ allowing for a perfect matching M ′, and such
that ρ(G) = ρ(G′) = dpw(H(G′,M ′)). G′ is obtained from G through the
addition of new vertices. Specifically, with a bipartite graph G with sides L,R,
a maximum matching M of G, and the set U of unmatched vertices in G, we
extend G with |U | new vertices in two sets NL, NR, giving a new graph G′,
with sides L′ = L ∪NL, R′ = R ∪NR, in the following way (M ′ is initialized
to M):

• For each u ∈ L ∩ U , we introduce a new vertex r(u) ∈ NR, connect it to all
vertices of L′, and add the edge (u, r(u)) to M ′.

• Likewise, for each v ∈ R ∩ U , we introduce l(v) ∈ NL, connect it to all
vertices of R′ and add (v, l(v)) to M ′.

Note that M ′ is a perfect matching of the extended bipartite graph G′.

Proposition 3 With G,G′ defined as above, we have that G allows for a ρ-realization
iff G′ allows for a ρ-realization.

Proof First note that by König’s Theorem, α(G′) = |M ′| = |M |+ |U | = α(G), so it
suffices to ensure that any realization for G can be transformed into a realization for
G′ where independent sets are lower-bounded by the same value, and vice versa.

Springer Nature 2021 LATEX template

12 Parameterized Independent Set Reconfiguration for RNA kinetics

Let P be any ρ-realization of G, then P ′ = NL · P ·NR is a ρ-realization for G′,
with NL and NR laid out in any order. Indeed, P ′ satisfies the precedence constraint,
and any intermediate set I in P ′ satisfies one of the following cases: L ⊆ I, R ⊆ I, or
I is an intermediate set from P , so in any case it has size at least α(G)−ρ = α(G′)−ρ.

Conversely, because of the all-to-all connectivity between NL and R and between
L and NR, a realization for G′ needs to have NL before any vertex from R, and have
NR after all vertices from L. Without loss of generality, it is therefore of the form
NL · P ·NR with P a realization of G, and G allows for a ρ-realization. �

The construction above in fact yields a parameterized reduction from
bipartite independent set reconfiguration to its input-restricted ver-
sion on bipartite graphs allowing for a perfect matching. This input-restricted
version is in turn parametrically equivalent to directed pathwidth by Proposi-
tion 2. Hence the following corollary:

Corollary 1 Bipartite Independent Set Reconfiguration is parametrically
equivalent to Directed Pathwidth

It allows to import algorithmic results for Directed Pathwidth and
apply them to Bipartite Independent Set Reconfiguration. In partic-
ular:

Corollary 2 There exists a O(nρ+1)-space, O(nρ+2)-time XP algorithm for Bipar-
tite Independent Set Reconfiguration.

Proof Application of the algorithm from [27]. See also Section 7.1 for more details.
�

An implementation and a benchmark of this algorithm in the context of
RNA kinetics is presented in Section 7.

Limitations. The high space-complexity of [27] may hinder the practicality
of the algorithm, and the ρ parameterization may not necessarily be adapted
to the RNA kinatics context. This is why we also explored direct algorithms
parameterized by ρ for the problem, presented in Section 5, and another
parameterization (arboricity) in Section 6. They rely on the technical ele-
ments presented in the following section, regarding the role of mixed maximum
independent sets (i.e. intersecting both L and R) in G as separators and the
problem of optimally merging optimal solutions for disconnected instances.

4 Lemmata: algorithmic building blocks

This section introduces our main technical results, which are the build-
ing blocks of the algorithms we propose for Bipartite Independent Set
Reconfiguration. They consist of a separation lemma and a merge proce-
dure.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 13

4.1 Definitions

We use the permutation representation of reconfiguration scenarios, i.e. licit
permutations of vertices. Note that the intersection, as well as the union, of
two licit set of vertices are licit:

Property 1 Given X,Y two licit subsets of a graph G, both X ∩ Y and X ∪ Y are
licit subsets.

Proof Let us check that I(X∩Y) = L\(X∩Y)∪(R∩X∩Y) is indeed an independent
set.

Consider r ∈ R and suppose r ∈ I(X ∩ Y). Then r ∈ R ∩ X ∩ Y , and since X
is licit, r ∈ X ∩ R implies N(r) ∩ I(X) = ∅ and therefore N(r) ⊂ L ∩X. Likewise,
N(r) ⊂ L ∩ Y . Therefore N(r) ⊂ L ∩X ∩ Y and I(X ∩ Y) does not contain N(r).

Likewise, consider ` ∈ L, and suppose ` ∈ I(X ∩ Y). Then ` ∈ L \ (X ∩ Y), so
either ` ∈ L \X or ` ∈ L \ Y . Since X and Y are licit, either N(r) ∩ (R ∩X) = ∅ or
N(r) ∩ (R ∩ Y) = set. In any case, N(`) ∩ I(X ∩ Y) = ∅ and I(X ∩ Y) is indeed an
independent set.

Let us now check that I(X ∪ Y) is also an independent set. In a similar fashion,
consider r ∈ I(X ∪ Y) ∩ R. r ∈ R ∩ (X ∪ Y) implies r ∈ R ∩ X or r ∈ R ∩ Y ,
which implies since X and Y are licit N(r) ∩ (L \X) = ∅ or N(r) ∩ (L \ Y) = ∅, i.e.
N(r) ⊆ X or N(r) ⊆ Y . In any case, N(r) ∩ (L \ (X ∪ Y)) = ∅.

To finish, consider ` ∈ I(X ∪ Y) ∩ L. We have ` ∈ L \ (X ∪ Y), so ` /∈ X and
` /∈ Y . Since X and Y are licit, N(`)∩X = ∅ and N(`)∩Y = ∅, so I(X∪Y)∩N(`) =
R ∩ (X ∪ Y) ∩N(`) = ∅, and I(X ∪ Y) is indeed and independent set.

�

Permutation sub-sampling. Given a realization P of G and a set of vertices
X, we write P ∩X for the sub-sequence of P consisting of the vertices of X,
without changing the order. Likewise, P \ X denotes the sub-sequence of P
consisting of vertices not in X.

Definitions: separators. A mixed maximum independent set I of G is an
independent set of G of maximum cardinality containing at least a vertex from
both parts. Note that not every bipartite graph contains such a set. A separator
X is a subset of L ∪ R such that I(X) is a mixed maximum independent set
of G.

Separators and inversions. When otherwise specified, a bipartite graph G
has sides L and R, and the independent set reconfiguration goes from L to R. In
the proofs below however, it will be useful to also consider the instance of BISR
in which R is reconfigured into L. To differentiate both, given a graph G, we
write GL→R (resp. GR→L) or the instance of BISR in which L is reconfigured
into R (resp. R into L). Likewise, we write IL→R(X) = (L \X) ∪ (R ∩X) to
denote the independent set obtained by processing X starting from L, while
IR→L = (R \ X) ∪ (L ∩ X) is the result of processing X starting from R.
Interestingly, a separator for GL→R is then also a separator for GR→L.

Springer Nature 2021 LATEX template

14 Parameterized Independent Set Reconfiguration for RNA kinetics

Property 2 Let X be a separator of GL→R. Then Y = G \ X is a separator of
GR→L

Proof IR→L(Y) = (R\Y)∪(L∩Y) = (R\(G\X)∪(L∩(G\X))) = (R∩X)∪(L\X) =
IL→R(X), which is a mixed maximum independent set of GL→R (same graph as
GR→L) �

The two technical results presented in this section, Lemma 4.2 (separation
Lemma) and Theorem 4 (merging procedure) are expressed in terms of a notion
of preferability and canonical schedules. The preferability order relation allows
to choose between different schedules equivalent in terms of barrier, while a
canonical schedule is the “most preferable”. These two notions are defined in
the following paragraphs.

Notations and definitions: canonicity and preferability. Formally, given
a schedule S for a graph G, and −1 ≥ −i ≥ |L| − α(G), we define `S(−i) as
the smallest strictly positive integer, if it exists, such that δ(S≤`S(i)) = −i.
Likewise, for i such that −1 ≥ −i ≥ |R|−α(G) we define rS(−i) as the largest
integer < |S|, if it exists, such that δ(S≤rS(−i)) + |R| − |L| = i.

We then write pref−i(S) = bg(S≤`S(−i)) and suff−i(S) = bg(S≥rS(−i)) −
δ(rS(−i)). The corresponding prefixes and suffixes are denoted by Pref−i(S)
and Suff−i(S). If `S(−i) does not exist, then pref−i(S) = +∞, and likewise
for rS(−i) and suff−i(S). Informally, these quantities are “the budget needed
to reach level −i” in the forward and reverse directions.

These definitions are illustrated in Figure 3. Note that upon inverting
the start set L and final set R, then `S(−i),Pref−i(S) and pref−i(S) become
rS(−i),Suff−i(S), suff−i(S) and vice-versa. To be more precise, given S a

schedule, i.e. an order on vertices, let us denote by
←−
S its reverse schedule, with

opposite order. Then, we have:

Pref−i(S) =
←−−−−−−−
Suff−i(

←−
S)

and
pref−i(S) = suff−i(

←−
S)

Based on these quantities, we define a partial order on schedules for G:

Definition 3 (preferability) Given S and S′ two schedules for a bipartite graph
G, we say that S is preferable to S′ (denoted S 4 S′) if bg(S) ≤ bg(S′) and ∀i,
pref−i(S) ≤ pref−i(S

′) and suff−i(S) ≤ suff−i(S′). In the case of an equality for all
criteria, S 4 S′ if ∀i, `S(−i) ≤ `S′(−i) and rS(−i) ≥ rS′(−i).

Finally, we say that S is strictly preferable to S′ if S 4 S′ and S′ 64 S

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 15

−|L|

−1

−2

−3

−4

−|R|

ℓ(−1) ℓ(−2) ℓ(−3) r(−1)
r(−2)

Pref−1(S)

Pref−2(S)

Pref−3(S)
−α(G)

C

Suff−1(S)

Suff−2(S)

−i pref−i(S) suff−i(S)
-1 1 2
-2 2 2
-3 2 +∞
-4 +∞ undefined

Fig. 3 Illustration of the definition of pref−i(S) and suff−i(S)

Remark that this relation is neither total nor antisymmetric (there are pairs
S, S′ with either both S 4 S′ and S′ 4 S′ or both S 64 S′ and S′ 64 S′), but
it is easily seen to be transitive from the definition. We are mostly interested
in the search of global optimums, as formulated below.

Definition 4 (canonical solution) A schedule S that is preferable to any other
schedule S′ for G is called a canonical solution for G.

4.2 Separation lemma

Lemma 4.2 (below) on which our algorithm XP in ρ is based is proved using
the following “modularity” property of the balance functions. Interestingly, it
is almost the same property (sub-modularity), on a different quantity (the in-
degrees of vertices) on which rely the XP algorithm for directed pathwidth [1].

Lemma 1 (modularity) Given licit subsets X and Y , we have:

|I(X)|+ |I(Y)| = |I(X ∪ Y)|+ |I(X ∩ Y)|
and

δ(X ∪ Y) + δ(X ∩ Y) = δ(X) + δ(Y)

Proof We have I(X) = (L \X) ∪ (R ∩X). Therefore, |I(X)| = |L \X|+ |R ∩X| =
|L| − |L ∩ X| + |R ∩ X|. Furthermore, |(X ∪ Y) ∩ L| = |(X ∩ L) ∪ (Y ∩ L)| =
|X∩L|+|Y ∩L|−|X∩Y ∩L|, and likewise for R. The result stems from a substraction
of one equation to the other, and an addition of |L|. As for the second part, it comes
from the definition δ(X) = |L| − |I(X)|. �

Based on this “modularity”, the following separation lemma is shown by
“re-shuffling” a solution into another one going through a mixed MIS.

Lemma 2 (separation lemma) Let X be a separator of G. If S is a schedule for G,
then (S ∩X) · (S \X) 4 S.

Springer Nature 2021 LATEX template

16 Parameterized Independent Set Reconfiguration for RNA kinetics

Proof Let us write S′ = (S ∩ X) · (S \ X), and start by showing bg(S′) ≤ bg(S).
Let ρ′ v S′. We first introduce the following notation: given a prefix ρ′ of S′ with
(S ∩X) v ρ′, we write remX(ρ′) for the smallest prefix ρ of S such that V (ρ∪X) =
V (ρ′). This definition is illustrated on Figure 4.

• if ρ′ v (S ∩X), then ∃ρ v S such that ρ′ = ρ ∩X, and δ(ρ′) = δ(ρ ∩X) =
δ(ρ) + δ(X)− δ(ρ∪X) (by the modularity property, Lemma 1). δ(X) is the
smallest possible value for δ, therefore δ(X) − δ(ρ ∪ X) ≤ 0 and δ(ρ′) ≤
δ(ρ) ≤ bg(S).

• else if (S ∩ X) v ρ′, then let ρ = remX(ρ′). We have δ(ρ′) = δ(ρ ∪ X) =
δ(ρ) + δ(X)− δ(ρ ∩X)︸ ︷︷ ︸

≤0

≤ bg(S).

Let us now prove that ∀i ∈ [1 . . . α(G)−|L|], pref−i(S
′) ≤ pref−i(S), and in the case

of equality `S′(−i) ≤ `S(−i). Let us first note that, since δ(X) reaches the minimum
possible value for δ over all licit subsets, we have ∀σ v (S \X), δ(σ) ≥ 0 (otherwise,
σ ∪X would be a licit subset with δ(σ ∪X) < δ(X)). In addition, remark that since
δ(X) = |L|−α(G), Pref−i(S′) v S∩X. Given these elements, let ρ′ v Pref−i(S′), and
ρ v S the smallest prefix of S such that ρ′ = ρ∩X. We have δ(ρ) = δ(ρ′)+δ(ρ \X)︸ ︷︷ ︸

≥0

, so

δ(ρ′) ≤ δ(ρ). It simply remains to show that ρ v Pref−i(S) to get δ(ρ′) ≤ pref−i(S).
Let therefore τ be a strict prefix of ρ. We indeed have δ(τ) = δ(τ ∩X)︸ ︷︷ ︸

>−i

+ δ(τ \X)︸ ︷︷ ︸
≥0

>

−i. Therefore overall pref−i(S
′) = maxρ′vPref−i(S′) δ(ρ

′) ≤ pref−i(S). In addition,
δ(τ) > −i ∀τ v ρ with ρ 6= τ implies, when pref−i(S) < +∞, `S(−i) ≥ `S′(−i).

As for suff−i(S′), we have suff−i(S′) = pref−i(
←−
S′). By Property 2, Y = G \ X

is a separator for GR→L, and
←−
S′ = (

←−
S ∩ Y) · (←−S \ Y). Per the arguments above,

pref−i(
←−
S′) ≤ pref−i(

←−
S) and `←−

S′
(−i) ≤ `←−

S
(−i). Overall, suff−i(S′) = pref−i(

←−
S′) ≤

pref−i(
←−
S) = suff−i(S), and in the case of equality, rS′(−i) ≤ rS(i). �

Therefore, if G allows for a mixed independent set, any optimal schedule
can be assumed to go through this independent set. A schedule that reaches
IS cardinality α(G) is said to be simple. Lemma 2 thus yields the following:

Corollary 3 Any graph G has a simple optimal schedule.

Corollary 4 For any schedule S of a bipartite graph G, ∃S′ simple such that S′ 4 S

Proof Either G does not allow for a mixed MIS, in which case α(G) = max(L,R) and
any schedule is simple, or G allows for a mixed MIS and we can apply Lemma 4.2
to S. �

This separation result will be used in Section ??. We now turn to another
algorithmic building block, that is a merge procedure for combining solutions
for disjoint graphs into a global optimal.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 17

4.3 Merge Procedure

Merging problem. Given two independent graphs G1 and G2, and two opti-
mal orderings S1 and S2, it is natural to ask whether it is always sufficient to
simply interlace S1 and S2 to get an optimal solution G, or if a rearrangement
of S1 and/or S2 may be required.

In this section, we answer this question by showing that not only is rear-
ranging is necessary in some cases, but figuring out the optimal rearrangement
is NP-hard (Lemma 3). However, we also show that interlacing is enough when
the two input schedules are in canonical form, as defined in Definition 4. The
merging procedure can then be done in linear time, as shown in Theorem 4.

Related work. A similar merge procedure had already been designed in [22]
for the cumulative cost-optimal scheduling problem, of which Bipartite Inde-
pendent Set Reconfiguration is an instance. However, the corresponding
“canonical form”, strictly-optimal schedules, was not adaptable to algorithmic
application, described in Section 6. The unpublished pre-prints [19, 28] also
claimed to derive a merge procedure for the same problem. However, the merge
(“combine”) procedure of [28] relies on an unproven Observation (Observa-
tion 5.5 in [28]). Even if this Overvation was correct, the merge procedure
presented here achieves a better (linear) complexity. As for [19], it is unclear
(in a similar fashion as [22]) how it could adapt to our algorithmic application.

Lemma 3 Given two bipartite graphs G1 and G2, S1 and S2 optimal schedules for
G1 and G2 respectively, and an integer k, the problem of deciding whether bg(G1 ∪
G2) ≤ k is NP-hard.

Proof We prove the NP-hardness by reduction from the barrier problem. Given there-
fore a bipartite graph G with n vertices and an integer k′, we build G1, G2, S1, S2

and k as follows. G1 consists of G augmented with a (n+ 1, n+ 1)-biclique B1, such
that the n+ 1 left vertices of B1 are dependendencies of all the right vertices of G.
Additionally, one left vertex b1 is added as a dependency of all the right vertices of
G. G2 consists of a single biclique with n+ 1 left vertices and k′ + 1 right vertices.

Let S1 start with B1, followed by b1, and a simplistic schedule for G, consisting
of all the left vertices of G followed by all the right vertices of G. As B1 is a biclique,
bg(G1) ≥ n + 1 and S1 is optimal. As for S2, the only possible schedule consists of
all its left vertices followed by all of its right vertices.

We will now show that bg(G1 ∪ G2) ≤ n + 1 if and only if bg(G) ≤ k′. To start
with, if G admits a schedule S with bg(S) ≤ k′, then B1 ·B2 ·b1 ·S is a n+1-schedule
for G1 ∪G2 (with B1, B2 in any order in which all left vertices are before the right
vertices) and bg(G1 ∪G2) ≤ n+ 1.

In the other direction, if bg(G1 ∪ G2) ≤ n + 1, then B1 is necessarily scheduled
first, as scheduling any part of B2 before B1 would increase the baseline by a strictly
positive amount and yield an overall budget > n+ 1. Likewise, scheduling any part
of {b1} ∪G before B2 would yield a barrier > n+ 1. Therefore, an optimal schedule

Springer Nature 2021 LATEX template

18 Parameterized Independent Set Reconfiguration for RNA kinetics

is necessary of the same form as before B1 · B2 · b1 · S for some schedule S of G. If
it has barrier ≤ n+ 1, then necessarily bg(S) ≤ k′, concluding the proof.

�

The notion of preferability gives us a simple criteria to choose between
different schedules with the same overall budget. This will be exploited
algorithmically in our dynamic programming approach to the bipartite inde-
pendent set reconfiguration problem in the case for bipartite circle graphs,
presented in Section 6.

As for the merge procedure, it will exploit another aspect of canonical
solutions: they start with the shortest way, if possible, to get the budget below
the original baseline. This is illustrated by the following lemma.

Definition 5 A licit subset X of a graph G is a lump if:

1. δ(X) < 0
2. ∀X ′ (X licit, we have δ(X ′) ≥ 0

Moreover, a lump X is harmless if its budget bg(X) is minimal among all lumps, and
|X| is minimal among all lumps with this budget.

In other words, when ordering lumps according to the lexicographic order
over (bg(X), |X|), a harmless lump is an absolute minimum.

Property 3 A lump X induces a connected subgraph of G.

Proof Suppose G[X] is composed of two components induced by X1 (X and X2 (
X. Both are licit, so by the definition of a lump, δ(X1) ≥ 0 and δ(X2) ≥ 0. However
δ(X) = δ(X1) + δ(X2) < 0, hence a contradiction. �

Lemma 4 If S is a simple schedule for a bipartite graph G and X is a lump of G
admitting an optimal schedule SX such that bg(SX) ≤ min(pref−1(S), bg(S)), then
S′ := SX · (S \ X) is preferable to S. It is moreover strictly preferable if either
bg(SX) < pref−1(S) or |X| < |Pref−1(S)|.

Proof We first recall the following notation: given a prefix ρ′ of S′ with SX v ρ′, we
write remX(ρ′) for the smallest prefix ρ of S such that V (ρ∪X) = V (ρ′). Conversely,
we also define for a prefix ρ of S addX(ρ) as the smallest prefix ρ′ of S such that
V (ρ ∪ X) = V (ρ′). Note that addX and remX are monotonous under the prefix
relation. These definitions are illustrated in Figure 4. Note also that for any prefix ρ of
S, ρ′′ = remX(addX(ρ)) is the smallest prefix σ of S such that V (σ∪X) = V (ρ∪X),
so in particular ρ′′ v ρ. For any such pair ρ, ρ′ with V (ρ∪X) = V (ρ′), we show that
δ(ρ′) ≤ δ(ρ). Indeed, δ(ρ′) = δ(ρ∪X) = δ(ρ) + δ(X)− δ(ρ∩X) (per the modularity
of δ, Lemma 1). Since ρ ∩ X is licit (by Property 1) by the definition of lump we
have δ(ρ ∩X) ≥ δ(X) and δ(ρ′) ≤ δ(ρ).

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 19

S X X

ρ

ρ′′ = remX(ρ′)

S′ X

ρ′ = addX(ρ)

addX

remX

Fig. 4 Illustration of the definitions of addX and remX , used in the proofs of Lemmas 4.2
(only addX),4 and 6. They apply to a typical situation encountered in these Lemmas: a
schedule S is shuffled so that a licit set X is processed first. The new schedule S′ is valid since
X is licit. The purpose of addX and remX is then to draw connections between prefixes of S
and corresponding prefixes in S′, in order to infer bounds on bg(S′),pref−i(S

′) or suff−i(S′).

We can now show that S′ is preferable to S, starting with bg(S′) ≤ bg(S).
Consider a prefix ρ′ of S′. If ρ′ v SX , then δ(ρ′) ≤ bg(X) ≤ bg(S). Otherwise,
SX v ρ′, and δ(ρ′) ≤ δ(remX(ρ′)) ≤ bg(S).

Then, we have pref−1(S′) = bg(SX) ≤ pref−1(S) by assumption. To con-
tinue, for i such that pref−i(S) < +∞, we have pref−i(S

′) v addX(pref−i(S))
(indeed, δ(addX(pref−i(S))) ≤ δ(pref−i(S)) = −i, so addX(pref−i(S)) is some pre-
fix, not necessarily smallest, of S′ with balance no more than −i). Thus, for any
ρ′, SX v ρ′ v Pref−i(S′), we have δ(ρ′) ≤ δ(remX(ρ′)) and remX(ρ′) is a pre-
fix of remX(addX(Pref−i(S′))) so δ(remX(ρ′)) ≤ pref−i(S

′). Overall, any prefix of
pref−i(S

′) has balance at most max(bg(SX), pref−i(S)) and bg(SX) ≤ pref−1(S′) ≤
pref−i(S

′) so pref−i(S
′) ≤ pref−i(S).

To finish, consider if it exists an i such that suff−i(S) < +∞. By the existence
of a licit subset X with δ(X) < 0 and of Suff−i(S), we have the existence of a mixed
maximum independent set in G. As S is simple, it does reach this minimal balance,
and there is ρ v S such that δ(ρ) = |L| − α(G), the lowest possible value for δ. A
useful consequence is that we must have X ⊆ ρ, as otherwise, δ(X ∩ ρ) ≥ 0 (by
definition of lump), and when reshuffling we would obtain δ(ρ∪X) = δ(ρ) + δ(X)−
δ(X ∩ ρ) ≤ δ(ρ) − 1, which is not possible by minimality of δ(ρ) over licit subsets.
As a consequence ∀i, Suff−i(S′) = Suff−i(S) and suff−i(S′) = suff−i(S).

Overall, S′ = SX · S \ X is indeed preferable to S. Note also that if bg(SX) <
pref−1(S), then pref−1(S′) < pref−1(S), and if |X| < |Pref−1(S)‖, then `S′(−1) <
`S(−1): in both cases, S′ is strictly preferable to S.

�

Lemma 4 is akin to the “commitment lemma” of [27] and Lemma 4.6
of [28]. However, in this paper, we link this result to newly-introduced notions
of preferability (Definition 3) and canonicity (Definition 4). This is the case
in particular of Lemma 6. It relies itself on the following existence result for
lumps, essentially saying that a balanced licit set can always be reduced to a
lump.

Springer Nature 2021 LATEX template

20 Parameterized Independent Set Reconfiguration for RNA kinetics

Lemma 5 If X is a licit set with δ(X) < 0, then either X is a lump or there is a
lump Y (X with bg(Y) ≤ bg(X).

Proof The proof is by induction on |X|. Pick X ′ ⊆ X licit and minimal-by-inclusion
under the condition δ(X ′) < 0. Per the minimality criteria, X ′ is a lump. If bg(X ′) ≤
bg(X), we are done.

If bg(X ′) > bg(X), consider S an optimal schedule for X, and ρ the largest prefix
of S such that δ(ρ ∩ X ′) = bg(X) + 1: such a prefix exists, since any schedule of
X ′ (and in particular S ∩ X ′) reaches balance bg(X) + 1 at some point. Let also
σ denote the suffix of S corresponding to ρ, i.e. such that S = ρ · σ. Consider now
the set Y ′ = ρ \X ′. We have δ(ρ) = δ(Y ′) + δ(ρ ∩X ′) = δ(Y ′) + (bg(X) + 1) and
δ(ρ) ≤ bg(X) so δ(Y ′) ≤ −1. Overall, Y ′ ∪X ′ is a licit set (= ρ ∪X ′) with balance
≤ −2. In addition, bg(Y ′ ∪ X ′) ≤ bg(X) with the schedule S′ = ρ · (σ ∩ X ′). The
definitions of ρ,X ′, Y ′, σ and their relations to one another are illustrated in Figure 5

Then, Z = V (Pref−1(S′)) yields a licit subset with δ(Z) < 0 and Z (Y ′∪X ′ (as
δ(Z) = −1 while δ(S′) = −2). Therefore |Z| < |X|, and we can apply the induction
hypothesis to it: Z is either a lump or contains one. In either case, there is a lump
strictly included in X. �

Lemma 6 If G is a bipartite graph for which there exists an optimal schedule S
with pref−1(S) < +∞, then a canonical schedule SC for G necessarily starts with a
harmless lump X = V (Pref−1(SC)).

Proof We first show that X = V (Pref−1(SC)) is indeed a lump. By Lemma 5, since
X is licit and δ(X) < 0, either it is a lump or there exists a lump Y ⊆ X with
|Y | < |X| and bg(Y) ≤ bg(X) = pref−1(SC) ≤ bg(G). Applying Lemma 4 to SC
and Y would yield a schedule strictly preferable to SC , which is not possible. X is
therefore indeed a lump.

Finally, X is indeed harmless. Otherwise, there would exist a lump Y such that
bg(Y) < bg(X) or |Y | < |X| if bg(X) = bg(Y). By Lemma 4, SY · (S \ Y), with SY
an optimal schedule for Y would be strictly preferable to the canonical schedule S,
which is not possible.

�

Lemma 7 If X is a harmless lump of G with optimal schedule SX , and SC a
canonical schedule for G \X, then SX · SC is a canonical schedule for G

Proof Let SG be a schedule for G. We will prove that SX · SC 4 SG.
Let us first apply Corollary 4 to get S′G simple and preferable to SG. We

can then apply Lemma 4 to S′G and X. The only criteria to verify is bg(SX) ≤
min(pref−1(S′G), bg(S′G)). Since X is a licit subset with δ(X) < 0, α(G) ≥ |I(X)| ≥
|L|, and since S′G is simple, pref−1(S′G) < +∞. By Lemma 5, there exists a lump
Y in V (Pref−1(S′G)) with bg(Y) ≤ pref−1(S′G). As X is a harmless lump, bg(SX) ≤

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 21

X ′ X ′Y ′

bg(X)

0

δ(Y ′ ∪X ′) < −1
δ(X) < 0

Z

X ′ X ′

δ(X ′) < 0
0

bg(X)
bg(X ′)

ρ σ ∩X ′

ρ ∩X ′ σ ∩X ′

X ′ X ′ X ′Y ′

δ(X) < 0

bg(X)

0

ρ σ

Fig. 5 Illustration of the objects used in the proof of Lemma 5. The purpose is to show
that, given a licit set X such that δ(X) < 0, if it is not a lump itself, a smaller licit set with
negative balance Z (X can be found. The induction hypothesis can then be applied to Z
to show that it contains a lump.

bg(Y) ≤ pref−1(S′G) = min(bg(S′G),pref−1(S′G)). In addition, if bg(SX) = bg(Y), we
know that |SX | ≤ |Y |.

By Lemma 4, SX · (S′G \ X) 4 S′G 4 SG. Let us know replace S′G \ X by SC ,
a canonical schedule for G \ X, and show that we obtain a schedule preferable to
SX · (S′G \ X). We have Pref−1(SX · SC) = SX = Pref−1(SX · (S′G \ X)), and
∀i ∈ [−2, . . . , |L| − α(G)]:

Pref−i(SX · SC) = SX · Pref−i+1(SC)

and
Pref−i(SX · (S′G \X)) = SX · Pref−i+1(S′G \X)

Given that SC is canonical for G \ X, it is preferable to S′G \ X. Therefore ∀i,
pref−i(SC) ≤ pref−i(S

′
G \X), with Pref−i(SC) shorter in case of equality.

Springer Nature 2021 LATEX template

22 Parameterized Independent Set Reconfiguration for RNA kinetics

As for Suff−i(SX ·SC) for any i ∈ [−1, . . . , |R|−α(G)], we have from the definition
of a lump

Suff−i(SX · SC) = Suff−i(SC)

and
Suff−i(SX · (S′G \X)) = Suff−i(S

′
G \X)

As above, since SC is canonical, suff−i(SC) ≤ suff−i(S′G\X) with Suff−i(SC) shorter
in case of equality, and the same goes for SX · SC and SX · (S′G \X).

Finally,

bg(SX · SC) = max (bg(SX),−1 + bg(SC))

≤ max
(
bg(SX),−1 + bg(S′G \X)

)
= bg(SX · S′G \X)

Overall, SX · SC 4 SG and is therefore a canonical schedule. �

Corollary 5 (existence of a canonical solution) There always exists a canonical
schedule for a given bipartite graph G

Proof Consider S a simple optimal schedule for G. If pref−1(S) < +∞, then ∃p v S
such that δ(p) < 0. By Lemma 5, either p is a lump or it contains a lump X with
bg(X) ≤ bg(Y) ≤ pref−1(S) ≤ bg(S). Let us pick X harmless. By Lemma 7 with SX
an optimal schdule for X, and by induction, we get a canonical schedule for G.

If suff−1(S) < +∞, then pref−1(
←−
S) < +∞. With the analysis above, we get a

canonical schedule for GR→L which can be reversed into a canonical schedule for G.
If none of the cases above apply, and because S is simple, then necessarily |L| =

|R| and G does not allow for any mixed-MIS. In that case, suff−i(S) = pref−i(S) =
+∞ ∀i and any optimal schedule is canonical. �

Lemma 8 Let (G1, G2) be two disjoint bipartite graphs and (S1, S2) canonical solu-
tions for (G1, G2) respectively. If pref−1(S1), pref−1(S2), suff−1(S1) and suff−1(S2)
are all equal to +∞ then both schedules S1 ·S2 and S2 ·S1 are optimal and canonical.

Proof First, let us note that pref−1(S1) = pref−1(S2) = suff−1(S1) = suff−1(S2) =
+∞ implies δ(G1) = δ(G2) = 0, by definition of pref−1 and suff−1.

Then, G1 (resp. G2) cannot allow for a mixed independent set of size > |L1| =
|R1| (resp. |L2| = |R2|), as it would imply by Lemma 2 the existence of an optimal
schedule with pref−1(S1) < +∞ (resp, pref−1(S2) < +∞). As a consequence, The
maximum independent sets of G are exactly L1 ∪L2, L1 ∪R2, R1 ∪L2 and R1 ∪R2.

Both L1 ∪ R2 and R1 ∪ L2 are mixed maximum independent sets. Consider
therefore an optimal (and therefore, canonical) schedule S for G. By Lemma 2 both
S1 ·(S\G1) and S2 ·(S\G2) are preferable to S and canonical. Replacing S\G1 by S2

and S\G2 by S1 does not increase the budget, which is equal to max(bg(S1), bg(S2)).
Since the budget is the only criteria for preferability in this case, both S1 · S2 and
S2 · S1 are canonical. �

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 23

The following Theorem is the main result of this section, and essentially
states that a canonical (and therefore optimal) solution for G = G1 ∪G2 can
be obtained by interleaving canonical solutions for two disjoint graphs G1 and
G2. This suggests the merging procedure implemented by Algorithm 1, where
Pref−1(S1),Pref−1(S2),Suff−1(S1) and Suff−1(S2) are treated as “canonical
blocks”, i.e. are not broken up in the interleaving process.

Theorem 4 (merge algorithm) If G1 and G2 are two disjoint bipartite graphs and
S1 and S2 two canonical solutions for G1 and G2 respectively, then Algorithm 1
yields a canonical solution for G in O(|S1|+ |S2|).

Proof Run-time: Given a schedule S, pref−1(S) and suff−1(S) and (if they exist)
Pref−1(S), Suff−1(S) can be computed in O(|S|) by a simple iteration over S that
keeps track of the budget.
Correctness: We prove the correctness by induction, with the base case being when
S1 = ∅ or S2 = ∅.

In the general case, if min(pref−1(S1),pref−1(S2)) < +∞, consider (w.l.o.g)
that (pref−1(S1), `S1

(−1)) ≤lex (pref−1(S2), `S2
(−1)), with ≤lex denoting the

lexico-graphic order.
By Lemma 6 applied to G1 and S1, Pref−1(S1) is a harmless lump of G1. It

is therefore a lump of G. Let us prove it is also harmless in G. To that end, note
that lumps are connected (Property 3), so a lump of G is either a lump of G1 or
G2. Therefore (pref−1(S1), `S1

(−1)) ≤lex (pref−1(S2), `S2
(−1)) indeed implies that

Pref−1(S1) is of minimal budget among lumps of G, and shorter than Pref−1(S2) in
case of budget equality.

Since by the induction hypothesis Merge(S1 \ Pref−1(S1), S2) is canonical,
Pref−1(S1) ·Merge(S1 \ Pref−1(S1), S2) is canonical by Lemma 7

The case min(suff−1(S1), suff−1(S2)) < +∞ (lines 10-16) is treated with the
same arguments, given the symmetry of pref and suff when inverting L and R, namely

∀S suff−1(S) = pref−1(
←−
S).

As for the justification of the concatenation if none of the conditions above apply,
it is brought by Lemma 8.

�

5 Parameterized algorithms for bipartite
independent set reconfiguration

In this section, we apply the technical results of the previous section to the
design of XP algorithms for BISR. For example, Lemma 2 is used to formulate
a O(n2)-space, O(n2ρ)-time algorithm for BISR, described in Section 5.1. As
for Lemma 4, it allows to build a O(nΦ+1) algorithm for BISR when restricted
to bipartite circle graphs, described in Section 6. Bipartite circle graphs con-
stitute a sub-case of interest to RNA kinetics, as we shall see in more details
in Section 7.

Springer Nature 2021 LATEX template

24 Parameterized Independent Set Reconfiguration for RNA kinetics

Algorithm 1 Merge procedure for canonical schedules. ≤lex denotes the
lexicographic order, applied here to couples of integers.

Input: S1, S2 canonical solutions for G1, G2 (disjoint graphs)
Output: a canonical solution S for G = G1 ∪G2

1: function Merge(S1, S2):
2: . If first or last canonical blocks exist: recurse
3: if min(pref−1(S1),pref−1(S2)) < +∞ then
4: if (pref−1(S1), `S1

(−1)) ≤lex (pref−1(S2), `S2
(−1)) then

5: return Pref−1(S1) ·Merge(S1 \ Pref−1(S), S2)
6: else
7: return Pref−1(S2) ·Merge(S1, S2 \ Pref−1(S2))
8: end if
9: end if

10: if min(suff−1(S1), suff−1(S2)) < +∞ then
11: if (suff−1(S1), rS1

(−1)) ≤lex (suff−1(S2), rS2
(−1)) then

12: return Merge(S1 \ Suff−1(S1), S2) · Suff−1(S1)
13: else
14: return Merge(S1, S2 \ Suff−1(S2)) · Suff−1(S2)
15: end if
16: end if
17: . If no first or last canonical block exist: simply concatenate
18: return S1 · S2

19: end function

5.1 An XP algorithm in ρ

Lemma 2 allows for a divide-and-conquer approach: if we identify a separator
X in G, i.e. a licit subset of G such that I(X) is a mixed independent set,
then we may independently solve the problem of finding a ρ-realization from
L to I(X) and then from I(X) to R. If no solution is found for one of them,
then the converse of Lemma 2 implies that no ρ-realizations exists for G. The
algorithm presented in this section is based on this approach.

Algorithm details. We present here a direct algorithm for Bipartite Inde-
pendent Set Reconfiguration, detailed in Algorithm 2. The main function
Realize is recursive. Its sub-calls arise either from a split with a mixed MIS I
(in which case it is called on a smaller graph but with the same parameter), or
from the loop over all possible starting points in the case where no separator
is found (lines 13-18), in which case the parameter does reduce. The overall
runtime is dominated by this loop, and is analyzed in Proposition 5 below.

Mixed MIS algorithm. The sub-routine allowing to find, if it exists, a max-
imum independent set intersecting both L and R is based on concepts from
matching theory [29], namely the Dulmage-Mendelsohn decomposition [29, 30],
as well as the decomposition of bipartite graphs with a perfect matching into
elementary subgraphs [29](part 4.1). Its full details are described in the full
version of the article.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 25

Algorithm 2 XP algorithm for Bipartite Independent Set Reconfigu-
ration
Input: bipartite graph G (with sides L and R), integer ρ
Output: a ρ-realization for G, if it exists

1: function Realize(G, ρ):
2:

3: if ρ < 0 then return ⊥ . // Terminal cases:
4: end if
5: if L ∪R = ∅ then return ∅
6: end if
7: if ∃` ∈ L s.t N(`) = ∅ then return Realize(G \ {`}, ρ− 1) · `
8: end if
9: if ∃r ∈ R s.t N(r) = ∅ then return r · Realize(G \ {r}, ρ− 1)

10: end if
11:

12: I = MixedMIS(G) . // Trying to find a separator
13: if I 6=⊥ then
14: S = (L \ I) ∪ (R ∩ I)
15: return Realize(G[S], ρ)· Realize(G[V \ S], ρ)
16: else
17: for (`, r) ∈ L×R do . // loop over all start-end possibilites
18: if Realize(G \ {`, r}, ρ− 1)6=⊥ then
19: return ` · Realize(G \ {`, r}, ρ− 1) · r
20: end if
21: end for
22: end if
23: end function

Proposition 5 Algorithm 2 runs in O(|V |2ρ
√
|V ||E|) time, while using O(|V |2)

space, where ρ is the difference between the minimum allowed and maximum possible
independent set size, along the reconfiguration.

Proof Let us start with space: throughout the algorithm, one needs only to maintain
a description of G and related objects (independent set I, maximum matching M ,
associated directed graph H(G,M)) for which O(|V |2) is enough.

As for time, let C(n1, n2, ρ) be the number of recursive calls of the function
Realize of Algorithm 2 when initially called with |L| = n1, |R| = n2, and some value
of ρ. We will show by induction that C(n1, n2, ρ) ≤ (n1 + n2)2ρ. Since each call
involves one computation of a maximum matching, this will prove our result.

Given (n1, n2, ρ), suppose therefore that ∀(n′1, n′2, ρ′) 6= (n1, n2, ρ) with n′1 ≤
n1, n

′
2 ≤ n2, ρ

′ ≤ ρ we have C(n′1, n
′
2, ρ
′) < (n′1 + n′2)2ρ′

1. If G allows for a mixed maximum independent set, the instance is
split into two smaller instances, yielding C(n1, n2, ρ) = C(n′1, n2, ρ) +

Springer Nature 2021 LATEX template

26 Parameterized Independent Set Reconfiguration for RNA kinetics

C(n′′1 , n
′′
2 , ρ) with n′1 + n′′1 = n1 and n2 = n′2 + n′′2 . And C(n1, n2, ρ) ≤(

(n′1 + n′2)2ρ + (n′′1 + n′′2)2ρ
)
≤ (n′1 + n′′1 + n′2 + n′′2)

2ρ ≤ (n1 + n2)
2ρ

.
2. else, we have the following relation: C(n1, n2, ρ) = n1n2 ·C(n1−1, n2−1, ρ−

1). Which yields:

C(n1, n2, ρ) = n1n2 · C(n1 − 1, n2 − 1, ρ− 1)

≤ n2 · n2(ρ−1) by induction hypothesis

≤ n2ρ

�

The exponential part (O(n2ρ)) of the worst case complexity of Algorithm 2
is in fact tight, as it is met with a complete bi-clique Kn,n with sides of size
n. Indeed, in this case, no mixed MIS is found in any of the recursive calls.

6 RNA case: bipartite circle graphs

6.1 RNA basics and arboricity parameter

RNA structures. RiboNucleic Acids (RNAs) are biomolecules of outstand-
ing interest for molecular biology, which can be represented as strings over an
alphabet Σ := {A,C,G,U}. Importantly, these strings may fold on themselves
to adopt one or several conformation(s), also called structures. For a string of
length N , a conformation is typically described by a set S of base pairs (i, j),
with 1 ≤ i < j ≤ N . Then, a standard class of conformations to consider in
RNA bioinformatics are secondary structures, which are pairwise non-crossing
(@(i, j), (k, l) ∈ S such that i ≤ k ≤ j ≤ l, in particular, they involve dis-
tinct positions). Due to this non-crossing property, secondary structures are
in bijection with well-parenthesized strings, as illustrated in Figure 6 (B).

RNA Energy barrier problem. In this section, we more precisely work
on the problem of finding a reconfiguration pathway between two secondary
structures (i.e conflict-free sets of base pairs). The reconfiguration may only
involve secondary structures, and remain of energy as low as possible. We
work with a simple energy model consisting of the opposite of number of base
pairs in a configuration (−Nbps). The RNA Energy-Barrier problem can
then be stated as such:

RNA Energy-Barrier
Input: Secondary structures L and R; Energy barrier k ∈ N+

Output: True if there exists a sequence S0 · · ·S` of secondary structures
such that

• S0 = L and S` = R;
• |Si| ≥ |L| − k, ∀i ∈ [0, `];
• |Si4Si+1| = 1,∀i ∈ [0, `− 1].

False otherwise.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 27

Problem motivation. Since the number of secondary structures available to
a given RNA grows exponentially with n, RNA energy landscapes are noto-
riously rugged, i.e. feature many local minima, and the folding process of an
RNA from its synthesis to its theoretical final state (a thermodynamic equi-
librium around low energy conformations) can be significantly slowed down.
Consequently, some RNAs end up being degraded before reaching this final
state. This observation motivates the study of RNA kinetics, which encompass
all time-dependent aspects of the folding process. In particular, it is known
(Arrhenius law) that the energy barrier is the dominant factor influencing the
transition rate between two structures, with an exponential dependence.

BISR on circle graphs. Two arcs (i, j) and (k, l) are said to be in conflict
or crossing if i ≤ k ≤ j ≤ l or k ≤ i ≤ l ≤ j (i.e. when there is not one of
them nested in the other). It simply means that they cannot be both present
at the same time in an RNA secondary structure.

To capture this constraint in reconfiguring RNA secondary structures, we
define the conflict graph G(L,R) as having L ∪ R as vertices, and an edge
connecting two arcs if they are in conflict. L and R being two valid secondary
structures, the graph is bipartite. More generally, a valid secondary structure is
then an independent set of G(L,R). Reconfiguring L into R while minimizing
energy along the way then consists in solving BISR on G(L,R). The following
proposition characterizes the set of bipartite graphs that emerge from this
construction, as bipartite circle graph. A circle graph is an intersection-graph
of chords of a circle.

Proposition 6 The RNA energy barrier problem as defined above is BISR
restricted to bipartite circle graphs

Proof Given L and R two well-nested arc sets (i.e. two RNA secondary structures)
over [1 . . . n], denoted L = {(li, ri)} and R = {bj , ej}. Consider a circle with n
regularly-spaced positions on it, and the set of chords L ∪ R. The associated circle
graph (chord-intersection graph) is exactly the conflict-graph G(L,R). There is then
an exact correspondance between independent sets of G(L,R) and valid secondary
structures composed of arcs from L and R.

Conversely, given a bipartite circle graph, its two sides L and R yield two well-
nested arc sets that can be seen as RNA secondary structures. The correspondence
is highlighted on Figure 6. �

Notations for base-pair relations. Given two base-pairs (i, j) and (k, l),
we write (k, l) ⊂ (i, j) if (k, l) is nested in (i, j), i.e. if i < k < l < j. One may
see this notation as “the interval [k, l] is a proper subset of the interval [i, j]”.
For two non-conflicting base-pairs, if no one of them is nested in the other, we
write (i, j) ‖ (k, l), which means either i < j < k < l or k < l < i < j.

Arboricity (Φ). Given an RNA secondary structure S (a set of well-nested
base-pairs) the arbroricity Φ of S is the number of “terminal” base-pairs, i.e.

Springer Nature 2021 LATEX template

28 Parameterized Independent Set Reconfiguration for RNA kinetics

((.....)(((.....))))

((((....)........)))

Fig. 6 Conflict bipartite graph (D) associated with an instance of the RNA Energy-
Barrier problem, consisting of an initial (A) and final (B) structure, both represented as an
arc-annotated sequence (C). The sequence of valid secondary structures, achieving minimum
energy barrier can be obtained from the solution given in Figure 6.

the number of base-pairs that do not contain any nested base-pair. A formal
definition is given below:

Definition 6 The arboricity Φ(S) of a set of well-nested base-pairs is:

Φ(S) = |{(i, j) ∈ S | @(k, l) ∈ S with (k, l) ⊂ (i, j)}|

When seeing an RNA secondary structure as a set of well-parenthesized
strings (Figure 6.A for instance), it is the number of matching opening/closing
parenthesis symbols that only have dots between them.

Separating inside and outside sub-instances. Given L and R two well-
nested arc sets, and ` = (i, j) an element of L. ` defines naturally “inside” and
“outside” sub-instances in L and R, that are only connected through N(`),
the elements of R in conflict with `. Formally these “inside” and “outside”
sub-instances are (L`IN, R

`
IN) and (L`OUT, R

`
OUT) with L`IN = {`′ ∈ L | `′ ⊂ `},

R`IN = {`′ ∈ R | `′ ⊂ `}, L`OUT = {`′ ∈ L | ` ⊂ `′ or ` ‖ `′} and R`OUT =
{`′ ∈ R | ` ⊂ `′ or ` ‖ `′} Note that {`}, L`IN, L`OUT form a partition of L, and
N(`), R`IN, R

`
OUT form a partition of R.

6.2 An XP algorithm for Φ

Dynamic programming table. The algorithm we present in this Section
(Algorithm 3) is based on dynamic programming, using a memorization strat-
egy. There is therefore a table in which solutions to partial instances are
stored. Given L,R input secondary structures to the RNA Energy Bar-
rier problem, the indices to this table are sets of the form {`, `1 . . . `p}, with
` ∈ L ∪ {(1, N)} and `i ∈ L, such that ∀i `i ⊂ `, and ∀i 6= j, `i ‖ `j .

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 29

Try each ` ∈ L

`

N(`)

L`
OUT, R

`
OUT L`

IN, R
`
IN

Canonical schedule
SOUT

Schedule
(or look-up

in DP table)

Canonical schedule
SIN

Schedule
(or look-up

in DP table)
Merge(SIN, SOUT) · ` ·N(`)

Fig. 7 Illustration of Algorithm 3. Given a sub-instance L,R (bordered by gray ovals, top
figure), each ` ∈ L is tried (middle figure), yielding two smaller sub-instances corresponding
to the outside and inside of ` (bottom left and right figures). After solving each sub-instance
independently, using the DP-table for memorization, a solution is obtained for (L,R) by
merging both solutions and appending ` and all its neighborhood (which were not part of
any sub-instance). Here the arboricity is 3 (there are 3 minimal arcs in L), so any border
uses at most 4 arcs, giving the upper bound of

(n
4

)
on the number of sub-instances

The reason (1, N) is a possible value for ` is that it defines an interval
to which partial instances are restricted. Originally, there is no restriction
and ` = (1, N). The partial instance associated to such a set is L′, R′ with

L′ = L`IN∩
[⋂

1≤i≤p
L`iOUT

]
and R′ = R`IN∩

[⋂
1≤i≤p

R`iOUT

]
. We also denote these

structures by L(`, `1, . . . , `p) and R(`, `1, . . . , `p).
Informally, seeing L as a tree structure, the arcs {`, `1, . . . , `p} define a

“sub-tree” of L. ` sets the root of this sub-tree, while `1 . . . , `p cut out some
branches. Let us write

ST (L) =
{

(`, `1, . . . , `p) ∈
(
L ∪ {(1, N)}

)
× Lp | ∀i `i ⊂ ` and ∀i 6= j `i ‖ `j

}
for the set of all such “sub-trees”, i.e. the set of all indices to the dynamic
programming table.

Lemma 9 Given an RNA structure L of arboricity Φ, |ST (L)| = O(n
Φ+1

Φ!)

Springer Nature 2021 LATEX template

30 Parameterized Independent Set Reconfiguration for RNA kinetics

Proof Let us start by noting that in an RNA structure, each arc is either terminal
or contains a terminal arc nested in it. The set {`i}1≤i≤p being composed of arcs
mutually not nested in one another, each of them contains (or is) a different terminal

arc. As there are less than Φ terminal arcs in total, given `, there are less than

(
n
Φ

)
possibilities for `1 . . . `p. Multiplied by the number of possibilities for `, we get an

upper bound of (n+ 1) ·
(
n
Φ

)
= O(n

Φ+1

Φ!).

�

Theorem 7 Algorithm 3 outputs a canonical (and therefore optimal) schedule in

time O(n
Φ+2

Φ!).

Proof Run-time. The initial call to schedule(L,R) corresponds to the entry ` =
(1, N) and {`1 . . . `p} = ∅. Then, consider a call of schedule on two structures

L(`, `1, . . . , `p), R(`, `1, . . . , `p) respectively equal to L`IN∩
[⋂

1≤i≤p
L`iOUT

]
and R`IN∩[⋂

1≤i≤p
R`iOUT

]
, for (`, `1, . . . , `p) ∈ ST (L). The recursive calls to the “inside” and

“outside” of some `′ ∈ L′ (line 14-15) will give rise to the instances corresponding to
the elements of ST (L) (`′, {`i | `i ⊂ `′}) (inside) and (`, `′, {`i | `i ‖ `′}) (outside).
By induction, all recursive calls to schedule are of these forms, and the indices to
the memorization table are elements of ST (L). Conversely, any element (`, `1, . . . , `p)
of ST sees its corresponding instance L(`, `1, . . . , `p), R(`, `1, . . . , `p) emerge in some
recursive call (e.g. taking the inside of ` in the first recursive call and then the

outside of `1 . . . `p). Their number is smaller than O(n
Φ+2

Φ!) by Lemma 9. Let now
us call c(L,R) the computational cost of schedule(L,R), and i(L,R) the “internal”
cost of schedule, i.e. of all lines of Algorithm 3 except lines 18-19 (recursive calls).
Given ` ∈ L, we write L`IN, R

`
IN and L`OUT, R

`
OUT the sub-instances composed of

arcs strictly inside or outside of `. Then, we have:

c(L,R) = i(L,R) +
∑
`∈L

c(L`IN , R
`
IN) + c(L`OUT , R

`
OUT)

Which, by induction, given the discussion above, allows to show that:

c(L,R) =
∑

(`,`1,...,`p)∈ST (L)

i (L(`, `1, . . . , `p), R(`, `1, . . . , `p))

i(L,R) is O(n2) (linear merge for each ` ∈ L), which yields O(n
Φ+2

Φ!) overall.

Correctness. By Corollary 5, a canonical schedule S for G exists. Some element
` ∈ L is necessarily processed last, such that S = S′ ·` ·N(`). When ` is considered as
part of the for loop line 17 of Algorithm 1, the candidate solution is S′′ ·` ·N(`), with
S′′ = merge(SIN , SOUT). Sequence S′′ is canonical by induction and the correctness
of merge (Theorem 4). Thus, S′′ 4 S′ and the candidate solution is preferable to S,
and therefore canonical.

�

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 31

Algorithm 3 XP algorithm in Φ for Bipartite Independent Set Recon-
figuration
Input: bipartite circle graph G (with sides L and R)
Output: a canonical schedule for G
Global variable: Dynamic programming table M : (L,R) → S, storing
input/output pairs for schedule.

1: function schedule(L,R):
2: if (L,R) is in M.keys() then . If already computed then return;
3: return M [(L,R)];
4: end if
5: M [(L,R)] = L ·R . Initializing M [(L,R)] with a simple value
6: if L = ∅ then
7: return M [(L,R)]
8: end if
9: if ∃r ∈ R such that N(r) = ∅ then

10: M [(L,R)] = r · schedule(L,R \ {r})
11: return M [(L,R)]
12: end if
13: for ` in L do
14: SIN = schedule(LIN , RIN) . ` defines an inside and an outside
15: SOUT = schedule(LOUT , ROUT)
16: S′ = merge(SIN , SOUT) · ` ·N(`)
17: if S′ 4M [(L,R)] then . If S′ is preferable to M [(L,R)]
18: M [(L,R)] = S′

19: end if
20: end for
21: return M [(L,R)]
22: end function

7 Benchmarks and Applications

In this section, we report benchmark results for all of our algorithms. We
first explain some details about the algorithm we implemented for directed
pathwidth. Then, we present a general benchmark of Algorithm 2 and the
directed pathwidth approach, on random (Erdös-Rényi) bipartite graphs.

Last, we compare Algorithm 3 with the directed pathwidth approach on
bipartite circle graphs, i.e. RNA instances.

Code availability. The code used for our benchmarks, including a
Python/C++ implementation of our two algorithms, is available at
https://gitlab.inria.fr/bmarchan/bisr-dpw (Algorithm 2 and directed path-
width algorithm [27]) and https://gitlab.inria.fr/bmarchan/barrier-subtree
(for Algorithm 3).

https://gitlab.inria.fr/bmarchan/bisr-dpw
https://gitlab.inria.fr/bmarchan/barrier-subtree

Springer Nature 2021 LATEX template

32 Parameterized Independent Set Reconfiguration for RNA kinetics

10 3

10 2

10 1

100

101

ru
n-

tim
e

(s
, l

og
-s

ca
le

)

4 10 16 22 28 34 40 46 52 58
number of vertices

2

4

6

8

 v
al

ue

m-MIS
dpw

Fig. 8 (top panel) Average run-time (seconds, log-scale) of our algorithms on random
Erdös-Rényi bipartite graphs, with a probability of connection such that the average degree
of a vertex is 5 (i.e p = 5/n). (bottom panel) Average parameter value of generated instances,
as a function of input size.

7.1 Implementation details

Directed pathwidth. We implemented and used an algorithm from
Tamaki [1], with a runtime of O(nρ+2). This algorithm was originally published
in 2011 [1]. In 2015, H.Tamaki and other authors described this algorithm
as “flawed” in [12], and replaced it with another XP algorithm for directed

pathwidth, with a run-time of O(mn
2ρ

(ρ−1)!).

Upon further analysis from our part, and discussions with H. Tamaki and
the corresponding author of [12], it appears a small modification allowed to
make the algorithm correct. In a nutshell, the algorithm involves pruning
actions, and these need to be carried out as soon as they are detected. In [1],
temporary solutions were accumulated before a general pruning step. With
this modification, the analysis presented in [1] applies without modification,
and yields a time complexity of O(nρ+2). The space complexity is unchanged
at O(nρ+1). For completeness, a detailed re-derivation of the results of [1] is
included in the full version of the article.

Mixed-MIS algorithm implementation. On Figure 8, the “m-MIS”-curve,
corresponds to our

mixed-MIS-based algorithm in O(n2ρ
√
|V ||E|). Compared to the algorithm

presented in Algorithm 2, a more efficient rule is used in the non-separable
case: we loop over all possible r ∈ R and add N(r) · r to the schedule (instead
of a single vertex ` ∈ L).

7.2 Random bipartite graphs

Benchmark details. Figure 8 shows, as a function of the number of vertices,
the average execution time of both our algorithms (top panel), as well as the

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 33

0 5 10 15 20 25 30 35
number of base pairs in initial structure

10 4

10 3

10 2

10 1

100

101

ru
n-

tim
e

(s
ec

on
ds

)
=2
=3
=4
=5
=6
=7
=8
=9
=10

10 2 10 1 100 101 102

dpw solve time
10 2

10 1

100

101

102

ar
bo

ric
ity

 a
lg

or
ith

m
 so

lv
e

tim
e =2

=3
=4

=3.0
=6.0
=9.0
=12.0

Fig. 9 (left) Execution time of Algorithm 3 on pairs of random RNA secondary structures.
Points are colored as a function of the smallest arboricity Φ between the two structures. As
expected, exact computing the energy barrier between the structures tends to become more
expensive for larger values of Φ. (right) Comparison with a scatter plot of the execution times
of Algorithm 3 and our implemention of [27] (directed pathwidth algorithm), on random
pairs of RNA secondary structures. The color of the points denote the arboricity (Φ) value
while the size is the directed pathwidth (range ρ). Surprisingly, the execution time of the
directed pathwidth algorithm, whose complexity is O(nρ+2), does not correlate with the
value of ρ. It suggests the existence of a structural property of directed graphs emerging
from RNA instances making [27] faster.

distribution of parameter values (ρ - bottom panel), on a class of random
bipartite graphs. These graphs are generated according to an Erdös-Rényi
distribution (each pair of vertices has a constant probability p of forming an
edge). We use a connection probability of d/n, dependent on the number of
vertices. It is such that the average degree of vertices is d. The data of our
benchmark (Figure 8) has been generated with d = 5.

Comments on Figure 8. The difference in trend between the execution times
of the two algorithms is quite coherent with the difference in their exponents
(nρ+2 vs. n2ρ+2.5).

7.3 random RNA instances (bipartite circle graphs)

Benchmark details. Figure 9 shows the average execution time of Algo-
rithm 3 on random RNA instances, and compares it with the directed
pathwidth algorithm (right panel). Random instances are generated according
to the following model: two secondary structures L,R are chosen uniformly at
random (within the space of all possible secondary structure). Base pairs are
constrained to occur between nucleotides separated by a distance of at least
θ = 1 (left panel) and θ = 3 (right panel).

Random secondary structure generation. The random RNA secondary
structure of Figure 9 are obtained by uniform sampling of well-parenthesized
strings of a given length N . Two parameters control the probability distribu-
tions: the minimal distance θ between an opening bracket and its corresponding
closing bracket and the probability ppb of being base-paired.

Springer Nature 2021 LATEX template

34 Parameterized Independent Set Reconfiguration for RNA kinetics

7.4 RNA specific optimizations

Dynamic Programming and RNA. Given two secondary structures L
and R, a mixed MIS of G(L,R) is a maximum conflict-free subset of L ∪ R,
containing at least a base pair from L and R. As is the case for many algorith-
mic problems involving RNA, the fact that RNAs are strings and that base
pairs define intervals suggests a dynamic programming approach to the mixed
maximum independent set problem in RNA conflict graphs. Subproblems will
correspond to intervals of the RNA string. Let us start with a simple dynamic
programming scheme allowing to compute an unconstrained MIS.

Unconstrained MIS DP scheme. A maximum conflict-free subset of L∪R
can be computed by dynamic programming, using the following DP table: for
each 1 ≤ i ≤ j ≤ n, let MCFi,j be the size of a maximum conflict-free subset
of all base pairs included in [i, j].

Lemma 10 MCF1,n can be computed in time O(n2)

Proof We have the following recurrence formula:

MCFi,i′ = 0,∀i′ < i

MCFi,j = max

{
MCFi+1,j

max(i,k)∈L∪R 1 +MCFi+1,k−1 +MCFk+1,j

Note that the last max is over at most two possible pairs (i, k) (1 from L and 1 from
R), per the fact that L and R are both conflict-free. �

Mixed MIS DP scheme. The following modifications to the DP scheme
above allow to compute a mixed MIS of G(L,R) while retaining the same
complexity. In addition to the interval, we index the table by Boolean α and β
which, when true, further restricts the optimization to subsets with > 0 pair
from L (iff α = True) or R (iff β = True):

MCF
α,β

i,i′ =

{
0 if (α, β) = (False, False)

−∞ otherwise
, ∀i′ < i

MCF
α,β
i,j = max

MCFα,βi+1,j

max
(i,k)∈E

α′,α′′,β′,β′′∈B4

1 +MCF
α′,β′
i+1,k−1 +MCF

α′′,β′′
k+1,j

∣∣∣∣∣ if ¬α ∨ α′ ∨ α′′ ∨ ((i, k) ∈ L)

and ¬β ∨ β′ ∨ β′′ ∨ ((i, k) ∈ R)

Through a suitable memorization, the system can be used to compute inO(n2)

the maximum cardinality MCFTrue,True
1,n of a subset over the whole sequence.

A backtracking procedure is then used to rebuild the maximal subset.

8 Conclusion

Motivated by the development of exact parameterized algorithms for the RNA
Energy Barrier problem, we studied several parameterizations for Bipar-
tite Independent Set Reconfiguration. For the range ρ of possible

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 35

cardinalities for the independent sets along the reconfiguration as a parameter,
we give a direct O(n2)-space, O(n2ρ+2.5)-time algorithm (Algorithm 2), and a
indirect O(nρ+1)-space, O(nρ+2)-time algorithm [27] through an equivalence
with directed pathwidth.

In the case of RNA instances, i.e. BISR on bipartite circle graphs, we
additionally study an arboricity parameter denoted Φ, that should intuitively
be much smaller than the size of instances on natural RNA structures. For this
parameter, we also provide an XP algorithm, with complexity O(n

Φ

Φ!) in space

and O(n
Φ+2

Φ!) in time. This algorithm involves a novel merge procedure for
optimal solutions of disjoint instances of mimimum cumulative-cost scheduling,
which may be of independent interest.

The fixed-parameter tractability of Bipartite Independent Set
Reconfiguration restricted to bipartite circle graphs, with respect to ρ,
Φ and ρ + Φ remains open. It implies that the fixed-parameter tractability
of directed pathwidth (i.e. ρ for BISR on general instances) also remains
open. We nevertheless hope that this newly-drawn connection between a width
parameter (directed pathwidth and a reconfiguration problem (BISR), may
help shed new light onto this problem. In that respect, combining [31] and [11]
to try to formulate an “obstacle theory” for directed pathwidth might be an
interesting avenue.

Appendix A Mixed MIS in bipartite graphs

Our Divide-and-Conquer strategy to the BISR problem relies on the compu-
tation of maximum independent sets containing at least one vertex in each
part of the input bipartite graph.

We informally call mixed bipartite maximum independent set (Mixed-MIS)
the problem of deciding whether an input bipartite graph G has a maximum
independent set intersecting both of its parts. It is trivially polynomial, as
one may check for each pair (l, r) ∈ L × R, whether I ′ ∪ {l, r} is a maximum
independent set of G; with I ′ maximum independent set of G′, and G′ obtained
from G by removing l, r as well as their neighborhoods.

As a maximum independent set of a bipartite graph may be derived from a
maximum matching, this simple strategy yield a O(|V |2 ·

√
|V ||E|) algorithm

for our Mixed-MIS problem.
We present here a more efficient strategy, based on a decomposition taking

place in two rounds. It results into Algorithm 4. The first round is based on the
Dulmage-Mendelsohn decomposition of bipartite graphs. It yields a partition
of the vertices of G into three sets D,A,C, defined as such: for each vertex v
of D, there exists a maximum matching in which v is not matched, A = N(D)
is the union of the neighborhoods of the vertices of D, and C = V \ (D ∪ A)
contains the remaining vertices. D,A,C verify the following result:

Springer Nature 2021 LATEX template

36 Parameterized Independent Set Reconfiguration for RNA kinetics

Theorem 8 (Dulmage-Mendelsohn decomposition, Proposition 2.1 of [30], theorem
3.2.4 of [29]) Given G bipartite graph and D,A,C defined as above, we have that:

a. – D is the intersection of all maximum independent sets of G.
– A is the intersection of all minimum vertex covers of G.
– the subgraph G[C] induced by C has a perfect matching, which may be

deduced from restricting any maximum matching of G to C.

b. In addition, D may be computed from any maximum matching M of G
using the following characterization ([30], lemma 2.2): D = W where W
is composed of the vertices left unmatched by M , as well as all vertices
connected to an unmatched vertex through an alternating path of even length.

This decomposition may allow to conclude in some cases (see Algorithm 4).
In general, however, a second round of decomposition is needed. In this second
round, the set C, which allows for a perfect matching M , is further decomposed
into elementary sub-graphs (section 4.1 of [29], theorem 4.1.1 and exercise
4.1.5) and [32]. It consists in computing the strongly connected components
of a directed graph H(M,C) associated to M and C (same construction as
in Section 3). The vertices of H are the edges of the matching, and (l, r) →
(l′, r′) iff l is connected to r′ in C. The strongly connected components of H
constitute a decomposition of G into elementary sub-graphs. A bipartite graph
is elementary iff the sides L,R are the only minimum vertex covers/maximum
independent sets [29](theorem 4.1.1). If it is not elementary, then a mixed
maximum independent set may be obtained by ordering the elementary sub-
graphs {(Li, Ri)}1≤i≤p along a topological order induced by H(C,M). Any
set of the form (∪i≤tRi) ∪ (∪i>tLi) for some t > 1 is then a mixed maximum
independent set of C.

The discussion above results in Algorithm 4, whose run-time is dominated
by the computation of maximum matching in O(

√
|V ||E|).

Appendix B Delayed proofs

B.1 Making an interval representation nice

Let {(au, bu) | u ∈ V } be an interval representation for a directed graph H with
vertex set V . We explain here how to turn it into a nice interval representation:

If an integer n is such that au0 = · · · = aul = bv0 = · · · = bvp = n, we may
modify the representation as such:

• Interval bounds associated to integers > n are increased by p + l − 1, to
make room for “spreading” au1

. . . au` , bv1
. . . bvp .

• ∀i, aui is set to n+ i and bvi to l + i.

None of these modifications change the way intervals intersect one another,
leaving the width unchanged. The representation is then “packed” into

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 37

Algorithm 4 Mixed bipartite maximum independent set

Input: a bipartite graph G with sides L and R. We suppose w.l.o.g that
|L| ≥ |R|.
Output: If it exists, a Maximum Independent Set I of G intersecting both L
and R.

1: M = MaximumMatching(G) . O(
√
|V | · |E|)

2:

3: I = MaximumIndependentSet(G, M) . O(|E|)
4: if (I ∩ L 6= ∅) and (I ∩R 6= ∅) then
5: return I
6: end if . // Now |I| = max(|L|, |R|) and I = L or I = R
7:

8: D,A,C = coarseDulmageMendelsohn(M,G) . O(|E|)
9: if |L| > |R| then

10: if R \A 6= ∅ then
11: .//A is the intersection of all minimum vertex covers
12: pick r ∈ R \A
13: G′ = G \ {r ∪N(r)}
14: M ′ = MaximumMatching(G′)
15: I ′ = MaximumIndependentSet(G′,M ′)
16: return I ′ ∪ {r}
17: else
18: return ⊥; . // Not possible, L is the only MIS
19: end if
20: else if |L| = |R| then
21: . // L and R are two MIS. So necessarily D = ∅, A = ∅, C = G
22: {(Li, Ri)}1≤i≤p = fineDulmageMendelsohn(M,C) . O(|V |2)
23: if p=1 then
24: return ⊥
25: else
26: . Topological sort of the SCCs of H
27: s=TopologicalSort({(Li, Ri)}) . O(|V |+ |E|)
28: (Li, Ri) = s[0] . // first in topological sort
29: return Ri ∪ (∪j 6=iLj)
30: end if
31: end if

[1 . . . 2.|V (H)|] by taking the interval bounds in order and setting them to their
final position.

Springer Nature 2021 LATEX template

38 Parameterized Independent Set Reconfiguration for RNA kinetics

B.2 Proof of Proposition 2:

Appendix C Re-derivation of Tamaki’s
algorithm for directed pathwidth

For completeness, we include here a re-derivation of the results of [1], with the
slight modification mentioned in the main text related to pruning. It results in
an algorithm with a O(nρ+2) complexity, slightly different from the O(nρ+1)
announced in [1]. The re-derivation follows the same strategy as in the original
article, and re-uses most of the notations.

C.1 Commitment lemma - shortest non-expanding
extensions (SNEKFEs)

Notations and definitions. In a directed graph, d–(u) denotes the in-degree
of a node u. We work with layouts of vertices, i.e. ordered sequences of vertices,
not necessarily containing all vertices. A partial layout σ is called feasible/valid
if ∀ prefix p of σ we have d–(p) = |N–(p)| ≤ k. A partial layout which is
completable into a valid full layout (for the entire digraph G) is called strongly
feasible or just completable into a full solution. An extension τ of σ is a valid
partial layout with σ as one of its prefixes. A shortest non-expanding extension
of σ is an extension τ such that d–(τ) ≤ d–(σ) and ∀ρ s.t.V (σ) (V (ρ) (V (τ),
d–(ρ) > d–(σ). In the rest of this note, we will write SNEKFE for shortest
non-expanding extension.

Lemma 1 - Commitment Lemma - shortest non-expanding exten-
sions. If σ is completable into a full solution, and τ is a SNEKFE of σ, then
τ is also completable into a full solution.

In fact, a more general version is true: ρ could be allowed to be equal in d–

to τ before rising again. The proof relies on the fact that, for any two subsets
X,Y of vertices of G:

d–(X ∪ Y) + d–(X ∩ Y) ≤ d–(X) + d–(Y)

Proof If σ is completable into a full solution, then ∃F such that σ ·F is a valid layout
for G. Let us reshuffle F into (τ \σ) ·F ′. Within both parts, the ordering of elements
is the same as in F . τ · F ′ is now a complete layout for G. Is it valid ?

Consider a prefix P of τ ·F ′. If P is contained within τ , d–(P) ≤ k by the validity
of τ .

Else, if P contains some of F ′, then P = P ′ ∪ τ for P ′ a certain prefix of
σ · F . As for P ′ ∩ τ , which we call ρ it verifies V (σ) ⊂ V (ρ) ⊂ V (τ) and therefore
d–(ρ) ≥ d–(σ) ≥ d–(τ) by definition of a SNEKFE, with the equality only potentially
happening if ρ = σ or ρ = τ .

We therefore have:

d–(P) = d–(P ′ ∪ τ)

≤ d–(P ′) + d–(τ)− d–(ρ)

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 39

≤ d–(P ′) ≤ k
τ · F ′ is therefore a valid complete layout for G, and τ is completable into a full

solution. �

Let us now describe more precisely what SNEKFEs might look like. We
show that they can only be of three types, and formalize it into the next
lemma. Its proof relies on the fact that, by adding a single vertex u to a partial
layout σ, we may only decrease d–(σ) by at most 1, since d–(σ) = |N–(σ)|. We
obtain this decrement of 1 if u is a predecessor to a vertex of σ, and does not
introduce any new predecessor itself when added.

Lemma 2 - SNEKFE types. a SNEKFE τ of a partial layout σ may only
be of three types:

• type-(i): single-vertex “decreasing” extension: τ = σ · u for some vertex u
and d–(σ · u) = d–(σ)− 1

• type-(ii): single-vertex “non-decreasing” extension: τ = σ ·u for some vertex
u and d–(σ · u) = d–(σ)

• type-(iii): several vertices “shortcut” extension: τ adds strictly more than
one vertex to σ and d–(τ) = d–(σ).

Proof For single vertex extensions, the two possible types follow from the observation
above that the addition of one vertex to a layout can only decrease d– by at most 1.

For SNEKFEs composed of more than one vertex, observe that if d–(τ) < d–(σ),
then by considering the prefix ρ of τ obtained by removing just 1 vertex to τ , we
would have d–(ρ) ≤ d–(τ)+1 ≤ d–(σ). This stems from the observation above that d–

may only decrease by at most 1 when adding a vertex. ρ would be a non-expanding
extension of σ shorter than τ , yielding a contradiction. �

C.2 Algorithm

In this section, we restrict ourselves to a pure description of the algorithm,
delaying the justification of its correctness and complexity to the “Analysis”
section below.

Tree of prefixes (trie). We will build a tree of prefixes of all possible layouts.
We prune the tree during its construction thanks to the commitment lemma,
as justified in the next section. We call Si the ith level of the tree of prefixes.
I.e. the elements of the tree of length i. S0 = {∅}.
Algorithm. Si+1 is generated in the following way given Si:

For each σ ∈ Si:
1. We generate all feasible immediate extensions to σ and add them to the tree.

I.e the node σ now has the following children set: {σ ·u s.t d–(σ ·u) ≤ k}
2. If some of these immediate extensions verify d–(σ ·u) ≤ d–(σ), then they are

SNEKFEs of σ. In that case, we do the following:

a. We choose 1 arbitrarily and prune the others.

Springer Nature 2021 LATEX template

40 Parameterized Independent Set Reconfiguration for RNA kinetics

b. If the chosen element verifies d–(σ · u) = d–(σ)− 1 (the only possibility if
d–(σ · u) < d–(σ)), then we in addition look for a prefix η of σ verifying
d–(η) = d–(σ · u) and d–(ρ) > d–(η) ∀ρ s.t. η v ρ v σ · u, ρ 6= η, ρ 6= σ · u.
If such an η is found, then any part of tree branching off the path from
η to σ · u is removed. Note that this might shorten the overall loop over
σ ∈ Si.

End Algorithm

C.3 Analysis

This section will be composed of three parts. In the first one, we define an
invariant property (“internally pruned”) for trees of prefixes of layouts of ver-
tices. In the second one, we show that, in the algorithm presented in the
previous section, the tree of prefixes verifies the invariant at all times, and
prove the correctness of the algorithm. Finally, in the third part, we analyze
the size of trees of prefixes verifying the invariant, proving that each level Si
of such a tree has a size ≤ nk, yielding a complexity analysis of the algorithm.

C.3.1 Internally pruned trees of prefixes

Definition - Internally pruned. A tree T of prefixes of layouts of vertices
(such as the one used in the algorithm in the previous section) is said to be
internally pruned if for all pairs (σ, τ) of nodes of T such that τ is a shortest
non-expanding extension of σ, all nodes on the path from τ (included) to σ
(excluded) in T have degree exactly 2. I.e. there are no sub-parts of the tree
rooted on the path from τ (included) to σ (excluded)

We use the term “internally” to emphasize the fact that, in a context where
we apply the definition of “internally pruned” to a partially constructed T
within the algorithm of the previous section, More (“external”) pruning of the
tree might be achieved further in the construction of the tree, as new SNEKFEs
are discovered (see below for the justification of why new SNEKFEs are indeed
discovered at step 2.b of the algorithm).

C.3.2 Invariant and correctness

Lemma 3 - Invariant. Throughout the execution of the algorithm presented
in the previous section, the tree T of prefixes of layouts of vertices remains
“internally pruned” at all times

Proof The tree T starts off with one node for the empty sequence. It is therefore
internally pruned.

Suppose now that the tree of prefixes T is internally pruned at an intermediate
step in the algorithm, then the next building step always consists in considering a
leaf σ and executing step 1. and 2. of the algorithm. Several cases may arise:

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 41

• If all of the immediate extensions are such that {d–(σ) < d–(σ ·u) ≤ k}, then
no new SNEKFEs are generated when adding them to the tree. (if σ · u is a
SNEKFE of some η up the tree, then σ is shorter and also non-expanding).
After the addition of the immediate extension, the tree is therefore still
internally pruned.

• If one of these immediate extensions verifies d–(σ · u) = d–(σ) but none of
them verify d–(σ ·u) < d–(σ), then one of these extensions is a SNEKFE of σ,
and is kept while the others are pruned. However, this is the only SNEKFE
introduced by the extension. Therefore, the pruning of immediate extensions
other than the selected one is enough to keep the tree internally pruned.

• If one of the immediate extensions verifies d–(σ · u) = d–(σ) − 1, then one
of the immediate extensions is selected and the others are pruned, as in
the previous case. However, in addition, σ · u might be a new shortest non-
expanding extension of a node η up the tree.
If this is the case, then there is only one such η, per the definition of shortest
non-expanding extensions.
We argue that the conditions used in the algorithm indeed detect such an η.
If σ · u is a SNEKFE of η, then the conditions described in the algorithm
(that d–(σ · u) = d–(η), and d–(ρ) > d–(η) for any ρ on the path from η to
σ · u) are verified.
Conversely, if the conditions are verified, then suppose η has a shorter
non-expanding extensions τ . τ cannot be on the path from η to σ · u as
that would imply d–(τ) > d–(η). Since τ is shorter than σ · u, τ has been
generated in a previous step of the algorithm. At this point, step 2.b of
the algorithm would have pruned the path to σ, which cannot be visited,
leading to a contradiction.

Therefore, the potentially newly introduced SNEKFE is detected, and the
corresponding pruning is carried out, leaving the tree internally pruned

Therefore, after each extension of the tree throughout the algorithm, the tree remains
internally pruned. �

We quickly finish this sub-section with a proof of correctness of the
algorithm.

Lemma 4 - correctness. If the graph G allows for a full k-feasible solution,
then there is such a solution among the leaves of the tree of prefixes T generated
by the algorithm.

Proof Denote the set of full solutions S, and suppose all solutions are absent from T .
∀σ ∈ S, there is some (possibly empty) prefix of σ in T .
We pick σ ∈ S allowing for the largest prefix η ∈ T , i.e:

σ = argmax
σ′∈S

[
max

ηvσ′,η∈T
|η|
]

Take η the largest prefix of σ belonging to T . If the path from η to σ has been
pruned, it is because η is on the path from η′ to τ , with τ shortest non expanding
extension of η′, and τ is not a prefix of σ.

Springer Nature 2021 LATEX template

42 Parameterized Independent Set Reconfiguration for RNA kinetics

The path from η to σ is pruned only when τ is visited. Hence τ ∈ T , otherwise,
the path from

Per the commitment lemma, τ is the prefix of a full solution σ′′. But |τ | > |η|,
contradicting the choice of σ. �

C.3.3 Signature analysis

We show here that, at any point in the algorithm, thanks to the pruning,
∀i, |Si| = O(nk).

Definition - signature . Consider σ ∈ Si for some i, within the internally
pruned tree generated by the algorithm, valid partial layout. We call signature
of σ the set of vertices obtained from V (σ) by removing, given any pair (η, ρ)
of prefixes of σ such that ρ is a SNEKFE of η, all vertices in ρ \ η.

Given σ ∈ Si, its signature can be easily computed by looking at the path
from the root to σ: any vertex chosen out of several available possibilities is
part of the signature, while any vertex that was the only possibility at the
point of its choosing isn’t.

Lemma 5 - Same signature same sequence. If sgn(σ) = sgn(τ) within
the pruned tree of layouts and |τ | = |σ| then σ = τ

Proof When starting at the root and building τ and σ by going down the tree, at
every node, there are two cases:

• Either the next move is part of a SNEKFE. In this case there are no choices
to be made, the added vertex is not part of the signature, and is the same
for σ and τ .

• Or the next move is not part of a SNEKFE. In this case, several choices are
possible, and the next added vertex will be part of the signature. Since the
signatures of σ and τ are the same, the same vertex is added to σ and τ .

At the end of this process, σ and τ are therefore identical. �

Lemma 6 - overall strictly decreasing = SNEKFE only. Consider τ ∈ Si
for some i partial valid layout, and σ a prefix of τ such that:

• d–(σ) > d–(τ)
• For any ρ such that σ v ρ v τ , ρ 6= τ , we also have d–(ρ) > d–(τ).

Then, the suffix τ \ σ of τ corresponding to σ can be entirely partitioned into
SNEKFEs. In particular, none of its elements are part of the signature of τ .

Proof We prove the lemma by induction on the length of the suffix τ \σ. If |τ \σ| = 1,
then τ = σ · u and d–(τ) = d–(σ) − 1. τ is a type-(i) SNEKFE of σ and the lemma
is true.

If |τ \ σ| > 1 and we assume the lemma true ∀l < |τ \ σ|, then let us distinguish
two cases related to the first element v of τ \ σ:

• if σ · v is a type-(i) or type-(ii) SNEKFE of σ, then we apply the induction
hypothesis to the suffix τ \ (σ · v) of τ and we have the result.

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 43

• else, if d–(σ ·v) > d–(σ), we know, since d–(τ) < d–(σ) and the d–-curve only
decreases by steps of −1, that there must exist ρ such that d–(ρ) = d–(σ),
σ v ρ v τ , and d–(ρ′) > d–(σ) for any ρ′ such that σ v ρ′ ⊆ ρ (ρ is the
shortest prefix of τ which contains σ and has the same d– value). ρ is then
a type-(iii) SNEKFE of σ by Lemma 4, and we may apply the induction
hypothesis to τ \ σ

�

Lemma 7 - Signature size. ∀σ ∈ Si for some i partial layout of vertices,
|sgn(σ)| ≤ d–(σ)

Proof The proof is by induction on |σ|. Suppose |sgn(σ)| ≤ d–(σ), and consider the
extension σ · u, where u is a vertex.

• If σ·u is not a SNEKFE of σ, then |sgn(σ·u)| = |sgn(σ)∪{u}| = sgn(u)+1 ≤
d–(σ) + 1 ≤ d–(σ · u)

• If σ is a type-(ii) SNEKFE of σ, then sgn(σ) = sgn(σ · u) and d–(σ · u) =
d–(σ).

• If σ · u is a type-(i) SNEKFE of σ, then consider η, the closest node (up
the tree) such that d–(η) < d–(σ · u), and η · v its successor on the path to
σ · u. We have d–(η) < d–(σ · u) ≤ d–(η · v), by definition of η. The path
from η ·v to u is either a type-(iii) SNEKFE or overall-decreasing. Therefore
sgn(σ ·u) = sgn(η ·v). and |sgn(σ ·u)| = |sgn(η)|+1 ≤ d–(η)+1 by induction
hypothesis, and |sgn(σ · u)| ≤ d–(σ · u).

�

In particular, ∀σ partial layout, d–(σ) ≤ k. Since two different elements of
Si need different signatures, we get the following corollary:

Corollary. ∀i, at any point in the algorithm, |Si| = O(nk)
The overall complexity of the algorithm is therefore O(nk+O(1)). More pre-

cisely, it is O(nk+2). (there are n levels of the tree to fill, ≤ nk nodes per level
and O(n) work per node to generate the next level).

Appendix D Detailed RNA reconfiguration
example

We provide in Figure D1 the intermediate sets of base pairs, and associated
RNA secondary structures, for our running example, described in Figures 1
and ??.

References

[1] Tamaki, H.: A polynomial time algorithm for bounded directed path-
width. In: Kolman, P., Kratochv́ıl, J. (eds.) Graph-Theoretic Concepts in
Computer Science, pp. 331–342. Springer, Berlin, Heidelberg (2011)

Springer Nature 2021 LATEX template

44 Parameterized Independent Set Reconfiguration for RNA kinetics

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9
1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9
1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

1-20

2-8

9-19

10-18

11-17

1-20

2-19

3-18

4-9

1 5

1
0

1
5

2
0

Fig. D1 Optimal (min barrier) refolding scenario between two RNA secondary structures.
In each intermediate state, the conflict graph is given, featuring the selected independent
set of base pairs (filled nodes), and the corresponding secondary structure.

[2] van den Heuvel, J.: The complexity of change. Surveys in combinatorics
409(2013), 127–160 (2013)

[3] Lokshtanov, D., Mouawad, A.E.: The complexity of independent set
reconfiguration on bipartite graphs. ACM Transactions on Algorithms
(TALG) 15(1), 1–19 (2018)

[4] Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.:
Parameterized complexity of independent set reconfiguration problems.
Discrete Applied Mathematics 283, 336–345 (2020)

[5] Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On
the parameterized complexity of reconfiguration problems. Algorithmica
78(1), 274–297 (2017)

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 45

[6] Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M., Saurabh,
S.: Reconfiguration on sparse graphs. Journal of Computer and System
Sciences 95, 122–131 (2018)

[7] Lokshtanov, D., Mouawad, A.E., Panolan, F., Siebertz, S.: On the param-
eterized complexity of reconfiguration of connected dominating sets. arXiv
preprint arXiv:1910.00581 (2019)

[8] Barát, J.: Directed path-width and monotonicity in digraph searching.
Graphs and Combinatorics 22(2), 161–172 (2006)

[9] Yang, B., Cao, Y.: Digraph searching, directed vertex separation and
directed pathwidth. Discrete Applied Mathematics 156(10), 1822–1837
(2008)

[10] Coudert, D., Mazauric, D., Nisse, N.: Experimental evaluation of a
branch-and-bound algorithm for computing pathwidth and directed path-
width. Journal of Experimental Algorithmics (JEA) 21, 1–23 (2016)

[11] Erde, J.: Directed path-decompositions. SIAM Journal on Discrete Math-
ematics 34(1), 415–430 (2020)

[12] Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Com-
puting directed pathwidth in o(1.89n) time. Algorithmica 75(1), 138–157
(2016)

[13] Bodlaender, H.L.: Fixed-parameter tractability of treewidth and path-
width. In: The Multivariate Algorithmic Revolution and Beyond, pp.
196–227. Springer, ??? (2012)

[14] Tamaki, H.: A directed path-decomposition approach to exactly identi-
fying attractors of boolean networks. In: 2010 10th International Sym-
posium on Communications and Information Technologies, pp. 844–849
(2010). IEEE

[15] Kobayashi, Y., Komuro, K., Tamaki, H.: Search space reduction through
commitments in pathwidth computation: An experimental study. In:
International Symposium on Experimental Algorithms, pp. 388–399
(2014). Springer

[16] Tinoco Jr, I., Bustamante, C.: How rna folds. Journal of molecular biology
293(2), 271–281 (1999)

[17] Maňuch, J., Thachuk, C., Stacho, L., Condon, A.: Np-completeness of the
energy barrier problem without pseudoknots and temporary arcs. Natural
Computing 10(1), 391–405 (2011)

Springer Nature 2021 LATEX template

46 Parameterized Independent Set Reconfiguration for RNA kinetics

[18] Thachuk, C., Manuch, J., Rafiey, A., Mathieson, L.-A., Stacho, L.,
Condon, A.: An Algorithm for the Energy Barrier Problem Without Pseu-
doknots and Temporary Arcs. In: Biocomputing 2010, pp. 108–119. World
Scientific, ??? (2009). https://doi.org/10.1142/9789814295291 0013

[19] Gottschau, M., Happach, F., Kaiser, M., Waldmann, C.: Budget min-
imization with precedence constraints. CoRR abs/1905.13740 (2019)
arXiv:1905.13740

[20] Kinne, J., Manuch, J., Rafiey, A., Rafiey, A.: Ordering with precedence
constraints and budget minimization. CoRR abs/1507.04885 (2015)
arXiv:1507.04885

[21] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms vol.
5. Springer, ??? (2015)

[22] Abdel-Wahab, H.: On strictly optimal schedules for the cumulative cost-
optimal scheduling problem. Computing 24, 61–86 (1980)

[23] Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler,
P.F.: Efficient computation of rna folding dynamics. Journal of Physics
A: Mathematical and General 37(17), 4731 (2004)

[24] Senter, E., Clote, P.: Fast, approximate kinetics of rna folding. Journal of
Computational Biology 22(2), 124–144 (2015)

[25] Fukuda, K., Matsui, T.: Finding all the perfect matchings in bipartite
graphs. Applied Mathematics Letters 7(1), 15–18 (1994)

[26] Zhang, Z., Zhang, X., Wen, X.: Directed hamilton cycles in digraphs and
matching alternating hamilton cycles in bipartite graphs. SIAM J. Discret.
Math. 27(1), 274–289 (2013). https://doi.org/10.1137/110837188

[27] Tamaki, H.: A polynomial time algorithm for bounded directed path-
width. In: International Workshop on Graph-Theoretic Concepts in
Computer Science, pp. 331–342 (2011). Springer

[28] Rafiey, A., Kinne, J., Manuch, J., Rafiey, A.: Ordering with precedence
constraints and budget minimization. arXiv preprint arXiv:1507.04885
(2015)

[29] Lovász, L., Plummer, M.D.: Matching Theory vol. 367. American Math-
ematical Soc., ??? (2009)

[30] Chen, J., Kanj, I.A.: Constrained minimum vertex cover in bipartite
graphs: complexity and parameterized algorithms. Journal of Computer

https://doi.org/10.1142/9789814295291_0013
https://arxiv.org/abs/1905.13740
https://arxiv.org/abs/1507.04885
https://doi.org/10.1137/110837188

Springer Nature 2021 LATEX template

Parameterized Independent Set Reconfiguration for RNA kinetics 47

and System Sciences 67(4), 833–847 (2003)

[31] de Berg, M., Jansen, B.M., Mukherjee, D.: Independent-set reconfigura-
tion thresholds of hereditary graph classes. Discrete Applied Mathematics
250, 165–182 (2018)

[32] Zhang, Z.-B., Lou, D.: Bipartite graphs with a perfect matching and
digraphs. arXiv preprint arXiv:1011.4359 (2010)

	Introduction
	Preliminaries
	State of the art
	Preliminary results
	Definitions

	Connection with Directed Pathwidth
	Definitions
	Directed pathwidth Bipartite independent set reconfiguration

	Lemmata: algorithmic building blocks
	Definitions
	
	

	Separation lemma
	Merge Procedure

	Parameterized algorithms for bipartite independent set reconfiguration
	An XP algorithm in

	RNA case: bipartite circle graphs
	RNA basics and arboricity parameter
	An XP algorithm for

	Benchmarks and Applications
	Implementation details
	Random bipartite graphs
	random RNA instances (bipartite circle graphs)
	RNA specific optimizations

	Conclusion
	Mixed MIS in bipartite graphs
	Delayed proofs
	Making an interval representation nice
	Proof of Proposition 2:

	Re-derivation of Tamaki's algorithm for directed pathwidth
	Commitment lemma - shortest non-expanding extensions (SNEKFEs)
	Algorithm
	Analysis
	Internally pruned trees of prefixes
	Invariant and correctness
	Signature analysis

	Detailed RNA reconfiguration example

