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Abstract

Neural networks running on low-power edge devices can help in achieving ubiquitous computing with limited infrastructure. When
such edge devices are deployed in conventional and extreme environments without the necessary shields, they must be fault tolerant
for reliable operation. As a pilot study, we focus on embedding fault tolerance into neural networks by proposing a novel selective
multiply-accumulate zero-optimization technique based on whether the value of an input provided to a neuron of a neural network
is zero. If the value is zero, then the corresponding multiply-accumulate operation is bypassed. We subjected the implementation
of our optimization technique to radiation test campaigns using ∼14 MeV neutrons, and found the proposed optimization technique
to improve the fault tolerance of the tested neural network by a factor of 1.78 times.
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1. Introduction

Machine learning algorithms for making decisions at the
edge [10] and reducing the data transferred between edge de-
vices can reduce the strain on networks and cloud infrastructure
[22]. Thus, when targeting ubiquitous computing [9], machine
learning algorithms can allow increasing the quantity of the raw
data processed and edge devices deployed even when limited
by cloud infrastructure. Edge devices are typically placed close
to the data source [22], which could expose them to cosmic
rays, hazardous radiation levels, extreme temperatures, unreli-
able power supplies, etc. [6] at ground level [17], space, nu-
clear facilities and other hard to reach environments [19]. This
exposure can cause transient errors [21], that typically manifest
as single bit-flips in the edge devices with potential to cause
system failure [4]. Hence, these edge systems must be fault tol-
erant for reliable operation, which is usually achieved using a
combination of hardware [21]and software techniques [7].

We hypothesized that the fault tolerance of a neural network
(NN) can be increased by reducing the number of data trans-
fers and overall execution time. The latter can be achieved by
replacing longer executing Multiply ACcumulate (MAC) op-
erations with shorter executing zero comparators. While the
former can be achieved by reducing the number of arithmetic
floating point operations (FLOPs).
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The number of FLOPs was reduced by leveraging the spar-
sity (ratio between number of non-significant values and total
number of values) of the runtime input values [3] through all
the layers of a NN. If an input value to be multiplied with a
weight is zero, then the corresponding MAC operation, which
consists of FLOPs, is bypassed. This optimization is termed
Selective Multiply-Accumulate zeRo-opTimization (SMART).
A process flow diagram for SMART is shown in Figure 1.
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Figure 1: Abstract of SMART implementation.
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The rationale behind the MAC bypass is that zero multiplied
by any real number is zero and zero is also the additive identity
for real numbers. Hence, when an addition or multiplication is
carried out between two operands, the results can be directly de-
duced from the operands if at least one operand is zero, without
using an adder or multiplier [15, 18] .

The number of zero comparators replacing FLOPs is pro-
portional to the input sparsity. SMART can be implemented
through software changes. We consider SMART to be novel as
we could not identify a similar technique for NN fault tolerance
among the current state-of-the-art techniques. The closest we
could find was the exploration of the relationship between static
sparsity of weights and fault resiliency of NNs [20]. While
SMART can be achieved in hardware [15, 18], it would re-
quire specialised processor architectures, unlike our proposed
software-based approach that can be executed on commercial
off-the-shelf processors.
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Figure 2: Architecture of the NN.

Nonetheless, several other optimizations for improving the
fault tolerance of NNs have been proposed. One proposal
uses the Feature-map and Inference Level Resilience (FILR)
[14] technique for statically protecting vulnerable parts of a
Convolutional Neural Network (CNN) by duplicating the cor-
responding logical operations and rerunning vulnerable infer-
ences by analyzing their output. Another uses model com-
pression techniques such as binary quantization for improv-
ing the fault tolerance of a Deep Neural Network (DNN) [20].
Ranger [4] is another technique used to improve fault tolerance
of a DNN by correcting transient faults without re-computation.
Others have evaluated the effects of neutron radiation and sim-
ulated fault injections on machine learning algorithms like Sup-
port Vector Machines (SVMs) [5, 23] and CNNs [24], and as-
sessed the fault tolerance of these algorithms. Studies link-

ing the reliability of CNNs on FPGAs to their paramters and
metrics, such as model accuracy, degree of parallelism, quan-
tization and reduced data precision, [12, 13] has also been
conducted. The effect of instruction set architecture on the
reliability of CNNs has also been studied [2] on an ARM
platform with simulated fault injections. However, the study
uses the Common Microcontroller Software Interface Standard-
NN (CMSIS-NN) [11] library for CNN execution with low-
precision fixed-point representation and does not consider run-
time input sparsity.

The following sections describe the NNs subjected to the
radiation test campaigns; the effects of SMART and temporal
Triple Module Redundancy (TMR) techniques on the NNs; the
test setup and methodology; preliminary analysis of the radia-
tion test results; and, concluding observations and future work.

2. Case Study Algorithms

The architecture of the NN used during the radiation test
campaign is shown in Figure 2. This NN was designed,
trained and evaluated using the TensorFlow [1] Python library,
and 60000 training images and 10000 testing images from
the Modified National Institute of Standards and Technology
(MNIST) database. This NN is also known as MNIST digit
classifier as the NN is used to classify the images representing
digits from 0 to 9. The input sparsity to the different layers of
the NN generated at runtime is shown in Table 1, which was
computed using all 10000 test images from MNIST.

Table 1: Sparsity of input values to different layers in the NN

Layer 0 Layer 1 Layer 2
Sparsity 80.7% 66.6% 47.3%

The parameters of the trained network are fed to a custom
implementation of the NN algorithm in C language, using a
custom framework to create four different versions of the NN.
These are: (1) a version of the NN without any of the proposed
optimization (simple), (2) NN with SMART (SMART), (3) an
NN with TMR (TMR), and (4) an NN with TMR and SMART
(TMR+SMART). In a TMR version of the NN, the corre-
sponding non-TMR NN is executed thrice and a majority vote
is applied to the output.

In order to understand the effects of SMART on NNs, the
above four versions were subjected to radiation test campaigns.
The NN(simple) and NN(TMR) were included in the test to pro-
vide reference results which can facilitate relativistic compari-
son with NN(SMART). NN(simple) is a non-optimized version
expected to provide low fault tolerance results. NN(TMR) is
optimized using an industry standard temporal TMR [16] tech-
nique and was expected to provide results for high fault toler-
ance. While NN(TMR+SMART) also provides results for com-
parison, this version was primarily intended to observe the ef-
fects of a combined TMR and SMART hybrid optimization on
NN fault tolerance.
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Table 2: Preliminary analysis of results from February and July test campaigns

NN version
Avg. Neutron flux Irradiation

Iterations
Number of errors Neutron fluence Cross section(

105neutrons/cm2
)
/s time (h) Tolerable Critical Total

(
1010neutrons/cm2

) (
10−10cm2

)
Simple 4.272 12.0 1892 11 0 11 1.8530 5.9371

SMART
3.843 43.7 452 29 2

49 14.6963 3.3342
4.272 56.3 1195 17 1

TMR 4.272 11.9 1813 5 0 5 1.8297 2.7326

TMR+SMART
3.843 44.5 451 23 0

39 14.7672 2.6410
4.272 56.0 1181 13 3

3. Radiation Test Setup

Each of the four versions of the NN algorithm were packaged
into separate radiation test programs, shown in Figure 3, to fa-
cilitate executing the case study algorithms on the radiation test
setup developed by Université Grenoble Alpes (UGA) [8]. The
number of iterations of the test program is controlled by the ra-
diation test setup and each iteration corresponds to an execution
of the test program. To limit the size of a test program, 250 in-
puts were randomly selected from the MNIST testing images,
and inference results for all of these images are computed in one
iteration. To reduce the variables in the experiments, a single in-
put data set was used across all campaigns. Each of the inputs
contain a one-dimensional array of size 784 in single-precision
floating-point format (FP32), which is obtained by normalizing
and flattening the two dimensional array of order 28×28 rep-
resenting the resolution of an image in the MNIST database.
Each input is used to compute 120 inferences within one itera-
tion. This number was chosen to cause the total execution time
of one iteration to lie between 10s to 20s, for optimal schedul-
ing of the test programs during the radiation test campaigns.
Each inference of an NN generates a one-dimensional array of
size 10 in FP32 as output, which represents the probability of
the input being an image of a digit from 0 to 9.
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Input vector 
[784]

Output vector
[10]
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parameters

120
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Figure 3: Iterations of radiation test program

4. Experiment and Analysis

The radiation test programs were executed from February 17-
18 and July 4-8 of 2022 at Laboratory of Subatomic Physics
& Cosmology (LPSC) in Grenoble, France. The radiation test

setup utilizes Raspberry Pi 4B with Raspberry Pi OS Lite ver-
sion 11 and a superscalar quadcore Cortex-A72 (ARM v8) 64-
bit SoC. Once the results were obtained from the experiments,
the error analysis was done by comparing the results with the
golden reference, which was obtained by running the radiation
test program under normal operating conditions.

The preliminary analysis of the results from the radiation test
campaigns is as shown in Table 2. The first column of this
table represents the four versions of the NN algorithm tested
under radiation. The second column contains the correspond-
ing average neutron flux to which the various NN versions
were exposed. The third column represents the time spent by
each NN version executing under various neutron flux levels on
the setup’s multi-core CPU . The fourth column represents the
number of iterations of the radiation test program for each NN
version under various neutron flux levels. The fifth column rep-
resents the number of errors that occurred during all the corre-
sponding iterations of the NN versions. This column is divided
into three sub-columns which represent the following counts.

1. Tolerable error is incremented by one if one or multiple
errors occurred within an iteration but did not result in any
classification mismatch when compared with the golden
reference.

2. Critical error is incremented by one if one or multiple
errors occurred within an iteration and includes classifi-
cation mismatches when compared with the golden refer-
ence.

3. Total error is the sum of tolerable and critical error counts
for all NN versions. This error count is used for cross
section [25] calculation.

The sixth column represents the neutron fluence associated
with each of the NN versions. This represents the total number
of neutrons that passed through a 1cm2 area of the radiation
setup while the corresponding NN version was executing. The
last column represents the cross section calculated from total
error count for each of the NN versions.

5. Observation and Discussion

The last column of Table 2 suggests that SMART has re-
duced the cross section – i.e., the probability of either a tol-
erable or critical error occurring for a given neutron radiation
–, increasing the overall fault tolerance of NN(SMART) com-
pared to NN(Simple). NN(TMR) has superior fault tolerance
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compared to NN(SMART) but at an increased computational
cost. Finally, NN(TMR+SMART) outperforms NN(TMR) by
a small margin in terms of fault tolerance improvement. How-
ever, more radiation tests are required to confirm this advan-
tage as the observed margin is small. Future radiation tests will
ensure approximately equal irradiation time for all algorithms
under test.

6. Conclusion and Future work

Radiation test campaigns for evaluating the fault tolerance
of the four NN versions were conducted. Preliminary analysis
of the results from these campaigns suggests that NN(SMART)
outperforms NN(Simple) by ∼1.78 times in terms of the prob-
ability of a neutron-induced error occurring. However, these
NNs are outperformed by their TMR counterparts, as expected.
Further analyses will reveal more information on the nature of
the errors that occurred, and will associate the errors with the
various computing strategies [8] and characteristics of the ra-
diation test setup used during the experiments for all four NN
versions. The relationship between input sparsity, different NN
output functions [3], different NN architecture and SMART will
be explored in future work.
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