Anuj Justus Rajappa
email: anuj.justusrajappa@uantwerpen.be

Philippe Reiter
email: philippe.reiter@uantwerpen.be

Tarso Kraemer

Sarzi Sartori

Henrique Luiz
email: luiz-henrique.laurini@univ-grenoble-alpes.fr

Hassen Laurini

Siegfried Fourati

Peter Mercelis

Rodrigo Possamai Hellinckx

Bastos

Laurini

Hassen Fourati
email: hassen.fourati@grenoble-inp.fr

Siegfried Mercelis
email: siegfried.mercelis@uantwerpen.be

Peter Hellinckx
email: peter.hellinckx@uantwerpen.be

Rodrigo Possamai Bastos
email: rodrigo.bastos@univ-grenoble-alpes.fr

SMART: Selective MAC zero-optimzation for neural network reliability under radiation

Keywords: sparsity, radiation, MAC, multiply-accumulate, optimization

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Machine learning algorithms for making decisions at the edge [START_REF] Kukunuri | Towards nilm on edge devices[END_REF] and reducing the data transferred between edge devices can reduce the strain on networks and cloud infrastructure [START_REF] Shi | The promise of edge computing[END_REF]. Thus, when targeting ubiquitous computing [START_REF] Krumm | Ubiquitous Computing Fundamentals[END_REF], machine learning algorithms can allow increasing the quantity of the raw data processed and edge devices deployed even when limited by cloud infrastructure. Edge devices are typically placed close to the data source [START_REF] Shi | The promise of edge computing[END_REF], which could expose them to cosmic rays, hazardous radiation levels, extreme temperatures, unreliable power supplies, etc. [START_REF] Hanif | Robust machine learning systems: Reliability and security for deep neural networks[END_REF] at ground level [START_REF] O'gorman | The effect of cosmic rays on the soft error rate of a dram at ground level[END_REF], space, nuclear facilities and other hard to reach environments [START_REF] Prinzie | Lowpower electronic technologies for harsh radiation environments[END_REF]. This exposure can cause transient errors [START_REF] Sayil | Single Event Soft Error Mechanisms[END_REF], that typically manifest as single bit-flips in the edge devices with potential to cause system failure [START_REF] Chen | A low-cost fault corrector for deep neural networks through range restriction[END_REF]. Hence, these edge systems must be fault tolerant for reliable operation, which is usually achieved using a combination of hardware [START_REF] Sayil | Single Event Soft Error Mechanisms[END_REF]and software techniques [START_REF] Huang | An overview of radiation effects on electronic devices under severe accident conditions in npps, rad-hardened design techniques and simulation tools[END_REF].

We hypothesized that the fault tolerance of a neural network (NN) can be increased by reducing the number of data transfers and overall execution time. The latter can be achieved by replacing longer executing Multiply ACcumulate (MAC) operations with shorter executing zero comparators. While the former can be achieved by reducing the number of arithmetic floating point operations (FLOPs).

The number of FLOPs was reduced by leveraging the sparsity (ratio between number of non-significant values and total number of values) of the runtime input values [START_REF] Apicella | A survey on modern trainable activation functions[END_REF] through all the layers of a NN. If an input value to be multiplied with a weight is zero, then the corresponding MAC operation, which consists of FLOPs, is bypassed. This optimization is termed Selective Multiply-Accumulate zeRo-opTimization (SMART). A process flow diagram for SMART is shown in Figure 1. The rationale behind the MAC bypass is that zero multiplied by any real number is zero and zero is also the additive identity for real numbers. Hence, when an addition or multiplication is carried out between two operands, the results can be directly deduced from the operands if at least one operand is zero, without using an adder or multiplier [START_REF] Masadeh | Input-conscious approximate multiply-accumulate (mac) unit for energy-efficiency[END_REF][START_REF] Parashar | An accelerator for compressed-sparse convolutional neural networks[END_REF] .

The number of zero comparators replacing FLOPs is proportional to the input sparsity. SMART can be implemented through software changes. We consider SMART to be novel as we could not identify a similar technique for NN fault tolerance among the current state-of-the-art techniques. The closest we could find was the exploration of the relationship between static sparsity of weights and fault resiliency of NNs [START_REF] Sabbagh | Evaluating fault resiliency of compressed deep neural networks[END_REF]. While SMART can be achieved in hardware [START_REF] Masadeh | Input-conscious approximate multiply-accumulate (mac) unit for energy-efficiency[END_REF][START_REF] Parashar | An accelerator for compressed-sparse convolutional neural networks[END_REF], it would require specialised processor architectures, unlike our proposed software-based approach that can be executed on commercial off-the-shelf processors. Nonetheless, several other optimizations for improving the fault tolerance of NNs have been proposed. One proposal uses the Feature-map and Inference Level Resilience (FILR) [START_REF] Mahmoud | Optimizing selective protection for cnn resilience[END_REF] technique for statically protecting vulnerable parts of a Convolutional Neural Network (CNN) by duplicating the corresponding logical operations and rerunning vulnerable inferences by analyzing their output. Another uses model compression techniques such as binary quantization for improving the fault tolerance of a Deep Neural Network (DNN) [START_REF] Sabbagh | Evaluating fault resiliency of compressed deep neural networks[END_REF]. Ranger [START_REF] Chen | A low-cost fault corrector for deep neural networks through range restriction[END_REF] is another technique used to improve fault tolerance of a DNN by correcting transient faults without re-computation. Others have evaluated the effects of neutron radiation and simulated fault injections on machine learning algorithms like Support Vector Machines (SVMs) [START_REF] Garay Trindade | Effects of thermal neutron radiation on a hardware-implemented machine learning algorithm[END_REF][START_REF] Trindade | Assessment of a hardware-implemented machine learning technique under neutron irradiation[END_REF] and CNNs [START_REF] Wang | Impact of single-event upsets on convolutional neural networks in xilinx zynq fpgas[END_REF], and assessed the fault tolerance of these algorithms. Studies link-ing the reliability of CNNs on FPGAs to their paramters and metrics, such as model accuracy, degree of parallelism, quantization and reduced data precision, [START_REF] Libano | How reduced data precision and degree of parallelism impact the reliability of convolutional neural networks on fpgas[END_REF][START_REF] Libano | Understanding the impact of quantization, accuracy, and radiation on the reliability of convolutional neural networks on fpgas[END_REF] has also been conducted. The effect of instruction set architecture on the reliability of CNNs has also been studied [START_REF] Abich | Soft error reliability assessment of neural networks on resource-constrained iot devices[END_REF] on an ARM platform with simulated fault injections. However, the study uses the Common Microcontroller Software Interface Standard-NN (CMSIS-NN) [START_REF] Lai | Efficient neural network kernels for arm cortex-m cpus[END_REF] library for CNN execution with lowprecision fixed-point representation and does not consider runtime input sparsity.

The following sections describe the NNs subjected to the radiation test campaigns; the effects of SMART and temporal Triple Module Redundancy (TMR) techniques on the NNs; the test setup and methodology; preliminary analysis of the radiation test results; and, concluding observations and future work.

Case Study Algorithms

The architecture of the NN used during the radiation test campaign is shown in Figure 2. This NN was designed, trained and evaluated using the TensorFlow [START_REF] Abadi | Ten-sorFlow: Large-scale machine learning on heterogeneous systems[END_REF] Python library, and 60000 training images and 10000 testing images from the Modified National Institute of Standards and Technology (MNIST) database. This NN is also known as MNIST digit classifier as the NN is used to classify the images representing digits from 0 to 9. The input sparsity to the different layers of the NN generated at runtime is shown in Table 1, which was computed using all 10000 test images from MNIST. The parameters of the trained network are fed to a custom implementation of the NN algorithm in C language, using a custom framework to create four different versions of the NN. These are: (1) a version of the NN without any of the proposed optimization (simple), (2) NN with SMART (SMART), (3) an NN with TMR (TMR), and (4) an NN with TMR and SMART (TMR+SMART). In a TMR version of the NN, the corresponding non-TMR NN is executed thrice and a majority vote is applied to the output.

In order to understand the effects of SMART on NNs, the above four versions were subjected to radiation test campaigns. The NN(simple) and NN(TMR) were included in the test to provide reference results which can facilitate relativistic comparison with NN(SMART). NN(simple) is a non-optimized version expected to provide low fault tolerance results. NN(TMR) is optimized using an industry standard temporal TMR [START_REF] Morgan | A comparison of tmr with alternative fault-tolerant design techniques for fpgas[END_REF] technique and was expected to provide results for high fault tolerance. While NN(TMR+SMART) also provides results for comparison, this version was primarily intended to observe the effects of a combined TMR and SMART hybrid optimization on NN fault tolerance.

Radiation Test Setup

Each of the four versions of the NN algorithm were packaged into separate radiation test programs, shown in Figure 3, to facilitate executing the case study algorithms on the radiation test setup developed by Université Grenoble Alpes (UGA) [START_REF] Sarzi Sartori | Assessment of radiation effects on attitude estimation processing for autonomous things[END_REF]. The number of iterations of the test program is controlled by the radiation test setup and each iteration corresponds to an execution of the test program. To limit the size of a test program, 250 inputs were randomly selected from the MNIST testing images, and inference results for all of these images are computed in one iteration. To reduce the variables in the experiments, a single input data set was used across all campaigns. Each of the inputs contain a one-dimensional array of size 784 in single-precision floating-point format (FP32), which is obtained by normalizing and flattening the two dimensional array of order 28×28 representing the resolution of an image in the MNIST database. Each input is used to compute 120 inferences within one iteration. This number was chosen to cause the total execution time of one iteration to lie between 10s to 20s, for optimal scheduling of the test programs during the radiation test campaigns. Each inference of an NN generates a one-dimensional array of size 10 in FP32 as output, which represents the probability of the input being an image of a digit from 0 to 9.

Neural network algorithm

Input vector [784]

Output vector [START_REF] Kukunuri | Towards nilm on edge devices[END_REF] Neural network parameters 120 Inferences 250 Inputs Iterations

Experiment and Analysis

The radiation test programs were executed from February 17-18 and July 4-8 of 2022 at Laboratory of Subatomic Physics & Cosmology (LPSC) in Grenoble, France. The radiation test setup utilizes Raspberry Pi 4B with Raspberry Pi OS Lite version 11 and a superscalar quadcore Cortex-A72 (ARM v8) 64bit SoC. Once the results were obtained from the experiments, the error analysis was done by comparing the results with the golden reference, which was obtained by running the radiation test program under normal operating conditions.

The preliminary analysis of the results from the radiation test campaigns is as shown in Table 2. The first column of this table represents the four versions of the NN algorithm tested under radiation. The second column contains the corresponding average neutron flux to which the various NN versions were exposed. The third column represents the time spent by each NN version executing under various neutron flux levels on the setup's multi-core CPU . The fourth column represents the number of iterations of the radiation test program for each NN version under various neutron flux levels. The fifth column represents the number of errors that occurred during all the corresponding iterations of the NN versions. This column is divided into three sub-columns which represent the following counts.

1. Tolerable error is incremented by one if one or multiple errors occurred within an iteration but did not result in any classification mismatch when compared with the golden reference. 2. Critical error is incremented by one if one or multiple errors occurred within an iteration and includes classification mismatches when compared with the golden reference. 3. Total error is the sum of tolerable and critical error counts for all NN versions. This error count is used for cross section [START_REF] Wrobel | An analytical approach to calculate soft error rate induced by atmospheric neutrons[END_REF] calculation.

The sixth column represents the neutron fluence associated with each of the NN versions. This represents the total number of neutrons that passed through a 1cm 2 area of the radiation setup while the corresponding NN version was executing. The last column represents the cross section calculated from total error count for each of the NN versions.

Observation and Discussion

The last column of Table 2 suggests that SMART has reduced the cross section -i.e., the probability of either a tolerable or critical error occurring for a given neutron radiation -, increasing the overall fault tolerance of NN(SMART) compared to NN(Simple). NN(TMR) has superior fault tolerance compared to NN(SMART) but at an increased computational cost. Finally, NN(TMR+SMART) outperforms NN(TMR) by a small margin in terms of fault tolerance improvement. However, more radiation tests are required to confirm this advantage as the observed margin is small. Future radiation tests will ensure approximately equal irradiation time for all algorithms under test.

Conclusion and Future work

Radiation test campaigns for evaluating the fault tolerance of the four NN versions were conducted. Preliminary analysis of the results from these campaigns suggests that NN(SMART) outperforms NN(Simple) by ∼1.78 times in terms of the probability of a neutron-induced error occurring. However, these NNs are outperformed by their TMR counterparts, as expected. Further analyses will reveal more information on the nature of the errors that occurred, and will associate the errors with the various computing strategies [START_REF] Sarzi Sartori | Assessment of radiation effects on attitude estimation processing for autonomous things[END_REF] and characteristics of the radiation test setup used during the experiments for all four NN versions. The relationship between input sparsity, different NN output functions [START_REF] Apicella | A survey on modern trainable activation functions[END_REF], different NN architecture and SMART will be explored in future work.

Figure 1 :

 1 Figure 1: Abstract of SMART implementation.

Figure 2 :

 2 Figure 2: Architecture of the NN.

Figure 3 :

 3 Figure 3: Iterations of radiation test program

Table 1 :

 1 Sparsity of input values to different layers in the NN

		Layer 0 Layer 1 Layer 2
	Sparsity	80.7%	66.6%	47.3%

Table 2 :

 2 Preliminary analysis of results from February and July test campaigns

	NN version	Avg. Neutron flux 10 5 neutrons/cm 2 /s	Irradiation time (h)	Iterations	Number of errors Tolerable Critical	Total	Neutron fluence 10 10 neutrons/cm 2	Cross section 10 -10 cm 2
	Simple	4.272	12.0	1892	11	0	11	1.8530	5.9371
	SMART	3.843 4.272	43.7 56.3	452 1195	29 17	2 1	49	14.6963	3.3342
	TMR	4.272	11.9	1813	5	0	5	1.8297	2.7326
	TMR+SMART	3.843 4.272	44.5 56.0	451 1181	23 13	0 3	39	14.7672	2.6410

Acknowledgements

This work has been partially supported by: MultiRad (PAI project funded by Région Auvergne-Rhône-Alpes); IRT Nanoelec (ANR-10-AIRT-05) and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), both projects funded by the French program PIA; UGA/LPSC/GENESIS platform; Bourse de mobilité Génération IA 2030, funded by French embassy in Belgium; and MOVIQ (Mastering Onboard Vision Intelligence and Quality) project funded by Flanders Innovation & Entrepreneurship (VLAIO) and Flanders Space (VRI).