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Abstract11

Motivation: Recurrent substructures in RNA, known as 3D motifs, consist of networks of base12

pair interactions and are critical to understanding the relationship between structure and function.13

Their structure is naturally expressed as a graph which has led to many graph-based algorithms to14

automatically catalog identical motifs found in 3D structures. Yet, due to the complexity of the15

problem, state-of-the-art methods are often optimized to find exact matches, limiting the search to16

a subset of potential solutions, or do not allow explicit control over the desired variability.17

Results: We developed FuzzTree, a method able to efficiently sample approximate instances of18

an RNA motif, abstracted as a subgraph within a target RNA structure. It is the first method19

that allows explicit control over (1) the admissible geometric variability in the interactions; (2) the20

number of missing edges; and (3) the introduction of discontinuities in the backbone given close21

distances in the 3D structure. Our tool relies on a multidimensional Boltzmann sampling, having22

complexity parameterized by the treewidth of the requested motif. We applied our method to the23

well-known internal loop Kink-Turn motif, which can be divided into 12 subgroups. Given only the24

graph representing the main Kink-Turn subgroup, FuzzTree retrieved over 3/4 of all kink-turns. We25

also highlighted two occurrences of new sampled patterns. Our tool is available as free software and26

can be customized for different parameters and types of graphs.27
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1 Introduction36

The essential regulatory and catalytic roles played by RNAs in cellular processes can largely37

be attributed to the intriguing and highly versatile nature of their structures [8, 5]. The38

structure of ncRNAs is inherently modular, with distinct structural domains (loops) divided39

by stems of rigid canonical bonds, often responsible for their unique functions [20]. This40

modular architecture has been used for advancements in structure prediction [10] and rational41

design [11]. Consequently, the characterization of ncRNA structure and identification of42
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12:2 Exploring the natural fuzziness of RNA non-canonical geometries

structural modules have become critical in the pursuit of understanding their diverse functions43

and exploiting them for future applications.44

Many approaches have been developed to detect and classify conserved modules. These45

classifications differ in the scale adopted to detect and define a motif: RNA3DMotifsAtlas [26]46

computes similarity and finds motifs at the atomic level. It can capture local similarities47

omitting bulged nucleotides. A drawback of such a method is the computation time, which48

restrains comparisons between loops. RNA Bricks [6] and RAG3D [34] abstract loops and49

hairpins as unitary elements. At an intermediate layer, CaRNAval [27, 30] models RNA as50

graphs where vertices are nucleotides, and edges are the sequence backbone phosphodiester51

bonds or non-covalent interactions. These interactions can be classified following the Leontis-52

Westhof (LW) annotations in 12 different geometric families [21, 31]. Such an approach53

allows specific graph algorithms to discover much larger and more complex modules than by54

doing atomic computations while retrieving the known structural modules. However, this55

approach is not able to identify natural variations since it relies on detecting exact matches.56

From the algorithmic point of view, the treewidth tw is a natural parameter to find a57

match of a pattern graph GP inside a target graph GT . In 1995, Alon et al [1] proposed an58

XP [9] algorithm in O
(
2|VP |ntw(GP )+1)

using the color-coding technique. It was shown more59

generally that only very specific constraints on the input allow having algorithms tractable for60

bounded treewidths [23]. The problem is not fixed-parameter tractable when parameterized61

only by the treewidth, and it requires other parameters to become tractable. For instance,62

some approaches are parameterized both by tw(GP ) and |GP |, and conversely, others are63

parameterized by tw(GT ) and the maximum degree of GT [23].64

However, there can be an exponential number of variants of a specific pattern so different65

specialized algorithms allowing missing nodes and edges [25, 12], or requiring only labels66

to be in a neighborhood [18], have been developed. Such simplifications forget about the67

precise locations of interactions, which is information that we would like to preserve with68

RNA structures. A recent approach specific to RNA graph fuzziness uses Relational Graph69

Convolutional Network to embed the graphs in a vector space, allowing fast computation [24].70

Their embedding is based on the nature of base pairs or their isostericity without taking into71

account gaps or missing edges. By its nature, such a method gives no explicit control over72

the sampled neighborhoods, and thresholds need to be calibrated depending on the context.73

In this paper, we introduce FuzzTree, a multidimensional Boltzmann graph sampling74

procedure able to sample variants of a motif in a known RNA structure. We allow weighting75

and control of three key geometric features in the variants: (1) the geometric disruption of76

mismatched edges, (2) missing edges still constrained by their distance in the 3D structure,77

and (3) breaks in the backbone also constrained by their distance in the 3D structure. We78

propose a parameterized bound on the complexity of the algorithm based on the treewidth79

of the searched motif. We evaluate our method on the well-known interior loop Kink-Turn80

motif [19] characterized by its sharp bend and clustered into 12 different groups in the81

RNA3DMotifsAtlas [26]. We show that, from the signature representation of the main82

subgroup, we sample all their known Kink-Turns in 88% of RNAs. We also retrieve two83

previously un-annotated loops with a characteristic sharp bend.84

2 Method85

2.1 RNA as a graph and fundamental problems86

We define an RNA structure as a graph G such that its nucleotides are encoded as vertices V ,87

and nucleotide interactions (canonical/non-canonical base pairs, stacking. . . ) are encoded as88
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directed edges E ⊂ V ×V , with labels L(e). Interactions may represent backbone connectivity89

(phosphodiester bonds), or any of the 12 base-pair types defined by the Leontis-Westhof90

(LW) nomenclature [31]. Each type specifies an interacting face (Watson-Crick ◦, Hoogsteen91

□, Sugar ▷) for both nucleotides, along with an orientation cis (filled) or trans (empty). Note92

that the geometry of the RNA structure is encoded in the edge labels, and our representation93

does not depend on the sequence. In this work, we are interested in RNA 3D motifs, which94

we abstract as RNA pattern graphs as depicted above. We show in Fig. 1 a Kink-Turn95

motif, represented as a graph with labeled edges.96

Figure 1 Kink-turn structure. On the left, the 3D structure of a Kink-Turn motif in PDB
3RW6. On the right, its representation as a pattern graph of its base pair interactions. The backbone
connections are represented as black arrowed edges.

We rewrite E, the set of edges as E = B ⊔B, composed of two distinct sets: B, the set97

of edges that are backbone interactions and B, the edges involved in LW interactions.98

Moreover, since vertices in both pattern and target graphs are indexed by their sequence99

position, we introduce a precedence relation ≺, inducing a strict total order within the pattern100

and target graphs. A valid occurrence of a pattern within a target must be monotonous, i.e.101

remain consistent with the strict precedence relation ≺.102

The Monotonous Subgraph Isomorphism (MSI) problem identifies an occurrence of a103

pattern GP = (VP , EP ) inside a target graph GT = (VT , ET ). In the context of RNA, GP is104

a (closed) motif and ≺ −Hamiltonian, i.e. the total order over VP induced by the relation105

≺ represents a (Hamiltonian) path in GP , while GT represents an entire RNA structure.106

Formally, the problem of searching for GP within GT can be defined as:107

▶ Problem 1. Monotonous Subgraph Isomorphism Problem (MSI)108

Input: Pattern graph (≺ −Hamiltonian) GP = (VP , EP ); Target graph GT = (VT , ET )109

Output: Mapping M : VP → VT such that110

∀(u, v) ∈ VP
2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)111

∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET ⇒ L((u, v)) = L((M(u), M(v))) (label comp.)112

∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET (no missing edge)113

or ∅ if no such mapping exists.114

The MSI problem represents a constrained version of Subgraph Isomorphism, a well-studied115

NP-complete problem [13, 23] with mildly-depressing prospects regarding parameterized116

complexity. Indeed, Subgraph Isomorphism does not admit Fixed-Parameter Tractable (FPT)117

or slicewise polynomial (XP) solutions for various graph parameters, including the treewidths118

tw(GP ) and tw(GT ) of the pattern and target graphs. Namely, the problem was shown [23]119

to be NP-hard even when max(tw(GP ), tw(GT )) ≤ 2 (Para NP-hardness), ruling out the120

existence of FPT or XP algorithms under standard hypotheses.121

The MSI problem retains the classical NP-hardness of Subgraph Isomorphism since it122

can be shown to generalize the NP-hard structure-sequence alignment in RNA [28]. However,123

MSI can be solved in time O
(
|EP |.|VT |tw(VP )+1)

(XP algorithm) using classic dynamic124

WABI 2023



12:4 Exploring the natural fuzziness of RNA non-canonical geometries

programming based on a tree decomposition of GP (see Section 2.5 and Supp. Mat. A.2.2).125

Such an algorithm has polynomial complexity for any fixed value of the treewidth tw(GP ), a126

parameter that remains bounded in practice (typically 2 or 3) for RNA motifs.127

2.2 Capturing geometric and chemical similarities128

We now extend our problem to embrace the natural diversity of RNA motifs in structures.129

More precisely, we are interested in sampling graph occurrences that are in the geometric130

neighborhood of a core motif. To do so, we allow the motif to be deformed by three different131

biologically relevant edit operations detailed below. Each contributes additively and has132

its own neighborhood threshold, and corresponding difference function, as depicted in133

Table 1:134

T L represents how much we allow the edge label, the type of the canonical or non-canonical135

bond, to be modified. It measures the geometric difference between two interactions (see136

Sec. 2.4.1).137

T E corresponds to the maximum number of edges/base pairs within the pattern structure138

that can be omitted (see Sec. 2.4.2).139

T G is the maximum allowed distance when introducing a backbone discontinuity, a new140

gap. As insertions alter the distance between bonds, T G regulates here the maximum141

sum over these shifts (see Sec. 2.4.3).142

We denote by GEO the geometric distance between two nucleotides u1 and u2 as

GEO(u1, u2) = min
ai∈atoms(ui)|i∈{1,2}

||a1 − a2||2,

and use it to define two additional criteria to constrain admissible solutions:143

First, nucleotides mapped to the nodes of a missing edge must be closer than Dedge Å;144

Second, we enforce a maximal distance Dgap between the nucleotide on both sides of145

an introduced gap. These values correspond to the phosphodiester atoms’ distances146

between the nucleotides. Capping these distances beyond a fixed value not only yields147

more realistic outputs but also greatly improves the runtime of our algorithm.148

We use the isodiscrepancy index [31] to quantify geometrically the difference between base149

pair families and provide values measuring three terms: (1) the difference of intra-base pair150

C1’–C1’ distances; (2) after aligning one base, the inter-base pair C1’–C1’ distance between151

the C1’ atoms of the second bases of the base pairs; (3) The angle on an axis perpendicular152

to the base pair plane required to superpose the second bases. This isostericity measure is153

defined for pairs of base pairing families (BPF), each representing one of the 12 canonical154

and non-canonical conformations and named as BPFi,∀i ∈ J1, 12K. Inter-family variations155

are frequent and therefore the average isodiscrepancy of a family to itself is not 0. To correct156

for this phenomenon, we define the ISO difference between two families as:157

ISO(BPFi, BPFj) = isodiscrepancy(BPFi, BPFj)− isodiscrepancy(BPFi, BPFi)158

Moreover, we set the value of ISO to 0 involving undefined labels, backbones or phantom159

interactions.160

We define a backbone path as a sequence of at least 2 nucleotides connected through161

backbone edges.162

The set P of paths associated with a target graph GT =
(
VT , ET = BT ⊔BT

)
is defined

as:
P =

⋃
k∈N,k⩾2

{(p0, ..., pk) | ∀i ∈ J0, k − 1K, (pi, pi+1) ∈ BT }
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With this definition, gaps are just paths in P with specific restrictions on length and163

composition.164

A mapping M lying in a relevant neighborhood of a pattern graph is a solution to a165

problem that we call the Fuzzy Monotonous Subgraph Isomorphism problem (FMSI),166

which can be defined as:167

▶ Problem 2. Fuzzy Monotonous Subgraph Isomorphism problem (FMSI)168

Input: Pattern graph GP =
(
VP , EP = BP ⊔BP

)
(≺ −Hamiltonian) , target graph GT =169 (

VT , ET = BT ⊔BT

)
and neighborhood thresholds (T L, T E, T G, Dedge, Dgap)170

Output: Mapping M : VP → VT such that:171

1. ∀(u, v) ∈ VP
2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)172

2.
∑

(u,v)∈BP
ISO(L(u, v), L(M(u), M(v))) ⩽ T L (label compatibility)173

3.
∑

(u,v)∈BP
1− 1(M(u),M(v))∈BT

⩽ T E (few missing edges)174

4. ∀(u, v) ∈ BP , (M(u), M(v)) /∈ BT , GEO(M(u), M(v)) ⩽ Dedge (edge distance limit)175

5.
∑

(p0,...,pk)∈P,k⩾3 GEO(p0, pk) ⩽ T G (path size limitation)176

6. ∀(u, v) ∈ BP ,∃(p0, p1, p2, ..., pk) ∈ P such that (no missing backbone path)177

p0 = M(u), pk = M(v) (*)178

GEO(p0, pk) ⩽ Dgap (**)179

or ∅ if no such mapping exists.180

Intuitively, a valid mapping M has to respect the six following conditions: The mono-181

tonicity condition enforces pattern nodes to map successive nodes in the target. The label182

compatibility controls how much the geometric differences cumulative is allowed between183

pattern and matched edges (see Sec. 2.4.1). The few missing edges constraint ensures that184

pattern edges that are not mapped to an edge in the target are not numerous. (see Sec. 2.4.2)185

The edge missing limit forces each couple of mapped nodes with no edges to have a186

bounded geometric distance between each other. (see Sec. 2.4.2) The path size limitation187

controls how large the cumulative of gaps geometric lengths can be. (see Sec. 2.4.3) The no188

missing backbone path condition (as unfolded in Prob. 2) ensures that the start and189

end points of a path are mapped nodes (*). It also restrained allowed geometric length of190

individual path (**). (see Sec. 2.4.3) We note that due to the monotonicity condition, it191

implies that no target node in p1, . . . , pk−1 can belong to the mapping.192

Subsequently, we will denote by neighborhoodGP
(GT ) all the occurrences of the desired193

pattern graph GP (in its geometric neighborhood) in our RNA graph target GT as defined194

by the previous FMSI mapping.195

In practice, RNA graphs are fully ordered but do not necessarily contain a Hamiltonian196

path due to backbone disconnections, leading to a graph composed of multiple strands. We can197

reconstitute a Hamiltonian path (with no complexity overhead) in the pattern graph by adding198

some “phantom edges" (with a specific label) when the backbone is missing which correspond199

to the set of edges {(i, i + 1) | i ∈ GP , (i, i + 1) /∈ EP ∪ L(i, j) ̸= ”B53”}. Additionally, to200

ensure that such edge can be mapped in the target GT in a way that will conserve the monoton-201

icity of the mapping, we add in GT the set of edges {(i, j) | (i, j) ∈ GT , i ≺ j ∩ L(i, j) ̸= ”B53”}.202

203

2.3 Locating alternative occurrences through sampling204

Focusing on neighborhoodGP
(GT ) is not an easy task as naive methods would describe both205

this set and its complementary. In the clique worst case, it consists to explore
(|GT |
|GP |

)
graphs.206

Even the simple exploration of neighborhoodGP
(GT ) can be tedious, in particular, when207

WABI 2023



12:6 Exploring the natural fuzziness of RNA non-canonical geometries

Threshold T F Difference dF Fuzzy mapping M of GP found in GT

T L Isostericity ISO
u

u'
R

A

R

A

PG TM in G

I SO (u,u') ≤ TL

T E Missing edges number
R

A

R

A

PG TM in G

missing edges number = 1≤ TE

GEO (n1
n1

,n2

n2

) ≤Dedge

T G Geometric GEO from
3D structure

PG TM in G

R

A
N

R
N

R

A

R

GEO(n1,n3) +GEO (n3,n5) ≤ TG

GEO (n1,n3) ≤Dgap

GEO (n3,n5) ≤Dgapn3

n5
n4

n2

n1

Table 1 Neighborhood thresholds and differences. Each measure has a threshold over the
sum of differences over all edges in the graph pattern.

neighborhood thresholds are quite large, which is often the case for label and gap thresholds.208

Furthermore, due to the nature of the neighborhoods, numerous instances of a few nucleotides209

apart will often be found. It is relevant in terms of neighborhoods, but, from the biological210

standpoint, they represent all the same RNA portion and the same underlying geometry and211

should not be distinguished: a single representative will be enough. It oriented us toward212

sampling, to identify sets of candidate – ideally diverse – subgraphs inside the target graph213

GT that are at a reasonable “ distance” from the interesting motif GP .214

This shift in paradigm builds on recent advances in Multidimensional Boltzmann distri-215

butions and sampling [2, 15].216

Generally, a Boltzmann distribution is such that the probability of any possible217

outcome G depends on its (pseudo-)energy E:218

P(G) = e−βE(G)

Z
where Z =

∑
G′

e−βE(G′) (1)219

where β is a real number, akin to an inverse temperature. A Multidimensional Boltzmann
distribution (MBD) is a special type of Boltzmann distribution, where the energy is a
weighted combination over a collection of features {Fi} of interest, such that

E(G) = w1 × F1(G) + w2 × F2(G) + . . .

where w1, w2 . . . are real-valued weights. Weights can be used to steer the sampling towards220

regions of interest. They can also be learned, through convex optimization, to match221

the expectations of F1, F2 . . . to user-specified values. Moreover, sampling with a pseudo-222
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temperature β → ∞ gracefully specializes in a uniform random generation of outcomes223

achieving optimal (i.e. minimal) value for E.224

In our case, an outcome is a graph G ⊂ GT , such as G is the image of mapping M and225

we have 3 features, one for each neighborhood. Given a specific neighborhood threshold T F ,226

its relative feature F measures how much the weight of edits DF relative to neighborhoods,227

further introduced as a difference in 2.4, deviate from a given center T F∗. For instance,228

T F∗ can be chosen as equal to 0 if we want to sample mostly G with no fuzziness or as229

equal to T F /2 if we want to sample them with average fuzziness. More details on this choice230

and about Boltzmann sampling are available at Supp. Mat. A.1. MBD is well-suited to231

the sampling that we want to make: the exponential decrease of the probability with the232

features gives low probabilities to the graphs that are far in terms of neighborhoods from233

GP , which allows us to characterize well neighborhoodGP
(GT ). In particular, we can define234

F such that it takes a value equal to +∞ when the corresponding neighborhood threshold235

T F , for a mapping M , is not respected, forbidding simply M to be sampled. Additionally,236

the Multidimensional character of the distribution allows us to take into account the 3237

neighborhoods on labels, edges and gaps at the same time.238

A general framework called InfraRed [33], initially introduced in the context of RNA239

design [15], can be used to generate efficiently, in a parameterized manner, the MBD. It240

automatically processes constraints and elements of the scoring into a graph, decomposes it241

into a Tree Decomposition, and generates automatically the bottom-up dynamic programming242

sampling procedures. More details on the Tree Decomposition and the dynamic programming243

used in InfraRed can be found in Supp. Mat. A.2.244

2.4 Neighborhood difference description245

Our goal is to be able to retrieve from a general motif all natural occurrences and their246

variability. We can observe in well-known motif families that some bases change, some can247

be added or removed. For instance, the graph pattern GP on Fig. 2 is a Kink-Turn whose248

occurrences in the same sub-family can have up to four missing edges. Other sub-families249

of Kink-Turn motifs can have differences in bond types, additional interactions, or even250

gaps induced by additional nucleotides. We will define difference functions that will be the251

features in the MBD and will restrain the samples to a “reasonable” neighborhood of the252

pattern GP that can be explicitly defined.253

For any feature F (here F ∈ {L, E, G}, where L are label changes, E missing edges, and254

G new gaps) the Neighborhood cumulative difference DF quantifies how distant a255

mapping is, relatively to a given neighborhood threshold T F that cannot be exceeded.256

Formally, we define a neighborhood cumulative difference DF relatively to a neighborhood257

threshold T F as:258

▶ Definition 1 (Neighborhood cumulative difference / neighborhood difference). Given a
pattern graph GP =

(
VP , EP = BP ⊔BP }

)
, a target graph GT =

(
VT , ET = BT ⊔BT

)
and a mapping M , a neighborhood cumulative difference is a function DF relatively to a
neighborhood threshold T F that act as a wrapper around dF

GT
:

DF (GP , GT , M) =
∑

(u,v)∈EP

dF
GT

(u, v, M)

where dF
GT

(u, v, M) is the neighborhood difference relative to GT , a function that measures,259

relatively to F , how “different” are the edges in the pattern ((u, v) ∈ GP ) from the edges in260

the mapping ((M(u), M(v)) ∈ GT ).261

WABI 2023
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G
 
   P

 
   GT1

 
   GT2

Part of Part of

Figure 2 Kink-turn signature and targets. On the left, signature graph of the Kink-Turn
IL_29549.9 family and our search pattern. In the middle and on the left, mappings that were missed
during the search for the pattern. GT 1 due to the same nucleotide merging the end of a cSS and a
cWW. GT 2 due to its too large difference.
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Y
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A
G

G

Y

A

G Y

TG

T             PMapping M found in G  for G

DL (GP ,GT ,M ) = dLGT
(6,7,M ) +dLGT

(5,8,M ) +0
DL (GP ,GT ,M ) = I SO ( , ) + I SO ( , ) +0
DL (GP ,GT ,M ) = 11.3+8.2= 19.5

Figure 3 Label difference. Computation of the label difference on a mapping between a motif
GP and an RNA target graph GT . Label difference is computed using the isostericity ISO to account
for the geometric difference between bounds as described in Stombaugh et al [31].

How the difference is measured depends on the feature as described below.262

Neighborhood cumulative differences serve in the Boltzmann distribution to quantify263

each type of edit. Due to the additivity of these deformations, the neighborhood cumulative264

differences are computed over all edges in the pattern and their equivalent in the mapping.265

While our neighborhood cumulative differences are defined relative to the edges of GP here,266

they can be easily defined on nodes should novel sequence-dependant features be included.267

We will now discuss in detail the 3 sources of operations and their neighborhood cumulative268

difference. A summary is shown in Table 1.269

2.4.1 The label difference270

The label difference, as represented in Fig. 3, accounts for the difference between base271

pairs families and we use for that the isodiscrepancy [31] as introduced in part 2.2. We now272

compute the label difference DL relative to the neighborhood threshold T L as a neighborhood273

cumulative difference entirely defined by the sum over each pattern edge of its mapping274

neighborhood difference dL
GT

equals to:275

dL
GT

(u, v, M) = ISO(L(u, v), L(M(u), M(v)))
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T            PMapping M found in G  for G

DE (GP ,GT ,M) = 2

DE (GP ,GT ,M) = dE
GT

(1,10

0

,M)
dE

GT
(5 + 

+ 
,8,M)

Figure 4 Edge difference. Computation of the edge difference on a mapping between a motif
GP and an RNA target graph GT . We assume here that Dedge >> max(GEO(1, 10), GEO(5, 8))

2.4.2 The edge difference276

While the previous section deals with how to incorporate edges changing their type, i.e. their277

interaction geometry, we must also consider that some of these base pair interactions might278

simply be missing due to the noisiness of the experiments, the accuracy of the annotation, or279

the flexibility of the module. A natural way to account for missing edges is to count them and280

enforce an upper bound on the amount. Doing so would omit important geometric information281

that we have available in the 3D structure. An interaction is missing, but we still want282

to constrain the physical distance between the mapped nodes of the missing edge. Indeed,283

with no limitation on that distance, the partner node of a missing edge could be virtually284

anywhere in the target structure. This is undesirable since we are interested in patterns285

matching the local conformations. It is also highly inefficient in terms of computation.286

Therefore, we will accept mappings of the extremities of an edge in the pattern to nodes
u, v that are at most at a set threshold distance Dedge computed from the 3D structure (i.e.
GEO(u, v) < Dedge). Setting a weight of ∞ to mappings outside the threshold allows the
sampling to simply reject such instances. We additionally use the edge difference to reject
cases where backbones are mapped to couples of nodes that are not backbones by putting a
weight ∞ in that case. The total edge difference DE relative to neighborhood threshold T E ,
is a neighborhood cumulative difference entirely defined by the sum over dE

GT
with values

defined as followed and shown in Fig. 4:

dE
GT

(u, v, M) =



0 if (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

or (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

1 if (u, v) ∈ BP ∩ (M(u), M(v)) /∈ BT

and GEO(M(u), M(v)) ⩽ Dedge

∞ otherwise

2.4.3 The gap difference287

A frequent type of natural variability in a motif family is the occurrence of bulging out288

nucleotides in what would be a continuous sequence in the pattern. These insertions can be289

of different sizes, but we require that they do not modify (too much) the local structure. To290

take arbitrary insertions into account, we introduce fake edges between any two nucleotides291

present on the same backbone that are at a distance below Dgap. An illustration of this292
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Figure 5 Fake edges. Addition of fake edges to account for gaps. Fake edges are added only
when distance is below Dgap and when both nucleotides are fully connected by backbone edges. For
instance here, we add no fake edge between C and A at the bottom of GT as these two nucleotides
are not connected by a full path of backbones.

process is shown in Fig. 5. For convenience, these edges are added in BT to keep valid the293

cases of the edge difference where backbones are wrongly mapped.294

An additional difference compared to the missing interaction edges of the previous section295

is how we sum the total neighborhood difference DG. We accumulate the total physical296

distance (i.e. GEO) between the nodes connected through the fake edges. This allows an297

arbitrarily large structure to bulge out without the need to verify or specify admissible lengths,298

as long as the nucleotides around this inserted gap are close geometrically as illustrated in299

Fig. 6.300

Formally, the gap difference DG relative to neighborhood threshold T G is a neighborhood
cumulative difference over all edges in the matching entirely defined by the sum of the
neighborhood differences dG

GT
:

dG
GT

(u, v, M) =


GEO(M(u), M(v)) if (M(u), M(v)) is

a “Fake Edge” in ET

0 otherwise

A limitation of this approach is that we cannot detect the deletion of nodes from the301

pattern. A workaround is to remove all the nodes in the pattern graph that do not directly302

participate in a base pair interaction, and reconnect the disconnected backbones. Using the303

new pattern with a large gap threshold T G would allow us to retrieve the original motif304

neighborhood efficiently, but introduce more spurious matches.305

2.5 Algorithm and complexity306

Our method is based on Infrared [15, 33], a declarative framework that automatically307

generates a dynamic programming procedure for MBD sampling, based on a nice tree308

decomposition (TD). The dynamic programming procedure used in Infrared is described309

in Supp. Mat. A.2. It precomputes the partition function of the MBD through a bottom-310

up recursion and uses local contributions to perform an exact sampling within the MBD311

distribution. Within this framework, a combinatorial problem is abstracted as a set of312

variables {Xi}i, each assigned an integer value within a bounded domain. Assignments313

must respect various constraints expressed as functions {Ci}i, each defined over a subset of314
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Figure 6 Gap difference. Computation of gap difference on a mapping between a motif GP

and an RNA target graph GT . We recall that nucleotide labels are not taken into account.

variables. Similarly, feature functions {Fj}j associate real-valued contributions to subsets of315

variables, and are summed to represent the pseudo-energy of an assignment.316

In this setting, we abstract each node i of the graph pattern GP as a variable Xi, taking317

value in J1, nK. The value of Xi represents the mapping of node i in the graph GT = (VT , ET )318

with |VP | = k and |VT | = n. Within RNA motifs, the number of partners of a position is319

bounded, so we have |EP | ∈ O(k). Remark that all deviations from the pattern defined in320

Sections 2.4.1 through 2.4.3, can be expressed locally as sums on the edges of the pattern321

graph. It follows that the dependencies dep implied by our cumulative differences are only322

binary, and restricted to pairs sharing an edge in GP : dep = {(Xi, Xj) | (i, j) ∈ EP }. The323

graph of constraints is thus reducible to the input pattern graph GP , as shown in Fig. 8.324

Due to the neighborhood threshold T F being a global property over the mapping, the325

sampling is followed by a rejection step for samples that exceed a neighborhood threshold.326

An example of such rejection is depicted in Fig. 7. Asymptotically, such rejection will at327

worst induce a constant overhead with T F chosen independently from |GP | and |GT |.328

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

A

R

G A
G

A
G

Y

dE

T  /2E

T E
0 1 2 3

 Sampling 
probability

REJECTION 
    AREA

Figure 7 Rejection step. In the above example, rejection is depicted only for the edge
neighborhood for the sake of simplicity. Found motifs above T E thresholds are rejected afterward.
Found motifs with an edge difference close to T E

2 = 1 here have more chance to be sampled.

▶ Proposition 1. A generation of t Boltzmann-distributed (1) putative solutions to FMSI329

can be performed in time O
(
n k t + k n(ϕ+1)) where ϕ is the treewidth of the pattern GP .330

This complexity directly follows from the complexity of the algorithm [15] underlying331

Infrared for a graph GP = (VP , EP ) (with |VP | = k). Restricted to binary constraints/fea-332

tures associated with (a subset of) E, the computation of the partition function can be333
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Figure 8 Framework abstraction. Interfacing Infrared by considering GP as the Infrared
graph of constraints C and all nodes of GT as values that can be taken by the variables in C.

performed in time O((|EP |+ |VP |)×∆ϕ+1), where ∆ is the size of the assignment domain for334

individual variables, and ϕ is the treewidth of GP . A stochastic backtrack follows, leading to335

the generation of t Boltzmann-distributed assignments in time O(|VP |∆ t). The complexity336

stated above is obtained by observing that |EP | ∈ Θ(k), and that ∆ ∈ Θ(n).337

We conclude by noting that preprocessing, including computations of geometrical distances338

and augmentation of GT graph, can be performed once, in O(n2) time and space, leading to339

a negligible overhead in comparison to the computation of the partition function. Meanwhile,340

an optimal tree decomposition can be theoretically obtained in time only super polynomial341

in ϕ [3].342

A summary of the complexity and capacity of our FuzzTree method is depicted in Table 2.343

Regarding the parameterized complexity [9], the FuzzTree method is XP in the treewidth of344

the pattern graph, both in time and in space. It represents progress compared to VF2 [7],345

which is indeed implemented and efficient in practice due to the profusion of lookahead rules346

but has a worst-case time complexity similar to O(nn). In practice, VF2 becomes costly347

with dense graphs, even in its most modern versions [4, 17]. Furthermore, we compete with348

the bound from the Color-Coding [1] technique by improving it in time and space. 2O(k) is349

replaced by k ⩽ n in our bounds, which allows us to get rid of k as a parameter to restrict it350

simply to the treewidth in our RNA case.351

In addition, our method handles at the same time multiple labels on edges, directed352

graphs and can integrate node labels. The latter has not been implemented but can be353

added, as with labels on edges, without complexity overhead.354

3 Results355

3.1 Computations356

The larger target graphs (of more than 500 nucleotides) were split into overlapping voxels to
increase computational efficiency. We extracted |GT | graphs centered in each nucleotide c at
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Method Name Color-Coding [1] VF2 [7] VeRNAl [24] FuzzTree

Year 1995 2004 (updated up
to 2018) 2021 2022

Method Tree coloring DFS with search
space reduction

Relational Graph
Convolution Net-
work

Sampling tech-
nique

Time complexity 2O(k)nϕ+1log(n) O(deg(GT )n) Exponential O
(
knt + knϕ+1)

Space complexity 2O(k)nϕ+1 O(n) Exponential O
(
nϕ+1)

Supported graph Directed and undir-
ected Undirected Directed and undir-

ected
Directed and undir-
ected

Supported labels One label by edge One label by node
Any number of la-
bels on edges and
nodes

Any number of la-
bels on edges and
nodes

Type of found
neighborhoods None None Isostericity related

Exact bound on
isostericity, miss-
ing edge and miss-
ing gap.

Implementation? No Yes Yes Yes
Table 2 Complexities for RNA motif search. Comparison of state-of-the-art methods for

RNA motif search. With ϕ = tw(GP ), n = |VT |, k = |VP | and t the number of samples.

a given radius R from c. For an extracted graph G, centered on c, we have :

∀j ∈ G, R(G) = GEO(j, c) ⩽ R

Choices of technical parameters, such as the value for R, hardware and computation times are357

discussed in Supp. Mat. A.3. For the sake of efficiency, we refrained from adding "phantom358

edges" described in Section 2.2. Doing so enables possible violations of the monotonicity,359

leading to the detection of motif occurrences in the context of a more remote homology, but360

necessitated a further round of rejection (whose impact on performances remained negligible).361

3.2 Data: the Kink-Turn motifs family362

All interactions in the RNA structures are provided by FR3D [29]. We also use interactions363

annotated as “near”. The Kink-Turn is an important RNA structural motif common in duplex364

RNA that creates a sharp axial bend, enabling crucial tertiary interactions and binding [19].365

The Kink-Turn has been shown to appear in multitudes of contexts through computational366

and experimental methods [16, 22]. As of January 2023, there were 72 instances of the367

Kink-Turn RNA annotated in the RNA3DMotifAtlas [26]. One was omitted because it was368

not annotated on the main structure but one of its symmetric alternatives. The others span369

46 different RNAs and are divided into 12 different families with different lengths, between 9370

and 23 nucleotides and base pair signature. Members of the same family also differ in terms371

of number of nucleotides and pairing.372

The Kink-Turn family IL_29549.9 in RNA3DMotifsAtlas has the most occurrences (32)373

and its signature graph shown in Fig. 2 is used as the pattern graph GP for the subsequent374

sampling.375

Empirically, RNA 3D motifs are small motifs that, despite not being tree-like, have376

relatively small treewidth. It is especially the case for the Kink-Turn family, where 50377

Kink-Turns pattern graphs have treewidth equal to 2 and 21 have treewidth equal to 3, which378

makes our parameterization in treewidth practically quite relevant.379
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Figure 9 Sensitivity and Specificity of regions corresponding to sampled graphs in
the 46 RNA structures containing Kink-Turns. Each dot represents an RNA chain, where
one or multiple Kink-Turns can be found. To keep track of them, nodes whose sensitivity is not
equal to one, are named of the graph “RNAname"_“chain".

3.2.1 Results380

We use the parameters shown in Table 3 with GP in Fig. 2 to sample at least 1000 graphs381

in each of the 46 RNA structures. We also introduce a bias in the Boltzmann distribution382

to favor values of neighborhood thresholds equal to T F

2 (instead of 0) to favor slightly383

fuzzy mappings more often than exact mappings or extremely fuzzy ones. This choice is384

motivated by the focus on the neighborhood more than on the exact mappings for which lots385

of techniques already exist.386

Parameter T L T E T G Dedge Dgap R nb_samples
Used value 20.0 4 20.0 5.0 10.0 R(GP ) + Dgap

4 1000
Relevant range [0, 50] J0, 6K [0, 50] [5, 10] [5, 20] R(GP ) + [ Dgap

4 , Dgap]
Table 3 Parameters. Used parameters and relevant range for FuzzTree computation on the

Kink-Turn group.

Our sampling returns sub-graphs of the target graphs GT . Using a python implementation387

of VF2 [14, 7], we annotate in the 46 RNAs graphs all nucleotides in any of the mappings.388

Each of the connected components in the 46 RNAs becomes a hit. The True Positives (TP)389

are these covering a known Kink-Turn found by our method. The True Negative (TN) are390

those that do not cover a Kink-Turn, rightly not found by our method. P designs the set of391

all Kink-Turn motifs and N the set of all other motifs. We show the sensitivity (TP/P) and392

specificity (TN/N) per RNA structure in Fig. 9.393

In 38 out of the 46 RNAs a sensitivity of 1 is achieved, all Kink-Turns are covered in394

graphs sampled by our method. The missing Kink-Turns fall into two categories. First,395

too many missing edges: with only 6 Leontis-Westhof interactions in GT , allowing more396

missing edges would match any interaction in the targets. Second, backbone connections397

replaced by Leontis-Westhof interactions, as seen in the middle of Fig. 2, is not an allowable398

transformation in our model.399

We also obtain in 33 RNAs a specificity over 75%. It indicates that even with relatively400

lax parameters, not that many other instances in comparison to the amount of known401
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Kink-Turns are close to GT .402

3.2.2 Other identified regions403

An additional 198 locations in the 46 RNAs were identified. The Kink-Turn is essentially an404

internal loop motif. We investigate if other internal loops sharing the same main 3D feature, a405

sharp bend in an interior loop, are found. Using the python library forgi [32] we decomposed406

these regions in their secondary structure elements. The majority, 125, mapped to regions407

forming multiloops. A total of 33 were covering continuous double-stranded regions. The408

angles of surrounding stems for each interior loop in the 46 RNAs (in blue) the identified409

Kink-Turns in these RNAs (red) and the other 33 elements (in green) are shown in Fig. 10.410

Figure 10 Angles in radiants. In blue for stems around every interior loop in the 46 RNAs.
In red for the Kink-Turns identified in these RNAs. In green for the additional 33 continuous
double-stranded regions.

There are 10 additional regions with angles above 1.4rad, and two of these had a sharp411

turn in their structure in un-annotated region as seen in Fig. 11. We show below their graph412

of interactions, with the cross-strand stackings in orange.413

The first is in 5J7L chain DA and positions 78–86, 96–108. It overlaps an un-annotated414

motif (IL_85931.1) that covers positions 81–85, 97–101, and 103–105. The second is located415

in 7RQB, chain 1A, positions 2129–2138, 2153–2160, and is not covered or surrounded by416

any annotated motif.417

4 Conclusion418

In this paper, we introduce FuzzTree, a multidimensional Boltzmann method for sampling a419

graph pattern neighborhood in a target graph. FuzzTree defines three types of neighborhoods420

based on RNA geometric diversity, LW interaction modifications, missing edges, and breaks421

in the backbone. Each can be explicitly controlled. We show that our sampling method422

complexity is parameterized by the treewidth of the pattern graph.423

Two main limitations are inherent to our approach. Due to the intrinsic nature of424

sampling, we cannot be assured that all neighboring graphs will be reported. In itself, for425

large patterns, this is a feature since sampling allows uniform exploration of the exponentially426

growing neighborhood. By enabling per-feature biases, FuzzTree can also be calibrated to427
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Figure 11 Other matches. 5J7L on the left and 7RQB on the right. The 3D structure on the
left has IL_85931.1 highlighted in cyan, on the right each nucleotide is colored independently. In the
graphs, red nodes are matched with the pattern. Blue edges are in the RNA structure and red ones
are in the pattern, indicating modifications and removal. Red dashed lines are introduced “Fake
edges”. Magenta dashed lines indicate stackings.

favor the sampling of graphs at a desired location in the neighborhood to favor specific types428

of variants (e.g., isostericity of modified edges). Letting the sampling run for longer will also429

mitigate the problem. More importantly, some patterns cannot be identified, particularly if430

an LW interaction is replaced by a backbone connection. While such cases are rare, they do431

exist, and additional improvement will be needed to capture them.432

We evaluate our method on the Kink-Turn group, a well-known interior loop motif that433

induces a sharp bend in the structure and is annotated in 46 different RNA structures.434

The Kink-Turns are grouped in the RNA3DMotifAtlas into 12 different subgroups with435

varying lengths and interactions. Using only the signature graph of one subgroup, FuzzTree436

samples conformations of over 2/3 of all Kink-Turns and identifies all of them in 88% of RNA437

structures. A closer examination of the other sampled patterns reveals two previously un-438

annotated sub-structures, each with a characteristic G-A trans-Hoogsteen-sugar interaction439

and a sharp local bend.440

Future work to complement this should broaden the evaluation framework by testing441

FuzzTree on diverse RNA modules. There is also a need for new techniques to overcome442

pattern identification limitations and explore adaptive sampling strategies to dynamically443

steer the sampled neighborhood.444

While FuzzTree was developed and adapted for RNA structure modules, it highlights the445

flexibility of multidimensional Boltzmann sampling and could be applied to other biological446

networks such as protein-protein interaction networks or metabolic pathways. Addressing447

these questions and areas for future work could lead to more comprehensive insights into448

complex RNA structures and other biological networks.449
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A Supplementary material555

A.1 About the sampling process556

Sampling from a Multidimensional distribution in our case can be written formally as below557

:558

▶ Definition 2 (Boltzmann distribution/Partition function). In the Multidimensional
Boltzmann Distribution, the probability to sample graph G, subgraph of GT with features
F1, .... Fm (that embody neighborhoods differences of GP for mapped graph G in GT ) of
respective weights w1, ... wm (that we can write more simply w = (w1, ...wm)) is proportional
to its energy:

PGP ,GT
(G | w) =

∏m
i=1 e−βwi.Fi(G)

Zw

where β := (RT )−1, R is the Gas constant, T the temperature in Kelvin, and Zw denotes the
partition function

Zw =
∑

G⊆GT

m∏
i=1

e−βwi.Fi(G)

We can forget about the β contribution as we can rewrite the weight w′i = βwi. The weights559

wi are values chosen or tuned by us.560

Tuning the weights is done by fixing a mean T F∗ (and T F threshold) for each type of
neighborhood. We can then tune the weight w(Fi) to give more “importance" that will favor
value around T F∗. In practice, when a feature for a neighborhood varies greatly between
instances, it means that this neighborhood is strongly relevant to distinguish the different
matches. It gives us an incentive to modify its weight accordingly. To do so, instead of
choosing weights manually, we solve the following problem:

minw

m∑
i=1
|E[Fi|w]− F ∗i |

This problem is known to be convex. We used so convex optimization method. Further561

details about this problem, including the proof of convexity, are addressed in [15].562

A.2 Computation of the partition function using dynamic programming563

A.2.1 Definitions564

First, we introduce the formal definition of the treewidth, we also depict what is a nice565

tree decomposition (NTD) as it allows a simpler search during the dynamic programming566

procedure. NTD implies no additional cost because an NTD has at most a size n = |GT |567

▶ Definition 3 (Tree Decomposition (TD)). Given a graph G = (V, E), a tree decomposition568

of G is a tree T , whose nodes are bags Y1...Yt such that: (definition from Bodlander et al [3])569

1. V ⊂
t⋃

i=1
Yi570

2. ∀(u, v) ∈ E,∃i ∈ J1, tK, (u ∈ Yi) ∩ (v ∈ Yi)571
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3. ∀u ∈ V, {u|u ∈ Yi} is a subtree of T .572

▶ Definition 4 (Nice Tree Decomposition). A tree decomposition T of G = (V, E) is said573

“nice” if each bags Yi has one of the three following forms :574

Introduce: Node Yi has exactly one child of index c in T and Yi = Yc ∪ {v}575

Forget: Node Yi has exactly one child of index c in T and Yc = Yi ∪ {v}576

Join: Node Yi has exactly two children of indices c1 and c2 in T and Yi = Yc1 = Yc2577

▶ Definition 5 (Treewidth). The treewidth ϕ of a graph G is defined as the biggest bag of the
“best" tree decomposition of G :

ϕ = min
tree dec. T of G

maxYi∈T |Yi| − 1

A.2.2 Dynamic programming solution578

We now address the computation of the partition function [15] from 2 through a dynamic579

programming procedure on the nice tree decomposition of GT .580

It is a bottom-up dynamic procedure (from leaves to the root) that relies on the following581

different equations depending on the type of the node Yi in the nice tree decomposition T .582

We denote :583

The set of neighborhood thresholds: F =
(
T L, T E , T G

)
584

Mi, partial mapping at node Yi of T .585

The separator node of Yi, sep(Yi) chosen as the first element of the set S:

S = {x ∈ Yi | x /∈ Y ′ with Y ′ a children of Yi}

We can point out that, with a nice tree decomposition, there exists only a unique choice586

for this node and the set S is reduced to a singleton.587

Given a partial mapping Mi, we introduce the following Boolean condition to map each
contribution to a single bag and avoid multiple computations of it:

C(u1, u2, Yi, Mi) = (u1 = sep(Yi) ∩Mi(u2) ̸= ∅) ∪ (u2 = sep(Yi) ∩Mi(u1) ̸= ∅)

From this we introduce ∆(·) to denote the global contribution

∆(M ′
i , GT , Yi, T F ) =

{
dF

GT
(u1, u2, M ′

i) | C(u1, u2, Yi, M ′
i) is True

}
We fill the dynamic programming table P that stores the partial computation of the partition588

function with equations:589

Forget Node Yi with child Y ′:

P [Yi; Mi] = P [Y ′; Mi]

Introduction Node, creating vertex s := sep(Yi) ∈ VP having child Y ′ :

P [Yi; Mi] =
∑

v∈D(s|Mi)

P [Y ′; Mi ∪ (s← v)]×
∏

T F∈F
δ∈∆(Mi∪(s←v),GT ,Yi,T F )

e−µ.w(T F ).δ

where D(v |M) denotes the set of admissible mappings for v ∈ VP , consistent with prior
assignment M , such that:

D(v |M) :=


VT if M = ∅⋂

u∈M
s.t. u≺v

{x ∈ VT |M(u) ≺ x}
⋂

u∈M
s.t. v≺u

{x ∈ VT | x ≺M(u)} otherwise.
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Join Node :
P [Yi; Mi] =

∏
Y ′∈children(Yi)

P [Y ′; Mi]

The backtracking step to retrieve the value of probability for each graph (and so the whole590

Boltzmann distribution as introduced in 2) uses the same type of equations but going from591

top to bottom: a number is drawn at each node to know if we have to add a value for current592

mapping, given the partial partition function computed at each step of the forward procedure.593

Both the forward and backward steps are currently known procedures that have been studied594

and automatized in a framework named Infrared. [33], which has the advantage to be quite595

permissive about the definition of the neighborhood cumulative differences.596

A.3 Choice on technical parameters597

For the choice of the radius R for creating slices of target graph GT , given an extracted598

graph G from GT centered in nucleotide c, we first defined R(G) = minj∈GGEO(j, c). To be599

exhaustive with our search, we must ensure that every G from GT is extracted with a radius600

at least equals to R(GP ) + Dgap as it ensures that we have enough “space" to make GP fit601

in G even if some gaps occur. It is due to these gaps that we need to add Dgap in R. It602

embodies the specific case where the gap would have increased the length of the motif to603

search in GT in a single direction by putting gaps one after the other. Due to the rarity of604

this case, we choose, in the tests, to use a smaller radius equal to R(GP ) + Dgap
4 . The only605

taken risk here is to miss some patterns, but it is more convenient to favor time convergence606

as the pathological case on gaps evoked above is not one that we would like to target.607

We also choose to use a timeout equal to 2000 seconds for the convergence of our algorithm608

on each extracted graph. Here again, the only risk is to miss some additional patterns.609

Nonetheless, all these limitations only mean that our current results can probably be slightly610

better regarding expressiveness, which means that somebody with more computational611

resources could use this tool and wait for even better performances.612

A.4 Time results on Narval and Beluga clusters for FuzzTree613

For this paper, computations were done on the Narval cluster and the Beluga cluster of the614

Digital Research Alliance of Canada. Each used node on Narval is made of 64 cores with 2615

CPUs AMD Rome 7532 @ 2.40 GHz. Each used node on Beluga is made of 40 cores with 2616

CPUs Intel Gold 6148 Skylake @ 2.4 GHz. Multiprocessing was used simply by separating617

the computations by chains of the same RNA and next, when relevant, by slices identified in618

these RNA chains.619

Some time results for computation of the FuzzTree method, by requesting one motif620

on each RNA chain where Kink-Turns are known, are available in Fig. 12. The time621

of computation is large but it is something expected with the XP theoretical complexity.622

However, one can notice that in practice the treewidth of the selected pattern is equal623

to 2 which allows a complexity in O
(
n3)

. No true time discrepancy appears between the624

computation without near edges and the one with. On large graphs, due to the slicing, the625

time of computation is reduced, but such reduction is not perfect as slicing computation is626

still quite redundant: multiple graphs cover sometimes the same portion of the Kink-Turn.627
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Figure 12 Time graph of the FuzzTree method on each group of studied RNA chains.
On the Beluga cluster, computations were done on 1 processor for small RNAs (less than 500
nucleotides, which corresponds to the three first graphs) and on 40 processors for large RNAs (more
than 500 nucleotides, which corresponds to the fourth graph). In that case, the depicted time is the
sum of each time consumed for each processor.
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