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Abstract11

Motivation: Recurrent substructures in RNA, known as 3D motifs, consist of networks of base12

pair interactions and are critical to understanding the relationship between structure and function.13

Their structure is naturally expressed as a graph which has led to many graph-based algorithms to14

automatically catalog identical motifs found in 3D structures. Yet, due to the complexity of the15

problem, state-of-the-art methods are often optimized to find exact matches, limiting the search to16

a subset of potential solutions, or do not allow explicit control over the desired variability.17

Results: We developed FuzzTree, a method able to efficiently sample subgraphs in an RNA structure18

that lie in a close neighborhood of a requested motif. It is the first method that allows explicit control19

over (1) the admissible geometric variability in the interactions, (2) the number of missing edges,20

and (3) introduction of discontinuities in the backbone given close distances in the 3D structure.21

Our tool relies on a multidimensional Boltzmann sampling procedure with complexity parameterized22

by the treewidth of the requested motif. We applied our method to the well-known internal loop23

Kink-Turn motif, which can be divided into 12 subgroups. Given only the graph representing the24

main Kink-Turn subgroup, FuzzTree retrieved over 3/4 of all kink-turns. We also highlight two25

occurrences of new sampled patterns. Our tool is available as free software and can be customized26

for different parameters and types of graphs.27
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1 Introduction35

RNAs’ essential regulatory and catalytic roles in cellular processes can largely be attributed36

to the intriguing and highly versatile nature of their structures [8, 5]. The structure37

of ncRNAs is inherently modular, with distinct structural domains (loops) divided by38

stems of rigid canonical bonds, often responsible for their unique functions [19]. This39

modular architecture has been used for advancements in structure prediction [10] and rational40

design [11]. Consequently, the characterization of ncRNA structure and identification of41

structural modules have become critical in the pursuit of understanding their diverse functions42

and exploiting them for future applications.43
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?:2 Exploring the natural fuzziness of RNA non-canonical geometries

Many approaches have been developed to detect and classify conserved modules. These44

classifications differ in the scale adopted to detect and define a motif: RNA3DMotifsAtlas [25]45

computes similarity and finds motifs at the atomic level. A drawback of such a method is46

the computation time, which restrains comparisons between loops, but the granularity allows47

capturing a certain level of diversity by omitting bulging-out nucleotides. RNA Bricks [6]48

and RAG3D [32] abstract loops and hairpins as unitary elements. At an intermediate layer,49

CaRNAval [26, 28] models RNA as graphs where vertices are nucleotides, and edges are the50

sequence backbone phosphodiester bonds or non-covalent interactions that can be classified51

following the Leontis-Westhof (LW) annotations in 12 different geometric families [20, 29].52

Such an approach allows specific graph algorithms to discover much larger and complex53

modules than by doing atomic computations while retrieving the known structural modules,54

but will not be able to identify natural variations since it relies on detecting exact matches.55

From the algorithmic point of view the treewidth tw is a natural parameter. In 1995, Alon56

et al [1] proposed an XP algorithm in O
(
2|VP |ntw(GP )+1)

using the color-coding technique.57

It was shown more generally that only very specific constraints on the input allow us to58

have algorithms tractable for bounded treewidths [22]. The problem is not fixed-parameter59

tractable when parameterized only by the treewidth, and it requires other parameters to60

become tractable. For instance, some approaches are parameterized both by tw (GP ) and61

|GP |, and conversely, others are parameterized by tw (GT ) and the maximum degree of62

GT [22].63

However there can be an exponential number of variants of a specific pattern so different64

specialized algorithms allowing missing nodes and edges [24, 12], or requiring only labels65

to be in a neighborhood [17], have been developed. Such simplifications forget about the66

precise locations of interactions, which is information that we would like to preserve with67

RNA structures. A recent approach specific to RNA graph fuzziness uses Relational Graph68

Convolutional Network to embed the graphs in a vector space, allowing fast computation [23].69

Their embedding is based on the nature of base pairs or their isostericity without taking70

into account gaps or missing edges. In addition,due to the nature of the method, there71

is no explicit control on the sampled neighborhoods, and thresholds need to be calibrated72

depending on the context.73

In this paper, we introduce FuzzTree, a multidimensional Boltzmann graph sampling74

procedure able to sample variants of a motif in a known RNA structure. We allow weighting75

and control of three key geometric features in the variants: (1) the geometric disruption of76

mismatched edges, (2) missing edges still constrained by their distance in the 3D structure,77

and (3) breaks in the backbone also constrained by their distance in the 3D structure. We78

propose a parameterized bound on the complexity of the algorithm based on the treewidth79

of the searched motif. We evaluate our method on the well-known interior loop Kink-Turn80

motif [18] characterized by its sharp bend and clustered into 12 different groups in the81

RNA3DMotifsAtlas [25]. We show that, from the signature representation of the main82

subgroup, we sample in 88% of RNAs all their known Kink-Turns. We also retrieve two83

previously un-annotated loops with a characteristic sharp bend.84

2 Method85

2.1 RNA as a graph and problem statement86

We define an RNA structure as a graph G such that its nucleotides are encoded as vertices87

V , and the interactions between the nucleotides are encoded as directed edges E ⊂ V × V ,88

with labels L (e). Interactions may represent backbone connectivity (phosphodiester bonds),89
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or any of the 12 base-pair types defined by the Leontis-Westhof (LW) nomenclature [29].90

Each type specifies an interacting face (Watson-Crick ◦, Hoogsteen □, Sugar ▷) for both91

nucleotides, along with an orientation cis (filled) or trans (empty). Note that the geometry92

of the RNA structure is encoded in the edge labels, and our representation does not depend93

on the sequence. We show in Fig. 1 a Kink-Turn motif, represented as a graph with labeled94

edges.95

Figure 1 Kink-turn structure On the left the 3D structure of a Kink-Turn in PDB 3RW6. On
the right its representation as a graph of its base pair interactions, the backbone connections are
represented as black arrowed edges.

We rewrite E, the set of edges as E = B ⊔B, composed of two distinct sets: B, the set96

of edges that are backbone interactions and B,the edges for LW interactions.97

The classic Subgraph Isomorphism Problem (SIP) identifies all occurrences of a pattern98

GP = (VP , EP ) inside a target graph GT = (VT , ET ). In our case, GP is a motif and GT is99

an entire RNA structure. Formally, the problem can be defined as:100

▶ Problem 1. Subgraph Isomorphism Problem (SIP)101

Input: A pattern graph GP = (VP , EP ), a target graph GT = (VT , ET )102

Output: A mapping M : VP → VT such that103

∀u, v ∈ VP
2, M (u) = M (v)→ u = v (Mapping Injectivity)104

∀u, v ∈ EP , (M(u), M(v)) ∈ ET ⇒ L ((u, v)) = L ((M (u) , M (v))) (Label Compatibility)105

∀ (u, v) ∈ EP , (M (u) , M (v)) ∈ ET (No Missing Edge)106

or ∅ if no such mapping exists.107

We now generalize the problem to embrace the natural diversity of RNA motifs in108

structures. More precisely, we are interested in sampling graph occurrences that are in the109

geometric neighborhood of a core motif. To do so, we allow the motif to be deformed by110

three different biologically relevant edit operations detailed below.111

Each is additive and has its own neighborhood threshold and a corresponding difference112

function as depicted in table 1:113

T L represents how much we allow the edge label, the type of the canonical or non-canonical114

bond, to be modified. It measures the geometric difference between two interactions (see115

Sec. 2.3.1). We denote the weights of edits induced by one changing edge as DL;116

T E corresponds to the maximum number of edges/base pairs within the pattern structure117

that can be lost (see Sec. 2.3.2);118

T G is the maximum allowed distance when introducing a backbone discontinuity, a new119

gap. As insertions alter the distance between bonds, T G regulates here the maximum120

sum over these shifts (see Sec. 2.3.3). We denote the weight of edits induced by the121

introduced gap as DG.122

WABI 2023
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Two additional parameters capture the geometric distance GEO between the nucle-123

otides to constrain admissible solutions. First, nucleotides mapped to the nodes of a missing124

edge have to be at most at a distance of Dedge. Second, we enforce a maximal distance Dgap125

between the nucleotide on both side of an introduced gap. These values correspond to the126

phosphodiester atoms distances between the nucleotides. Setting these distances to fixed127

values ensures a much faster convergence of the algorithm.128

We define a path as a sequence of more than 3 nucleotides connected through backbone
edges. The set P of paths associated with a target graph GT =

(
VT , ET = BT ⊔BT

)
is

defined as:
P =

⋃
k∈N,k⩾3

{(p0, ..., pk) | ∀i ∈ J0, k − 1K, (pi, pi+1) ∈ BT }

With this definition, gaps are just paths in P with specific restrictions on length and129

composition.130

A mapping M lying in a relevant neighborhood of a pattern graph is solution to a problem131

that we call the Fuzzy Subgraph Isomorphism Problem (FSIP). M has to respect132

the five following conditions: The mapping injectivity condition enforces each pattern133

node to map to a different node in the target. The label compatibility controls how much134

the cumulative of geometric differences is allowed between pattern and matched edges (see135

Sec. 2.3.1). The missing edge limitation ensures that missing edges are not backbones and136

have limitations on their geometric lengths and numbers over the mapping. (see Sec. 2.3.2)137

The path size limitation controls how large the cumulative of gaps geometric lengths can138

be. (see Sec. 2.3.3) The no missing backbone path condition ensures limitation on the139

geometric length of individual gaps, but also that the gaps are composed only of unmapped140

nodes in the target graphs to the exclusion of its start and end points that should be mapped141

nodes (see Sec. 2.3.3)142

We can now define formally the FSIP as:143

▶ Problem 2. Fuzzy Subgraph Isomorphism Problem (FSIP)144

Input: A pattern graph GP =
(
VP , EP = BP ⊔BP

)
, a target graph GT =

(
VT , ET = BT ⊔BT

)
145

and neighborhood thresholds (T L, T E, T G, Dedge, Dgap)146

Output: A mapping M : VP → VT such that147

∀u, v ∈ VP
2, M (u) = M (v)→ u = v (mapping injectivity)148 ∑

(u,v)∈B

DL (L (u, v) , L (M (u) , M (v))) ⩽ T L (label compatibility)149 (
|B| ⩽ T E

)
∩

(
∀(u, v) ∈ B, GEO (M(u), M(v))

)
⩽ Dedge (missing edges limitation)150 ∑

(p0,...,pk)∈P

DG(p0, pk) ⩽ T G (path size limitation)151

∀ (u, v) ∈ B, ∃(p0, p1, p2, ..., pk) ∈ P such that (no missing backbone path)152

p0 = M (u) , pk = M (v)153

GEO (p0, pk) ⩽ Dgap154

∀i ∈ J1, k − 1K,∄a ∈ VT , pi = M (a)155

or ∅ if no such mapping exists.156

Subsequently, we will denote by neighborhoodGP
(GT ) all the occurrences of the desired157

motif pattern GP (in its geometric neighborhood) in our RNA graph target GT as defined158

by the previous FSIP mapping.159
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Threshold T F Difference dF Fuzzy mapping M of GP found in GT

T L Isostericity ISO
u

u'
R

A

R

A

PG TM in G

I SO (u,u') ≤ TL

T E Missing edges number
R

A

R

A

PG TM in G

missing edges number = 1≤ TE

GEO (n1

n1

,n2

n2

) ≤Dedge

T G Geometric GEO from
3D structure

PG TM in G

R

A
N

R
N

R

A

R

GEO(n1,n3) +GEO (n3,n5) ≤ TG

GEO (n1,n3) ≤Dgap

GEO (n3,n5) ≤Dgap

n

n3

5
n4

n1

n2

Table 1 Neighborhood thresholds Each measure has a threshold over the sum of differences
over all edges in the graph pattern.

2.2 Sampling as an efficient alternative160

Even with fixed neighborhood thresholds, FSIP remains a NP-complete problem. Indeed,161

FSIP generalizes the Subgraph Isomorphism Problem, yet remains in NP since the various162

conditions satisfied by a mapping can be verified in polynomial time.163

Focusing on neighborhoodGP
(GT ) is not an easy task as naive methods would describe164

both this set and its complementary. In the clique worst case, it consists to explore
(|GT |
|GP |

)
165

graphs. Even the simple exploration of neighborhoodGP
(GT ) can be tedious, in particular,166

when neighborhood thresholds are quite large, which is often the case for label and gap167

thresholds. Furthermore, due to the nature of the neighborhoods, numerous instances a few168

nucleotides apart will often be found. It is relevant in term of neighborhoods, but, in term of169

biology, they represent all the same RNA portion and the same underlying geometry and170

should not be distinguished: a single representative will be enough. It oriented us toward171

sampling, to identify sets of candidate – ideally diverse – subgraphs inside the target graph172

GT that are at a reasonable “ distance” from the interesting motif GP .173

This shift in paradigm builds on recent advances in Multidimensional Boltzmann dis-174

tributions and sampling [2, 14]. Generally, a Boltzmann distribution is such that the175

probability of any possible outcome G depends on its (pseudo-)energy E176

P (G) = e−βE(G)

Z
where Z =

∑
G′

e−βE(G) (1)177

where β is a real number, akin to an inverse temperature. A Multidimensional
Boltzmann distribution (MBD) is a a special type of Boltzmann distribution, where the

WABI 2023
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energy is a weighted combination over a collection of features {Fi} of interest, such that

E (G) = w1 × F1(G) + w2 × F2(G) + . . .

where w1, w2 . . . are real-valued weights. Weights can be used to steer the sampling towards178

regions of interest. They can also be learned, through convex optimization, to match179

the expectations of F1, F2 . . . to user-specified values. Moreover, sampling with a pseudo-180

temperature β → ∞ gracefully specializes into a uniform random generation of outcomes181

achieving optimal (i.e. minimal) value for E.182

In our case, an outcome is a graph G ⊂ GT , such as G is the image of mapping M and183

we have 3 features, one for each neighborhood. Given a specific neighborhood threshold184

T F , its relative feature F measures how much the difference dF deviate from a given center185

T F∗. For instance, T F
∗ can be chosen equals to 0 if we want to sample mostly G with186

no fuzziness or equals to T F /2, if we want to sample them with average fuzziness. More187

details on this choice of value and more generally about Boltzmann sampling is available at188

part A.1 from supplementary material. MBD is well-suited to the sampling that we want to189

make: the exponential decrease of the probability with the features gives low probabilities190

to the graphs that are far in neighborhood from GP , which allows to characterise well191

neighborhoodGP
(GT ). In particular, we can define F such that it takes a value equals192

to +∞ when the corresponding neighborhood threshold T F is not respected by mapping193

M , forbidding simply this mapping M to be sampled. Additionally, the Multidimensional194

character of the distribution allows to take into account the 3 neighborhoods on labels, edges195

and gaps at the same time.196

A general framework called InfraRed [31], initially introduced in the context of RNA197

design [14], can be used for generate efficiently in a parameterized the MBD. It automatically198

processes constraints and elements of the scoring into a graph, decomposes it into a Tree199

Decomposition, and generates automatically the bottom-up dynamic programming sampling200

procedures. More details on the Tree Decomposition and the dynamic programming used in201

InfraRed can be found in Supplementary Section A.2.202

2.3 Neighborhood difference description203

Our goal is to be able to retrieve from a general pattern motif all natural occurrences and their204

variability. We can observe in well known motif families that some bases change, some can205

be added or removed. For instance, the graph pattern GP on figure 2 is a Kink-Turn whose206

occurrences in the same sub-family can have up to four missing edges. Others sub-family207

of Kink-Turn motifs can have differences in bond types, additional interactions, or even208

gaps induced by additional nucleotides. We will define difference functions that will be the209

features in the MB distribution and will restrain the samples to a “reasonable” neighborhood210

of the pattern GP that can be explicitly defined.211

For any feature F (here F ∈ {L, E, G}, where L are label changes, E missing edges, and212

G new gaps) the Neighborhood cumulative difference DF quantifies how distant a213

mapping is relatively to a given neighborhood threshold T F that cannot be exceeded.214

Formally, we define a neighborhood cumulative difference DF relatively to a neighborhood215

threshold T F as:216

▶ Definition 1. Neighborhood cumulative difference / neighborhood difference Given a pattern
graph GP = (VP , EP ), a target graph GT = (VT , ET ) and a mapping M , a neighborhood
cumulative difference is a function DF relatively to a neighborhood threshold T F that act as
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G
 
   P

Part of 
   GT1

Part of 
   GT2

Figure 2 Kink-turn signature and targets On the left, signature graph of the Kink-Turn
IL_29549.9 family and our search pattern. On the middle and on the left, mappings that were
missed during the search for the pattern. GT 1 due to the same nucleotide merging the end of a cSS
and a cWW. GT 2 due to its too large difference.

a wrapper around dF
GT

:

DF (GP , GT , M) =
∑

(u,v)∈EP

dF
GT

(u, v, M)

Where dF
GT

(u, v, M), the neighborhood difference relative to GT is a function that measures,217

relatively to F , how “different” are the edges in the pattern ((u, v) ∈ GP ) from the edges in218

the mapping ((M(u), M(v)) ∈ GT ). How the difference is measured depends on the feature219

as described below.220

Neighborhood cumulative differences will serve in the Boltzmann distribution to quantify221

each type of edit. Due to the additivity of these deformations, the neighborhood cumulative222

differences are computed over all edges in the pattern and its equivalent in the mapping.223

While our neighborhood cumulative differences are defined relatively to the edges of GP here,224

they can be easily defined on nodes should novel sequence-dependant features be included.225

We will now discuss in details the 3 sources of operations and their neighborhood cumulative226

difference. A summary is shown in Table 1.227

2.3.1 The label difference228

The isodiscrepancy index [29] quantifies the geometrically different base pair families and229

provide values measuring three terms: (1) the difference of intra-base pair C1’–C1’ distances,230

(2) after aligning one base, the inter-base pair C1’–C1’ distance between the C1’ atoms of the231

second bases of the base pairs (3) The angle on an axis perpendicular to the base pair plane232

required to superpose the second bases. This isostericity measure is only defined between233

the 12 canonical and non canonical base pairing families (BPFs) which will be named as:234

BPF (i) ∀i ∈ J1, 12K.235

Inter family variations are frequent and therefore the average isodiscrepancy of a family236

to itself is not 0. Because we use this value to account for the discrepancy between families237

and assume that there should be no cost if there is no change in the interaction type, define238

the ISO difference between two families as:239

∀ (BPF (i) , BPF (j)) , ISO (BPF (i) , BPF (j)) =
isodiscrepancy (BPF (i) , BPF (j))− isodiscrepancy (BPF (i) , BPF (i))240

WABI 2023
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A

C

R

G A
G

G

A
G

Y1

2

3 4 5 6

7
8

9

10

PG

A

C
R

G A
G

G

A
G

Y
A

C
R

G A
G

G

A
G

Y

A

C

R

G

A

G

G

A

G

Y

CG

CG

A
G

G

Y

A

G Y

1 2

3 4 5 6

7
8

9

10

T             P

TG

Mapping M found in G  for G

DL (GP ,GT ,M ) = dLGT
(6,7,M ) +dLGT

(5,8,M ) +0
DL (GP ,GT ,M ) = I SO ( , ) + I SO ( , ) +0
DL (GP ,GT ,M ) = 11.3+8.2= 19.5

Figure 3 Label difference Computation of the label difference on a mapping between a motif
GP and an RNA target graph GT . Label difference is computed using the isostericity ISO to
account for geometric difference between bounds as described in [29].

We now compute the label difference DL relative to the neighborhood threshold T L as a
neighborhood cumulative difference entirely defined by the sum over each pattern edge of its
mapping neighborhood difference dL

GT
equals to

dL
GT

(u, v, M) = ISO (L (u, v) , L (M(u), M(v))) ,

as shown in Fig. 3.241

2.3.2 The edge difference242

While the previous section deals with how to incorporate edges changing their type, that243

is to say their interaction geometry, we must also consider that some of these base pair244

interactions might simply be missing due to the noisiness of the experiments, the accuracy245

of the annotation, or the flexibility of the module. A natural way to account for missing246

edges is to count them and enforce an upper bound on the amount. Doing so would omit247

important geometric information that we have available in the 3D structure. An interaction248

is missing, but we still want to constraint the physical distance between the mapped nodes of249

the missing edge. Indeed, with no limitation on that distance, the partner node of a missing250

edge could be virtually anywhere in the target structure. This is undesirable since we are251

interested in patterns matching the global conformation. It is also highly inefficient in terms252

of computation.253

Therefore, we will accept mappings of the extremities of an edge in the pattern to nodes254

u, v that are at most at a set threshold distance Dedge computed from the 3D structure255

(i.e. GEO(u, v) < Dedge). Setting a weight of ∞ to mappings outside the threshold allows256

the sampling to simply reject such instances. The total edge difference DE relative to257

neighborhood threshold T E , is a neighborhood cumulative difference entirely defined by the258

sum over dE
GT

with values defined as followed and shown in Fig/ 4:259

dE
GT

(u, v, M) =


∞ if GEO (M (u) , M (v)) > Dedge

and (M (u) , M (v)) /∈ ET

1− 1(M(u),M(v))∈ET
otherwise

260

2.3.3 The gap difference261

A frequent type of natural variability in a motif family is the insertion of bulging out262

nucleotides in what would be a continuous sequence in the pattern. These insertions can be263
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8

9
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1

2

3 4 5 6

7
8

9
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T             P

PG
TG

Mapping M found in G  for G

DE (GP ,GT ,M ) = 2
1

DE (GP ,GT ,M ) = dE
GT

(1,10

0

,M )
dE

GT
(5 + 

+ 
,8,M )

Figure 4 Edge difference Computation of the edge difference on a mapping between a motif
GP and an RNA target graph GT . We assume here that Dedge >> max (GEO(1, 10), GEO(5, 8))

A

C

G

G

A

3.1 A

1.5 A

1 A
1.5 A

3.5 A

1 A

2.5 A
O

O

3.5 A
O

O

2 A
O

O

O

O

O

O

1 A

2.5 A
O

O

R
A

A

C

G

G

A

3.1 A

1.5 A

1 A
1.5 A

3.5 A

1 A

2.5 A
O

O

O

O

O

O

O

1 A
O

R
A

Origin GT G  with false edgesT

5'

5'

3'

3'

Backbone from 5' to 3'
Labeled base pair

Backbone from 5' to 3'
Labeled base pair
False edge

No backbone 
connection

       Add False edges 
  between u and v when
                               = 4 A  (u, v) < D

Figure 5 False edges Addition of False edges to account for gaps. False edges are added only
when distance are below Dgap and when both nucleotides are fully connected by backbone edges. For
instance here, we add no false edge between C and A at the bottom of GT as this two nucleotides
are not connected by a full path of backbones.

of different size, but we require that they do not modify (too much) the local structure. To264

take arbitrary insertions into account we introduce false edges between any two nucleotides265

present on the same backbone that are at a distance below Dgap. An illustration of this266

process is shown in Fig. 5.267

An additional difference compared to the missing interaction edges of the previous section,268

is how we sum the total neighborhood difference DG. We accumulate the total physical269

distance (i.e. GEO) between the nodes connected through the false edges. This allows an270

arbitrary large structure to bulge out without the need to verify or specify admissible lengths,271

as long as the nucleotides around this inserted gap are close geometrically as illustrated in272

Fig. 6.273

Formally, the gap difference DG relative to neighborhood threshold T G is a neighborhood
cumulative difference over all edges in the matching entirely defined by the sum of the
neighborhood differences dG

GT
:

dG
GT

(u, v, M) =


GEO (M (u) , M (v)) if (M (u) , M (v)) is

a “False Edge” in ET

0 otherwise
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Figure 6 Gap difference Computation of gap difference on a mapping between a motif GP and
an RNA target graph GT . We remind that nucleotides labels are not taken into account.

A limitation of this approach is that we cannot detect the deletion of nodes from the274

pattern. A workaround is to remove all the nodes in the pattern graph that do directly275

participate in a base pair interaction, and reconnect the disconnected backbones. Using276

the new pattern with a large gap threshold G would allow to retrieve the original motif277

neighborhood at the cost of performance, and to introduce more spurious matches.278

2.4 Algorithm and complexity279

Our method is based on Infrared [14, 31], a declarative framework which automatically280

generates a dynamic programming procedure for MBD sampling, based on a nice tree281

decomposition (TD). It precomputes the partition function of the MBD through a bottom-282

up recursion, and uses local contributions to perform an exact sampling within the MBD283

distribution. Within this framework, a combinatorial problem is abstracted as a set of284

variables {Xi}i, each assigned an integer value within a bounded domain. Assignments285

must respect various constraints expressed as functions {Ci}i, each defined over a subset of286

variables. Similarly, feature functions {Fj}j associate real-valued contributions to subsets of287

variables, and are summed to represent the pseudo-energy of an assignment.288

In this setting, we abstract each node i of the graph pattern GP as a variable Xi,289

taking value in J1, nK. The value of Xi represents the mapping of node i in the graph290

GT = (VT , ET ) with |VP | = k and |VT | = n. Remark that all deviations from the pattern291

defined in Sections 2.3.1 through 2.3.3, can be expressed locally as sums on the edges of the292

pattern graph. It follows that the dependencies dep implied by our cumulative differences are293

only binary, and restricted to pairs sharing an edge in GP : dep = {(Xi, Xj) | (i, j) ∈ EP } .294

The graph of constraints is thus reducible to the input pattern graph GP , as shown in295

Fig. 7. In mappings sampled with Infrared, a neighborhood threshold T F act as a global296

property over the mapping, and can only be computed afterward. Sampling is thus followed297

by a simple rejection step, in which samples that exceed a neighborhood threshold are298

rejected. Asymptotically, such rejection will not be impactful with the T F that can be299

chosen independantly from |GP | and |GT |. Due to the neighborhood threshold T F being a300

global property over the mapping, the sampling is followed by a rejection step for samples301

that exceed a neighborhood threshold. Asymptotically, such rejection will at worst induce a302

constant factor with T F chosen independantly from |GP | and |GT |.303

▶ Theorem 1. The random generation of t Boltzmann-distributed (1) solutions before304

rejection of FSIP can be done in time O
(
n k t + k n(ϕ+2)), where ϕ is the treewidth of the305

pattern GP .306



T. Boury, Y. Ponty and V. Reinharz ?:11

A

C

G

G

A

R
A

Origin GP

Backbone from 5' to 3'
Labeled base pair

A

C

G

G

A

R
A

G

A

A

Origin G  T

C

G

1

2

3

4 5

6
7

8

9
10

11

12

X3

X1 X2

X4

X5

X6

X7

Constraints graph C

X2 X4label(  ,  ) = tSS

X2 X6label( , ) = tHS

X7label( ,  ) = cWWX1

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Possible values for variables 
     with informative links

Instance of Subgraph 
Isomorphism Problem

Instance abstraction in
   Infrared framework

Figure 7 Framework abstraction Interfacing Infrared by considering GP as the Infrared
graph of constraints C and all nodes of GT as values that can be taken by the variables in C.

This complexity directly follows from the complexity of the algorithm [14] underlying307

Infrared for a graph G = (V, E). Restricted to binary constraints/features associated308

with (a subset of) E, the computation of the partition function can be performed in time309

O((|E|+ |V |)×∆ϕ+1), where ∆ is the size of the assignment domain for individual variables,310

and ϕ is the treewidth of G. A stochastic backtrack follows, leading to the generation of311

t Boltzmann-distributed assignments in time O(|V |∆ t). The complexity stated above is312

obtained by observing that |EP | ∈ Θ(k2), that ∆ ∈ Θ(n) and k ⩽ n. We conclude by noting313

that preprocessing, including computations of geometrical distances and augmentation of314

GT graph, can be performed in negligible O(n2) time and space, while an optimal tree315

decomposition can be theoretically obtained in time only super polynomial in ϕ [3].316

A summary of the complexity and capacity of our FuzzTree method is depicted in table 2.317

In term of parameterized complexity [9], the FuzzTree method is XP in the treewidth of the318

pattern graph, both in time and in space. It is a progress compared to VF2 [7], which is319

indeed implemented and efficient in practise due to the profusion of lookahead rules but has320

a worst case time complexity similar to O (nn). In practise, VF2 becomes costly with dense321

graphs, even in its most modern versions. [4, 16] Furthermore, we are able to compete with322

the bound from the Color-Coding [1] technique by improving it in time and space 2O(k) is323

replaced by kn ⩽ n2 in our bounds, which allow to get rid of k as parameter to restrict it to324

simply to the treewidth.325

In addition, our method, even if tuned for RNAs, supports a more general version of the326

usual Subgraph Isomorphism Problem by handling at the same time multiple labels on edges,327

directed graphs and can integrate node labels. The latter has not been implemented but can328

be added, as with label on edges, without complexity overhead.329
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Method Name Color-Coding VF2 VeRNAl FuzzTree

Year 1995 2004 (updated up
to 2018) 2021 2022

Method Tree coloring DFS with search
space reduction

Relational Graph
Convolution Net-
work

Sampling tech-
nique

Time complexity 2O(k)nϕ+1log (n) O (deg (GT )n) Exponential O
(
knt + knϕ+2)

Space complexity 2O(k)nϕ+1 O (n) Exponential O
(
nϕ+2)

Supported graph Directed and undir-
ected Undirected Directed and undir-

ected
Directed and undir-
ected

Supported labels One label by edge One label by node
Any number of la-
bels on edges and
nodes

Any number of la-
bels on edges and
nodes

Type of found
neighborhoods None None Isostericity related

Exact bound on
isostericity, miss-
ing edge and miss-
ing gap.

Implementation? No Yes Yes Yes
Table 2 Complexity Comparison of state of the art methods for the Subgraph Isomorphism

Problem. With ϕ = tw (GP ), n = |VT |, and t the number of samples.

3 Results330

3.1 Computations331

The larger target graphs (of more than 500 nucleotides) were split into overlapping voxels to
increase computational efficiency. We extracted |GT | graphs centered in each nucleotides c

at a given radius R from c. For an extracted graph G, centered on c, we have :

∀j ∈ G, R (G) = GEO (j, c) ⩽ R

Choices of technical parameters, such as the value for R, hardware and computation times332

are discussed in Supp. Mat. A.4.333

3.2 Data: the Kink-Turn group334

All interactions in the RNA structures are provided by FR3D [27]. We also use interactions335

annotated as “near”. The Kink-Turn is an important RNA structural motif common in duplex336

RNA that creates a sharp axial bend, enabling crucial tertiary interactions and binding [18].337

The Kink-Turn has been shown to appear in multitudes of contexts through computational338

and experimental methods [15, 21]. As of January 2023 there were 72 instances of the339

Kink-Turn RNA annotated in the RNA3DMotifAtlas [25]. They span 46 different RNAs and340

are divided in 12 different families with different lengths, between 9 and 23 nucleotides and341

base pair signature. Members of the same family also differ in term of number of nucleotides342

and pairing.343

The Kink-Turn family IL_29549.9 in RNA3DMotifsAtlas has the most occurrences (32)344

and its signature graph shown in Fig. 2 is used as the pattern graph GP for the subsequent345

sampling. We explore more in depth the distances between all instances and this core graph346

in Supp. Mat. 11.347
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structures containing Kink-Turns.

3.2.1 Results348

We use the parameters shown in table 3 with GP in Fig. 2 to sample at least 1000 graphs in349

each of the 46 RNA structures. We also introduce a bias in the Boltzmann distribution in350

order to favor values of neighborhood thresholds equal to T F

2 (instead of 0) to favor slightly351

fuzzy mappings more often than exact mappings or extremely fuzzy ones. This choice is352

motivated by the focus on the neighborhood more than on the exact mappings for which lots353

of techniques already exist.354

Parameter T L T E T G Dedge Dgap R nb_samples
Used value 20.0 4 20.0 5.0 10.0 R (GP ) + Dgap

4 1000
Relevant range [0, 50] J0, 6K [0, 50] [5, 10] [5, 20] R (GP ) + [ Dgap

4 , Dgap]
Table 3 Parameters Used parameters and relevant range for FuzzTree computation on the

Kink-Turn group.

Our sampling returns sub-graphs of the target graphs GT . Using a python implementation355

of VF2 [13, 7] we annotate in the 46 RNAs graphs all nucleotides in any of the mappings.356

Each of the connected components in the 46 RNAs becomes a hit. The True Positives (TP)357

are these covering a known Kink-Turn, the False Positives (FP) are the other ones. We show358

the sensitivity (TP/P) and specificity (1 - FP/(FP + TP)) per RNA structure in Fig. 8.359

In 38 out of the 46 RNAs a sensitivity of 1 is achieved, all Kink-Turns are covered360

in graphs sampled by our method. The missing Kink-Turns fall in two categories. First,361

too many missing edges : with only 6 Leontis-Westhof interactions in GT , allowing more362

missing edges would match any interaction in the targets. Second, backbone connections363

replaced by Leontis-Westhof interactions, as seen on the middle of Fig. 2, is not an allowable364

transformation in our model.365

We also obtain in 33 RNAs a specificity over 75%. It indicates that even with relatively366

lax parameters, not that many other instances in comparison to the amount of known367

Kink-Turns are close to GT .368
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3.2.2 Other identified regions369

An additional 198 locations in the 46 RNAs were identified. The Kink-Turn is essentially370

an internal loop motif. We investigate if other internal loops sharing the same main 3D371

feature, a sharp bend in an interior loop, are found. Using the python library forgi [30] we372

decomposed these regions in their secondary structure elements. The majority, 125, mapped373

to regions forming multiloops. A total of 33 were covering a continuous double stranded374

regions. The angles of surrounding stems for each interior loops in the 46 RNAs (in blue) the375

identified Kink-Turns in these RNAs (red) and the other 33 elements (in green) are shown in376

Fig. 9.377

Figure 9 Angles in radiants In blue for stems around every interior loop in the 46 RNAs. In
red for the Kink-Turns identified in these RNAs. In green for the additional 33 continuous double
stranded regions.

There are 10 additional regions with angles above 1.4rad, and two of these had a sharp378

turn in their structure in un-annotated region as seen in Fig. 10. We show below their graph379

of interactions, with the cross strand stackings in orange.380

The first is in 5J7L chain DA and positions 78–86, 96–108. It overlaps an un-annotated381

motif (IL_85931.1) that covers positions 81–85, 97–101, and 103–105. The second is located382

in 7RQB, chain 1A, positions 2129–2138, 2153–2160, and is not covered or surrounded by383

any annotated motif.384

4 Conclusion385

In this paper, we introduce FuzzTree, a multidimensional Boltzmann method for sampling a386

graph pattern neighborhood in a target graph. FuzzTree defines three types of neighborhoods387

based on RNA geometric diversity, LW interaction modifications, missing edges, and breaks388

in the backbone. Each can be explicitly controlled. We show that our sampling method389

complexity is parameterized by the treewidth of the pattern graph.390

Two main limitations are inherent to our approach. Due to the intrinsic nature of391

sampling, we cannot be assured that all neighboring graphs will be reported. In itself, for392

large patterns, this is a feature since sampling allows uniform exploration of the exponentially393

growing neighborhood. By enabling per-feature biases, FuzzTree can also be calibrated to394

favor the sampling of graphs at a desired location in the neighborhood to favor specific395
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Figure 10 Other matches 5J7L on the left and 7RQB on the right. The 3D structure on the
left has IL_85931.1 highlighted in cyan, on the right each nucleotide is colored independently. In
the graphs, red nodes are matched with the pattern. Blue edges are in the RNA structure and red
ones in the pattern, indicating modifications and removal. Red dashed lines are introduced “false
edges”. Magenta dashed lines indicate stackings.

types of variants (e.g., isosteric distance of modified edges). Letting the sampling run for396

longer will also mitigate the problem. More importantly, some patterns cannot be identified,397

particularly if an LW interaction is replaced by a backbone connection. While such cases are398

rare, they do exist, and additional improvement will be needed to capture them.399

We evaluate our method on the Kink-Turn group, a well-known interior loop motif that400

induces a sharp bend in the structure and is annotated in 46 different RNA structures.401

The Kink-Turns are grouped in the RNA3DMotifAtlas into 12 different subgroups with402

varying lengths and interactions. Using only the signature graph of one subgroup, FuzzTree403

samples conformations of over 2/3 of all Kink-Turns and identifies all of them in 88% of404

RNA structures. Closer examination of the other sampled patterns reveals two previously un-405

annotated sub-structures, each with a characteristic G-A trans-Hoogsteen-sugar interaction406

and a sharp local bend.407

Future work to complement this should broaden the evaluation framework by testing408

FuzzTree on diverse RNA modules. There is also a need for new techniques to overcome409

pattern identification limitations and explore adaptive sampling strategies to dynamically410

steer the sampled neighborhood.411

While FuzzTree was developed and adapted for RNA structure modules, it highlights the412

flexibility of multidimensional Boltzmann sampling and could be applied to other biological413

networks such as protein-protein interaction networks or metabolic pathways. Addressing414

these questions and areas for future work could lead to more comprehensive insights into415

complex RNA structures and other biological networks.416
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A.1 About the sampling process517

Sampling from a Multidimensional distribution in our case can be write formally as below :518
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▶ Definition 2. Boltzmann distribution/Partition function In the Multidimensional
Boltzmann Distribution, the probability to sample graph G subgraph of GT with features
F1, .... Fm (that embody neighborhoods of GP for G) of respective weights w1, ... wm (that
we can write more simply w = (w1, ...wm)) is proportional to its energy:

PGP ,GT
(G | w) =

∏m
i=1 e−βwi.Fi(G)

Zw

where β := (RT )−1, R is the Gas constant, T the temperature in Kelvin, and Zw denotes the
partition function

Zw =
∑

G⊆GT

m∏
i=1

e−βwi.Fi(G)

We can forget about the β contribution as we can rewrite the weight as w′i = βwi with wi a519

value that is chosen or tuned by us.520

In term of sampling we want to have a sampling center T F∗ for cumulative difference DF
521

in order to obtain matching with feature and so neighborhood cumulative difference close to522

T F∗ value.523

One good choice for T F∗ can be something depending from T F such as T F /2 which is524

typically the choice that we used. It favors samplings of graphs that are not too distant in525

term of neighborhoods. In addition, we still allows exact match and we can always preprocess526

to remove false positive found graph.527

By fixing T F and so T F∗, we can tune the weight w(Fi) in order to give more “importance"
to the one that are relevant for the sampling. When a feature for a neighborhood vary greatly
between instances, it means that this neighborhood is strongly relevant to distinguish the
different matches. It gives us incentive to modify its weight accordingly. To do so, instead of
choosing weights manually, we solve the following problem:

minw

m∑
i=1
|E [Fi|w]− F ∗i |

This problem is know to be convex. We used so convex optimization method, further details528

about this problem, including the proof of convexity, are addressed in [14].529

A.2 Computation of the partition function using dynamic programming530

A.2.1 Definitions531

First, we introduce the formal definition of the treewidth, we also depict what is a nice tree532

decomposition as it allows a simpler search for the dynamic programming procedure without533

additional cost due to the fact that nice tree decomposition have at most a size n = |GT |534

▶ Definition 3. Tree Decomposition (TD)535

Given a graph G = (V, E), a tree decomposition of G is a tree T , whose nodes are bags Y1...Yt536

such that: (definition from Bodlander et al [3])537

1. V ⊂
t⋃

i=1
Yi538

2. ∀ (u, v) ∈ E,∃i ∈ J1, tK, (u ∈ Yi) ∩ (v ∈ Yi)539

3. ∀u ∈ V, {u|u ∈ Yi} is a subtree of T .540
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▶ Definition 4. Nice Tree Decomposition541

A tree decomposition T of G = (V, E) is said “nice” if each bags Yi has one of the tree542

following form :543

Introduce: Node Yi has exactly one child of index c in T and Yi = Yc ∪ {v}544

Forget: Node Yi has exactly one child of index c in T and Yc = Yi ∪ {v}545

Join: Node Yi has exactly two children of indices c1 and c2 in T and Yi = Yc1 = Yc2546

▶ Definition 5. treewidth (TW)547

The treewidth ϕ of a graph G is defined as the biggest bag of the “best" tree decomposition of
G :

ϕ = mintree dec. T of GmaxYi∈T |Yi| − 1

The tree decomposition is known to give directly a bottom-up order and a dynamic548

programming procedure that we can apply on the pattern graph to search motifs [14]. The549

only possible bottleneck appear if the treewidth is too high, but we can have a good hope550

about the size of this width when it comes to RNA graphs :551

In absence of pseudoknots, pattern graph are planar.552

RNA motifs in databases are known to have mostly treewidth below 4.553

A.2.2 Dynamic programming formula554

We now address the fact to compute the partition function from 2 through a dynamic555

programming procedure on the nice tree decomposition of GT .556

It is a bottom-up dynamic procedure (from leaves to the root) that relies on the following557

different equations depending on the type of the node Yi in the nice tree decomposition T .558

We denote :559

The set of neighborhood thresholds: F =
(
T L, T E , T G

)
560

Mi, partial mapping at node Yi of T .561

The separator node of Yi, sep (Yi) chosen as the first element of the set S:

S = {x ∈ Yi|x /∈ Y ′ with Y ′ a children of Yi}

We can point out that with a nice tree decomposition, there exists only a unique choice562

for this node and above set is reduced to a singleton.563

Given partial mapping Mi, a target graph GT , ∆ designed all the neighborhood differences564

partially assigned yet that can be assigned in current bag Yi and relative to a given565

neighborhood cumulative difference that we design here by its corresponding threshold566

T F by simplicity:567

We put the following boolean condition C (u1, u2, Yi, Mi) =568

(u1 = sep (Yi) ∩Mi (u2) ̸= ∅) ∪ (u2 = sep (Yi) ∩Mi (u1) ̸= ∅)569

And:
∆(Mi, GT , Yi, T F ) =

{
dF

GT
(u1, u2, .)|C (u1, u2, Yi, Mi) is True

}

We fill the dynamic programming table P that stores the partial computation of the570

partition function with equations:571

Forget Node Yi with child Y ′:

P [Yi; Mi] = P [Y ′; Mi]
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Introduction Node of son Y ′:

P [Yi; Mi] =
∑

v∈VT

P [Y ′; Mi ∪ (sep (Yi)← v)]

×
∏

T F∈F

∏
d∈∆(Mi,GT ,Yi,T F )

e−µw(T F ).d(Mi∪(sep(Yi)←v))

Join Node :
P [Yi; Mi] =

∏
Y ′∈children(Yi)

P [Y ′; Mi]

It an be synthesised on a single equation on all nodes as :

P [Yi; Mi] =
∑

v∈VT

∏
Y ′∈children(Yi)

P [Y ′; Mi ∪ (sep (Yi)← v)]

×
∏

T F∈F

∏
d∈∆(Mi,GT ,Yi,F )

e−µw(T F ).d(Mi∪(sep(Yi)←v))

The backtracking step to retrieve the value of probability for each graph (and so the572

whole Boltzmann distribution as introduced in 2) use the same type of equations but using573

a procedure that goes from top to bottom: a number is drawn at each node to know if574

we have to add a value for current mapping given the partial partition function that we575

computed at each steps of the forward procedure. Both the forward and backward steps576

are currently known procedures that have been studied and automatised in a framework577

named Infrared. [31] We use this framework for our implementation as it allow to be quite578

adjustable with what we named neighborhood cumulative differences and how to define them.579

To ensure the correction of the algorithm, nodes in entry for dF
GT

functions must be at580

least one time in the same bag in the tree decomposition of GP . Here, it is not a problem as,581

by definition of the tree decomposition introduced in part 3, extremities of an edge are at582

least in a same bag.583

A.3 About the cartography and how use it to choose “central" motifs584

A.3.1 Application in our Kink-Turns case585

To retrieve the diversity of the Kink-Turn group with our method, we have to request a586

specific motif that will contain all or most of others Kink-Turns in its neighborhood. We will587

call such a motif the central motif. In order to choose the best central motif for the given588

family, one can compute from any motif O the 3 neighborhood cumulative differences between589

O and all the other motifs of the studied RNA group. It gives us a 3D-cartography (one590

dimension for each neighborhood cumulative difference) from an origin O of all Kink-Turns.591

This cartography allows us to choose more efficiently our neighborhood thresholds. We depict592

first the cartography for the Kink-Turn group from the motif IL_5TBW_059 contained in593

the IL_29549.9 family. The motif can be observed on 2 and the cartography on figure 11.594

From this cartography, one can observe that a choice of threshold T L = 20 and T G = 20595

allows to cover all the Kink-Turns. Nonetheless, T E threshold is more difficult to choose.596

Indeed, on the cartography, Edge difference can reach 8. Nonetheless, IL_5TBW_059597

contains only 12 edges (2 edges are accounted by bonds as the graph is directed). With T E = 8,598

it means that a motif is recognized even if it contains only 2 bonds from IL_5TBW_059,599

which is not acceptable as it will allow to recognize a wild range of patterns that are not Kink-600

Turns. In addition, in terms of performances, incrementing T E slows down the algorithm by601
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Figure 11 Kink-Turn cartography of neighborhood cumulative differences based on
IL_5TBW_059 origin, member of IL_29549.9 family.

bringing closer the computational and theoretical time complexities. Indeed, allowing one602

additional missing edge means that each point of the algorithm’s current partial mapping603

can be enriched by adding an unmapped edge from GP with any couple of nucleotides604

from GT (i, j) with GEO (i, j) ⩽ Dedge. Thus Dedge here also acts as a safe guard for good605

performances in practise.As a consequence, we did not allow T E to be greater than 4. It is an606

arbitrary choice that can be questioned but allowed until now a good biological significance607

of results and a reasonable time of computation.608

This cartography also allows us to discuss the way families are clustered in RNA3DAtlas.609

Indeed, on the cartography, motifs of the IL_29549.9 family reach an Edge difference of 8,610

which is the maximum possible among Kink-Turns, whereas their gap and label differences611

never exceeded 3, way below the maxima. Similarly, if we look at the small IL_668780.2612

family, we can observe that it has its boundary values in terms of label, edge and gap613

differences included in the boundaries of the IL_29549.9 family. As a consequence, from614

the point of view of our metrics, there is no way to distinguish between the two families. It615

means that the way we cluster and explore groups of RNA motifs is quite orthogonal to the616

one that was used to build the RNA3DmotifAtlas, due to our focus on base pairs bounds617

themselves instead of atoms in 3D. It gives us good hope to suggest new patterns not easily618

predicted with atomic traditional methods.619

A.3.2 About the creation of the cartography620

In order to make the cartography, we have to know how distant the “origin motif" will
be from others motifs. To do so our procedure is the following: we extract first all
the known motifs from the RNAs and abstract them by relabelling theirs vertices. It
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gave us a set of motifs graphs MG. We next compute how different every motif is
from the origin O ∈ MG. Given O and a motif C ∈ MG to compare with, we fixed(
T L, TE, T G

)
=

(
10length(|GP |2), |GP |2, max length B53 path

)
. We next solve successively

for each neighborhood threshold :

argminT F

(
FuzzTree

(
O, C, T L, T E , T G

)
with F ∈ {L, E, G}

)
This optimization step was done using a dichotomy on the value of the neighborhood621

threshold in order to ensure a logarithmic convergence. It is not a huge computation as622

the abstracted motif are of small size in our Kink-Turn case. Order on the neighborhood623

threshold is T E then T L and then T G. Order of T L and T G is of little importance whereas624

T E should be proceed first as it include part of others neighborhoods. In particular, too625

small T L could force edge to be missing instead of using approximate labels.626

The cartography can be used on different candidate motifs that can serve as origin O to627

look which candidate requires the smallest values for
(
T L, T E , T G

)
to delimit the researched628

motifs. At least, if not every of theses thresholds is the smallest at the same time given629

different origins, it permits to select an origin with most of the researched patterns at a630

reasonable neighborhood difference.631

In our case, the aim was mainly to reduce the impact of edge difference. However, in632

others RNA or non RNA contexts, missing edge difference can be less relevant and others633

orders for the optimization step of the cartography can be chosen depending on the involved634

metrics. In particular, we propose the cartography as a good way to start the study of a635

dataset different from the Kink-Turn and cartography can be used from our source code.636

After the cartography is done for different motifs of a dataset, it is not easy task to say637

which one(s) should be the central one(s), here are some guidelines of what we considered:638

We ensure that the motif to choose to be central has no extreme value on some metrics639

in particular concerning the edge difference as it will make impossible to look at these640

motifs.641

We ensure that the motif to choose to be central is a close neighborhood with around642

half of the motifs of the dataset in term of gaps and labels, it was easily the case for643

us as our central motif was a representative of the larger family of Kink-Turns and, on644

RNA3DMotifAtlas, labels do not really vary inside a same family.645

Finally, we should ensure that if a geometry is present in the motif then it is quite646

representative of the dataset, for the Kink-Turn it is the case with a “triangle" of 4647

nucleotides.648

A.4 Choice on technical parameters649

For the choice of the radius R for creating slice of target graph GT , given an extracted graph650

G from GT centered in nucleotide c, we first defined R (G) = minj∈GGEO (j, c). In order to651

be exhaustive with our search, we must ensure that every G from GT is extracted with a652

radius at least equals to R (GP ) + Dgap as it ensures that we have enough “space" to make653

GP fit in G even if some gaps occur. It is due to these gaps that we need to add Dgap in R,654

as it embodies the specific case where the gap would have increased the length of the motif655

to search in GT in a single direction by putting gaps one after the others. Due to the rarity656

of this case, we choose, in the tests, to use a smaller radius equals to R (GP ) + Dgap
4 .The only657

taken risk here is to miss some patterns, but it is more convenient to favor time convergence658

as the pathological case on gaps evoked above is not one that we would like to target on.659
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Figure 12 Time graph of the FuzzTree method on each group of studied RNA chains. On
Narval cluster, computation were done on 1 processor for small RNAs (less than 500 nucleotides, it
corresponds to the two first graphs) and on 64 processors for large RNAs (more than 500 nucleotides,
it corresponds to the third graphs). In that case, the depicted time is the sum of each time consumed
for each processors.

We also choose to use a timeout equal to 2000 seconds for the convergence of our algorithm660

on each extracted graphs. Here again, the only risk is to miss some additional patterns.661

Nonetheless, all these limitations only mean that our current results can probably be slightly662

better in term of expressiveness, which means that somebody with more computational663

resources could use this tool and wait for even better performances.664

A.5 Time results on Narval and Beluga clusters for FuzzTree665

For this paper, computation were done on the Narval cluster and the Beluga cluster of the666

Digital Research Alliance of Canada. Each used node on Narval is made of 64 cores with 2667

CPUs AMD Rome 7532 @ 2.40 GHz. Each used node on Beluga is made of 40 cores with 2668

CPUs Intel Gold 6148 Skylake @ 2.4 GHz. Multiprocessing was used simply by separating669

the computations by chains of a same RNA and next, when relevant, by slices identified in670

these RNA chains.671

Some time results for computation of the FuzzTree method, by requesting one motif on672

each RNA chains where Kink-Turns are known, are available on figure 13 and 12. Time673

of computation is large but it is something expected with the XP theoretical complexity.674

However, one can notice that in practise the treewidth of the selected pattern is equals to 2675

which allow a complexity in practise in O
(
n3)

. No real time discrepancy appear between676

the computation without near edges and the one with. In particular, one should notice that677
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Figure 13 Time graph of the FuzzTree method on each group of studied RNA chains. On
Beluga cluster, computation were done on 1 processor for small RNAs (less than 500 nucleotides,
it corresponds to the three first graphs) and on 40 processors for large RNAs (more than 500
nucleotides, it corresponds to the fourth graphs). In that case, the depicted time is the sum of each
time consumed for each processors.

due to technical restrictions, the used clusters and its underlying hardware changed between678

the two computations. On large graphs, due to the slicing, we are able to reduce the time679

of computation, but not perfectly as slicing computation is still quite redundant: multiple680

graphs cover sometimes the same portion of the Kink-Turn.681

A.6 Results of FuzzTree method on Kink-Turns without the near edges682

Sensitivity and specificity of our method without near edges on each chains of RNA that683

contains Kink-Turns are depicted on figure 14.684

With our algorithm without near edges the sensitivity of the nucleotides that was found685

in the Kink-Turn mappings is equals to 1 for 31 RNAs out of 46. This means that from a686

single request, we were able to find two thirds of the Kink-Turns in the RNAs. It is 7 less687

success than the version with near edges. It is important to notice that the specificity for 33688

RNAs out of 46 is also about 0.75 or more like for the benchmark with near. Such results689

confirm the interest of near edges. Indeed, specificity without near edges is not significantly690

better than specificity with near edges. It was not obvious and it emphasizes how relevant691

near edges are from the biological point of view by similarity with others motifs. Near edges692

appear so only in biologically relevant motifs avoiding to generate unwanted noisy motifs.693

As a consequence, there are no specific interest to not take the near into account as it has no694

harmful consequence in term of specificity or time computation. However, as our benchmark695
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Figure 14 Representation of sensitivity and specificity for each group of chains extracted from a
same RNAs without near edges.

is only on the Kink-Turn we, cannot have certitude that it is the case for every data set and696

removing near edges can perhaps be a way to gain time on some data sets.697
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