DCC Ronie Salgado Isclab

Inspecting Block Closures To Generate Shaders for GPU Execution

Programming GPUs requires the usage of specialized programming languages whose programming model is radically different to the programming model used by traditional CPU based programming languages. This mismatch makes developing, testing and debugging a program that uses the CPU and the GPU a difficult problem.

We present a technique for automatically translating a standard Smalltalk block closure encapsulating code and captured state. Our technique allows using standard Smalltalk code as a DSL for GPU programming. This allows using the standard Smalltalk live programming tools for debugging and testing a GPU based program. For testing our technique we did two case studies in the ambit of interactive graphical procedural content generation.

Introduction

GPU Performance Nowadays desktop and laptop computers boast two important processors: a CPU 1 , the processor where the operating system and most of the applications are executed; and a GPU 2 , a processor optimized for graphics rendering tasks, and parallel numerical intensive tasks. The performance of a GPU for parallel tasks can be several times faster than the performance of a CPU [START_REF] Asano | Performance comparison of FPGA, GPU and CPU in image processing[END_REF]. However, not taking into account the architectural differences of a GPU typically leads to slower performance than by using the CPU.

GPU Programming Programming the GPU requires the usage of a specialized API and programming language. There are numerical computing oriented APIs such as OpenCL and CUDA for programming the GPU that cannot be used for realtime rendering. There are also graphics API that can be used for both: real-time endering, and numerical computations. GPU compute and graphics API interoperability is difficult, so in the practice can not be used.

Impedance Mismatch Interactive applications such as video games need to use both, the CPU and the GPU in the same time. These application also need to use the GPU for computation and graphics rendering in the same time, which makes mandatory the usage of a single graphics API. They also need to move data between these two devices with a specific structured data layout. The programming impedance mismatch between these two worlds means that definitions 1 CPU: Central Processing Unit 2 GPU: Graphics Processing Unit of structured data layouts must be duplicated between two different and incompatible programming languages.

GPU Debugging Debugging programs in the GPU is hard because of the lack of proper debugging tools. Doing a printf style of debugging in the GPU is not even possible. The closest thing to a printf style of debugging is to draw a pixel with a specific color. This reason motivates us to use a programming language that runs on both, the CPU and the GPU, with the purpose of using standard CPU debugging tools for debugging a program that is ultimately going to be executed on the GPU.

Smalltalk in the GPU For these reasons we would like to use Smalltalk for programming the GPU. Our hypothesis is that we can at least use some reduced form of Smalltalk for programming the GPU, and obtain a considerable performance improvement without sacrificing the advantages of having a complete live programming IDE. We propose a technique that takes advantage of the reflective object model used by Smalltalk implementations to convert a BlockClosure into a shader function. We chose to use BlockClosures for the following reasons:

• They look a lot like functions.

• They can be used to simulate local methods in a playground. • They encapsulate a captured.

• Many parallel computations can be expressed in a functional way in terms of applying functions in a certain way [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF].

Procedural Content Generation For testing our Smalltalk to shader code generator, we conducted two simple case studies related to the topic of procedural graphics content generation:

1. Procedural texture generation (See Section 4.1). 2. Particle system simulation (See Section 4.2).

We chose these two use cases for reasons of simplicity. These are also ideal cases for using live programming techniques because these tasks are normally conducted by technical artists that need to do many iterations for fine tuning numerical parameters. In these two cases we obtained a substantial performance improvement by using the GPU via our code translation technique.

GPU Architecture and Programming Model

GPU Hardware Architecture In terms of hardware, a GPU is composed of multiples processing cores. Each one of these processing cores is a vectorial processor that works in SIMD3 fashion. For example, the cores of the AMD GCN architecture are composed by two ALUs4 [START_REF] Mantor | AMD Radeon™ HD 7970 with graphics core next (GCN) architecture[END_REF][START_REF] Sander | AMD GCN Assembly: Cross-Lane Operations[END_REF][START_REF] Sander | The Art of AMDGCN Assembly: How to Bend the Machine to Your Will[END_REF]: a scalar ALU that is implementing uniform control flow structures such as if branches and while loops; and a vectorial ALU with 64 lanes, each one capable of operating on different data points, but with the same operation in a single instruction simultaneously.

GPU Software Architecture In terms of software, the GPU processes tasks that are submitted by the CPU through in command lists. The command list describes tasks that are executed by one of the two GPU software execution pipeline: the graphics pipeline, and the compute pipeline.

Graphics API GPUs are programmed by using a graphics API. Modern graphics APIs such as, Direct3D 12, Metal and Vulkan make explicit the usage of command lists, command queues and execution pipelines, for communicating and commanding a GPU from the CPU side. The programs that are executed by the GPU cores are called shaders, and they must be programmed with an API specific shader programming language such as GLSL, HLSL Direct3D, or the Metal Shading Language. Vulkan [START_REF]The Vulkan Specification[END_REF] unlike other graphics APIs utilizes Spir-V [START_REF] Kessenich | SPIR-V Specification[END_REF] which is a SSA based compiler generated intermediate representation that can be generated with an official GLSL compiler, or it can generated manually by a custom compiler.

Graphics Pipeline

The graphics pipeline is a pipeline whose input is composed of simple geometrical primitives such as points, lines and triangles. The output of the graphics pipeline is composed by the individual pixels that are rasterized for drawing these geometrical primitives in an image. Individual vertices and pixels are processed in parallel by a shader running on the GPU, on a multi-stage partially programmably graphics pipeline. The graphics pipeline is composed of five programmable stages where shaders can be bound and executed simultaneously:

• Vertex shader: this stage operates on individual vertices. • Tessellation control and evaluation(optional): these two stages can be used for subdiving and refining geometry. • Geometry shader (optional): this stage operates on geometrical groups of vertices, and can generate new geometry.

• Fragment shader: this stage operates on interpolated fragments 5 to compute the color of individual pixels.

The shader programming model for each one of these stages is different. Shaders for these stages share the similarity in terms of providing the convenient illusion of programming parallel threads that operate on individual elements. However, what actually happens is that each SIMD lane of the vectorial processors is operating on an individual element, but the control flow of execution threads that belong to a single work group must be the same. Divergent branches in a work group are computed by taking the true and the false branch for all of the elements. For this reason, shaders must be manually optimized to maximize spatial coherence, and avoid divergent branches inside of a work group. This also means that is impossible to support dynamic message lookup on the GPU without destroying the parallelism.

Compute Pipeline For non graphics oriented parallel tasks there is a compute pipeline for executing compute shaders. Compute shaders work by operating on user defined elements along a logical 3D grid. Compute shaders input and output must be done by explicitly reading and writing from buffers and images defined by the user. The programming model of compute shader allows communicating between threads by exposing partially the underlying hardware architecture. This communication can be done by allocating memory that is shared by the members of a work group, and by using memory and control flow barriers for synchronization.

Smalltalk to Shader Code Translation

For translating Smalltalk code into a shader we rely on doing AST to AST translation. We are doing this with the purpose of reusing the compiler infrastructure for generating Spir-V shaders that is used by Woden Engine [START_REF] Salgado | Woden Engine: A 3D graphics engine written in Pharo[END_REF], a 3D graphics engine written in Pharo. The shader language used by the Woden Engine is called Dastrel [START_REF] Salgado | Dastrel: A Data Stream Language[END_REF]. The compiler for this shader language is implemented completely in Pharo, and it uses a C style syntax.

Programming Environment Constraints

No Dynamic Lookup Unfortunately, due to the strong architecture differences between the CPU and the GPU, it is impossible to execute the full Smalltalk model on a GPU. Dynamic message lookup and dispatch cannot be implemented on the GPU because it destroys the SIMD style of parallelism that is used by GPUs. If we still wanted to perform dynamic message lookup by killing the parallelism, or by using uniform control flow, we still cannot implement it because graphics APIs do not expose function pointers and a mean to call them. The only alternative remaining for implementing polymorphism is through the usage of very large switch statements.

No Arithmetic Traps Another limitation is the impossibility of trapping the GPU on things like integer overflow. Trapping on integer overflow is required for converting a SmallInteger into a LargeInteger in an efficient way automatically. We could still provide support for large integers in the GPU by checking all the arithmetic operations for integer overflow, but there is also the problem of not being able to allocate memory inside the GPU.

Restricting the Object Model These limitations implies that we have to deviate from the Smalltalk object model for code that runs on the GPU. First of all, we need a mechanism for resolve all of the message sends statically. We can do this by using type inference. Another limitation, is that we must accept the behavior of silent integer overflow when running coded on the GPU.

Inspecting Block Closures

An instance of BlockClosure in Pharo contains three fixed instance variables:

1. outerContext: a reference to the captured context. 2. startpc: an index to the first bytecode that is executed by the block closure when activated. 3. numArgs: the number of arguments.

In addition to these fixed instance variables, variables that are captured by the block closure are either: copied directly into a variable slot of the block closure; or they are copied into a vector of temporaries (just an instance of Array) which is stored in the block closure.

Block AST Node All of this data present in a block closure is enough for obtaining the captured variables and their values, and it is also enough for reconstructing the AST node that was used for compiling the block closure. In Pharo, the OpalCompiler [START_REF] Béra | Towards a flexible pharo compiler[END_REF] already implements an extension method in BlockClosure that is called sourceNode, which is exactly what we need for translating a block closure into a shader.

Local Type Inference

Target Language Type Inference Since we are doing AST to AST translation into a custom shader language written in Pharo which already has support for local type inference, we delegate most of the type inference work to our target language. In Dastrel, variables are defined with a let keyword which works in the same way as the C++/11 auto keyword. This way of defining variables relies on the types of literals, and the return type of resolved function calls. This implies that in our Pharo to Dastrel AST to AST translator we only need to define explicit types for: literal value, captured variables, and some special objects.

Literal Values Inferring a type for a literal value AST node is an easy task. Since in the OpalCompiler literal values are represented by just a single AST node with a direct copy of the object repesenting the literal, we can just simply ask this object by sending a message to it asking for its type. In this way, we extended the class Integer to infer a type of Int32, and we extended the class Float to infer a type of Float32.

Captured Variables Variables that are captured by a Block-Closure belong to two categories: variables that are captured by copy which cannot be modified by the block, and variables that are captured by reference which can be modified by the block. Since we are going to run the compiled block closure in a parallel block, mutation of captured variables implies data races which requires special primitives. For this reason, we do not support this kind of variables in our block closure to shader translator. As for the case of copied variables, we can treat them in the same way as literal values because we are translating concrete block closures, and we know the actual constant value that those copied variables have. Special object Some captured objects may want to control their own code translation. For example, a color ramp is a commonly used object for doing procedural content generation. This object can be translated into a shader function that does the color ramp evaluation. Since this color ramp is also a standard Pharo object, it can extend the inspector and allow visualizing color curve (See Figure 1).

AST to AST Translation

Visiting OpalCompiler AST For implementing our AST to AST translator we used the standard way of implementing a visitor around the existent OpalCompiler AST. Our visitor works by reconstructing lexical scoping information for annotating inferred types of variables, or corresponding captured values for copied variables. This annotated lexical scoping information is used when translating variable references. For each visited node in the OpalCompiler AST we construct a set of corresponding node in the Dastrel AST. We also maintain a separate table of type annotations for the constructed nodes in order to resolve how to translate the different message sends.

Source Code Position Information Since we are doing AST to AST translation, we can preserve the original source code line number and column number information on the translated AST. This makes it possible to produce proper compilation error information, and in theory it can be used for generating shader debugging information. Even though Spir-V does support shader debugging information [START_REF] Kessenich | SPIR-V Specification[END_REF], unfortunately there are not standard extensions in Vulkan to create a graphics card manufacturer independent shader debugger.

Variable Definitions In Pharo, variables are declared before they are used. This syntactical structure makes it hard to reuse the local type inference machinery of the target language. For this reason, we defer the generation of the variable definition node until its first assignment. For an example, see Listing 1 for the Pharo version, and see Listing 2 for the corresponding translated code. We cannot do this in the case that the first assignments happens in the two branches of if (See Listing 3 for an Example). In this case we cannot solve this problem automatically, and we require additional typing information, which can be specified via pragmas. Listing 3. Variable definition case that requires explicit type annotations.

Expressions vs Statements An important limitation in our AST to AST translation technique is the impedance mismatch between a language where everything is an expression (Smalltalk), and a language where there is a strong differentiation between expressions and statements (Dastrel, GLSL, HLSL, and the Metal Shading Language). This limitation is also present in AST to text based translation, and it is a common property of all the shader languages. In our case currently we are solving this limitation by introducing additional AST nodes with temporary variables assignments where is required.

Primitive Message Mapping Some message such as ifTrue: are treated as special primitives. We maintain a table mapping the selectors for these message into an object representing how we should translate this messages. In addition to this table, we maintain an additional table with mappings to functions that are already defined in the target language. We use this additional mapping for mathematical functions such as 𝑠𝑖𝑛, 𝑐𝑜𝑠 and 𝑎𝑏𝑠.

Shader Code Generation

Interfacing Code Our technique allows us to translate a Pharo BlockClosure into a function that can be used in a shader. Unfortunately, this translation is not enough for making a complete shader. Shader programming languages have specialized mechanisms for defining data input and output layouts, and how to communicate this data. We could perfectly try to emulate these mechanism in Smalltalk, but doing so would enormously complicate our translation mechanism. Instead, we decided to do all of this plumbing work to generate an actual shader by following these steps:

1. Write all of the shader I/O and communication interfacing code in our target language (Dastrel). 2. Make calls in this shader interfacing code to undefined functions, but with well known names. 3. Parse the shader interface source code file. 4. Inject AST node that are generated with our Pharo BlockClosure translator. These AST nodes define the previously undefined functions with well known names. 5. Pass the resulting AST with the injected node to the shader compiler front-end. 6. Generate the final Spir-V shader code with the shader compiler.

API Specific Code Generation Our shader code generation pipeline is exclusively designed for generating Spir-V based shaders for Vulkan. In theory, this should limit our technique to only being directly usable with Vulkan, excluding other platforms and graphics APIs such as Direct3D and Metal. In the practice, the Khronos Group mantains a tool that is called Spir-V Cross [START_REF]SPIRV-Cross[END_REF], which can decompile a shader generated in Spir-V, and then generate shaders in others languages such as GLSL, HLSL and Metal Shading Language. In fact, we use this very same tool for generating shaders for Metal.

Case Studies

In this section, we apply our code translation technique in two simple problems in the context of procedural content generation for video games and real time graphics. A procedural technique is defined as the usage of algorithms and mathematics for producing content such as textures and models instead of taking direct samples, or constructing it by hand with traditional artistic techniques such as oil painting or clay sculpting [START_REF] David | Texturing & modeling: a procedural approach[END_REF]. We chose this context for the followings reasons:

• This is an ideal context for using the live programming capabilities of Smalltalk. These task are normally performed by technical artists who need to iterate many times and fast. During this iterations artists need to fine tune numerical parameters to produce their intended content. • It is easy to obtain very interesting visual results.

• We can compare the performance between a CPU based execution, and a GPU based execution with the same script in Pharo.

Procedural Texture Generation

Problem Description The problem of procedural texture generation consists on generating the pixels for a set of images that are applied onto a surface for rendering. A texture is an image that maps point in a surface to value that is used to describe different lighting parameters of the surface. Textures can have one, two or three dimensions. Procedural textures can be used in two ways: by applying the algorithm directly on the surface at rendering time; or by rendering into an offline image, that can be stored on disk, and be used on a separate pass for rendering an scene. For this case study, we only are testing the offline texture generation usage because it can be compared with a CPU based implementation purely written in Pharo.

Addressing Texels The offline procedural texture generation problem consists on assigning values to different texels 6present in the texture. Texels can be addressed in two different ways: with un-normalized coordinates measured in pixels; and with normalized UV coordinates with a between 0 and 1, inclusive. The second way of addressing texels has the advantage or being resolution independent, so it is the standard way that is used for applying 2D textures to surface. This means that the problem of a procedural texture generation consists in simply evaluating a function 𝐹 for each texel 𝑇 in the texture:

𝑇 𝑢,𝑣 = 𝐹 (𝑢, 𝑣) with u,v ∈ [0, 1] Since there is no dependency between texels, this problem is an excellent candidate for using the GPU parallelism. Unfortunately, this oversimplification description of the problem ignores the fact that multiples related textures are used for describing all of the lighting properties of a surface.

Material System A modern standard material system which describes how the surface final color is computed under lighting is the PBR 7 material used by Unreal Engine 4 [START_REF] Karis | Real shading in unreal engine 4[END_REF]. We adopted this same material model for Woden Engine, so we need to generate procedural textures suitable to be used with this material model. In the Unreal Engine 4 material model, there are three very important textures:

• Albedo: a texture with the color reflectance of the surface. • Normal: a texture with normal vectors to the surface. These are unit 3D vectors which are perpendicular to the surface. This texture is called a normal map. • AO-Metallic-Roughness: this texture contains three channels describing surface lighting behavior. Ambient occlussion: This describes how much ambient lighting is occluded by the surface geometry (e.g., cavities in a wooden floor). This is encoded as a red color Roughness: how smooth (0.0) or rough (1.0) is the surface. This affect the size of specular highlights. This is encoded as a green color Metallic: is the surface a metal with value 1 or a dielectric (e.g.,, non-metal, insulator) with value 0. This parameter is binary, but values between 0 and 1 can be used to describe small metallic dust particles. This is encoded as a blue color.

Heigh Fields A common way for designing a procedural texture consist in first describing a height field function 𝐻 , with values ranging between 0 and 1, inclusive. The values of these functions describe the height distance of a point against a baseline plane. The height field function can be used to compute the normal texture map via differentiation. The ambient occlusion factor can also be computed by sampling differences on the height field [START_REF] Bavoil | Screen space ambient occlusion[END_REF]. The height field function is also useful by itself, it can be used to improve the geometrical complexity of a rendered scene via displacement mapping [START_REF] Szirmay | Displacement Mapping on the GPU-State of the Art[END_REF], or via parallax mapping [START_REF] Donnelly | Per-pixel displacement mapping with distance functions[END_REF] [START_REF] Mcguire | Steep parallax mapping[END_REF]. Height Field Coloring A common way to generate colored textures consists on applying a color ramp function 𝐶 (See Figure 1) to the evaluated value of a height field. With this technique, it is possible to generate the albedo texture, and the metallic and roughness factors. With this variant, our equation for defining the value of a texel 𝑇 , with a height field function 𝐻 and a color ramp 𝐶 is as follows:

𝑇 𝑢,𝑣 = 𝐶 (𝐹 (𝑢, 𝑣)) with u,v ∈ [0, 1]
This is is the technique that we are using currently in Woden Engine for generating procedural albedo textures. If a color map is not specified by an user, then we fallback to a default gray scale color map 𝐺 (ℎ) = (ℎ, ℎ, ℎ, 1.0). Shader Interface For the case of generating a procedural colored height field we are using the shader communication interface code that is present in Listing 4. This shader interface code requires two functions that we are generating via our BlockClosure translation mechanism: heightFieldFunction, and colorMapFunction. Noise Functions Naturally looking procedural generated textures are archieved by using primitive functions known as noise [7] [START_REF] Gonzalez | The Book of Shaders[END_REF]. There are three important families of noise functions [START_REF] Gonzalez | The Book of Shaders[END_REF]: value noise, gradient noise, and cellular noise. The most popularly known noise function is Perlin noise [START_REF] Perlin | Improving noise[END_REF], which is a particular implementation of gradient noise.

All of these functions work by subdividing the space in a grid of cells, generating random values by hashing the cell coordinate [START_REF] David | Texturing & modeling: a procedural approach[END_REF][10], and the combining these values in a specific way to compute values between the grid points. The differences between these noise functions are the followings:

• Value noise: assign random values to points of the grid. Points in between evaluated by interpolating the values assigned to adjacent grid locations. See Figure 3 part a and e. • Gradient noise: assign random gradient to points of the grid. See Figure 3 part b and f. • Cellular noise: assign a random coordinate for a point inside a cell of the grid. Values are computed the closes-N distance.

Voronoi noise: cellular noise returning the distance to the closest point (𝐹 0). See Figure 3 part c andf. Worley noise: cellular noise returning the distance to the second closest point minus the distance to the closest point (𝐹 1 -𝐹 0). See Figure 3 part d andh. We implemented our version of these noise functions by adapting an existent implementation [START_REF] Gonzalez | The Book of Shaders[END_REF]. For the coordinate hashing function we used an integer based hash function in order to obtain the same results when evaluating these functions in either the CPU or in the GPU. Listing 6. Script for generating texture that looks like clouds. The corresponding texture is present in Figure 4 Clouds Texture Noise functions can be applied by combining them in different scales with different amplitudes. A common variant of this technique is called fractional brownian motion [START_REF] David | Texturing & modeling: a procedural approach[END_REF], which consists on adding sucessive scales of a same noise function, with increasing frequency and diminishing amplitude. A simple use case of fractional brownian motion is on generating a texture that looks like clouds in the sky. See Listing 6 and Figure 4 for an example. The average (N=10) generation time for this clouds texture with a resolution of 512 x 512 pixels on the CPU is 11820.8 ± 108.8 milliseconds, in comparison with generating this same clouds texture on the GPU with an average time of 145.3 ± 5.6 milliseconds. This is a speedup factor of 81.35 times.

Rock Texture By combining multiple noise functions and using them in different scales we constructed a rock texture in Figure 5. The source code script for generating these complex looking patterns in Listing 7 is composed of simply the summation of two different evaluations of fractional brownian motion: one with worley noise for generating the large cracks between the rocks; and another evaluation with a Listing 7. Script for generating a texture that looks like rocks. This texture is designed to be repeated, so tiled variants of the noise functions are used. The corresponding texture is present in Figure 5 4.2 Particle System Simulation Problem Description A particle system is a physical construct composed of puntual particles without volume. There are typically used in computing graphics to simulate special effects such as smoke, fire or a water fountain. Each one of these puntual particles is defined in a given time by a state Q.

For our purposes of simulating a particle system on the GPU, we define the state Q of a particle as an object encapsulating the following variables:

• Position.

• Velocity.

• Remaining time of life.

• Size of the particle (Used for rendering).

• Color the particle (Used for rendering).

• Random number generation seed. For generating random initial states.

Particle State Evolution

The objective of simulating a particle system in real time consist on computing computing the new state of all the particles for each rendering frame. As a simplification of this process, we only are considering particle systems where the particles are completely independent between them. We also define a function 𝑆 that simulates a new state of a particle as the particle state transition function.

The evolution of the state 𝑄 of a particle 𝑝 can be described with the following equation:

𝑄 𝑝,𝑡 +Δ𝑡 = 𝑆 (𝑄 𝑝 , 𝑝, Δ𝑡)

Like the case with the problem of procedural content generation, this is an ideal problem to exploit the parallelism of the GPU. Example The script in Listing 8 contains the particle state transition function that is used for simulating the particle system of Figure 6. Rendering one frame of the scene present in Figure 6 with 2 * 10 3 particles simulated on the CPU consumes a time of 20 milliseconds, which produces a frame rate drop below the threshold required for sustaining a stable 60 frames per second matching the refresh rate of most computer monitors, and required for having smooth animations. When we executed this same script for simulating particles on the GPU, we managed to simulate 10 5 particles on the GPU and still have a smooth animation at 60 frames per second.

Limitations

Our technique has strong limitations in terms of being a very rough implementation. Currently, a manual mapping between Pharo messages and shader functions is required. Live programming usage of our technique can be severely encumbered because of failure in our type inference system, and bugs in our implementation. Another limitation of our approach, is that it requires decomposing a parallel task for GPU execution in terms function application. This model of computation is known as map-reduce [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF] and it is widely used for processing large amounts of data in parallel.

Enabling other models of computation with our translation technique requires introducing somehow the shader specific I/O communication interface at the Smalltalk scripting level. Listing 8. Script with particle state transition function used for simulating the particle system that is present in Figure 6 An important limitation with our benchmarks is that we are comparing CPU based implementations of numerical intensive tasks written in Smalltalk, with highly optimized code running on a specialized parallel hardware designed for numerical intensive tasks. A large percentage of the performance gap between our CPU and GPU implementation can be attributed to the performance penalty incurred by the underlying Smalltalk object model, and the virtual machine. The gap of comparing an implementation in C with our code translated to the GPU should be much smaller.

Related work

Slang [START_REF] Miranda | The cog smalltalk virtual machine[END_REF][8] is a subset of Smalltalk that is used for programming the VM that is used by Squeak and Pharo, and works by generating C code. In theory we could reuse the infrastructure of Slang for generating shader for the GPU, but Slang has some severe design problems. The Slang type system consist on assigning by default the type int to all of the variables, when their actual type is object. This implies that a programmer working on Slang has to be fully aware of how its code is going to be ultimately generated. Fumero et al. [START_REF] Fumero | Just-in-time gpu compilation for interpreted languages with partial evaluation[END_REF] describes a mechanism for automatic translating portions of the of a programming language with dynamic typing by modifying a virtual machine with a tracing JIT. This mechanism is interesting because it is completely transparent to the user, and no modification is required on the original source code for achieving execution on the GPU.

There are several attempts on constructing DSLs [16][15][5] for targeting the GPU. Most of these DSL are implemented through a traditional compiler pipeline, and they generate the textual source code for a shader in their backend.

ShaderToy [START_REF] Quilez | Shadertoy[END_REF] is an online web application for programming fragment shaders in GLSL that are used to render a single texture encompassing a rectangle. The ShaderToy user community is composed by technical artists dedicated to the art of producing procedural content, and the production of demos. Our work on translating block closure is strongly inspired by ShaderToy, and it is an attempt to replicate its functionality inside of Pharo.

Conclusions and future work

With this work we proved the feasibility of executing portions of Pharo code on the GPU, and we also show that we we can obtain a substantial improvement in terms of performance. We applied our technique for translating a block closure to a shader in two different problems: the generation of procedural textures, and the simulation of particle systems. In both cases we obtained a significative improvement of performance. For the case of generating a texture procedurally, we obtained a speedup factor between 14 times and, and 262 times.

In the future, we would like to extend our technique with support for intra shader work group communication. With this support we should be able to expand the class of algorithms running on the GPU that we can implement directly in Smalltalk.

Another future reasearch opportunity that we want to pursue is the usage of an intermediate AST more suitable for translation Smalltalk code. We believe that by using another AST, and by improving the type inference mechanism, we can gain much more flexibility in terms of what scripts in Pharo can be translated to shader.

A final opportunity of future research on this direction consists on taking advantage on existent open source graphics drivers, such as the RADV driver available in Mesa3D [START_REF] Paul | The mesa 3d-graphic library[END_REF] for GCN based AMD graphic. Since these drivers are open source, and there is full documentation on the ISA used by these graphics card, we believe that there is an enormous potential for gaining flexibility in bypassing the per-thread abstraction model of shaders, and making the separation between scalar and vectorial ALUs an explicit element in the GPU programming language.

Figure 1 .

 1 Figure 1. Inspection of a color ramp. An useful object for generating procedural textures. Color ramps are translated into optimized functions with inline literals.

Listing 1 .

 1 Simple variable definition example in Pharolet a = 1; let b = 2.0f; Listing 2. Translated variable definition in Dastrel | a b | someCondition ifTrue: [a := 1.0. b := 2.] ifFalse: [a := 1. b := 2.0.].

Listing 4 .

 4 import fragment.stage; import fragment.screenQuad; import procedural.noise; code_block(fragment) main { let uv = FragmentInput.texcoord; let color = colorMapFunction(heightFieldFunction(uv.x, uv.y)); FragmentStage.colorOutput0 = color; } Colored height field texture generation shader interface.

Listing 5 .

 5 colorRamp := WDCLinearRamp with: { 0.0 -> 'ff0000' asColor. 0.5 -> '00ff00' asColor. 1.0 -> '0000ff' asColor. }. heightFunction := [:u :v | | x y d | x := u *2.0 -1.0. y := v *2.0 -1.0. d := ((x*x) + (y*y)) sqrt. (d * 10.0) sin * 0.5 Script for generating a procedural texture by coloring a sine function. The corresponding generated textures can be seen in Figure 2Simple Texture Example A simple example of a script in Pharo for generating a simple mathematical texture is given in Listing 5. This script constructs height field based on a radial sine wave (See Figure2 part a). The color ramp used by this script maps a height value of 0.0 to red, 0.5 to green and 1.0 to blue. The resulting albedo texture in Figure2part b looks like a pattern formed by concentric circles colored with one of: blue, red or green. The normal map in Figure2

(a)

 Height field (b) Albedo (c) Normal map

Figure 2 .

 2 Figure 2. Textures generated with script corresponding to Listing 5

Figure 3 .

 3 Figure 3. Textures with our implementation of the noise functions on the GPU. Above the height fields, and below the corresponding normal maps.

 colorRamp := WDCLinearRamp with: { 0.46 -> '218cff' asColor. 1.0 -> 'ffffff' asColor. }. heightFunction := [:u :v | ((u@v) * 5.0) fbmGradientNoiseOctaves: 4 lacunarity: 2.0].

Figure 4 .

 4 Figure 4. Generated clouds texture with the script in Listing 6.

Figure 5 .

 5 Figure 5. Generated rocks texture with the script in Listing 7.

5 Figure 6 .

 56 Figure 6. The visual effect produced by simulating a particle system with the script in Listing 8.

SIMD: Single Instruction, Multiple Data

ALU: Arithmetic and Logic Unit.

A fragment is an individual pixel before it is composed into a final image.

Texel: a pixel in a texture.