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MULTIPLICITY MANIFOLDS AS AN OPENING TO PRESCRIBE EXPONENTIAL DECAY:

AUTO-REGRESSIVE BOUNDARY FEEDBACK IN WAVE EQUATION STABILIZATION

KAÏS AMMARI, ISLAM BOUSSAADA, SILVIU-IULIAN NICULESCU, AND SAMI TLIBA

Abstract. Exploring a more than 70 years old idea about the minimization of the spectral abscissa of linear

functional differential equations, a series of recent works highlighted the insights that multiple spectral

values may bring in the characterization of the decay rate for the solution of such dynamical systems. In

fact, it has been shown that a spectral value of sufficiently high multiplicity tends to be dominant, in what

is now known as the multiplicity-induced-dominancy (MID) property. When it is valid, this property can

be remarkably helpful in the control of dynamical systems governed by functional differential equations or

even some classes of partial differential equations. Beyond its simplicity, what sets it from other control

methods is the valuable quantitative advantage it provides by prescribing the exact solution’s decay rate.

Since then, many works have been dedicated to studying the extent of the MID as well as its use in practical

control applications. In this paper, apart from the extension of the MID property to difference functional

equations with multiple delays, we study the case when the MID fails. In fact, despite the invalidity of the

MID property, we emphasize the interest of forcing a spectral value multiplicity to derive a sharp estimate of

the corresponding rightmost spectral value. To demonstrate the effectiveness of the proposed methodology,

we consider the stabilization problem of the wave equation with an auto-regressive boundary feedback. By

using an appropriate finite element modeling, a numerical simulation of the boundary control for the wave

equation case is performed to illustrate these results through the example of vibrations’ control of a long

drill pipe submitted to a shock-like disturbance. The time responses show the effectiveness of the proposed

approach and mainly that the decay rate can be arbitrarily selected.
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1. Introduction

Since the work of d’Alembert published more than 275 years ago and devoted to the vibrating string

problem, the one-dimensional (two-way) wave equation is a subject of recurring interest, and there is a

large literature on the qualitative and quantitative properties of its solutions. Surprisingly, such a simple

model can be derived in a large variety of physical settings, and represents the simplest example of

second-order hyperbolic partial differential equations (PDEs) model. It plays more than an important role

in continuum/quantum mechanics (disturbances space-traveling over time), geophysics (e.g., modeling

seismic waves), oceanography physics (dynamics of the ocean waves), electrical engineering (see, for

instance, models representing lossless propagation phenomena through transmission lines) and control

engineering (e.g. vibration control problems), to cite only a few.

In this context, the existing links between hyperbolic PDEs and delay-differential equations of neutral

type should be pointed out∗. More precisely, as shown by Abolinia and Myshkis [1] and Cooke and

Krumme [37] in the 60s, integrating along the characteristics of the boundary value problems for hy-

perbolic PDE leads to such neutral DDEs-based models. Interestingly, such results seem to insist (for

the first time) on the functional character of the corresponding (neutral delay-differential) equations gen-

erated by the DAlembert method in the sense that they are considered as legitimate but autonomous

mathematical objects. Furthermore, the properties of solutions of the mixed initial-boundary value prob-

lem can be established by using the results obtained for the functional equation and a representation

formula of the solutions of the mixed problem in terms of the solutions of the associated equation.

In the sequel, we will exploit both model representations in the context of boundary control of the wave

equation, and we will explicitly emphasize the existing links between the model parameters and the

largest multiplicity of the roots of the corresponding characteristic function.

∗see, e.g., [46] and the references therein for appropriate definitions and classification of DDEs
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In both retarded and neutral delay-differential equations (DDEs) cases, the generic maximal allowable

multiplicity of a characteristic root induces dominancy, that is, it simply represents the rightmost char-

acteristic root. The characterization of such a property called multiplicity induced dominancy (MID) can

be found in [63, 19].

In controlling the wave equation, the proposed control law includes appropriate past information from

both input and output signals and we called it an auto-regressive system due to the way the signals appear

in the system’s dynamic. From the control point of view, the corresponding controller called QPB (from

quasipolynomial-based) is easy to implement. Furthermore, it belongs to the class of low-complexity

infinite-dimensional controllers since on the one hand it includes a reduced number of parameters, and

it is infinite-dimensional due to the presence of the delay terms in the model, on the other hand. Such

a (linear) controller needs to be well-posed and formally stable†. In fact, it was emphasized in [58] that

neutral systems that are not formally stable cannot be stabilized in the sense of bounded-input/bounded-

output. As a matter of fact, in the 70s, [16] pointed out the existence of such a sensitivity phenomenon‡

with respect to “small” delay perturbations, and such a problem was largely covered in the open literature

during the period 80s-90s. For instance, amongst others, conditions for guaranteeing stability robustness

of the closed-loop systems can be found in [56, 57], where the authors proved the robustness in terms of

spectral radius of some appropriate well-posed and regular transfer function.

As expected, if the dynamics of the closed-loop system include more than one delay, the problem be-

comes hard to deal with. For example, some strange and unexpected phenomena can appear and, in

particular, the sensitivity of the (exponential) stability with respect to the delays ratio is one of the inter-

esting cases treated in the open literature is of utmost importance within the control framework and amply

treated in the open literature. By analogy with the interference phenomenon in Physics§, such a phenom-

enon is called delay interference, and it was first observed and discussed by MacDonald in the 80s [60].

In the retarded case, the characterization of such a property and its links with the delays-independent sta-

bility is proposed in [66]. Finally, although the extension to neutral systems is not explicitly discussed,

[66] addresses also the delay interference problem in the case of the continuous-time delay-difference

equation including multiple delays, and a few examples are presented. Surprisingly, such a phenom-

enon also appears in control theory as the controller structure may induce delay interference for the

closed-loop system. For instance, in controlling the wave equation, [83] proposed a boundary control

law including a single delay block, and despite the simplicity of the controller, the closed-loop system is

subject to delay interference, and it lacks robustness with respect to the delays.

†that is all the poles of its transfer function have negative real part
‡an infinitesimal “small” delay can destabilize a dynamical system
§In Physics, it represents the combination of two or more wave motions to form a resultant wave in which the displacement is

reinforced or canceled.
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The contribution of the paper is threefold. First, the use of a QPB controller combined with the idea of

forcing the multiplicity allows for avoiding the delay sensitivity phenomena mentioned above (with re-

spect to ”small” delays or/and delays ratio). In other words, the controller depicts robustness properties

with respect to the QPB delay parameter. Second, by exploiting the delay as a control parameter, an

explicit estimation of the decay rate is derived and such an estimation corresponds to the generic MID

case for some values of the delay parameter. It should be mentioned that due to the structure of the

continuous-time delay-difference equation, forcing multiplicity does not necessarily lead to the domi-

nance but to some explicit bounds regarding the location of the rightmost characteristic root. Third, the

QPB controller is explicitly applied to the longitudinal vibration control of a long drill pipe transmis-

sion line and a numerical study shows the effectiveness of the method. If the use of QPB in vibration

control was already proposed in the literature by some of the authors of this paper [29, 82], it should be

mentioned that its application to the wave equation represents a novelty.

Finally, to the best of the authors’ knowledge, such an approach was not considered in the literature and,

as such, it also represents a novelty. We believe that the underlying ideas of the proposed methodology

are useful in the study of the dynamical behavior of other classes of infinite-dimensional systems.

The remaining of the paper is organized as follows. Section 2 provides a brief overview on the MID prop-

erty, as well as a comprehensive example illustrating the benefits of a multiplicity manifold in stability

analysis and stabilization even when the MID fails. Section 3 is dedicated to recalling the recent results

on the control of the wave equation with delay in the boundary and ends with the problem statement.

For the sake of rigor, the well-posedness of the considered problem is provided in Section 4. Section

5 exhibits conditions under which the corresponding semigroup decays exponentially to the null steady

state. A spectral formulation via DAlemberts formula is carried out in Section 6 where the system of par-

tial differential equations is transformed into a functional difference equation. In Section 7, we present a

summary of standard results on the stability of such difference equations and unfold the main results of

the present paper. Namely, the MID property is investigated: in particular, values of the time delay which

is multiple of the wave propagation time are addressed. Next, when the MID fails, we propose a general

strategy to prescribe a lower bound for the solution’s exponential decay rate. Finally, as an illustration of

the proposed methodology, in Section 8 we provide a numerical study of the problem of longitudinal vi-

bration control of a long drill pipe transmission line. The paper is concluded by a discussion on software

perspectives.

2. On the control structure and strategy: MID property and on beyond

Since the 30s and the theory of servomechanisms proposed by Hazen [47], it is commonly accepted that,

in most of practical situations, the presence of time-delays in dynamical processes is synonymous with

instability and bad behaviors. However, there are cases where the delay in the input can induce a stabi-

lizing effect on the dynamics of the system, and the idea of exploiting the delay as a control parameter
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is not new (see, e.g., [72, 67], and the references therein). For instance, at the end of the 70s, [81] intro-

duced the so-called ”proportional-minus-delay” (PMD) controller and showed that such a controller can

replace the well-known PD-controller (quick responses to input changes) with less sensitivity to high-

frequency noise. Such a controller was further implemented in various case studies including, amongst

others, the well-known inverted pendulum (see, e.g., [80, 26], to cite only a few).

In this work, we are exploiting a low-complexity controller structure called QuasiPolynomial-Based con-

troller (QPB) which has been recently introduced in [29], the idea of which is close to the aforementioned

PMD control in the sense that the controller structure is of PMD type however in both output and input

signals, the delay being used as a design parameter to improve the overall behavior of the closed-loop

system. In other words, given a generic dynamical system to control, modeled by the input-to-output

mathematical model y(t) = G{v(t)} where G{·} denotes the appropriate input-to-output mathematical op-

erator of this system, y(t) ∈R is its measured output and v(t) ∈R its controlled input. For constructing the

controlled input v at a given time value t, we need an appropriate past information from both the input v

and the output y in addition to the present information given by the output. Hence, the QPB controller

consists in the generic output feedback control law which is defined by the following continuous-time

delay-difference equation relating y to v in the following fashion:

(2.1) v(t) = −αv(t−τ) +βy(t) +γy(t−τ),

where α, β and γ are some real scalar parameters with the constraint γ , αβ and τ is a positive scalar cor-

responding to the delay parameter of the QPB controler. Relation (2.1) is nothing but an auto-regressive

equation, defining a dynamical system with its own actual and past behavior.

Lemma 2.1. Given the control law in (2.1) for any τ ∈ R. If γ = αβ, then (2.1) is equivalent to

(2.2) v(t) = βy(t).

Proof. Suppose γ = αβ for α, β ∈ R. Then (2.1) is equivalent to

v(t)−βy(t) = −α (v(t−τ)−βy(t−τ)) .

By defining f (t) := v(t)−βy(t), the previous equation reads as

f (t) = −α f (t−τ).

Since this last relation holds for any t, τ ∈R, the only solution for the above difference equation is f (t)≡ 0,

leading so to (2.2). Indeed, if α = 0, then f (t) = 0 for all t ∈ R. Now, for α , 0, the previous equation is

equivalent to having f (t1) = α f (t2) for all t1, t2 ∈ R. For any t3 , t1, t2 one also has f (t1) = α f (t3), so that

f (t3) = f (t2) =: f0 ∈ R. Since we also must have f0 = α f0 with α , 0, then f0 = 0. Reciprocally, if (2.2)

is true for all t ∈ R, then for any τ ∈ R,

v(t−τ) = βy(t−τ).

By combining this last relation with (2.2), one gets (2.1) by defining γ := αβ. �
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Despite its simplicity in terms of construction, such an infinite-dimensional controller induces good be-

haviors in closed loop and has proven its effectiveness through various applications in active vibration

damping. Indeed, in some previous works, the authors have already considered the active vibration con-

trol of some specific mechanical structures described by the PDEs of continuous mechanical structures,

via the same controller as the one proposed in this work. It was the case for a beam-like one in [29] and

an axisymmetric membrane, both equipped with a piezoelectric sensor and a piezoelectric actuator that

are collocated. However, the PDEs have been first discretized via the Finite Element Method in order

to transform the systems’ model into some finite-dimensional ones. Then, the same controller has been

designed to achieve the vibrations’ damping by using the MID paradigm that is described below. The

results have proven the efficiency of such a control structure, motivating its use’s extension directly to

the PDE framework.

Having to adjust the four QPB parameters for achieving some control objectives may be seen as an undue

difficulty. However, it offers degrees of freedom for performance purposes with the low cost of adding an

auto-regressive term. Notice that the QPB parameters’ tuning has always been done through an analytical

qualitative/quantitative framework called partial pole placement (PPP) consisting in the stabilization of

the closed-loop solutions with a prescribed admissible decay rate, which is a great advantage in practical

applications. As a matter of fact, in all generality, assigning the exact location of a spectrum composed

of infinitely many eigenvalues with only finitely many parameters is impossible. Nevertheless, the strat-

egy of PPP consists in tuning the parameters in order to assign only finitely many eigenvalues, while

guaranteeing that the rightmost eigenvalue is among them. Hence, the negativity of the assigned right-

most eigenvalue certifies the exponential stability. While tuning parameters to assign some eigenvalues is

typically a trivial interpolation question, guaranteeing dominance of the chosen eigenvalues is a difficult

problem.

Exploring some erstwhile ideas, present for instance in [73], the seminal works [27, 30] highlighted the

fact that roots of quasipolynomials of high enough multiplicity tend to be dominant, in what came to

be known as the multiplicity-induced-dominancy (MID) property. When available, this property can be

helpful in the stabilization of time-delay systems since it suffices to select the system’s free parameters

in order to guarantee the existence of such a root of high multiplicity with a negative real part, and the

MID property will ensure its dominance. While early works verified the MID property for some classes

of time-delay systems, typically of low order, more recent papers, such as [29, 44, 20, 64, 21, 23, 15, 59,

28, 18], have extended those results to more general situations.

Since the multiplicity of spectral values is not important as such, instead of assigning a single root of high

enough multiplicity, some recent works such as [17] have considered the assignment of several simple

real roots and shown that, in several situations, the rightmost root among those assigned is dominant,

consisting in what has been named the coexisting-real-roots-induced-dominancy (CRRID) property. As-

signing several simple real roots instead of a single root of large multiplicity allows weaker constraints



7

in the control design and less sensitivity to parameters’ variations or uncertainties, as explored in the

applications in [24] or [82].

The main ingredient behind most of the proofs of the MID and the CRRID properties described in the

aforementioned references is an integral representation of the corresponding quasipolynomial when the

roots are assigned. In the case of the MID, when assigning roots of maximal possible multiplicity, such

an integral representation turns out to be nothing but the well-known Kummer confluent hypergeometric

function, as proved in [64]. In the case of the MID property with multiplicity smaller than the maxi-

mal one, the integral representation involves linear combinations of Kummer functions [23], while, for

the CRRID properties, generalizations of hypergeometric functions are involved, see for instance [17].

Proofs of dominance then rely on results pertaining to the locations of roots of such special functions,

such as those from [22, 84, 76].

Let us define the quasipolynomial Q : C×R∗+ 7→ C as

(2.3) Q(s, τ) := P0(s) + Pτ(s)e−τ s,

where P0 and Pτ are polynomials with real coefficients given by

(2.4) P0(s) = sn +

n−1∑
k=0

ak sk, Pτ(s) =

m∑
k=0

αk sk.

The degree of Q is defined as the sum of the degrees of the involved polynomials plus the number of

delays, i.e., deg(Q) := n + m + 1, see for instance [20].

Definition 2.2. We say that a characteristic root s0 of Q satisfies the MID property if the following holds:

(i): its algebraic multiplicity (denoted by M(s0)) is larger than one;

(ii): it is dominant in the sense that all the characteristic roots s ∈ C of (2.3) are located to the left

of s0 in C−, i.e., s satisfies the condition<(s) ≤<(s0).

In other words, s0 is the rightmost root of the spectrum and defines the spectral abscissa of the quasipoly-

nomial Q.

In the case where M(s0) = deg(Q), it was shown in [64] (in the case where m = n − 1) and in [20]

(in the general case m ≤ n) that s0 satisfies the MID property. This “limit” case is also called generic

MID or GMID for short. In the case where M(s0) < deg(Q) and the MID hold, those cases refer to the

Intermediate MID or IMID for short.

Notice that even if these remarkable properties are not valid, the existence of multiple roots or the coex-

istence of negative roots may consist in breaches for the location of the spectral abscissa as can be seen

in the following example borrowed from [28]. Let us revisit the following control problem where the aim

is to establish a delayed-state-feedback controller capable of fast stabilizing and damping oscillations of
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solutions of a given second-order system:

(2.5)


ü(t) + a1u̇(t) + a0u(t) = v(t), where

v(t) = −α0 u(t−τ)−α1u̇(t−τ).

More precisely, one is concerned with an open-loop system admitting one oscillating (possibly unstable)

mode when the discriminant ∆ = a2
1 − 4a0 of the open-loop characteristic polynomial satisfies ∆ < 0.

Notice that, by looking for the closed-loop system solution in the form u(t) = es t or simply by employing

the Laplace transform, one gets the corresponding characteristic equation in the complex domain which

reads:

(2.6)


Q(s, τ) = P0(s) + P1(s)e−τ s, where

P0(s) = s2 + a1s + a0 and P1(s) = α1 s +α0.

It has been shown in [28, Theorem 4.1] that the only admissible quadruple spectral value is achieved at

s = s∗ where

(2.7) s∗ = −
a1 +

√
−2∆

2
,

with τ = τ∗ and the system parameters satisfy τ∗ = 2
√
− 2

∆
, α0 =

(
5∆−a1

√
−2∆

)
4 es∗τ∗ , α1 = −

√
−2∆
2 es∗ τ∗ .

In this case, s∗ corresponds to the spectral abscissa of the closed-loop (2.5) and consequently, it is said

to satisfy the GMID property, see also [64, 20]. Further, in the same work, it has been shown in [28,

Theorem 4.2] that the only admissible triple spectral values are

(2.8) s± =
−τa1−4±

√
8 +τ2∆

2τ
,

which exist only for ∆ ≥ −8/τ2 and are achieved when the control parameters satisfy:

(?±)


α0 =

(
a1s±+

a1
2

2
−

∆

2
+

6a1 + 10 s±
τ

+
6
τ2

)
es±τ,

α1 =

(
2 s0 + a1 +

2
τ

)
es±τ.

Interestingly, it has been shown that if, (?+) is satisfied then s = s+ is the spectral abscissa corresponding

to (2.6) that is the IMID is satisfied. Nonetheless, if (?−) is satisfied then s− cannot be the spectral

abscissa corresponding to (2.6) as it is always dominated by a single real root s0. Further, in the particular

case of ∆∗ = − 8
τ2 , the triple root at s− merges with the aforementioned s0 giving rise to the quadruple

spectral value s∗ which is proven to be dominant. So that, as illustrated in Figure 1 in the study of

the delayed PD controller in the problem of stabilization and quenching oscillations of the harmonic

oscillator (no damping) with natural frequency ω0 =
√

2

(2.9)


ü(t) + 2u(t) = v(t) where

v(t) = −α0 u(t−τ)−α1u̇(t−τ),

and controllers gains satisfying (?−), thanks to the continuity of the spectrum location with respect to

parameters variation, for instance by decreasing delay τ= τ∗−ε with ε ∈ (0, 0.255), one is able to monitor
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Figure 1. The spectrum distribution of (2.5) with a0 = 2, a1 = 0 and control parame-

ters given by (?−) with respect to delay variation (from red to blue) by continuously

decreasing the delay value from τ∗ = 1, where the nominal spectrum distribution is rep-

resented by filled diamonds (_) and achieved for the delay value τ = τ∗ = 1 for which

the quadruple spectral value s∗ corresponds to the spectral abscissa, to τcrit, where the

end spectrum distribution is represented by the cross symbol (×) which is achieved

for the delay value τ = τcrit for which the rightmost spectral value is s0 = 0 (loss of

the exponential stability). This gives a sensitivity chart of the spectrum distribution

with respect to delay variation illustrating a remarkable splitting of the abscissa s∗ on

the real axis into a breakaway branch s0, which becomes itself the rightmost spectral

value, moving towards the origin of the complex plane and a dominated locked triple

spectral value s− branch moving in the opposite direction.

the closed-loop system solution’s decay rate s0 (spectral abscissa location) for a delay range τ ∈ (τcrit, τ
∗)

where τcrit corresponds to the delay value achieving s0 = 0.

This provides a comprehensive example for which one is able to assign a lower-bound of the closed-loop

solution’s decay rate, even though the multiple spectral root is not the spectral abscissa.
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3. Problem Statement

We study the boundary stabilization of a wave equation in (0,1) ⊂ R including auto-regressive boundary

conditions given by:

(3.10)



utt(x, t)−uxx(x, t) = 0, x ∈ (0,1), t > 0,

u(0, t) = 0, t > 0,

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ (0,1),

ux(1, t) = −αux(1, t−τ) +βut(1, t) +γut(1, t−τ), t > 0,

ut(1, t−τ) = 0, ux(1, t−τ) = 0, t ∈ (0, τ).

The constant τ > 0 is a time delay, α, β and γ are real numbers corresponding to the QPB control law’s

gains and the initial data u0, u1 are given functions belonging to suitable spaces that will be precised

later.

It is worth noticing that any choice of the gains such that γ = αβ must be rejected because it amounts to

having a boundary condition (3.10) that would be reduced to

(3.11) ux(1, t) = βut(1, t).

Such a case has already been considered previously by several works, as for example in [32, 53, 54], and

is known as a damping injection term.

The problem of boundary stabilization of the wave equation with time delay in the output feedback

loop has been considered in several works; see for instance [13] for the problem of damping torsional

vibrations in a drilling system and [85] for a special emphasis on time delay equal to a multiple of the

wave propagation time. More precisely, in [85], the system (3.10) has been considered with α = β = 0.

Some remarkable and unexpected properties have been pointed out. In particular, a stabilizing effect of

even multiples of the wave propagation time has been exhibited. However, odd multiples induce unstable

closed-loop system dynamics. Furthermore, a lack of robustness to small perturbations in time delay has

been reported.

The purpose of this paper is to study problem (3.10), in which two delayed terms act in the boundary

conditions. To our best knowledge, the auto-regressive term weighted by coefficient α is the main novelty

in such a problem. In recent years, one very active area of mathematical control theory has been the

investigation of the delay effect in the stabilization of hyperbolic systems. Many authors have shown that

delays can destabilize a system that is asymptotically stable in the absence of delays (see [2, 3, 40, 68,

69, 70] for more details).

As it has been proved by Datko [39, Example 3.5], systems of the form

(3.12)


wtt(x, t)−wxx(x, t)−awxxt(x, t) = 0, x ∈ (0,1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t−τ) , t > 0,
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where a, k and τ are positive constants become unstable for arbitrarily small values of τ and any values of

a and k. In (3.12) and even in the presence of the strong damping −awxxt, without any other damping, the

overall structure can be unstable. This was one of the main motivations for considering problem (3.10).

Of course, the structures of problems (3.10) and (3.12) are different due to the nature of the boundary

conditions in each problem.

Subsequently, Datko et al [40] treated the following one-dimensional problem:

(3.13)



utt(x, t)−uxx(x, t) + 2aut(x, t) + a2 u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −k ut(1, t−τ), t > 0,

which models the vibrations of a string clamped at one end and free at the other, where u(x, t) is the

displacement of the string. Also, the string is controlled by a boundary control force (with a delay) at the

free end. They showed that, if the positive constants a and k satisfy

k
e2a + 1
e2a−1

< 1,

then the delayed feedback system (3.13) is stable for all sufficiently small delays. On the other hand, if

k
e2a + 1
e2a−1

> 1,

then there exists a dense open set D ⊂ (0,∞) such that for each τ ∈ D, system (3.13) admits exponentially

unstable solutions.

It is well known that in the absence of delay in (3.13), that is, for τ = 0, the system is uniformly asymp-

totically stable under the condition a2 + k2 > 0 and the total energy of the solution satisfies for all t > 0,

(3.14) E(t,u) :=
∫ 1

0

(
u2

t + u2
x + a2u2

)
dx ≤C E (0,u)e−αt

for some positive constant α; see [33] for more details.

In [68], the authors examined a wave equation system with a linear boundary damping term exhibiting a

delay. Namely, they considered the following system

(3.15)



utt −∆u = 0, x ∈Ω, t > 0 ,

u(x, t) = 0, x ∈ γ0, t > 0 ,
∂u
∂ν

(x, t) = µ1ut(x, t) +µ2ut(x, t−τ) x ∈ γ1, t > 0 ,

u(x,0) = u0(x), x ∈Ω ,

ut(x,0) = u1(x), x ∈Ω ,

ut(x, t−τ) = g0(x, t−τ), x ∈Ω, τ ∈ (0,1) ,

and proved, under the assumption

(3.16) µ2 < µ1
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(which means that the weight of the feedback with delay is smaller than the one without), that the null

stationary state is exponentially stable. On the contrary, if (3.16) does not hold, they produced a sequence

of delays for which the corresponding solution of (3.15) is unstable. The main approach used in [68], is

an observability inequality obtained by means of a Carleman estimate.

The case of time-varying delay (i.e. τ = τ(t) is a function depending on t) has been studied by Nicaise,

Valein and Fridman [71] in one space dimension. In their work, an exponential stability result was given

under the condition:

(3.17) µ2 <
√

1−d µ1,

where d is a constant satisfying

(3.18) τ′(t) ≤ d < 1, ∀t > 0.

Delay effects arise in many applications and practical problems and it is well known that an arbitrarily

small delay may destabilize a system which is uniformly asymptotically stable in the absence of delay

(e.g. [53, 54, 38, 40]).

Let us also cite the recent work of Ammari and Nicaise, [9], in which the authors performed a complete

study of the stabilization of elastic systems by collocated feedback with or without delay, see also [3, 10,

12, 11, 8, 7, 6, 4, 5].

4. Well-posedness of problem (3.10)

In this section, we shall first transform the delay boundary conditions by introducing a new unknown.

Then, a semigroup approach and the Lumer-Phillips’ theorem shall be used to prove the existence and

the uniqueness of the solution of the problem (3.10).

Note that the well-posedness of the evolution equations with delay is not always obtained. Recently,

Dreher, Quintilla and Racke have shown some ill-posedness results for a wide range of evolution equa-

tions with a delay term [42].

In order to prove the global existence and the uniqueness of the solution of problem (3.10), we shall first

transform the problem (3.10) to the problem (4.22) by making the change of variables (4.19), and then

we shall use the semigroup approach to prove the existence of the unique solution of problem (4.22).

To overcome the problem of the boundary delay, we introduce the new variables:

(4.19) z (ρ, t) := ut (1, t−τρ) , w(ρ, t) := ux(1, t−τρ), ρ ∈ (0,1) , t > 0.

Then, we have

τzt (ρ, t) + zρ (ρ, t) = 0, in (0,1)× (0,+∞) ,(4.20)

τwt (ρ, t) + wρ (ρ, t) = 0, in (0,1)× (0,+∞) .(4.21)
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Hence, problem (3.10) is equivalent to:

(4.22)



utt(x, t)−uxx(x, t) = 0, x ∈ (0,1), t > 0,

u(0, t) = 0, t > 0,

ux(1, t) +αw(1, t) = βut(1, t) +γz(1, t), t > 0

τzt(ρ, t) + zρ(ρ, t) = 0, ρ ∈ (0,1) , t > 0

τwt(ρ, t) + wρ(ρ, t) = 0, ρ ∈ (0,1) , t > 0

z(0, t) = ut(1, t), w(0, t) = ux(1, t), t > 0

u(x,0) = u0(x), x ∈ (0,1),

ut(x,0) = u1(x), x ∈ (0,1),

z(ρ,0) = 0, w(ρ,0) = 0, ρ ∈ (0,1).

The first natural question is the existence of solutions for the problem (4.22). In the following, we shall

give a sufficient condition guaranteeing that the above problem is well-posed.

For this purpose, we use a semigroup formulation of the initial-boundary value problem (4.22). If we

denote V := (u,ut,z,w)T , we define the energy space:

H := H1
` (0,1)×L2 (0,1)×L2(0,1)×L2(0,1),

where

H1
` (0,1) :=

{
u ∈ H1(0,1)/ u(0) = 0

}
,

and (., .) denotes the scalar product in L2(0,1), i.e. (u,v) =

∫ 1

0
u(x)v(x)dx.

Clearly, H is a Hilbert space with respect to the inner product

(4.23) 〈V1,V2〉H =

∫ 1

0
u1

x u2
xdx +

∫ 1

0
v1v2dx + ξ1

∫ 1

0
z1z2dρ+ ξ2

∫ 1

0
w1w2dρ

for V1 = (u1,v1,z1,w1)T , V2 = (u2,v2,z2,w2)T and ξ1, ξ2 > 0 nonnegative real numbers to be defined later.

Therefore, if V0 ∈H and V ∈H , the problem (4.22) is formally equivalent to the following abstract

evolution equation in the Hilbert space H :

(4.24)

 V ′(t) = A V(t), t > 0,

V (0) = V0,

where ′ denotes the derivative with respect to time t, V0 := (u0,u1,0,0)T and the operator A is defined

by:

A



u

v

w

z


=



v

uxx

−τ−1zρ

−τ−1wρ


.
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The domain of A is the set of V = (u,v,z,w)T such that:

(u,v,z,w)T ∈
(
H1
` (0,1)∩H2(0,1)

)
×H1

` (0,1)×H1(0,1)×H1(0,1),(4.25)

v(1) = z(0), ux(1) = w(0), ux(1) +αw(1) = βv(1) +γz(1).(4.26)

If (α,β,γ,ξ1, ξ2) satisfies the following conditions:

(4.27) 0 < α < 1, β < γ

√
1 +

2α2

1−α2 < 0, 2τ
(

α2γ2

β(α2−1)
−
γ2

2β

)
< ξ1 < −βτ, ξ2 = −

τ

β
,

then, the well-posedness of problem (4.22) is ensured by:

Theorem 4.1. Let V0 ∈H , then there exists a unique solution V ∈C (R+;H ) of problem (4.24). More-

over, if V0 ∈D (A ), then

V ∈C (R+;D (A ))∩C1 (R+;H ) .

Proof. The proof of the existence and the uniqueness of the solution of problem (4.24) relies on the

semigroup approach and the Lumer-Phillips’ theorem.

Indeed, let V = (u,v,w,z)T ∈ D (A ). By definition of the operator A and the scalar product of H , we

have:

〈A V,V〉H =

∫ 1

0
uxvx dx +

∫ 1

0
vuxx dx −

ξ1

τ

∫ 1

0
zzρ dρ−

ξ2

τ

∫ 1

0
wwρ dρ.

By Green’s formula we obtain:

(4.28) 〈A V,V〉H = ux(1)v(1)−
ξ1

2τ

(
z2(1)− z2(0)

)
−
ξ2

2τ

(
w2(1)−w2(0)

)
.

Hence, equation (4.28) becomes:

(4.29)

〈A V,V〉H = (−αw(1) +βz(0) +γz(1))z(0)− ξ1
2τ

(
z2(1)− z2(0)

)
−

ξ2
2τ

(
w2(1)−w2(0)

)
= −

ξ1
2τ z2(1)− ξ2

2τw2(1) +
(
β+

ξ1
2τ

)
z2(0) +

ξ2
2τw2(0)−αw(1)z(0) +γz(1)z(0)

= −
ξ1
2τ z2(1)− ξ2

2τw2(1) +
(
β+

ξ1
2τ

)
z2(0) +

ξ2
2τ (−αw(1) +βz(0) +γz(1))2

−αw(1)z(0) +γz(1)z(0)

= −
ξ1
2τ z2(1)− ξ2

2τw2(1) +
(
β+

ξ1
2τ

)
z2(0) +

ξ2
2τα

2w2(1) +
ξ2
2τβ

2z2(0) +
ξ2
2τγ

2z2(1)

−
ξ2αγ
τ w(1)z(1).

To treat the last terms in the above equation,Young’s inequality gives, for all ε > 0:

(4.30)
〈A V,V〉H ≤

(
−
ξ1
2τ +

ξ2
2τγ

2 +ε
ξ2
τ |αγ|

)
z2(1) +

(
β+

ξ1
2τ +

ξ2
2τβ

2
)
z2(0)+(

−
ξ2
2τ +

ξ2
2τα

2 +
ξ2
2ε
|αγ|
τ

)
w2(1).

According to condition (4.27) and by choosing αγ

α2−1 < ε <
(
ξ1
2τ +

γ2

2β

)
β
αγ , we obtain

(4.31) 〈A V,V〉H ≤ 0 .

Thus the operator A is dissipative.

Now, we want to show that ∀λ > 0, λI −A is surjective. To this end, it is clear that it suffices to show

that λI−A is surjective for some λ > 0.
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For F = ( f1, f2, f3, f4)T ∈H , let V = (u,v,z,w)T ∈D (A ) be a solution of

(λI−A )V = F,

where

λu− v = f1,(4.32)

λv−uxx = f2,(4.33)

λz +
1
τ

zρ = f3,(4.34)

λw +
1
τ

wρ = f4.(4.35)

To find V = (u,v,z,w)T ∈ D (A ) solution of the system (4.32)-(4.35), we suppose that u is determined

with the appropriate regularity. Then, from (4.32), we get:

(4.36) v = λu− f1 .

Therefore, from the compatibility condition on γ1 AND equations (4.26), we determine z(0) and w(0)

by:

(4.37) z(0) = v(1) = λu(1)− f1(1), w(0) = ux(1).

Thus, from equations (4.34)-(4.35), z and w are given, respectively, by:

(4.38)

 z(ρ) = (λu(1)− f1(1)) e−λρτ + e−λρτ
∫ ρ

0 eλρs f3(s)ds , ρ ∈ (0,1),

w(ρ) = ux(1)e−λρτ + e−λρτ
∫ ρ

0 eλρs f4(s)ds , ρ ∈ (0,1).

Consequently, knowing u, we may deduce v by equation (4.36), and z and w by system (4.38).

We recall that since V = (u,v,z,w)T ∈D (A ), from equations (4.33) and (4.36), u must satisfy:

(4.39) λ2u−uxx = f2 +λ f1, in (0,1)

with the boundary conditions

(4.40)


u(0) = 0,(
1 +αe−λτ

)
ux(1)−λ

(
β+γe−λτ

)
u(1) =

−(β+γe−λτ) f (1) +
∫ 1

0 e−λ(τ−s)(−α f4(s) +γ f3(s))ds.

Using the previous expression, we get:

(4.41) u(x) =



{
−(β+γe−λτ) f (1)+

∫ 1
0 e−λ(τ−s)(−α f4(s)+γ f3(s))ds

λ(1+αe−λτ)ch(λ)−λ(β+γe−λτ)sh(λ) +

−

∫ 1
0

(
(1+αe−λτ)+(β+γe−λτ)sh(λ(1−y))

)
( f2(y)+λ f1(y))dy

λ(1+αe−λτ)ch(λ)−λ(β+γe−λτ)sh(λ)

}
sh(x)+

1
λ

∫ x
0 sh(λ(x− y)) ( f2(y) +λ f1(y))dy, x ∈ (0,1).

As a result, u ∈H2(0,1)∩H1
` (0,1) verifies (4.39)-(4.40), so we recover u and v. Next, by (4.38) we obtain

z,w. Thus, we have found V = (u,v,z,w)T ∈D (A ) solution of (λI−A )V = F.
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The operator A generates a C0 semigroup of contractions etA on H . Owing to the Lumer-Phillips’

theorem, there exists a unique solution V ∈ C (R+;H ) of the problem (4.24). This completes the proof

of Theorem 4.1. �

5. Asymptotic behavior

In this section, we show that under condition (4.27), the semigroup etA decays exponentially to the

null steady state. To this end, our technique is based on a frequency domain method and combines a

contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

Theorem 5.1. Suppose that condition (4.27) holds. Then, there exist constants C, ω > 0 such that, for

all V0 ∈ H , the semigroup etA satisfies the following estimate

(5.42)
∥∥∥etA V0

∥∥∥
H
≤C e−ωt ‖V0‖H , ∀ t > 0.

Proof of theorem 5.1. We shall use the following frequency domain theorem for uniform stability from

Huang-Prüss [49, 75] of a C0 semigroup of contractions on a Hilbert space:

Lemma 5.2. A C0 semigroup etL of contractions on a Hilbert spaceH satisfies

||etLU0||H ≤C e−θt ||U0||H

for some constant C > 0 and for θ > 0 if, and only if,

(5.43) ρ(L) ⊃
{
iδ

∣∣∣ δ ∈ R} ≡ iR,

and

(5.44) limsup
δ∈R, |δ|→∞

‖(iδI−L)−1‖L(H) <∞,

where ρ(L) denotes the resolvent set of the operator L.

First, we consider the point spectrum of A .

Lemma 5.3. The spectrum of A contains no point on the imaginary axis.

Proof. Since A admits a compact resolvent, its spectrum σ(A ) consists only of eigenvalues of A . We

shall show that the equation

(5.45) A Z = iδZ
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with Z = (u,v,z,w)T ∈D(A ) and δ ∈ R admits only the trivial solution.

Equation (5.45) reads as follows :

iδu− v = 0,(5.46)

iδv−uxx = 0,(5.47)

iδz +τ−1zρ = 0,(5.48)

iδw +τ−1wρ = 0 .(5.49)

Taking the inner product of (5.45) with Z, inequality (4.30) entails :

z(0) = 0, w(1) = 0 and z(1) = 0.

Thus, we have z = 0 and w = 0, and since ux(1) = w(0), v(1) = z(0), we also obtain u = 0 and v = 0. As a

consequence, the only solution of (5.45) is the trivial one. �

The following lemma shows that (5.44) holds with L = A .

Lemma 5.4. The resolvent operator of A satisfies condition (5.44).

Proof. Suppose that condition (5.44) is false. By the Banach-Steinhaus Theorem (see [31]), there ex-

ist a sequence of real numbers δn → +∞ and a sequence of vectors Zn = (un,vn,zn,wn)t ∈ D(A ) with

‖Zn‖H = 1 such that

(5.50) ||(iδnI−A )Zn||H → 0 as n→∞,

i.e.,

iδnun− vn ≡ fn→ 0 in H1
` (0,1),(5.51)

iδnvn−u′′n ≡ gn→ 0 in L2(0,1),(5.52)

iδnzn +
1
τ
∂ρzn ≡ hn→ 0 in L2(0,1),(5.53)

iδnwn +
1
τ
∂ρwn ≡ kn→ 0 in L2(0,1).(5.54)

Our goal is to derive from (5.50) that ||Zn||H converges to zero, in order to obtain a contradiction.

First step. Notice that we have

(5.55) ||(iδnI−A )Zn||H ≥ |< (〈(iδnI−A )Zn,Zn〉H ) |.

Then, by inequality (4.30) and limit (5.50), we derive

(5.56) zn(1)→ 0, vn(1) = zn(0)→ 0, wn(1)→ 0.

This further leads, by limit (5.51) and the trace theorem, to

(5.57) δnun(1)→ 0.
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Moreover, since Zn ∈D(A ), by limits (5.56) we get

(5.58) u′n(1)→ 0.

Recalling that

zn(ρ) = zn(0)e−iδnτρ +τ

∫ ρ

0
e−iδnτ(ρ−s) hn(s)ds,(5.59)

wn(ρ) = wn(1)e−iδnτ(ρ−1)−τ

∫ 1

ρ
e−iδnτ(ρ−s) kn(s)ds,(5.60)

limits (5.56) imply that

(5.61) zn→ 0 in L2(0,1), wn→ 0 in L2(0,1).

Second step. Now, let us express vn as a function of un from equation (5.51) and substitute it into (5.52)

to get

(5.62) −δ2
nun−u′′n = iδn fn + gn.

Next, we take the inner product of the above equation (5.62) with xu′ in L2(0,1), we obtain that

∫ 1

0
(−δ2

nun(x)−u′′n (x))xu′(x)dx =

∫ 1

0
(iδn fn(x) + gn(x)) xu′(x)dx =

(5.63)
∫ 1

0
gn(x)xu′n(x)dx−

∫ 1

0
iδn f ′n(x)xun(x)dx−

∫ 1

0
iδn fn(x)un(x)dx + iδnun(1) fn(1).

It is clear that the right-hand side of equality (5.63) converges to zero since fn,gn converge to zero in H1

and L2, respectively. By a straightforward calculation, we deduce that∫ 1

0
−δ2

nun(x)xu′n(x)dx =
1
2

∫ 1

0
δ2

nu2
n(x)dx−

δ2
n

2
u2

n(1)

and ∫ 1

0
−u′′n (x)xu′n(x)dx =

1
2

∫ 1

0
(u′n)2(x)dx−

(u′n(1))2

2
.

This leads to ∫ 1

0
δ2

nu2
n(x)dx +

∫ 1

0
(u′n)2(x)dx−δ2

n u2
n(1)− (u′n(1))2 −→ 0.

So, limits (5.57), (5.58) and (5.61), obviously contradict ‖Zn‖H = 1. �

The two hypotheses of Lemma 5.2 are proved by Lemma 5.4. Then inequality (5.42) holds which ends

the proof of Theorem 5.1. �
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6. A spectral formulation via D’Alembert’s formula

In order to express the problem into a form more suited for control purposes with a spectral approach,

the wave equation in system (3.10) is now considered through the D’Alembert formula which allows the

solution of the wave equation to be written as:

(6.64) u(x, t) =
1
2

(u0(x + t) + u0(x− t)) +
1
2

∫ x+t

x−t
u1(ξ)dξ.

Introducing the variable θ as follows:

(6.65)


θ(x) = −

1
2

u0(−x) +
1
2

∫ −x

0
u1(s)ds for x ∈ (−1,0),

θ(x) =
1
2

u0(x) +
1
2

∫ x

0
u1(s)ds for x ∈ (0,1),

enables express u in terms of θ :

u(x, t) = θ(x + t)− θ(t− x),(6.66)

so that

ut(x, t) = θ′(x + t)− θ′(−x + t),(6.67)

ux(x, t) = θ′(x + t) + θ′(−x + t).(6.68)

Thus, the control function on the boundary x = 1, say v(t) := ux(1, t), is then given by

(6.69) v(t) = θ′(1 + t) + θ′(−1 + t).

By defining η := 1 + t, one gets:

v(η−1) = θ′(η) + θ′(η−2),(6.70)

so that

v(η−1−τ) = θ′(η−τ) + θ′(η−2−τ),(6.71)

Furthermore, the feedback control law’s expression in (3.10) becomes:

(6.72) v(η−1) +αv(η−1−τ) = β
(
θ′(η)− θ′(η−2)

)
+γ

(
θ′(η−τ)− θ′(η−2−τ)

)
.

Hence, one can consider the expression of v in equations (6.70) and (6.71) and substitute them into

equation (6.72). As a consequence, in the case where β , 1, we get

(6.73) θ′(η) +
1 +β

1−β
θ′(η−2) +

α−γ

1−β
θ′(η−τ) +

α+γ

1−β
θ′(η−2−τ) = 0.

which is a continuous time-difference equation that is exclusively expressed in terms of θ′(x).

Remark 6.1. Note that the case β = 1 is not consistent with the dissipativity conditions established in

(4.27) in Section 4. Therefore, β , 1 is the only case considered in the sequel.
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7. A parametric stability analysis via a spectral approach

Let s ∈ C be the Laplace variable of the Laplace Transform operator and the delay such that τ ∈ R∗+.

Applying the Laplace transform to equation (6.73), one gets the following characteristic function:

(7.74) Q(s, τ) := 1 +
1 +β

1−β
e−2s +

α−γ

1−β
e−τs +

α+γ

1−β
e−(τ+2)s.

The exponential stability of the closed-loop system in (6.73) can be achieved if, and only if, the roots of

(7.74) have a strictly negative real part. Moreover, a decay-rate of σ, with σ > 0, for θ′(η) converging to

zero can be obtained if, and only if, −σ is an upper-bound on the real part of any root of (7.74). In fact,

the well-known Hale-Silkowski criterion completely characterizes the exponential stability of (6.73),

see for instance [46, Chapter 9, Theorem 6.1] and for further refinement and generalization of the above

result see [35]. As a matter of fact, since the three involved delays in equation (6.73) (2, τ, and τ+ 2) are

rationally dependent, then one can transform (6.73) into an equivalent matrix equation involving only

two delays 2 and τ. By denoting

(7.75) f (t) :=

 θ′(t)

θ′(t−2)

 , A :=

 1+β
β−1 0
α+γ
β−1 0

 , B :=

α−γβ−1
α+γ
β−1

0 0

 ,
equation (6.73) is equivalent to the system:

(7.76) f (t) = A f (t−2) + B f (t−τ).

Furthermore, if the delays τ and 2 are rationally independent, then using [45, Chapter 9, Theorem 6.1]

one concludes that (7.76) is stable locally in the delays if, and only if,

sup
ϕ1,ϕ2∈[0,2π]

µ
(
Aeiϕ1 + Beiϕ2

)
< 1,

where µ(·) designates the spectral radius of a given square matrix.

This entails the following necessary and sufficient stability conditions:
1 +

1 +β

β−1
>

∣∣∣∣∣ 2α
β−1

∣∣∣∣∣ ,
1−

1 +β

β−1
>

∣∣∣∣∣ 2γ
β−1

∣∣∣∣∣ ,
which reduce for β < 0 to the following set of necessary and sufficient conditions:

|γ| < 1,

|α| < −β.

However, if the delays τ and 2 are rationally dependent, then one can further transform (7.76) into an

equivalent augmented matrix equation and again using [45, Chapter 9, Theorem 6.1] one can obtain

explicit necessary and sufficient conditions.

Despite the importance of the result recalled above from a qualitative point of view, it does not unfortu-

nately provide any information on the solution decay rate.
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In the following section, we shall exploit the manifold of spectral values’ multiplicities to get some

insights on the solutions’ decay rates.

7.1. On the MID paradigm . Notice that, in the case of a quasipolynomial with more than one ex-

ponential term, such as the one under consideration in (7.74), the characterization of the MID property

remains an open problem, to which we partially contribute in the present work.

As emphasized in Section 2, the MID property consists in conditions under which a multiple spectral

value is dominant. More precisely, in this section, we shall provide some configurations in which the

GMID applies; this corresponds to the dominancy of spectral values with a multiplicity which is equal to

the degree of the considered quasipolynomial. Notice that such a degree may vary when some coefficients

are set to be zero or when some delays are set to be equal. In particular, the case τ = 2 will be considered

separately since it allows to decrease the degree of the quasipolynomial Q.

In this case, the quasipolynomial Q reads

(7.77) Q(s,2) = 1 +
(1 +β+α−γ)e−2s

1−β
+

(α+γ)e−4s

1−β

which admits a degree equal to two for γ , α and γ , α+β+ 1. We are able to enunciate the following:

Theorem 7.1. Consider the quasipolynomial Q(·, τ) given by (7.74) and let τ = 2.

A given real number s0 is a double root of (7.77) if, and only if,

(7.78)


α =

γ
(
2e−2 s0 − e−4 s0 −1

)
+ 2

e−4 s0 −2e−2 s0 −1
,

β =
(2γ−1)e−4 s0 −2e−2 s0 −1

e−4 s0 −2e−2 s0 −1
.

If (7.78) is satisfied then the GMID holds, that is, s0 corresponds to the spectral abscissa of the quasipoly-

nomial Q(·,2) given by (7.77). Furthermore, all zeros of (7.77) are double and lie on the vertical axis

<(s) = s0.

Proof. Since the degree of the quasipolynomial (7.77) is equal to 2, let us investigate its admissible

double roots. Let s0 ∈ R be a double root of (7.77); that is Q(s0,2) = Qs(s0,2) = 0. Thanks to the

linearity of the two equations obtained in the parameters α and β, one easily deduces conditions (7.78).

By substituting the resulting conditions into the expression of Q(·,2) one gets for arbitrary γ:

Q(s,2) =
(
e−2(s−s0)−1

)2
,

which means that each root of Q(·,2) is necessarily double. Furthermore, let s = x + iω , s0 be a root of

Q(·,2) then x and ω satisfy: 
e2(x−s0) sin(2ω) = 0

e−2(x−s0) cos(2ω) = 1.

From the first equation one gets that ω = k
2 π with k ∈ Z∗ and the second equation yields x = s0, which

concludes the proof. �
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Now, let us consider again the quasipolynomial (7.74) where α , |γ| and |β| , 1, i.e., the case where the

quasipolynomial’s degree is equal to three.

Theorem 7.2. Consider the quasipolynomial Q(·, τ) given by (7.74) and let τ , 2.

A given real number s0 is a triple root of (7.74) if, and only if,

(7.79)



α =
(τ−2) e2 s0 − (τ+ 2)
(τ+ 2) e2 s0 − (τ−2)

eτ s0 ,

β =
(τ+ 2) e2 s0 + (τ−2)
(τ+ 2) e2 s0 − (τ−2)

,

γ =
(τ−2) e2 s0 + (τ+ 2)
(τ+ 2) e2 s0 − (τ−2)

eτ s0 .

If (7.79) is satisfied and τ is an even integer strictly greater than 2, then the GMID holds, that is, s0

corresponds to the spectral abscissa of the quasipolynomial Q(·,2k) given by (7.74).

To prove the above Theorem, one needs the following two results: the first one which is a classical

Theorem of A. Cohn [36] and the second is due to Eneström-Kakeya [51, 43]; see also [41, 61, 55, 34]

for further insights on polynomials with all zeros on the unit circle.

Theorem 7.3 ([36]). All zeros of the polynomial

P(s) =

n∑
k=0

ak sk ∈ C[s]

of degree n lie on the unit circle if, and only if,

i) P is self-inversive, i.e.

(7.80) an−k = ε āk (k = 0, · · · , n) where ε ∈ C, |ε| = 1;

ii) all zeros of P′ lie inside or on this circle.

If the coefficients ak (k = 0, · · · , n) are real, then in equalities (7.80), the coefficient ε should also be

real, thus these polynomials are self-inversive if, and only if,

j) either ε = 1 and an−k = ak (k = 0, · · · , n) i.e. P is reciprocal,

jj) or ε = −1 and an−k = −ak (k = 0, · · · , n) i.e. P is anti-reciprocal.

Theorem 7.4 ([51, 43]). The absolute value of zeros of the polynomial

P(s) =

n∑
k=0

ak sk ∈ R[s]

whose coefficients are positive, lie between the greatest and the least of the n quotients

an−1

an
,

an−2

an−1
, · · · ,

a1

a2
,

a0

a1
.
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Proof. The first claim is shown in the same manner as the proof of Theorem 7.1. Next, let us introduce

the change of variable e−2(s−s0) = X. One can show that for any τ = 2k where k is an integer greater than

2, one has Q(s,2k) = Rk(X) with:

Rk(X) =

k+1∑
l=0

ak Xk = −Xk+1 +
k + 1
k−1

Xk −
k + 1
k−1

X + 1.

Interestingly, the Rk coefficients satisfy: ak+1−l = −al for l = 0, · · · , k + 1, which entails that Rk is self-

inversive, anti-reciprocal and skew-adjoint polynomial since Rk(X) = −Xk+1 Rk( 1
X ). Notice that X = 1 is

a triple root of Rk.

Furthermore, the first derivative of Rk can be written:

R′k(X) = −Xk (k + 1) +
(k + 1) Xk−1k

k−1
−

k + 1
k−1

,

for which X = 1 is a double root. Let us investigate the zeros of R′k or equivalently the following polyno-

mial:
1− k
k + 1

R′k(X) = (k−1) Xk − k Xk−1 + 1

One easily shows by recurrence that:

1− k
k + 1

R′k(X) = (X−1)2
k−2∑
l=0

(l + 1) Xl.

Hence, Theorem 7.4 immediately incurs that beyond the double root at X = 1 the roots of R′k satisfy

1
2
≤ |X| ≤

k−2
k−1

< 1.

Finally, since Rk is self-inversive and all zeros of R′k lie inside or on the unit circle, then Theorem 7.3

asserts that all roots of Rk lie on the unit circle, which concludes the proof. �

Remark 7.5. It should be pointed out that apart from delay values τ = 2k the GMID property holds for

τ = 1 as it will be shown in the sequel. As a matter of fact, if (7.79) is satisfied and τ = 1, then one is in

the following particular case:

Q(s,1) = −
(
e−(s−s0)−1

)3
,

showing that the GMID obviously holds, i.e. s0 corresponds to the spectral abscissa of the above

quasipolynomial.

Remark 7.6. From a control theory viewpoint, the MID property can be exploited by tuning the control

parameters as emphasized above after prescribing a negative number s0 which corresponds to the closed-

loop system solution’s decay rate.

When the MID property fails, one can prescribe a lower bound for the decay rate as will be discussed in

the next section.
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7.2. Beyond the MID property in output feedback stabilization of the wave equation in (3.10) . By

substituting the expressions of α, β and γ given in system (7.79) into the expression of Q in expression

(7.74) and by introducing the variable change

(7.81) p := s− s0,

it comes

(7.82) Q̃(p, τ) := 1−
τ+ 2
τ−2

e−2 p +
τ+ 2
τ−2

e−τ p− e−(τ+2) p,

and we have now to examine the roots of Q̃ with respect to τ. It is well-known that zeros of quasipoly-

nomials with real coefficients are symmetric with respect to the real axis, that is, zeros are either real or

appear in complex conjugate pairs. The following lemma underlines an additional symmetry structuring

the distribution of zeros of Q̃ with respect to the imaginary axis, that is a central symmetry.

Lemma 7.7. Let p ∈ C be a zero of Q̃ defined by expression (7.82). Then, −p is also a zero of Q̃.

Proof. Let us evaluate Q̃ at −p where p is a zero of Q̃.

(7.83) Q̃(−p, τ) = 1−
τ+ 2
τ−2

e2 p +
τ+ 2
τ−2

eτ p− e(τ+2) p

Multiplying both sides by e−(τ+2) p, one gets

(7.84) e−(τ+2) p Q̃(−p, τ) = e−(τ+2) p−
τ+ 2
τ−2

e−τ p +
τ+ 2
τ−2

e−2 p−1

which yields e−(τ+2) p Q̃(−p, τ) = −Q̃(p, τ). Since for all p ∈ C one has e−(τ+2) p , 0, then necessarily

Q̃(−p, τ) = 0. �

In order to locate the zeros of (7.82), we require the following settings and results from [48], see also

[14] for further refinements. Consider the quasipolynomial

(7.85) Θ(p, κ,h) :=
N∑

k=0

κk e−pχk .h

where κ = (κ1, . . . , κN)T ∈ RN , h = (h1, . . . ,hM)T ∈ RM
+ , χ j = (χ j,1, . . . ,χ j,M), χ j,k ∈ N

∗ ( j ∈ ~1,N�, k ∈

~1,M�) and χ j.h =
∑M

k=1χ j,khk. We also adopt the notations κ0 = 1 and χ0 = (0, . . . ,0). Define ZΘ(κ,h) :={
<(p) : Θ(p, κ,h) = 0

}
and denote its closure by Z̄Θ(κ,h).

Lemma 7.8 ([48]). If the equation Θ(x+ iω,κ,h) = 0 is satisfied for some reals x and ω, then the lengths{
|κ j|e−xχ j.h, j ∈ ~0,N�

}
can form a closed polygon; that is, none of these lengths is larger than the sum of

the others: |κ j|e−xχ j.h ≤
∑

k, j |κk |e−xχk .h for j ∈ ~0,N�.

Also, following Henry [48], let us define ρ j = ρ j(κ, h) ( j ∈ ~0,N�), if they exist, by the relation

(7.86) |κ j|e−ρ j χ j.h =
∑
k, j

|κk |e−ρ j χk .h for j ∈ ~0,N�.

If χN .h ≥ χ j.h > 0 for j ∈ ~1,N −1�, then ρN and ρ0 are uniquely defined and ρN < ρ0 for N ≥ 2.
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Lemma 7.9 ([48]). If χN .h ≥ χN−1.h > . . . > χ1.h > 0, then

(7.87) Z̄Θ(κ,h) ⊆ [ρN , ρ0].

The following lemma provides a vertical strip in the complex plane, which is symmetric with respect to

the imaginary axis and contains the set of zeros of Q̃:

Lemma 7.10.

(7.88) Z̄Q̃(κ,h) ⊆ [−ρ∗, ρ∗],

where ρ∗ is the unique positive zero of

(7.89) Q̂(ρ,τ) := 1−
∣∣∣∣∣τ+ 2
τ−2

∣∣∣∣∣e−2ρ−

∣∣∣∣∣τ+ 2
τ−2

∣∣∣∣∣ e−τρ− e−(τ+2)ρ.

Proof. The symmetry of Z̄Q̃(κ,h) with respect to the imaginary axis is a direct consequence of Lemma

7.9 and Lemma 7.7. Furthermore, Lemma 7.9 asserts that, if it exists, ρ∗ is a positive zero of Q̂ given

by (7.89). Finally, independently from the sign of τ−2, using simple real analysis arguments, one easily

checks that Q̂(0, τ) < 0 and lim
ρ→∞

Q̂(ρ,τ) = 1 for all τ ∈ R∗+\{2} and shows by computing Q̂ρ, the first

derivative of Q̂ with respect to ρ, that Q̂ is strictly increasing. Hence, ρ∗ exists as a function of τ and it is

unique. �

Now, ρ∗ is a root of (7.89) if, and only if,

(7.90) e−(τ+2)ρ∗ = 1−
∣∣∣∣∣τ+ 2
τ−2

∣∣∣∣∣e−2ρ∗ −

∣∣∣∣∣τ+ 2
τ−2

∣∣∣∣∣ e−τρ
∗

Substituting the above expression into Q̂ρ, the first derivative of Q̂ with respect to ρ, and evaluating the

obtained expression at ρ∗ entails:

Q̂ρ(ρ∗, τ) = −
(τ+ 2)

(
e−2ρ∗τ− |τ−2|+ 2e−τρ

∗
)

|τ−2|
.

which never vanish for any τ ∈ R∗+\{2}. Indeed, for τ < 2, Q̂ρ is of constant sign and strictly decreasing

with respect to ρ∗. In addition, if we assume that Q̂ρ vanishes at ρ∗ for τ > 2, we get

(7.91) τ =
−2e−τρ

∗

−2
e−2ρ∗ −1

.

However, by eliminating e−τρ
∗

from the above expression of Q̂ρ and substituting it into the expression of

Q̂, we obtain

Q̂(ρ∗, τ) =

(
τ2−4

)
e−2ρ

2|τ−2|
− e−(τ+2)ρ−

τ

2
= 0,

that is,

(7.92) τ =
2e−(τ+2)ρ∗ −2e−2ρ∗

e−2ρ∗ −1
,
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which is inconsistent with (7.91) and the fact that ρ∗ > 0. Consequently, the Implicit Function Theorem

is then applicable to (7.89) and asserts that ρ∗ = ρ∗(τ) with

ρ∗′(τ) =

(
4 +

(
−τ2 + 4

)
ρ∗(τ)

)
e−2ρ∗(τ) + 4e−τρ

∗(τ) +ρ∗(τ) |τ−2| (τ−2)(
e−2ρ∗(τ)τ− |τ−2|+ 2e−τρ∗(τ)) (τ2−4

) .

Lemma 7.11. Consider the quasipolynomial Q̂ given by (7.89) with τ , 2. Then the spectral abscissa σ

of Q̂ is lower-bounded by s0 + ρ̂(τ) where ρ̂ is given by

(7.93) ρ̂(τ) :=
1

min{τ,2}
ln

(
1 + 2

τ+ 2
|τ−2|

)
.

Proof. It is easy to observe that for ρ > 0 and τ , 2

Q̂(ρ,τ) ≥ 1−
(
1 + 2

τ+ 2
|τ−2|

)
e−τρ.

We remark that the right-hand side of this last inequality admits a single root at ρ̂ given by (7.93). In

conclusion, for any τ , 2, one has Q̂(ρ̂(τ), τ) > 0, which asserts that ρ∗(τ) ≤ ρ̂(τ) from the Intermediate

Value Theorem. �

Thanks to the above results and lemmas, the proof of the following theorem, which gives a certified

decay rate’s lower-bound for the closed-loop system’s solution, is immediate.

Theorem 7.12. Consider the output feedback stabilization of the wave equation in (3.10) with an arbi-

trary positive delay τ > 0 then the following assertions hold:

• If τ = 2, then the control parameter tuning prescribed in system (7.78) allows to assign the

solution’s exponential decay rate at an arbitrary −s0;

• If τ = 2k where k is an integer greater than one, then the control parameter tuning prescribed in

system (7.79) allows to assign the solution’s exponential decay rate at an arbitrary −s0;

• If τ , 2k, then the control parameter tuning prescribed in system (7.79) allows a closed-loop

solution decaying exponentially faster than −s0− ρ̂(τ), where ρ̂ is defined by expression (7.93).

Proof. The D’Alembert transformation of the wave equation (3.10) turns it into the difference equation

(6.73). Next, applying the Laplace transform in the frequency-domain to the latter, yields the characteris-

tic quasipolynomial function (7.74). Finally, using the normalization (7.81), we end up with expression

(7.82). The first assertion is a direct consequence of Theorem 7.1. The second assertion is a direct

consequence of Theorem 7.2. The third assertion follows directly from Lemma 7.11. �

Remark 7.13. Figure 2 shows the locus of ρ̂ given by (7.93) (the proposed upper-bound on the real

parts of the zeros of the quasipolynomial Q̂) as a function of the delay τ. Thanks to the linear change

of variables (7.81), this enables the selection of an appropriate pair (s0, τ) in the filled gray region,

providing an upper-bound on the spectral abscissa of the quasipolynomial Q given in (7.74). As as-

serted in Theorem 7.12, the desired decay rate towards the steady state equilibrium is greater than
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Figure 2. The behavior of ρ̂ given by expression (7.93) as a function of the delay τ.

|s0 + ρ̂(τ)| = −(s0 + ρ̂(τ)), since we have proven that any root si ∈ C of equation (7.74) (i ∈ N) is such

that <(si) < s0 + ρ∗ < s0 + ρ̂(τ). By prescribing a minimal decay rate σ > 0, s0 is chosen such that

s0 + ρ̂(τ) < −σ < 0 to ensure the asymptotic stability, i.e., s0 < −σ− ρ̂(τ).

8. Application: Longitudinal vibration control of a long drill pipe transmission line

Drilling is an important operation for the production of oil and gas. It is a key process in this production

and exploration industry. According to us, a phenomenon that can cause poor operational performances,

and even develop into the catastrophic failure of the well, is the presence of vibrations in the drill-string,

which is mainly composed of long pipes, due to torsional, axial and also lateral vibrations. This is a

spatially distributed system that is modeled fundamentally by PDEs. Such a system represents a very

challenging modeling and control problem, see for instance [62, 77] and references therein.

In this section, we propose to illustrate the main result of this work through the example of the longitu-

dinal vibrations of a long steal drill pipe, for which we aim to reduce the vibrations thanks to the QPB

controller set as above.

8.1. Description of the problem. Figure 3 shows a sketch of the considered drill pipe, clamped at one

end and controlled by an axial force at the free-end. Such a situation can occur when the end of the

drill-string is blocked at the bottom of the well. The drill pipe is submitted to an axial force d(t) located

at position l, which disturbs it and provokes axial vibrations.
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F(t)

L

U(x, t)

x

x = 0

x = l

d(t)

Figure 3

Young modulus (N/m2) E 200 ·109

Steel density (kg/m3) ρ 7800

Length (m) L 3000

Cross-sectional area - cylindrical

pipe (m2) (with outer & inner

diameters: Do = 0.127 (m),

Di = 0.108 (m))

A 3.5068 ·10−3

Wave propagation speed (m/s) c 5063.7

Time scaling factor (s) d 0.59245

Disturbance location (m) l 1000

Table 1. Material and geometrical parameters of the pipe.

The parameters of the considered pipe are given in Table 1. The pipr is assumed to be cylindrical, steel

based, and homogeneous, i.e., the density ρ and Young modulus E are identically distributed along the

pipe’s length. Let us denote by U(x, t) the longitudinal displacement of a point (cross-section) of the pipe

located at position x and given at time t. The wave equation that describes the longitudinal vibrations of

the pipe is given by

(8.94) Utt(x, t) = c2 Uxx(x, t),

for x ∈ (0,L), where c is the wave propagation speed given by the relation c :=
√

E
ρ

. The long pipe is

fixed at one end, which is expressed by the boundary condition

U(0, t) = 0.(8.95)

The control is made via the free end by exerting a force F(t) that is related to the strain Ux(L, t) by the

relation F(t) = E AUx(L, t). For x ∈ (0,L), the initial conditions are U(x,0) = 0, Ut(x,0) = 0. Finally, for

x > 0, the denormalized control law in equation (3.10) is

Ux(L, t) = −αUx(L, t−dτ) +
β

c
Ut(L, t) +

γ

c
Ut(L, t−dτ),(8.96)

where d :=
L
c

is the time scaling factor weighting the normalized time variable t to give the true time

variable t. This control law is assumed to be initiated by Ut(L, t−dτ) = 0, Ux(L, t−dτ) = 0 for t ∈ (0,dτ).

Remark 8.1. The wave equation problem modeled by equation (3.10) has used some normalized (i.e.,

dimensionless) time t and position x variables, in such a way that their corresponding relations to the

considered true variables are x = L x and t = d t. In this case, the normalized longitudinal displacement
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is related to the true one by the relation

(8.97)
u(x, t) := U(x, t),

= U(L x,d t).

To perform numerical simulations of the closed-loop system (3.10), we propose to adopt the mechanical

engineering approach which consists in handling numerically the system’s dynamics separately from the

control law’s dynamics. Both of them are then combined once the numerical schemes are established.

Concerning the wave equation, there are usually two numerical methods: the finite difference and the

finite element methods. In this section, to address this issue, we propose to use the Finite Element

Method in order to approximate the wave equation’s PDE, because this approach is nowadays very well

mastered by scientists; several books are devoted to this method [78, 50, 52]. Moreover, this approach

requires a lower amount of computations than the one required by the finite difference approach for a

given computation precision.

8.2. Finite element modeling.

The long pipe of Figure 3 is divided into N ∈ N∗ basic parts called

elements, as in Figure 4. This step is called the meshing of the struc-

ture. Each element connects two consecutive points of the meshing

that are the nodes, with a total of N + 1 nodes. A basic element e for

the wave equation case is well described by a truss element, which

is assumed to carry only tension or compression loads, resulting in

axial displacements only. In this case, the displacement field within

an element e is given, in the element’s local coordinate x̃ ∈ [0, lei ], by

Ui(x̃, t) =

(
(1− ξi(x̃)) ξi(x̃)

)Ui1 (t)

Ui2 (t)

 =: S i(x̃)qe
i (t),

where ξi(x̃) := x̃/lei is the normalized space variable inside the el-

ement i (connecting the nodes ni and ni+1), S i(x̃) is the consistent

interpolating (shape) function, qe
i (t) ∈ R2 is the nodal displacement

vector of the ith element and Ui1 (t), Ui2 (t) ∈ R are the ith element’s

nodal coordinates corresponding to its nodes’ displacements.

ni

ni−1

ni+1

x = 0

lei−1

Ui1 (t)

Ui2 (t) = Ui+11 (t)

Figure 4

The next step consists in computing the kinetic Ti and strain Ui energies at time t within a given element

i, which are defined by:

Ti(t) :=
1
2

∫ lei

0
ρ (∂tUi(x̃, t))T (∂tUi(x̃, t)) Adx̃,

Ui(t) :=
1
2

∫ lei

0
E (∂x̃Ui(x̃, t))T (∂x̃Ui(x̃, t)) A dx̃.
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Once computed, this yields

Ti(t) =
1
2

q̇e
i (t)T Mi q̇e

i (t),

Ui(t) =
1
2

qe
i (t)T Ki qe

i (t),

where q̇e
i (t) is the time derivative of qe

i (t), Mi is the element mass matrix given by

Mi =
mei

6

2 1

1 2

 ,
where mei := ρAlei is the element mass, and Ki is the element stiffness matrix given by

Ki = ki

 1 −1

−1 1


where ki := E A/lei is the element stiffness. Lastly, the virtual work of an axial force Fi(t) acting on

the ith element at a point located at the element’s local coordinate x̃ is given by Wi := Fi(t)Ui(x̃, t) =

Fi(t)S i(x̃)qe
i (t). The whole structure’s meshing is now considered by computing the global kinetic and

strain energies, as well as the global virtual work (the assembling step):

(8.98) T :=
N∑

i=1

Ti, U :=
N∑

i=1

Ui, W :=
N∑

i=1

Wi,

where N is the number of elements. Let us define now the Generalized Coordinates displacement vector

q(t) :=
(
qN+1(t) qN(t) · · · q2(t) q1(t)

)T
∈ RN+1, where qi(t) denotes the ith node’s axial displace-

ment which is, according to the notations of Figure 4, equal to Ui−12 (t) ≡ Ui1 (t). This last relation

transcribes the connectivity of elements i− 1 and i. By establishing the relation between qe
i (t) and q(t),

qe
i (t) = Bi q(t) where Bi is an appropriate matrix derived from the previously defined element connectivity

relations (Bi ∈ R
2×(N+1)), one can deduce from relations (8.98) the matrix motion equation given by

(8.99) M q̈(t) + K q(t) = F (t),

where M :=
∑N

i=1 Bi
T Mi Bi (M ∈ R(N+1)×(N+1)) is the structure’s mass matrix, K :=

∑N
i=1 Bi

T Ki Bi (K ∈

R(N+1)×(N+1)) is the structure’s stiffness matrix, and F (t) ∈ R(N+1)×(N) is the Generalized Forces’ vector

given by F (t) :=
∑N

i=1 Bi
T S i(x̃)T Fi(t), assuming only one axial force Fi(t) applied to the ith element at

the local position x̃. In our case, the boundary conditions are taken into account by letting first q1(t) ≡ 0

(the fixed end at x = 0). Moreover, the control force F(t) applied at x = L, i.e., the Nth element, is

described by the generalized force vector e1 F(t), where eN+1 is the first column vector of the identity

matrix of size N + 1. The disturbance force d(t) can be addressed in the same way once the exact drill

pipe meshing is performed.

8.3. Numerical developments and physical intuitive interpretations. The considered drill pipe de-

scribed by Figure 3 and Table 1 has been meshed with N = 60 elements of equal lengths, lei = 50 (m),

for i = 1 to N. Even if this number may seem insufficient to correctly discretize the wave length of the

fastest wave, it appropriately describes its low frequencies’ behavior, which is what we aim to analyze
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with a low-frequency spectrum for the considered disturbance. The time simulation of the motion equa-

tion (8.99) is performed with a fixed time-step of 10−4 (sec) thanks to an ODE 3 numerical method (the

Runge-Kutta of order 3 proposed by Bogacki and Shampine [79]). This time-step’s choice is made to

cope with the delay’s numerical value considered in the QPB’s control law.

The left side of Figure 5a shows a simulation of the drill pipe elongation, supposed to be at rest at the

initial time, which is executed to illustrate the QPB controller’s performances for the active vibration

damping of the drill pipe. The pipe is enduring an impact happening at x = l modeled by a force d(t)

that corresponds to half a period of a sinus function of magnitude 10000 (N) with an impulse width of

0.1 second displayed to the right. The time propagation of the shock-wave to the free-end can be seen

on this figure and computed thanks to the wave propagation speed c, by tp := (L− l)/c ≈ 0.395 seconds.

Since the drill pipe model of (8.94) does not include any dissipating term, the pipe begins to vibrate

persistently until the output feedback control applies. The latter is designed to implement the following

specifications. A nominal decay rate of σ = 0.8 has been fixed in the normalized framework. By using

(7.79) combined with Theorem 7.12, a pair (s0, τ) is selected according the chart given in Fig. 2. The

resulting controller’s coefficients are reported within Figure 5a in the normalized form. One can observe

that the dissipativity conditions in (4.27) of Section 4 are satisfied. The first ten seconds show the natural

behavior in blue of the undamped pipe. At t = 10 seconds, the output feedback control is applied and one

can compare the closed-loop behavior in red with the natural one in blue. From the closing loop time

t = 10, the settling time to zero within an interval of ±5% of the value U(L,10), can be observed roughly

equal to 2.2 seconds. It corresponds to three times the time constant computed with the prescribed decay

rate (3/(−s0−σ) ≈ 2.2). Moreover, whatever the choice of (s0, τ) is made, an incompressible duration of

roughly 1.18 second is observed between the closing loop time and the moment the controlled damping

is effective. It corresponds to 2d, where 2 is the normalized delay due to the forward-backward duration

of the wave propagation.

Remark 8.2. It is worth mentioning that, with the QPB controller’s four degrees of freedom and the

results gathered in Theorem 7.12, the pair (s0, τ) can be arbitrarely selected. This enables the control

designer to make a choice for the performances that is robust to numerical approximations , e.g., the

delay parameter. Figure 6a illustrates this through time simulations with the same configuration as those

in Figures 5a & 5b.

8.4. P3δ Software. P3δ, whose name stands for Partial pole placement via delay action, is a Python

software with a friendly user interface for the design of parametric stabilizing feedback laws with time

delays, thanks to properties of the distribution of the quasipolynomials’ zeros. It exploits mainly the

MID/GMID property as well as the coexisting real roots-induced-dominancy, or CRRID for short, es-

tablished in [25, 17]. Initially, P3δ has been established for the control design of retarded differential

equations. Based on the results of this work as well as the references [65, 59], the software has been

updated and is now able to treat linear neutral functional differential equations as well.
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(a) Free-end’s time response to a shock-like force d(t) - with (red) & without (blue) feedback control. The

feedback control loop is closed at t = 10 (sec).
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(b) Time response of the controlled force F(t) to a shock-like force d(t) happening at the initial time t = 0. The

feedback control loop is closed at t = 10 (sec). On the right, a zoom on the time interval where the closed-loop

control signal is activated.

Figure 5. Time responses without & with output feedback control.

P3δ is freely available for download on https://cutt.ly/p3delta, where installation instructions,

video demonstrations, and the user’s guide are also available. Interested readers may also directly contact

one of the authors of the paper. Since its inception, P3δ is committed to be available to the greatest

number and on all available platforms. The current version of the software exists as a local executable

version as well as an online version ready to use in one click. The online version of P3δ is hosted on

servers thanks to the Binder service [74]. Binder allows to create instances of personalized computing

https://cutt.ly/p3delta
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(a) Free-end’s time response to a shock-like force d(t) - with (various colours) & without (blue) feedback

control. The feedback control loop is closed at t = 10 (sec). The wave propagation time is represented by the

vertical dot-dashed line, at t ≈ 11.18 seconds. Different delay parameters τ have been implemented around its

nominal computed value within an interval of ±20% (with a 5% increment), without changing the nominal

values for the other parameters α, β and γ. This emphasizes the robustness of the QPB controller with respect

to the implemented delay.
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(b) Free-end’s time response to a shock-like force d(t) - with (red) & without (blue) feedback control with an

other choice for the pair (s0, τ) (see the normalized values within the figure). The same time response of the

configuration depicted in Figure5a is superimposed (dashed red curve) on this new one (red), emphasizing a

better exponential decay rate.

Figure 6. Free-end’s time responses through various situations.
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environment directly from a GitHub repository that can be employed and shared by users. The Binder

service is free to use and is powered by BinderHub, an open-source tool that deploys the service in the

cloud. The online version of P3δ is written in Python and structured as a Jupyter Notebook, an open

document format which can contain live code, equations, visualizations, and text. The Jupyter Notebook

is completed by a friendly user interface built using interactive widgets from Python’s ipywidgets

module. Future development of P3δ will also provide a certified upper-bound of the decay rate when the

MID property fails.
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[36] A. Cohn, Über die anzahl der wurzeln einer algebraischen gleichung in einem kreise, Mathematische Zeitschrift, 14 (1922),

pp. 110–148.

[37] K. L. Cooke and D. W. Krumme, Differential-difference equations and nonlinear partial-boundary value problems for linear

hyperbolic partial differential equations, J. Math. Anal. Appl., 24 (1968), pp. 372–387.

[38] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM

Journal on Control and Optimization, 26 (1988), pp. 697–713.

[39] R. Datko, Two questions concerning the boundary control of certain elastic systems, Journal of Differential Equations, 92

(1991), pp. 27–44.

[40] R. Datko, J. Lagnese, and M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave

equations, SIAM journal on control and optimization, 24 (1986), pp. 152–156.
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Yvette cedex, France

E-mail address: sami.tliba@l2s.centralesupelec.fr


	1. Introduction
	2. On the control structure and strategy: MID property and on beyond
	3. Problem Statement
	4. Well-posedness of problem (3.10) 
	5. Asymptotic behavior
	6. A spectral formulation via D'Alembert's formula
	7. A parametric stability analysis via a spectral approach 
	7.1. On the MID paradigm 
	7.2. Beyond the MID property in output feedback stabilization of the wave equation in (3.10) 

	8. Application: Longitudinal vibration control of a long drill pipe transmission line
	8.1. Description of the problem
	8.2. Finite element modeling
	8.3. Numerical developments and physical intuitive interpretations
	8.4. P3Delta Software

	Acknowledgement
	References

