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fm““ ) ) We are interested in the design of robust (or resilient) capacitated rooted Steiner
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RIKEN, Tokyo, Japan networks in the case of terminals with uniform demands. Formally, we are given a
4Artelys, Paris, France graph, capacity, and cost functions on the edges, a root, a subset of vertices called
Correspondence terminals, and a bound k on the number of possible edge failures. We first study the
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ering the root and the terminals: we give complexity results and propose models to
e itngs Dugmmiia Ontmizt; optimize both the cost of the tree and the number of terminals disconnected from the
Operations Research and Their Interactions with root in the worst case of an edge failure, while respecting the capacity constraints
Data Sciences (PGMO) on the edges. Secondly, we consider the problem of computing a minimum-cost sur-
vivable network, that is, a network that covers the root and terminals even after the
removal of any k edges, while still respecting the capacity constraints on the edges.
We also consider the possibility of protecting a given number of edges. We propose
three different formulations: a bilevel formulation (with an attacker and a defender),
a cutset-based formulation and a flow-based one. We compare the formulations from
a theoretical point of view, and we propose algorithms to solve them and compare
their efficiency in practice.
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1 | INTRODUCTION

1.1 | Presentation of the problems

In this paper, we focus on the design of robust (or resilient) trees or networks able to route a given flow from a root to a set of
terminals while respecting capacity constraints on the edges [12,23,27]. Breakdowns can occur in the network, and we aim to
minimize the cost of the network to be built while respecting robustness constraints intended to limit the damaging repercussions
in case of a breakdown on one or several edges in the network. Notice that, in directed graphs, breakdowns on vertices can be
reduced to breakdowns on arcs [38]. We study several notions of robustness, which will be described later. In one variant, we
also consider the possibility of “protecting” some edges: a protected edge cannot fail.

The problem originates from a study on wiring networks in wind farms, designed to route the energy produced by wind
turbines (i.e., terminals) towards the substation (i.e., the root) linking the wind farm to the electrical network, with respect to
some technical constraints (cable capacities, nonsplitting constraints, etc.) [19,24]. In that case, the flow is routed from the
terminals to the root. We know the location of each wind turbine, and the one of the substation. We also know the location of
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2 Wl LEY BENTZ ET AL.

possible cables that can be built and of optional interconnection vertices which make it possible to connect cables between them.
Each wind turbine produces a known maximum quantity of energy, and with each cable are associated a cost and a capacity (the
maximum amount of energy that can be routed through this cable). Generally in offshore environments, and often in onshore
environments, each wind turbine produces about the same quantity of electricity [34], so we can make the assumption that the
energy produced by the wind turbines is uniform. Furthermore, those networks must be resilient to cable failures but some links
can be protected, for instance with thicker or additional parallel cables.

Informally, we consider a support graph with a root vertex and a set of terminals, and we want to select vertices and
edges of the graph in order to build a minimum-cost network (i.e., subgraph of the support graph which must respect
some known additional constraints) linking the root to the terminals, while respecting the capacity constraints on the
edges. The given graph can be directed or undirected, but the Steiner tree or network to be built is always directed from
the root towards the terminals. Nevertheless, considering that it is easy to adapt solutions given for directed graphs (or
digraphs) to cases where the graph is undirected, either by replacing each edge of the undirected graph by two oppo-
site arcs with the same cost and capacity or by slightly modifying the models and the methods proposed to solve the
problem, we only consider directed graphs (digraphs) in our models while the problems can be defined in undirected graphs
(graphs).

Formally, we are given a digraph G = (V,A), with a subset of vertices T C V called terminals, a oot r € V' \ T, and cost
and capacity functions on the set of arcs A, denoted, respectively, by ¢ and u. The vertices in V' \ {7T'U {r}}, that is, the optional
interconnection vertices, are called Steiner vertices. We will refer to ['&:(v) and I'G(v) as the set of successors and predecessors
of a vertex v € V, respectively. We assume that some arcs can break down, and that there is a bound & on the number of possible
arc failures. We aim to protect the network to be built against the worst case of breakdowns, that is, the one that makes the
maximum number of terminals unreachable from the root. Note that, in the case of our main problem, we want this maximum
number to be equal to 0. Also note that, in one variant, we consider a given budget of protection k’, meaning that we can protect
at most k" arcs against failures.

We first study the case where the network we want to build is an arborescence (rooted tree). We assume that one arc can
break down, and we aim at generating a robust arborescence, that is, an arborescence that minimizes the maximum number of
terminals that can be disconnected from the root in case of a breakdown, which is called the worst case in what follows. Then,
we study the so-called Capacitated Rooted k-Arc Connected Steiner Network problem, which is our main problem: we aim to
design a minimum-cost network in which, after the failure of any k arcs, we can still route one unit of flow from the root to each
terminal. Indeed, we deal with the special case where the demand is identical at each terminal, as it is generally assumed for wind
farms: the flow from the root to each terminal is a constant, and hence can be set to 1 without loss of generality. The capacity
u;; of an arc (i, j) is then the maximum number of terminals linked to the root through this arc. For trees, this is equivalent
to the maximum number of terminals in the subtree rooted at j. We can hence assume w.l.0.g. that u, is a positive integer for
each a € A. Eventually, we also study the possibility of protecting a subset of arcs of a given size: a protected arc cannot
break down.

1.2 | Overview of related work

When the network to be built is a rooted tree, the problem without breakdown corresponds to the capacitated Steiner tree (or
arborescence) problem, which has been studied for instance in [6,13,33]. This problem, in turn, generalizes the well-known
Steiner tree problem [16,22,25,30].

Obviously, our main problem is similar to the Survivable or Robust Network Design problem. For a general presentation of
robustness, the reader is referred, for instance, to the classic article of Bertsimas and Sim [8], and to the book of Ben-Tal et al.
[5]. For the design of survivable networks, see for instance [23].

However, the authors of [23] do not take into account the arc capacities, and consider a given number of arc deletions
between each pair of vertices. A survey and other work on this problem are available in [21,27]. In [12], a method based on
Benders decomposition is proposed for a problem with hop-constraints (the number of arcs in a path from the root vertex to any
of the terminal vertices is limited). In [9,26,36], the authors take capacities into account, but they allocate them whereas, in our
main problem, the capacities are fixed and the flow is adaptive, as in [7], where the aim is to find a maximum, robust (for the
authors, that means respecting a weak flow conservation constraint at each vertex), and nonintegral flow. In [31], a two-stage
model is proposed for the design of resilient single-commodity flow networks: the aim is to allocate (nonintegral) capacities to
edges in order to minimize the cost of building the network plus the cost of the flow circulation (with a linear cost on each edge)
in order to serve a given demand at each vertex, using nonintegral flows. The authors also consider the possibility of protecting
some edges against failures.

Such problems often fall under the two-level optimization framework. This means that “there are two decision makers,
commonly denoted as the leader and the follower, and decisions are made in a hierarchical manner: first, the leader makes a
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decision, and then the follower optimizes its objective, affected by the decisions of the leader. It is assumed that the leader can
anticipate the decisions of the follower” (see [15,18]).

Actually, our main problem also falls under this framework (see also Section 3.2.1): the leader builds a network at minimum
cost, and then the follower deletes some arcs. The goal of the leader is to ensure that, whatever the deleted arcs are, one can still
route one unit of flow from the root to each terminal, while respecting the arc capacities.

The problem associated with the follower is then similar to the one of finding a subset of k arcs such that the deletion of
these k arcs results in the maximum decrease of the value of the maximum flow between two vertices, which is referred to as
the k£ most vital arcs problem, and which has been studied by Ratliff et al. [37]. Later, this problem was generalized into the
network interdiction problem by Wood [42], who considers a deletion cost associated with each arc and a maximum budget
of deletions: he shows that the problem is strongly N P-hard, and proposes a mixed-integer formulation to solve it. See also
[39] for a recent survey on this subject. Note that some authors have considered the k most vital arcs for other related graph
problems, such as spanning trees [4].

Finally, studies on multicommodity versions of network design problems are available in [14,41], and polyhedral studies have
been conducted on problems corresponding to the uncapacitated [3] or unrooted [10] version of our main problem. However,
none of these papers has considered the case where a small subset of arcs can be protected from failure, and thus cannot break
down.

1.3 | Contributions and outline of the paper

In Section 2, we study the problem of finding a Steiner or spanning arborescence taking into account both the cost and the
number of terminals disconnected from the root in the worst case of an arc breakdown. We prove that deciding whether there
exists a spanning arborescence respecting the capacity constraints is an NP-Complete problem (this is the special case of our
problem with a demand equal to 1 at each vertex except the root), which extends a complexity result of Papadimitriou [33].
We also propose different formulations, considering several criteria (cost, maximum number of disconnected terminals, etc.),
either as objectives or as constraints with given bounds.

In Section 3, we present the Capacitated Rooted k-Arc Connected Steiner Network problem, which amounts to searching for
a minimum-cost network that, in the worst case of & arcs failures, can still route one unit of flow from the root to each terminal
while respecting the capacity constraints.

We give a bilevel formulation, with a leader and a follower, where the second level is a min-max problem corresponding
to optimizing the worst case for the follower [2], and two formulations based on cutsets and flows, respectively. We study the
relations between the three formulations from a theoretical point of view, and show the equivalence between a linearization of
the bilevel formulation and both the cutset and the flow formulations, except in the case of uniform capacities on the arcs. Then,
we propose algorithms based on integer linear programming and cutting plane methods to solve the problem.

In Section 4, as in [31], we consider the case where a set of arcs can be protected (and thus cannot break down): in this
case, the bilevel and cutset formulations are no longer equivalent. Then, in Section 5, we propose strengthening inequalities to
improve the efficiency of the algorithms, with and without arc protection.

Finally, in Section 6, we first compare the formulations given in Section 2 by testing them on real wind farm data. Then, we
compare the efficiency of the models and methods proposed in Section 3, by testing them on a set of randomly generated but
similar to real-life (wind farm) data, and on a set of instances from SNDLib [40], before concluding.

2 | ROBUST ARBORESCENCES

In this section, we focus on finding a robust Steiner arborescence covering the root and the terminals of G. Here, the robust
optimization approach consists in finding a feasible solution that minimizes the number of terminals disconnected from the root
in the worst case of an arc failure.

This setting arises in some wind farm cabling problems (see Section 1), when technical constraints impose that all electrical
flows arriving at any device except the substation must leave it through one and only one cable: an inclusion-wise minimal
subnetwork of G respecting those constraints then corresponds to a Steiner anti-arborescence.

2.1 | Definition of the problems and complexity results

To obtain stronger complexity results, we assume in this section that the graph G = (V, E) is undirected and, when considering
a subtree G’ = (V’,A”) of G, rooted at some vertex, to which we give an orientation, we have V/ C V and A’ is the set of arcs of
G’ corresponding to a subset of edges of G denoted by A’ C E. Since the problem in a graph is a special case of the problem in

9SUdIT SUOWIWIOY) AL 3|gedijdde ayy Aq paulanob ale s3pdipe YO ‘asn Jo sajnJ 1o} Aleiqr] auljuo A3jIp uo
(suonipuod-pue-swLia}/wod Asm Aieiqijauluo//:sdny) suonipuod pue swisl sy 935 ‘[€202/50/0L] uo Aleiqr auljuo A3jim ‘9duelq sueiydod Ag ‘€122 19u/200L 0L/1op/wod AsjimAleiqijauljuo//:sdny woly papeojumoq ‘0 ‘€202 'LE00L60L



4 Wl LEY BENTZ ET AL.

a digraph (see Section 1), our complexity results can be extended to digraphs. We define the robust problem without capacity
constraints as follows:

2.1.1 | Robust Steiner arborescence problem (RStA)

INSTANCE: A connected graph G = (V, E) with a root vertex » € V and a set of terminals 7 C V' \ {r}.

PROBLEM: Find an arborescence S = (Vs, As) such that Vs C V, A C En (Vg X Vs), and T C Vs, which is rooted at r and
minimizes the number of terminals disconnected from » when an arc is removed from Ag, in the worst case.

We also consider the spanning version of the problem (i.e., 7 = V'\ {r}). In this case, the problem is to minimize the number
of vertices in the largest (regarding the number of vertices) subarborescence not containing r. We define it as follows:

2.1.2 | Robust spanning arborescence problem

INSTANCE: A connected graph G = (V, E) and a root vertex r € V.

PROBLEM: Find a spanning arborescence S of G, rooted at r, which minimizes the size of the largest subarborescence of S
not containing r.

Obviously, the largest subarborescence not containing r is rooted at a vertex v € I'g(r), where I'(u) is the set of vertices
adjacent to a vertex u in G, and the worst case is the failure of an arc incident to the root. We have the following properties:

Lemma 2.1. (a) There is an optimal solution S* = (V,A*) of robust spanning arborescence problem (RSpA)
containing (r,v) for allv € T'g(r) (i.e., Tg(r) = TE.(r).
(b) There is an optimal solution S* = (V§,A%) of RStA containing (r,v) for all v € Vi N T'g(r).

Proof. Let S = (V,Ag) be an optimal solution of RSpA such that there is v € I'g(r) with (r,v) & Ag, and let w
be the predecessor of v in the path from r to v in S. If we remove (w, v) from Ag and add (r, v), we obtain a new
spanning arborescence at least as good as S, since we have replaced a subarborescence by two subarborescences of
smaller sizes. Doing so for each v € I'g(r) with (r,v) & Ag yields a solution S* satisfying the property.

The proof is similar for RStA, by replacing I'g(r) by Vi N I'g(r): if we remove (w, v) from Ag and add (r,v),
we obtain a new Steiner arborescence at least as good as S, since we have replaced a subarborescence by two
subarborescences spanning at most the same number of terminals. m

Notice that these properties do not necessarily hold if we have capacity constraints, because the capacity of (r,v) can be
smaller than the one of (w, v) in the proof above. Let us now introduce the feasibility problem associated with RSpA.

2.1.3 | Robust spanning arborescence feasibility problem

INSTANCE: A connected graph G = (V, E) with a root vertex » € V and an integer f with 1 < < |V| - 1.
QUESTION: Is there a spanning arborescence S = (V, As) of G, As C E, rooted at r, such that the size of any subarborescence
of S not containing r is at most f?

Theorem 2.2. Robust spanning arborescence feasibility problem (RSpAF) is strongly NP-Complete.

Proof. We introduce the NP-complete 3-Partition problem [20] in order to transform any instance of this problem
into an RSpAF one. "

2.1.4 | 3-Partition problem
B/4<d;<BJ2Vi=1,..3m. -

QUESTION: Can D be partitioned into m disjoint subsets My, M», ..., My, of three elements each such that the sum of the
numbers in each subset is equal to B?

To obtain an instance of RSpAF from an instance of 3-Partition, we set § = B + 1 and we construct the following graph
G = (V, E): we define a root r and m vertices v; with an edge [r, v;] for j = 1, ..., m, each vertex v; corresponding to a set M;. We
add 3m vertices w; and the edges [v;, w;] forall j = 1,..,m and all i = 1, ..,3m, each vertex w; corresponding to the element d;
of D (the subgraph induced by the vertices v; and w; is complete bipartite). Finally, for each i = 1,..,3m, we add d; — 1 vertices
only adjacent to w;: the subgraph induced by those vertices and the vertices w; is made of 3m stars. See Figure 1 for a graph
representation of a 3-Partition instance withm =2, B= 11 and D = {5, 3,4, 3,4,3}. Notice that |V| = 1 + m + mB.

Solving RSpAF on G with f = B+1 amounts to finding an arborescence where the size of the subarborescence rooted at each
v; is smaller than or equal to B + 1. If there is a solution to RSpAF on G, then, from the proof of Lemma 2.1, there is a solution
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FIGURE 1  Graph and RSpAF solution resulting from the 3-Partition instance in whichm =2, B= 11, D = {5,3,4,3,4,3}.

S such that (r,v;) € S Vj = 1, ..., m, and each w; is connected to exactly one v;, otherwise there is a cycle. Given a vertex v € S,
let S(v) be the subarborescence of S rooted at v: Vj = 1, ..., m, we have |S(v;)| < B+1 and ijlwm S| = V\{r}| = mB+m.
Thus, for each j = 1,...,m, |[S(v))| = B + 1 and S(v;) contains v; and several vertices w;, each having d; — 1 successors in S.
Finally, the constraints B/4 < d; < B/2 imply that, for each j = 1, ...,m, v; is adjacent in S to exactly three vertices w; denoted
in the following by w; , w;, and wj,, and such that [S(w; )| + [S(w;,)| + [S(w;,)| = [S(v))| — 1 = B.

Then, itis easy to obtain a solution to the 3-Partition instance. Foreachj = 1,..,m, we set M; = {|S(w; )|, |S(w;,)|, [S(w;,)|} =
{d;,.d;,,d;,}. We have m disjoint sets, each of size B, which cover exactly D. For the instance given in Figure 1, a solution to
3-Partition can be associated with the arborescence given in thick: M| = {5,3,3} and M, = {4,4,3}.

Similarly, from a solution to the 3-Partition instance, it is easy to obtain a solution S to RSpAF for the associated graph G.

The 3-Partition problem is NP-Complete in the strong sense, meaning that it remains NP-Complete even if the integers in
D are bounded above by a polynomial in m [20]. Thus, the reduction can be done in polynomial time, and RSpAF, which is
clearly in NP, is strongly NP-Complete.

RSpAF being NP-Complete, RSpA is NP-Hard, and so is RStA because it is a generalization of RSpA. Let us now consider
capacity constraints on the edges. RSpAF can be seen as a special case of the general capacitated Steiner arborescence problem
where the demand at each vertex, except r, is an integer (our demands are all equal to 1, and the capacities are all equal to f),
and hence from Theorem 2.2 we obtain the following corollary:

Corollary 2.3. Given a graph G = (V,E) with a vertex r € V and two functions d, from V \ {r} to N, and u,
from E to N, representing respectively the demands at each vertex except r and the capacities of the edges, the
problem of deciding whether there exists a Steiner arborescence of G, rooted at r and respecting the capacities, is
strongly NP-Complete (even if u is a uniform function and all demands are equal to 1, i.e., we look for a spanning
arborescence).

This strengthens the following result due to Papadimitriou [33]: given two positive values C and K and a graph G =
(V,E,r,c) where c is a cost function on the edges, the problem of deciding whether there exists a spanning arborescence S of
G rooted at r, such that each subarborescence of S not containing r contains at most K vertices, and with total cost at most C,
is NP-Complete.

In the following, we study the more general problem, which is hence also NP-Hard (note that, for a digraph, “connected”
means that the underlying undirected graph is connected):

2.1.5 | Robust capacitated Steiner arborescence problem

INSTANCE: A connected digraph G = (V,A), a root vertex r € V, a set of terminals 7 C V \ {r} and u a positive integral
function on A representing the arc capacities.

PROBLEM: Find an arborescence S = (Vs,As) with Vg C V and As C AN (Vs X Vs), rooted at r and spanning the terminals
of T, which respects the arc capacities and minimizes the number of terminals disconnected from » when an arc a is removed
from Ag, in the worst case.
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2.2 | Mathematical formulations

In this section we propose formulations for robust Steiner problems where robustness is viewed either as a constraint with the
objective of minimizing the cost, or as an objective with or without constraints on the cost. Moreover, we study two kinds of
robustness, by considering the worst case of arc breakdowns and a kind of “average” arc breakdowns, which is defined later. We
will denote by R-robustness the first type of robustness, and by B-robustness the second type of robustness. Here, our approach
somehow falls under the multicriteria optimization framework [17]: however, our goal is not to compute the whole Pareto front,
which would require a full computational study, but only to show that there exist efficient solutions (i.e., solutions lying on the
Pareto front) that yield a good compromise between all the criteria from a practical point of view.

Let G = (V,A) be a digraph. To formulate the different problems, for each arc (i,j) € A we introduce the 0-1 variable y;
and the integral variable x;;, where y; = 1 if and only if the arc (i, ) is selected in the considered solution, and x; represents the
number of terminals connected to the root through the arc (i, j), or equivalently the number of terminals in the subarborescence
rooted at j. We introduce the following feasible set P:

p

—|T| ifj=r
Y oxi— X x=4ql if jeT Vjev
i€l'0) 135 () )
P =qxeNW ye (0,1} 0 otherwise g
Y yj<1 vie v\ {r)
i€l ()
Xij < Uyiy V(@i,j) €A

In the following, we write (x,y) € P when we consider a couple of variable vectors satisfying the constraints of 7. The first
set of constraints in P ensures both the conservation of the number of terminals connected through each Steiner vertex j € V
(flow conservation) and the connection of the root to all terminals. The second set of constraints ensures that the solution is
an arborescence, that is, that each vertex has at most one predecessor in it. Finally, the third set ensures that there is no flow
on a nonselected arc, and that the number of terminals connected through an arc (i,j) € A does not exceed its capacity. In
the following, the relative gap between two costs will be denoted by A. The well-known problem of the capacitated Steiner
arborescence (CStA) can be formulated as follows [13]:

(CStA) min Y cyy;
=NEP ea
As explained previously, we evaluate the first type of robustness, called R-robustness, by considering the number of terminals
disconnected from the root in a worst-case scenario, that is, the maximum number of terminals connected through an arc incident
to the root, which is equal to max;er+(, xy;. Let R be a fixed bound on this value: we must not disconnect more than R terminals
from the root by deleting any arc. We propose the following formulation for the Capacitated Steiner Arborescence problem with
bounded R-robustness (CStApounded—R robust):

min 2 Cii
(x,y)er ieA <
(CS[Abounded—R_robusl) @) .
S.t. max x,; <R
JETEr)

Let us now look at robustness as an objective. Note that we implicitly assume that the default objective function is to minimize
the cost of the solution. If a model uses another objective function, then its name will start by a given letter, for example, R if
we want to optimize R-robustness. We propose the following formulation for Robust capacitated Steiner arborescence problem
(RCStA):

(RCStA) min  max Xx,.
CYEP  jert(r)

Since this formulation does not take the cost into account, we also propose a new formulation where we bound the cost of

a solution by a given value C:

(m)inp max X
xX,y)E jer ;(r) ’
(RCStAbounded—cost) ‘ i
s.L. 2 ey <C
(ij)eA

However, the previous models only consider the worst case of arc breakdowns. It appears that it can also be interesting to
“balance” the tree in order to reduce the loss due to an “average” breakdown. To this end, we consider arc failures at each vertex
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and not only at the root, that is, for each i € V, we consider the worst case of a breakdown of an arc leaving i. This corresponds,
for each i € V, to the maximum number of terminals that cannot be reached from the root in case of a breakdown of an arc (i, j),
j€E Fg(i), or equivalently to the maximum flow on an arc (i,j), j € l"g(i). We define B-robustness, for “balanced” robustness,
as the sum of these values: };c, maXjer: ) Xj.

We will use the letters BR to refer to models where one wants to optimize B-robustness. We propose formulations similar
to the previous ones for the Capacitated Steiner Arborescence with bounded B-robustness, where we bound the B-robustness
of a solution by a given value BR:

Jmin, X i
X,y ieA
(CStAbt)unded—bulunced_r()busl) @) .
s.t. > max x; <BR
ieviers

The following formulation aims at computing the best B-robustness:

(BRCStA) min ) max x;.

(x.y)eP v

Moreover, we can keep this latter objective while bounding both the R-robustness (by R) and the cost of the solution (by C).
We obtain:

min max Xx;
(ey)eP ingerg(i) d
(BRCStAbounded—R_robusl—(:ost) S.L. .I'Ilg.X Xrj = R
JelG(n)
Y iy <C
(ij)eA

Notice that all these formulations can easily be linearized: each term of the form max,ep f(x) is replaced by z, and the
constraints “z > f(x) for all x € D” are added to the model. For instance, (BRCStA pounded—R_robust—cosz) Can be rewritten as:

min Zi
(x,y)EPz ig/ !
s.t. zi2x; VieV VjeT§)
(LBRCStAbounded—R_mbust—cosl) .
z <R
2y <C
(i)ea

The results of our experiments comparing the effects of the formulations on the solutions are given in Section 6.1.

3 | CACPACITATED ROOTED K-ARC CONNECTED STEINER
NETWORK PROBLEM

3.1 | Definitions and notations

In this section, we study the problem of designing networks that are resilient to a given number of arc failures. A feasible
solution to the problem we consider is a network rooted at a given root and covering a given set of terminals, and such that, after
deleting any k arcs, it is still possible to route a unit of flow from the root to each terminal, while respecting given capacities
on the arcs. Note that, if k > |A| — |T|, then at least one terminal will be disconnected from the root, and hence there exists no
feasible solution. Formally, we define the following problem (note once again that, for a digraph, “connected” means that the
underlying undirected graph is connected):

3.1.1 | Capacitated rooted k-arc connected Steiner network problem (CRKACSN)
INSTANCE: A connected digraph G = (V, A) with a set of vertices V, a set of arcs A, a root vertex r € V, a set of terminals
T C V\ {r}, an integral capacity function u on A, a cost function ¢ on A and an integer k with 1 <k < |A| —|T|.
QUESTION: Find a subset A’ C A of minimum cost such that there is a feasible flow (i.e., respecting the arc capacities)
routing a unit of flow from r to each vertex of T in the subgraph of G induced by A’, even if any subset of k arcs in A’ is deleted.

Property 3.1. A necessary condition for a solution A’ to be feasible is that there are at least k + 1 arc-disjoint paths
between the root and each terminal in G’ = (V,A’). Furthermore, any inclusion-wise minimal feasible solution
induces at least a 2-edge-connected graph in the underlying undirected graph.
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Proof. The first part of the property is a direct consequence of Menger’s well-known Theorem [32]. Now, let
G’ be an inclusion-wise minimal feasible solution, and assume that G’ is not 2-edge-connected in the underlying
undirected graph. Then, there exists at least one edge e whose removal cuts G’ into two parts. If the part that does
not include the root contains terminals, then G’ is clearly not a feasible solution because, if we remove e, then at
least one terminal cannot be reached from the root. Otherwise, G’ is not inclusion-wise minimal because, if we
remove e, then the resulting graph is still a feasible solution. Hence, any inclusion-wise minimal feasible solution
induces at least a 2-edge-connected graph. ]

Remark 3.1. We assume without loss of generality that there are at least k + 1 arc-disjoint paths between the root
and each terminal in the digraph G, and that the underlying undirected graph is 2-edge-connected, otherwise there is
no feasible solution. Moreover, Property 3.1 implies that |A’| > k, and so deleting k arcs from A’ is always possible.

In order to simplify the formulations proposed in the next sections, we add to the input digraph a vertex s (which corresponds
to a fictive sink) connected to every terminal ¢ € T by a fictive arc (¢, s) with ¢, = 0 and u;; = 1. Then, s is added to V and the
fictive arcs are added to A. Obviously, finding a flow which routes one unit of flow between r and each terminal in the input
digraph is equivalent to finding a flow of value |T’| from r to s in the transformed digraph.

In the following, A; denotes the set of initial arcs, A the set of arcs of the transformed support digraph (i.e., A = A; U
{(t,5),Yt € T}), and A’ the set of arcs of the selected network (including the arcs (¢, s), for each t € T).

3.2 | Three formulations for CRKACSN

We define the following variables, for each (i,j) € A:

i is a binary variable: y; = 1 if and only if the arc (i, ) is selected in A’; in particular, y,; = 1 for each ¢ € T the fictive arcs
are always selected in the final network, and they cannot fail;

bjj is a binary variable: b; = 1 if and only if the arc (i, ) is deleted (i.e., breaks down);

Xx;j is a positive variable: x; = amount of flow routed through the arc (i, /) = number of terminals linked to the root through
the arc (i, ).

We introduce the following set:

B= {be 0,13 | Y bj=k; bs=0 Vie T},
(i))EA
which defines, in a way similar to [7], the set of possible scenarios of arc failures, ensuring that no fictive arc (¢,s), t € T, is
deleted.
Note that, whatever the formulation, the objective is to minimize the cost of the selected arcs (Z(i ea cijyij). Moreover, since
it does not make sense to delete a nonselected arc, we should have the constraints b; < y; V(i,j) € A included in the definition

of B. Nevertheless, for any optimal solution with y; = 0 and b; = 1, it will be easy to check that, for all our formulations, there
is a feasible solution having the same cost with y; = 0 and b; = 0: thus, these constraints are not considered in 5.

Remark 3.2. Note that, in a selected network defined by y, if a worst case of breakdowns is obtained with
2ijea bii < k, then, from Remark 3.1, an equivalent worst case can be obtained by deleting more arcs in order to

have ¥ ca bij = k.
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3.2.1 | Bilevel formulation

The bilevel formulation proposed here is particular in that the second level is a min max problem. We assume w.l.0.g. that there
is no arc entering the root r. Given two vectors y and b, each of size |A|, we define the following feasible set:

D oxi— Y =0 VieV\({rs) (3.1a)
ier-(j) i€l+(j)
X(y,b) =1 Xij = Uyij V(i,j) €A e (3.1b)
xi < (1 —Dby) V(i,j) €A (3.1¢)
xj €N VijeA

The value of each variable x; represents a number of terminals, and so is a positive integer. For given vectors y and b, the
set X(y, b) corresponds to the set of possible flows in the subgraph of G induced by the arcs (i, j) such that y; = 1, provided that
they have not been deleted (i.e., that b; = 0). Constraints (3.1a) are the flow conservation constraints, Constraints (3.1b) are

@
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the capacity constraints (on the selected arcs), and Constraints (3.1c) impose a flow equal to 0 on any deleted arc. We finally
propose the following bilevel program:

min Z CiiVii
ye{0,1 141 0y

(i)EA
(BILEVEL) s.t. f(y) > |T| (3.2a)
where f(y) = I;Jnelg xer?v%yxb) z Xy (3.2b)

JEI*(r)

This can be seen as a game with a defender and an attacker (corresponding, respectively, to the leader and the follower).
At the upper level, the defender selects the set of arcs of the network to be built, by choosing a value of y in {0, 1}, The
attacker then deletes some arcs by computing » € B in order to minimize the value of the maximum flow that the defender can
obtain by choosing x in X(y, b). The aim of the defender is to ensure that the value of this flow is larger than or equal to |7
(Constraint (3.2a)).

Note that, if there are no breakdowns, the problem reduces to the NP-Hard Minimum Arc-Cost Flow problem [20] with a
unit capacity on each arc linking a terminal to the sink.

3.2.2 | Cutset formulation

We consider now the r — s cuts [V \ Vs, Vs] with Vs C V, r € V' \ Vg and s € Vs. Let S be the set of all the associated cutsets S
in A where S is the set of arcs entering Vs (i.e., S = {(i,j)) €A | i € V\ Vs, j € Vs}). Note that if S € S then SN A’ is a cutset
in the selected network. For any set S € S, let C; be the set of subsets of S of k nonfictive arcs. Except for the cutset containing
only the fictive arcs, there is at least one terminal in Vs and, from Remark 3.1, at least k + 1 nonfictive arcs in S, and hence C,f
cannot be empty. For the cutset S consisting of k fictive arcs, we have, by convention: {$° \ C, VC € Cfo } = 5°. We propose
the following cutset formulation:

myin Z CijYij

(i)EA
CUD st Y wyy > |7 VS e S, VC e C} 3.3)
(i,))ES\C
yij € {0, 1} V(i,j) € A

Constraints (3.3) ensure that, in the digraph induced by the arcs (i, /) such that y; = 1, the capacity of each cutset (and
consequently of a min-cut) after the deletion of any k arcs of this cutset is at least equal to the number of terminals, which
is a necessary and sufficient condition for the existence of a flow of value |T| from r to s [1]. For S°, Constraint (3.3) is
Yijes\c UiYi = Lier Yis 2 |T|, which implies that y, = 1 foreach z € T.

3.2.3 | Flow formulation

In this section, we introduce a formulation based on flow variables. We define F as the set of all possible arc-failure scenarios:
it corresponds to the set of all k-combinations in A;. We introduce the variable xﬁ which represents the amount of flow routed
through the arc (i, j) € A when the scenario F € F occurs. We propose the following flow formulation:

min Z Ciiyij

Y ipea

LY =Yk =0 VjeV\({rs}, VFEF (3.42)
el () kel (j)

FLowW)|  Dxe = T VFeF (3.4b)

tel(s)
xS uyy V(i,j) €A, VF € F (3.4¢)
x{; = 0 VF e F, V(i,j) e F (3.4d)
xe Ry e qo, 1Ml

For each arc-failure scenario ' € F, Constraints (3.4a) and (3.4b) ensure that there is a flow of value |7T'| (routing a unit of
flow to each terminal), Constraints (3.4c) ensure that the arc capacities are satisfied, and Constraints (3.4d) ensure that no flow
is routed through deleted arcs. One can notice that the value of any variable xg must be an integer (because it corresponds to a
number of terminals). However, we relax this integrality constraint. Indeed, for any value of y € {0, 1}}!, setting the value of x
corresponds to routing a set of flows of value |7| on |F| different networks with integral capacities. Then, for any given value
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of y € {0, 1}!41 all the components of x are integers in any basic solution [1], and hence there exists an optimal solution where
x is integral.

3.3 | Theoretical comparison between formulations and related properties

3.3.1 | Properties and rewriting of the bilevel formulation
Let us consider the bilevel formulation, and let (F-MAX) denote the maximum flow problem in the second level:

(F=MAX):  max 20 = D, .
Jjert

At this stage, y and b are already fixed; we refer to their values as § and b, respectively. We propose the new following program:

max )= Y xj— X by
Jer+(r) (i)€A
S.t. Xj— Xji = 0 Vie V\{r,s} (3.5a)
(MAX) ieFZ(j) ie;(j)
Xjj > 0 V(i,j) € A. (3.5¢)

Remark 3.3. For any value of y in {0, 1}/, there is an integral optimal solution of (MAX), and an integral optimal
solution of (F-MAX) when the integrality constraint is relaxed in X(y, b).

Indeed, the coefficient matrix M of (MAX) is the vertex-arc incidence matrix of a directed network to which an identity
matrix is appended: it is well known that such a matrix is totally unimodular [1]. Since the capacities are integers, this ensures
that the extreme points of the associated polytope have integral coordinates even if the integrality constraints on x are relaxed.
The integrality constraint can also be relaxed in X (y, b), because the coefficient matrix of X (y, b) is equal to M to which an
identity matrix is appended, and thus it is also totally unimodular.

We have the following result:

Proposition 3.1. There is an optimal solution x* of (MAX) such that Z(i ea 13,-,~x,’-; = 0, and this solution is an
optimal solution of (F-MAX). Moreover, this is true whether y and/or x are integral or not.

Proof. We first show that there is an optimal solution x* of (MAX) such that l;[j.x;-kj = 0 for all (i,j) € A. Any
feasible solution of (MAX) defines a feasible flow from r to s in the digraph defined, from G, in the following
way: there is an arc (i, ) if and only if y; > 0. Assume that x! is an optimal solution of (MAX) with bywxl, > 0
for an arc (v,w) € A (notice that y,,, > 0). There is a path = from r to s containing (v, w) and a flow of value
f > 0 routed along 7. Let x> be a new solution of (MAX) obtained by decreasing the flow by f along x. Then,
203 = Cierton x}j - = e Eijx}j) + Yiper byf. Since X ien byf > f (because at least (v,w) € 7 is
such that b; = 1), we have z2(x*) > z(x') and, since x' is optimal, z5(x*) = z2(x'). Doing similar modifica-
tions while there are arcs (i, /) with b,,x,, > 0, we obtain a solution x* of (MAX) such that Z(, i j)eA ,,x = 0 and
2(x*) = z(x"). The modifications were made along paths from r to s, so Constraints (3.5a) are Sdtleled for x*
and, since we have decreased the values of x!, we know that x,J < xlj for all (i,), and hence Constraints (3.5b) are
satisfied too.

Let x* be an optimal solution of (MAX) such that bx = 0. Constraints (3.5a) and (3.5b) are the same as Con-
straints (3.1a) and (3.1b), and are satisfied for x* in (F-MAX); moreover, nyj; = 0 for all (i,)) € A, thus x; > 0
implies that l3,-,- = (, and Constraints (3.1c) of (F-MAX) are also satisfied. If x* is integral, x* is an optimal solution
of (MAX) that is feasible for (F-MAX), and such that z; (x*) = zo(x*).

Finally, let x* be an optimal solution of (F-MAX): x* is clearly a feasible solution of (MAX). From Constraints
(3.1c), by, = 0 for all (i, j) € A: thus, ;s bixy = 0 and 7 (x*) = 2 (x*).

From Remark 3.3, if y is integral, then there is an integral solution x*, but the proposition is true even if y is not
integral and if we replace “x; € N” by “x;; > 0” in X(y, b). Then, x may be integral or not, but the proof remains
the same. n

9SUdIT SUOWIWIOY) AL 3|gedijdde ayy Aq paulanob ale s3pdipe YO ‘asn Jo sajnJ 1o} Aleiqr] auljuo A3jIp uo
(suonipuod-pue-swLia}/wod Asm Aieiqijauluo//:sdny) suonipuod pue swisl sy 935 ‘[€202/50/0L] uo Aleiqr auljuo A3jim ‘9duelq sueiydod Ag ‘€122 19u/200L 0L/1op/wod AsjimAleiqijauljuo//:sdny woly papeojumoq ‘0 ‘€202 'LE00L60L

There always exists a feasible flow of value 0 in (MAX), and the problem is upper bounded by |7’| (because of the cutset
with only the fictive arcs). Hence, the strong duality in linear programming holds, and we can introduce the dual of (MAX),
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where u is the vector of dual variables associated with Constraints (3.5a), and A is associated with Constraints (3.5b). After a
slight reformulation due to the addition of y, and y;, given y and 13, the dual problem can be written as follows (see [1]):

min 2 uidihy
At (ij)eA
st Ayj+by— i+ > 0 V(i,j) €A (3.62)
(DMAX) @, - 1 (3.6b)
ts = 0 (3.6¢)
A € [0, 1741, u € [0, 11V (3.6d)

For a given vector b, we denote by D(b) the polytope defined by dual Constraints (3.6a)—(3.6d). The associated matrix is totally
unimodular because it is the transpose of a totally unimodular matrix, and the right-hand side is an integral vector: thus, there
is an optimal solution of (DMAX) with A and y integral.

Remark 3.4. (DMAX) is a special formulation of a min-cut problem where the variables (4, u) and b define a cut
in the input digraph, whether ¥ is integral or not. The capacity is equal to u;;9;; on each arc (i,j) € A. u defines the
two parts of the cut (if y; = 1, then the vertex i is in the same part as r, otherwise i is in the same part as s), while 4
and b define the arcs in the cutset ((i, ) is in the cutset if and only if A; = 1 or b; = 1); in particular, b defines the
(nonfictive) arcs in the cutset that are deleted. Moreover, because of the minimization of the objective function, if
13,]- = 1 then A; = 0 in an optimal solution, and so 4; + Bij = 1 for each arc (i,j) in the cutset.

Since the second level of (BILEVEL) can be reformulated as a min-min function by using the dual described above, given
¥, it can be rewritten as the following integer linear program:

min Sy
¥ (i§guuy ijAij
(SEC — BILEVEL) | S
(4, 1) € D(b)
We can then rewrite the bilevel program as:
yel{%,lll}w (i%:eAcijyij
Bl o) 21T
e where  f(y) = min X wiyihi -
bhu jea
S.t. be B
(A, u) € D(b)

Let us consider the convex hull of the feasible points of the second-level program (defined by 53 and D), and denote by H
the set of its extreme points. One can notice that this convex hull does not depend on y: the set of extreme points H remains the
same for every value of y. We denote by A" the value of 4 at the extreme point 4 € H; from above, these points have integral
coordinates. We can then reformulate the bilevel formulation as a single-level integer linear program as follows:

m. s ¥
ym Z CijYij
(ij)eA
(LIN=BILEVEL) | st ' uzyydly > |T| Vhe H (3.7)
(i)EA
y € {0, 1}1I

Constraints (3.7) ensure that, for each extreme point in H, Z(i A uijyijllf} is greater than |7'|, and so is the minimum value
f(), meaning that the value of a maximum flow cannot become smaller than |T’|, even after any k breakdowns.

3.3.2 | Comparison between the formulations
We have the following first result:

Theorem 3.1. The optimal values of the continuous relaxations of the bilevel formulation (RLIN-BILEVEL) and
of the cutset formulation (RCUT) are equal.
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Proof. We prove this theorem by proving that Constraints (3.7) and (3.3) are equivalent for any value y of y (integral
or continuous). In both cases, the digraph is defined by 3.

Assume first that Constraints (3.7) are not satisfied for some (13, i,ﬁ) with b € B and (fl, [1) in D(B):
(ﬁ, f1) is a feasible solution of (DMAX) (for 13) and Z(i ed u,-j&,-ji,-j < |T|. From Remark 3.4, we can consider
a triplet b, 1, fi) defining an optimal integral solution of (DMAX) (for b) such that Zij + l3ij < 1; we have
Yipea 4ididi < Xipea widiAy. From Remark 3.4 again, (b, 1, ji) defines a cutset § from which a set C of k
nonfictive arcs is removed: § = {(i,j) suchthat 4; = 1 or by = 1} and C = {(i,j) such that b; = 1}. Then
S\ C = {(i,j) such that ij =1} and Yhede idi = Lajpea Yiditi S Xiijea ui9iAi < |T|. Thus, Constraints
(3.3) are not satisfied for (S, C).

Assume now that Constraints (3.3) are not satisfied for some SeSandC € Cf: Z(i,,')e&\é uiyi < |T|. Set
13,-,~ = 1 if and only if (i,j) € C‘; since C € cs, b e B. Then, we set j; = 1 if the vertex i is in the same part of the
cut defined by S as r, and fi; = 0 otherwise. This implies that the arcs of S are the arcs (i, j) such that /2; = 1 and
fi; = 0. Finally, if 4; = 1, 4; = 0 and by = 0, then A; = 1, otherwise 4; = 0. In this way, 4; + b; < 1, and the arcs
@i,)) of § are such that j,j + ZJU = 1. We have Z(i,j)eA u,j)Af,jj,J = Z(i,j)e@' st by=0 MU)AIUj,j = Z(i,j)GS\C wiyi < |T|.

It is easy to check that (2, i) € D(B), and so (ﬁ, ) is a feasible solution of (DMAX) (for B). Then, there
is an extreme point of (DMAX), (4, /i) such that ¥, ui$idy < X jen wididi = Yipes\e Uidy < 1T, and
Constraints (3.7) are not satisfied. n

As a consequence, we made our tests only for the bilevel formulation, as described in Section 3.2.1 (see Section 6).
We now give a second result:

Theorem 3.2. The optimal values of the continuous relaxations of the flow formulation (RFLOW) and of the cutset

Jormulation (RCUT) are equal.

Proof. We first recall the continuous relaxations of the cutset and flow formulations:

min X i
& (iy)€A
(RCUT) |s.t. > uyyy = |7 VS € S,VC € C¥.
(i)ES\C
0<y; <1 V(i) €A
min z CijYij
Y (iy)€A
s.t. Y x— X x=0 YjeV\{rs),VFeF
il (j) kel*(j)
o
(RFLOW) X xs=|T| VFeF ,
tel (s)
x5 < Uy V(i,j) €A, VFETF
x;=0 VFeF, Vi,j€EF
xe RWXIFL 5 e 10, 1711
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Let (y', x!) be a feasible solution of (RFLOW). Setting y = y! in (RCUT) would give a solution with the same
value. Let us check that such a solution is feasible for (RCUT). Since (y', x!) is feasible for (RFLOW), there exists
a flow of value |T'| for each scenario of breakdown of k arcs, considering the capacity u,jy; on each arc (i, ), except
obviously the arcs which are attacked in this scenario, which have a capacity equal to 0. Let us assume that y'
is not a feasible solution for (RCUT). Then there is at least one constraint of type Y s\ ¢ uzyy > |T| which is
violated for some § € S and C € Cj. It means that there is a r — s cutset for which the capacity is smaller than
|T| if we delete k arcs. Then, the scenario of breakdown F € F in which those k arcs are deleted would not admit
a feasible flow of value |T|: a contradiction. So y! is a feasible solution of (RCUT) with the same value as (y!, x")
for (RFLOW).

Now let y* be a feasible solution of (RCUT). Setting y = y> in (RFLOW) would give a solution with the same
value. Assume there does not exist any x> such that (y?, x?) is a feasible solution of (RFLOW). It means that there
exists at least a scenario of breakdown F' € F such that there is no feasible flow of value |T'| on the residual network
(where we delete the arcs in F)) with capacities equal to u,,yg for each arc (i, ). As before, this is impossible since
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this would involve a residual » — s cutset with a capacity smaller than |T|. So, there always exists at least one x>
such that (%, x?) is a feasible solution of (RFLOW).

Hence, we can transform any feasible solution of (RFLOW) into a feasible solution of (RCUT) having the same
value, and vice versa. n

Remark 3.5. When there are no breakdowns, the optimal value of (RBILEVEL), the continuous relaxation of
(BILEVEL), is equal to the one of (RLIN-BILEVEL), (RFLOW) and (RCUT) (we shall see later, namely in Propo-
sition 3.6, that this is no longer the case when there are arc failures, i.e., when the objective of the second level
is a min-max function). Indeed, without any breakdown, (RBILEVEL) becomes minygg, 1 Z(i Jea CiiYij such that
f(y) > |T|, where f(y) = max, Zj€r+(r) x,;, with x € NWI x satisfies the flow conservation constraints, and
xij < uijyy, V(i,j) € A. The objective function is minimized and the coefficients c;; are positive, so, in any optimal
solution, we will have Vi = x;j‘./u,-j and Zjemr) Xy = |T'|. Then, (RBILEVEL) becomes min,en Z(i J)eA(c,-j/u,-j)x;;
such that x satisfies the flow conservation constraints, Zje[“*(r) x;‘i = |T|, and x; < u;, V(i,j) € A (which makes it
possible to satisfy y; < 1, V(i,j) € A). The problem becomes a minimum cost (integral) flow problem, solvable in
polynomial time, and it is equivalent to the flow model without any breakdown (with x € Nand y € [0, 1]11).

3.3.3 | The special case of uniform capacities

In the case studied in this subsection, there is a uniform capacity U on each arc a € A;, and hence the capacity of any set of k
arcs is a constant equal to kU. In the bilevel formulation, this makes it possible to remove variables »: Constraints (3.6a) become
Aij — pi+pj >0 V(i,j) € A, and the objective function of (DMAX) becomes Z(i A Uy;iAj — kU. This reduces the dimension
of H and the number of its extreme points. Nevertheless, the cutset formulation becomes even more interesting in this case.
Indeed, it can be rewritten as follows:

min Z C,'jy,'j
Y (ijea
t. i > |T A4 S .
(CUT — UNIFy| ¢ (Z Uy; > |T| + kU Se (3.82)
ij)ES
yis = |1 VieT (3.8b)
vi € {0, 1} V(i,j) €A

The number of constraints is still exponential, but highly reduced compared to the nonuniform case, and we used this
formulation to solve the problem in this special case (see the results in Section 6).

3.4 | Problem solving method

3.4.1 | Basic cutting plane approaches

We first consider the bilevel formulation (LIN-BILEVEL), in which there are an exponential number of Constraints (3.7). To
tackle this issue, we chose to use a cutting plane algorithm.

We relax Constraints (3.7) by considering a subset of points in H, and we use (SEC-BILEVEL) as the separation problem:
while the optimum value of (SEC-BILEVEL) is smaller than |7'| for the current solution y, we generate the constraint (3.7)
associated with the extreme point whose coordinates are the optimal values of (b, 4, u) in (SEC-BILEVEL). An initial subset
of Constraints (3.9) is obtained by considering the cutsets formed by all the arcs incident to s or r. This provides the values of
4! and A*: we have A); = 1 and 4% = 0 for all i adjacent to r, A, = 0 and A%, = 1 for all j adjacent to s, as well as 4; = A7 =0
forall i # randj # s.

For small values of k, one straightforward method to solve (SEC-BILEVEL) is the following: for each combination C of &
arcs in A; which are selected in the current solution, that is, such that $; = 1, we compute a minimum cut in the digraph where
the capacity of each arc (i, j) is defined as u;;, except for the k arcs of C whose capacities are set to 0. Otherwise, that is, if k is
too big, we solve a MIP.

Since, from Theorem 3.1, in the case of nonuniform capacities, (LIN-BILEVEL) and (CUT) are equivalent formulations
and share the same variable space, we no longer consider the cut formulation. Concerning the flow formulation, the number
of variables and constraints is exponential for arbitrary values of k, and hence we propose again a cutting plane algorithm to
solve the problem. We begin with a small subset of 7. The separation problem is the problem of the £ most vital links in a
flow network, which is A P-hard [37]: we search for k arcs which, once simultaneously deleted, reduce the most the value of a
maximum s — ¢ flow. For small values of k, we compute a maximum s — ¢ flow for each combination of & selected arcs of A;. If
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there is a combination of arcs whose deletion results in a maximum s — ¢ flow of value smaller than |T'|, we add this arc-failure
scenario, otherwise the solution is feasible. If k is too big, we use the auxiliary MIP (SEC-BILEVEL).

3.4.2 | Improving the resolution of (LIN-BILEVEL)
We now propose a variant to generate the constraint added at each step of the cutting plane algorithm used to solve
(LIN-BILEVEL), which has revealed to be more effective in solving the problem during the tests.

We explain how to get a new value of y in order to deduce a new value A" (i.e., a new point &), which generates a new
constraint (3.7).

Given a current solution y, we search for a cutset S with a minimum number of arcs in the initial support digraph G, such
that S is nonvalid in the network induced by A (i.e., by the arcs (7, /) with §; = 1), which means that, if we remove k well-chosen
arcs of § N A, the remaining capacity of S is smaller than |T'|. Given $, this can be modeled as follows:

o Ziijea A

st Y wdpdg < |T| -1 (3.9)
(AUX — BILEVEL) i

bekB
(A, 1) € D), u e {0, 1}V

Notice that the constraint matrix is no longer totally modular (because of Constraint (3.9)); that is why we set u € {0, 1}1.
Then, there always exists an optimal solution with 4 € {0, 1}141: for an arc (i, J), because of the minimization of the objective
function, if y; = pj or y; = 0 and y; = 1, there is an optimal solution with A; = 0; if y; = 1 and y; = 0, we must have
Aij + b > 1, and there always exists an optimal solution such that exactly one among 4; and b;; is equal to 1.

From Remark 3.4, (AUX-BILEVEL) without Constraint (3.9) is the formulation of a cutset problem: the objective is to
minimize the number of arcs of A in the cutset, provided these arcs are not deleted (since A; = 0 if b; = 1), while Constraint
(3.9) ensures that the solution is a nonvalid cutset (i.e., one with an insufficient capacity).

If (AUX-BILEVEL) has no solution, then the current solution y is a feasible solution.

If (AUX-BILEVEL) admits a solution, then this solution gives new values, A, /i, and b of 4, u and b. A new value ¥ of y is
then computed as follows: we set Vi = 1 for all (i,j) with Bij = j,ij = 0, and leave the others at their current value (j)ij = yi).
Doing so, we add as many arcs as possible to the solution defined by .

Proposition 3.2. If (AUX-BILEVEL) admits a solution, then there exists a cutset with at most |T| — 1 arcs in the
network defined by 3.

Proof. Let g(y, A) = X ea UiYiy- For any (i,j) such that y; = 1 and j; = 0, we have bj = A; = 0. Thus
g0, /T) = g0, /Al) <|T| -1, and (2, i, 13) defines a cutset with at most |7'| — 1 arcs in the network induced by y. =

Proposition 3.3. For any value of A, if adding the constraint g(y,A) > |T| to the set of constraints (3.7) of
(LIN-BILEVEL) makes the solution y = y infeasible, then it also makes the solution y =y infeasible.

Proof. Indeed, we have g(¥, 4) > g(§, 4) for each 4, since §; > §;; for each (i, j) (recall that u and 4 are nonnegative).
Hence, if g(3, 4) < |T| — 1, then g(3,4) < |T| — 1. [

The reverse is not true as will be seen later (see Proposition 3.5).
Let us denote by (SEC — BILEVEL)(y) (resp. (AUX — BILEVEL)(y)) the program (SEC — BILEVEL) (resp. (AUX —
BILEVEL)) where y is replaced by y € {3, y}.

Proposition 3.4. Solving (AUX — BILEVEL)(Y) is equivalent to solving (AUX — BILEVEL)(Y).

Proof. Let (4, j1, b) be an optimal solution of (AUX — BILEVEL)($). From the proof of Proposition 3.2, (4, /i, b)
is a feasible solution of (AUX — BILEVEL)(y).

Now, let (4, i, b) be an optimal solution of (AUX — BILEVEL)(¥). From the proof of Proposition 3.3, (4, ji, b)
is a feasible solution of (AUX — BILEVEL)(y).

Since any solution gives the same value to both programs, we get the equivalence. L]

We have theoretically compared the use of (SEC — BILEVEL)(9), (SEC — BILEVEL)(¥), and (AUX — BILEVEL)(9), to
solve (LIN-BILEVEL), without being able to come up with a theoretical conclusion on their respective effectiveness. More
precisely, we prove:
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Proposition 3.5. Given any of the three feasible sets of the continuous relaxations of (LIN-BILEVEL) obtained after
adding a new constraint generated by solving (SEC — BILEVEL)(y), (SEC — BILEVEL)(Y), or (AUX — BILEVEL)(Y),
this feasible set is not always included in one of the two others, even without any breakdown.

In order to ease the reading, corollaries and proofs related to this proposition have been moved to Appendix A. We discuss
in Section 6 the use of (AUX — BILEVEL) and (SEC — BILEVEL) for generating the constraints added in the cutting plane
algorithm, based on preliminary empirical results.

Remark 3.6. Another possible approach would be to bundle Constraints (3.1b) and (3.1¢) into x; < u;i(y; — byy).
But, if, for a given (i, ), we have b;; = 1 and y; = 0, then X(y, b) is empty, and the max problem of the second level
has no feasible solution, which leads the optimal value of (DMAX) to be unbounded in this case. Moreover, if we
add the set of constraints b; < yj; in the feasible set B to tackle this issue, there are constraints depending on y in
the second level, and our way of solving the bilevel program is not suitable anymore.

The cutting plane algorithm used to solve the problem, as reported in Section 6, is based on the model (LIN — BILEVEL).
Nevertheless, we have the following result:

Proposition 3.6. Let opt(RBILEVEL) (resp. opt(RLIN — BILEVEL)) be the optimal value of (BILEVEL) (resp.
(LIN — BILEVEL)) when we relax the integrality constraints on y. Then, we have opt(RBILEVEL) > opt(RLIN —
BILEVEL).

Proof. 1f y is not required to be integral, the right-hand side of each constraint of the program (MAX) is possi-
bly not integral and, although the constraint matrix is totally unimodular, x may not be integral. The formulation
(RLIN-BILEVEL) is based on the dualization of (MAX), and, thus, it requires us to relax the integrality of the
variable x in the second level of (BILEVEL), in addition to the one of y, while that is not required to formulate
(RBILEVEL).

More formally, from Proposition 3.1, with y € [0, 1]l and x € NI, the continuous relaxation of (BILEVEL),
denoted by (RBILEVEL), can be written as:

min Y c¢;y; such that f(y) > |T|, with f(y) =min max Y x,;— Y bjx;.
yelon Sy Y bEB xeX(h) ity © Geh

From the rewriting given before, (RLIN-BILEVEL), the continuous relaxation of (LIN-BILEVEL), is equiva-
lent to:

min c;iy;i such that g(y) > |T'| with g(y) = min min W;iyii Aii.
yelo,1]4l (i,i)ZeA iiYij s = 7| 8k e H»M}ED(”)(Z',,;EA iYii Ay

Moreover, by duality, we have:
min_ Y wyyidj= max Y x;— Y bixy,

(AHIED®) (;fiE XERX (D) 7 () (eA
where, for any given vectors y and b of size |A|, RX(y, b) is equal to X(y, b) with “x;; € N, V(i,) € A” replaced
by “x;; > 0, V(i,j) € A”. Thus, min u;yiiAdi > max Xy — bixi;, Vb € B.
Yy Xij J (AmeD®) (%eA iiYij Aij xex(y'b)jelg(r) 7j (mzeA ijXij

For any value of y, we have g(y) > f(y), and hence any feasible solution of (RBILEVEL) (i.e., satisfy-
ing f(y) > |T]) is a feasible solution of (RLIN-BILEVEL) (i.e., satisfying g(y) > |T|), which implies that
opt(RBILEVEL) > opt(RLIN — BILEVEL). The opposite is not always true: indeed, let y* be an optimal nonin-
tegral solution of (RLIN-BILEVEL); then, the capacities in X(y, ) are not integers, and the value of a maximum
continuous flow can be greater than the one of a maximum integer flow. Hence, we can have g(y*) > |T'| while
f(y*) < |T|, which makes the solution y* infeasible for (RBILEVEL). n

4 | ADDITION OF PROTECTED ARCS

4.1 | Problem definition

Let us now define an even more general version of the problem, where we add the possibility of protecting ¥’ > 0 arcs. In
this version, in addition to A’, we also select a subset A, C A" with |A,| = k' < |A|; those arcs are called protected arcs and
cannot fail or be deleted by the attacker. In the wind farm application, protecting arcs can be seen as doubling a set of cables or
protecting cables from a difficult environment (like extreme cold).

With the addition of protected arcs, Property 3.1 in Section 3.1 does not hold anymore: if some arcs are protected, then
the existence of a feasible solution does not necessarily imply that there are k + 1 arc-disjoint paths between the root and each
terminal. For example, k + 1 paths which are pairwise arc-disjoint except for the fact that they share a common arc (u, #;) can be
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sufficient to ensure that the terminal ¢; can be reached from the root even after any k arc deletions, if the arc (u, t;) is protected
and capacities are sufficient. Hence, Property 3.1 and Remark 3.1 can be ignored here.

4.2 | Formulations in the case of protected arcs

In that case, it could become impossible to delete & arcs as in Section 3.2, and we need to slightly modify the definition of 3 by
replacing the equality with an inequality:

B={be{0,1}""| D bj<k; Zbﬁo}.

(ij)EA =7

We also define the binary variables p; = 1 if and only if (7, ) is protected, for each arc (i,j) € A, as well as the following set,
for a given vector y of size |A|:

P(y) = {pE {0,141 py <K 3 Y p =05 py <y V(i,j)eA}.
(ij)eA teT

This set ensures that there are at most £’ protected arcs, and that we do not protect arcs which are not selected in the final network
or which cannot be deleted.

Remark 4.1. Since the budget of protection is fixed, there exists an optimal solution such that Z(i HeaPi =
min{k’, Z(i,j)eA, yij} = min(k’, |A’|). Hence, if z(i,i)eA, yij < k', then p; = yj; for each (i, ) € A.

In the following, we propose modifications for each one of the previous formulations.

42.1 | Bilevel formulation
In order to include the possibility of protecting arcs, we introduce, for a given vector p of size |A|, the set B(p), defined as

B(p) = {b € Bsuchthat b; <1-p; V(ij €A},
which forbids the attacker to delete a protected arc.

The bilevel formulation introduced in Section 3.2.1 can be adapted to the protected case as follows:

min Z Cijyij
YE(0,1 141 peP(y) vy

(ij)eA
(PBILEVEL) s.t. f,p) > |T| (4.1a)
where f(y, p) = min max Z Xy (4.1b)

beB(p) xeX(y,b) jer ()

The max problem of the second level is exactly the same as in the unprotected case. By dualizing this max problem as in
Section 3.2.1, for given values y and p of y and p, the reformulated second level problem is the following:
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min  fbil(4) (%;‘A Ay
S.t. b € B(p) (4.2a)
(RSEC~BILEVED) Aij+bij— pi+ 20 V(i,j) € A (4.2b)
=1 pu=0 (4.20)
A€ (0,114, u e [0, 1]V (4.2d)

For an optimal value A* of A in (PSEC-BILEVEL), we have fpil(A*) = f(9,p). There is a crucial difference between
(PSEC-BILEVEL) and (SEC-BILEVEL) defined in Section 3.2.1: now, the convex hull of the second-level feasible set depends
on the first-level variables p (see Constraints (4.2a)).

4.2.2 | Cutset formulation

The cutset formulation proposed in Section 3.2.2 can be adapted to the protected case by replacing Constraints (3.3) by the
following constraints: ¥, - u5yj — X jec 4iyi(l = pi) 2 |T| VS € S, VC € C%;, where S is defined as in Section 3.2.2,
and C%, is the set of subsets of S containing no more than k nonfictive arcs of S. These constraints ensure that, in the selected
digraph, the capacity of each cutset minus the capacity of at most k arcs of this cutset, provided that they are unprotected, is
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always larger than |T'|. They are not linear, but we also add the constraint p € P(y), which implies that p; < y; and, y and p
being 0-1 variables, that p;y; = p;; for all (i, j) € A. We obtain the following linear cutset formulation:

ye{oqlrﬂ‘lll,}aep(y) (i,j)ZEA CijYij
(PCUT) |
st 2wy =, wiy=py) 2 IT] VSe S, VCeCs 43)

(iy)es @i HEC

In order to solve the resulting MIP using a constraint generation algorithm, we search for a cutset that does not satisfy some
Constraint (4.3): we aim to find a cutset S of minimum residual capacity once we delete its most capacitated arcs, taking into
account the fact that the capacities of the protected arcs cannot be removed and that the maximum number of deleted arcs is k. If
the capacity of this minimum cutset is smaller than |7'|, then we add the constraint associated with S. Otherwise, the algorithm
stops for the current node of the branch-and-bound.

Let y € {0,1}" and p € P(P) be the current solution; a minimum cutset is obtained by solving the following MIP
(PCUTSEP):

min  feut(b, 4) = (iz}% ui3iAy + piby)
st.  beB (4.42)
(PCUTSEE) A+ bj— pi+ 20 V(i,j) € A (4.4b)
w=1 =0 (4.4¢)
A e (0,114, u e [0,1]V (4.4d)

Constraints (4.4b)—(4.4d) ensure that b, 4, and y provide a cutset in the current network: § = {(i, ) s.t. 4;+b; = 1} defines the
arcs of the cutset (as in Remark 3.4, if b; = 1, then we have 4; = 0 in any optimal solution). Constraints (4.4a) ensure that at
most k nonfictive arcs are “deleted”: here, “deleted” means “selected to be deleted,” but actually deleted only if nonprotected,
that is, the capacity of an arc (i,j) such that b; = 1 is removed only if it is not protected. Recall that y;p; = pj;. Thus, the
remaining capacity of a cutset is Y, s (w9 (Ai + by) — uzPibii(1 — py)) = Xy ea wiigAij + Dybi)-

We have the following property:

Property 4.1. For a given (3,p), there is a bijection between the sets (S, C) in Constraints (4.3) and feasible
solutions (b, A) in (PCUTSEP). Moreover, if (S', C') corresponds to (b!, A1), then
Z(i,j)eS‘ iy — Z(i,j)ecl wi(yij — py) = Z(ij)eA ”‘ij@ij/lilj +i’ijsz1i)'
From the definition of B given at the beginning of Section 4, we make the following remark:

Remark 4.2. When arcs can be protected, the case of uniform capacities does not admit a reformulation similar to
(CUT-UNIF) (see Section 3.2.2), because in this case Z(i ea bjj = k does not necessarily hold, and so the capacity
of a cut after considering the worst breakdowns is not always decreased by kU.

42.3 | Flow formulation

For the flow formulation, we define F as the set of all combinations of at most k arcs of A, we add to the MIP (FLOW) of
Section 3.2.3 the constraint p € P(y), and we replace Constraints (3.4d) by:

xj Sugp; VFEF,V(j)€EF.

Those constraints ensure that, in a scenario F with (i,j) € F, we can route some flow through arc (i, j) only if this arc is protected.
Again, we can use the same columns-and-constraints generation algorithm as in Section 3.2.3, in order to find the most vital
arcs in the separation problem among the nonfictive and nonprotected arcs (i.e., we consider only combinations of selected but
nonprotected arcs when computing the set of maximum flows).

4.3 | Theoretical comparison between formulations

We first compare the continuous relaxations (relative to y and p) of the bilevel and cutset formulations from a theoretical point
of view.

We denote by RP(y) the polytope defined by P(y) where p € {0, 1}l is replaced by p € [0, 11", and we consider the
continuous relaxation (RPBILEVEL) of (PBILEVEL), and (RPCUT) of (PCUT), with y € [0, 11! and p € RP(y).
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Let us take the defender’s point of view in (RPBILEVEL): for a given value of an optimal solution y*, an optimal value of

p* will be such that f(y*, p*) takes the highest possible value. This is obtained, for instance, by setting pj; = min < |j;| ; yj}) for
all (i,j) € A, where A* = {(i,j) € A; such that y; > 0)}, which gives Z(i,,-)eA pij < k' and p € RP(y). In this way, b € B(p*)
implies that b; < 1 — pj.‘j < 1, and thus b; = 0, for each (i, j) € A*. Hence, there is an optimal solution of (PSEC-BILEVEL)

level such that b;; = 0 for each (i, j) € A: (PSEC-BILEVEL) becomes a simple min-cut problem in G, with a capacity equal to
u,,y; on each arc (i, ). The relaxed bilevel program with protected arcs can be written as follows:

yE[O.l]m,lpneRP(y) (i,j)ZeA CijYij
(RPBILEVEL)
s.t. Z wiyidi 2 |T| V(4, ) defining a r-s cut in A 4.5)

(i)EA
or, equivalently,

min Z Ciivis
Yel0,114 peRP(y) g

(RPBILEVEL) (e
st Y wyy = T vse s (4.6)

(S

If we compare this formulation with the bilevel formulation without protected arcs (see the programs (LIN-BILEVEL) and
(AUX-BILEVEL) in Section 3.2.1), the continuous relaxation of the problem with breakdowns and protected arcs is easier to
solve than the problem with breakdowns only, but we shall see that it does not give a good bound in the branch-and-bound
algorithm. Indeed, we have the following theorem, where opt(PROG) denotes the optimal value of the program (PROG):

Theorem 4.1. Let (RPBILEVEL) and (RPCUT) be the continuous relaxations of (PBILEVEL) and (PCUT), respec-
tively, with y € [0, 11 and p € RP(y). Then, opt(RPCUT) > opt(RPBILEVEL), and there are some instances for
which opt(RPCUT) > opt(RPBILEVEL).

Proof. Let us consider the continuous relaxation of the cutset formulation:

min Z Ciiyij
YE[0,1]141 peRP(y) vy

(RPCUT) (el )
st Y wyy— ), uiy—py) = |T| VSe S, VCe C5, 4.7)
(ij)es (ij)eC

We have p; < y; and so Z([ e u;i(yj — piy) > 0, which implies that, if Constraints (4.8) are satisfied, then
Constraints (4.7) are satisfied too, and thus opt(RPCUT) > opt(RPBILEVEL).

The opposite is not always true. Let us consider the following instance: a digraph G = (V, A) with two terminal
vertices ¢ and 1, a root r, four Steiner vertices vy, vz, v, v4, four paths rv ¢y, rvaty, rvaty, rvatp, and a sink s with
the arcs (71, s) and (¢, s). We set a capacity u; = 1 on each arc, a cost ¢; = 1 for each arc in Ay (¢;,s = ¢;,s = 0), and
k =k =1 (i.e., at most one breakdown and one protected arc). If there is an arc of G missing in G’ = (V,A’) (i.e.,
3 (i,j) € A; s.t. y; = 0), then w.l.o.g., between r and ¢, there is only one remaining path from r to #; and, since
we can protect only one arc, an arc of this path can always be deleted. Thus, an optimal integer solution requires
yij = 1 forall (i,j) € A, and its cost is 8.

Now, let us consider the following nonintegral solution: y; = % and [),-j = é oneacharc (i,j) € A, 1,5 = Jr,s = 1,
and f)tls = ﬁtzs =0.

For the bilevel formulation, we have b; = 0 for all (i,j) € A (since b is integer and b < p < 1) and (3,p) is a
feasible solution of (RPBILEVEL) of cost 4. In fact, this is an optimal solution: considering two of the cutsets, we
must have y,, + yr, + Yr, + Y, 2 |T| =2 and y, 1, + Yoi, + Your, + Yo, 2 |T| = 2, which implies, by summing
these two inequalities, that X e, yj = 4 and so X, ciyy = 4.

We remark that this solution is infeasible for (RPCUT): indeed, the solution given by b,, = 1, b; = 0 for
all (i,j) # (r,v1), yi = 1ifi € {r,v3,v4,02} and y; = 0 otherwise, 4., = A,s = 1 and 4; = O for all (i,j) &
{(r,v2), (12, )}, is a feasible solution of (PCUTSEP) of value | + 5 + ¢ <2 =|T].

In fact, we show that setting y;; = %i),} e é on each arc (i,)) € Ay, 1,5 = J1,s = 1 and p, ; = p, , = 0, yields
an optimal solution of (RPCUT). When solving (PCUTSEP), all the arcs in A; are equivalent, and each cutset with
three or four arcs is such that b;; = 1 for one arc of the cutset and A; = 1 for all the others. Any cutset of three arcs
contains (t1, s) (or (f2, s)) and two arcs of A;, one on each path from r to #, (or to #;), which gives fcut = 1+ % + é =2.
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Any cutset of four arcs gives fcut = 3% + é > 2. Finally, there is one cutset of two arcs {(f1, s), (2, 5) }, which gives
fcut = 2. Thus, this solution is a feasible solution of (RPCUT). Let us check that it is optimal. Let us consider a cutset
of three arcs, for instance S = {(t1, s), (r, v3), (r,v4) }: from Constraint (4.3) and Property 4.1 with C; = {(r,v3)}
and C; = {(r,v4)}, we must have, respectively, y;s + yr, + Pr, = |T| = 2 and y; 5 + yn, + pr, > 2, and hence,
since y; s must be equal to 1, y., + pn, > 1 and y,,, + p,, > 1. Writing similar inequalities for each one of the
eight cutsets of three arcs, and summing all these inequalities, we obtain 203, ;yca, Yii+ 2ijea, Pi) = 16 and, since
2ijea, Pi < K =1 (see Remark 4.1), we get 3; 4 ¥ = 7, and so any feasible solution has a cost at least equal
to 7. Thus, the solution y; = % and 135,- = % on each arc (i, ) € Ay is an optimal continuous solution, since its cost is

8.% =7, close to the cost of the optimal integer solution (8). L]

Finally, using a proof very similar to the one given for Theorem 3.2, we have the following theorem:

Theorem 4.2. The optimal values of the continuous relaxations of the flow formulation (RPFLOW) and of the
cutset formulation (RPCUT) are equal.

S | PREPROCESSING AND ADDITION OF VALID
AND STRENGTHENING INEQUALITIES

In this section, we propose some preprocessing and strengthening inequalities for both formulations, in order to enhance the
quality of the lower bound obtained by solving the continuous relaxation. We first consider the case where we are not allowed to
protect some arcs of the network. Secondly, we propose modifications of those inequalities to take the possibility of protecting
arcs into account.

5.1 | Preprocessing

The preprocessing we apply is adapted from Koch and Martin’s for Steiner trees without capacities [29]. First, any Steiner vertex
of degree one is removed. Secondly, if a Steiner vertex v has degree two, the two incident arcs (u, v) and (v, w), u # w, can be
replaced by an arc (u, w) of cost ¢, = cuy + ¢y and capacity min(u,,, ). This reduction can be done because, in a worst case
of failure, there is no interest in selecting the two arcs (u, v) and (v, w). Thirdly, any arc entering a terminal vertex of degree one
is always in an optimal solution. We also suppress any arc entering the root.

5.2 | Case without the possibility of protecting arcs

Inequalities (5.1a) ensure that there are at least k + 1 arcs entering each terminal. Indeed, if there are at most k arcs entering
it, then it is possible to delete all of them and thus prevent one unit of flow from reaching the sink. Inequality (5.1b) states the
same constraint for the arcs leaving the root.

Y vizk+l VteT (5.1a)
(i,H)EA
> iz k+1. (5.1b)
(ri)eA

Both Inequalities (5.1a) and (5.1b) are valid and cut off some nonintegral solutions. In Figure 2, we have T = {f, }, and let
u; be the capacity of g; for i = 1,..,5, and y; the variable associated with the selection of a;. The constraints associated with
this digraph for the cutset formulation with k = 1 are uyy; > 1, upy, > 1, uzy3 > 1, usys > 1 and ys = 1. If we set u; = 2 for

alli=1,..,4 (us = 1 because as is a fictive arc), then we have that the solution in whichy; =y, = y3 =ys =0.5and ys = 1

FIGURE 2 A digraph where Inequalities (5.1a) and (5.1b) cut off some nonintegral solutions.
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is optimal for the continuous relaxation, since we consider positive costs in the objective function. Inequalities (5.1a) are then
violated and impose that y3 +y4 > 2 (i.e., y3 = y4 = 1). Similarly, Inequalities (5.1b) impose that y; +y, > 2 (i.e.,y; =y, = 1).
In this case, the addition of both inequalities results in cutting off nonintegral solutions (here, it even results in an optimal value
of the integer problem equal to the optimal value of the obtained continuous relaxation).

Inequalities (5.2a) state that, for each Steiner vertex j, if an arc entering j is selected, then at least one arc leaving j must be
selected, since all arc costs are assumed to be positive. Inequalities (5.2b) state the same for arcs leaving a Steiner vertex j [29].
Notice that these inequalities cut off some integral but nonoptimal feasible solutions.

i< Y oy YEVN(TU{r}}, VieT () (5.2a)
kel (H\{i}

< Yy EV\(TU({r}}, VkeT*(). (5.2b)
i€l (H\{k}

Finally, we have the inequalities (5.3a), since all the costs are positive, and any solution (x,y) with y; = y; = 1 can be
transformed into a solution (x’, y') with either yﬁj =1, yj’,- =0, xfj = xij—xji,);;i = 0ifx; > xj or yfj =0, y]’-i = l,x,’-j = 0,x}i = Xj—Xy
if x; < xj;. These inequalities cut off some integral but nonoptimal feasible solutions.

yi+yi <1 V(G G0} C A% (5.32)

5.3 | Case with the possibility of protecting arcs

The two families of Inequalities (5.1a) and (5.1b) are only true for the case without protection (¢’ = 0). Since one arc may
be sufficient to ensure that one of the terminals is not isolated if it is protected, we can replace Inequalities (5.1a) and (5.1b)
by (5.4a-5.4b) and (5.4c-5.4d) in this case. Inequalities (5.4a-5.4b) state that, for any terminal ¢, if there are no protected arcs
entering ¢, there must be at least k + 1 arcs entering #, and otherwise there must be at least one. Inequalities (5.4c) and (5.4d)
state the same constraint for the arcs leaving the root.

D vzl+Gk(d- Y p)) VIET (5.4a)
i€l;(1) 0
Y yuxl Vier (5.4b)
i€l(1)
Y iz t4|k|1= Y pa (5.4¢)
i€lE(r) i€l (r)
Y izl (5.4d)
i€l

Inequalities (5.5) state that at least one arc entering a terminal # must be protected if there are less than k + 1 arcs entering ¢.
Y ezl VieT with 0] <k (5.5)
i€l (1)

Inequalities (5.2a), (5.2b), and (5.3a) are still valid inequalities for the case with the possibility of protecting arcs.

6 | RESULTS ANALYSIS

In this section, we present the results of the tests for the formulations proposed previously.

6.1 | Experimental results for robust arborescences

We tested the formulations proposed in Section 2 on real wind farm datasets. All experiments were performed on a computer with
a 2.40 GHz Intel(R) Core(TM) i7-5500U CPU and 16 GB RAM, using CPLEX version 12.6.1 as MILP-solver, interfaced with
Julia 0.6.0. Even if the number of instances is small, the results are interesting to analyze, and we can compare the robustness,
costs and structures of the solutions. Data parameters and results are available, respectively, in Table 1A,B. Figure 3 allows
one to visually compare the arborescences obtained according to the different models for the fourth data set (the filled circles
correspond to terminals).

Figure 3A gives an optimal (nonrobust) capacitated Steiner arborescence (optimal solution of (CStA)); let us denote its cost
by C*. This arborescence cannot be qualified as robust with respect to R-robustness since, in the worst case, all terminals can
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TABLE 1 Data parameters and results on robust arborescences.
(A) Data parameters (B) Results on robust arborescences

Set 1% IEI 171 Set R* Ry Ry, Acrob Achrob Ryr*

1 91 220 42 1 21 35 29 0.18 0.56 21

2 143 382 40 2 20 21 20 0.09 0.64 20

3 220 510 88 3 22 32 30 0.24 0.33 22

4 255 662 73 4 37 41 38 0.19 0.37 A7

be disconnected by deleting the only arc incident to the root. Furthermore, the tree has a large depth, and hence its B-robustness
is not good either. This proves the importance of searching for a more robust solution. We consider first R-robustness (i.e.,
(RCStA)), and we denote by R* the best possible R-robustness, that is, the minimum value of the loss of terminals in the worst
case of a single arc deletion. See Figure 3B for the associated solution on the test instance. Then, to obtain the minimum cost
of a most robust solution, denoted by Cx., we solve (CStApounded—r_robust) With R = R*: notice that the constraint is saturated in
any optimal solution. Then, Ac,, = (Ck. — C*)/C* represents the “cost of robustness,” that is, the percentage of increase of
the cost to get a R-robust solution.

In the same way, let BR* be the best possible B-robustness (optimal value of (BRCStA), not given in Table 1); see Figure 3C
for the associated solution on the test instance. The cost of a solution with the best B-robustness, denoted by Cyp., is obtained
by solving (CStApounded—batanced_robust) With BR = BR*, and Acprop = (Ci — C*)/C* represents the “cost of B-robustness,” that
is, the percentage of increase of the cost of a nonrobust arborescence to get a balanced robust solution.

We also study the behavior of R-robustness when we bound the cost to a value close to the one of an optimal nonrobust
arborescence: Rg (resp. Rjp) corresponds to the optimal value of (RCStApeunded—cosr) With @ bound C = 1.08C* (resp. C =
1.12C*). Such values of C were fixed after preliminary experiments, in order to obtain a good trade-off between a substantial
improvement for R-robustness and an acceptable increase in the cost.

We now analyze the results. The cost of R-robustness is quite variable on those instances (from 9% to 24%) but remains
rather low. On the contrary, we can see that the optimization of the B-robustness is considerably more expensive (increase from
33% to 64% of the cost), because it involves significantly more arcs (see Figure 3C).

As we can see in Table 1B, a cost increase of 8% or 12% on the optimal cost can result in a solution with a good value of
R-robustness for some instances: instances 2 and 4 present an excellent value of such robustness with only a cost increase of
8%, while instances 1 and 3 have a rather good one with a cost increase of 12%.

Finally, we compare the optimal R-robustness R* to the R-robustness value of the balanced arborescence S, obtained by
solving (BRCStA), that is, we compute in S, (see Figure 3C) the maximum number of terminals which are disconnected after
the deletion of an arc incident to the root. Let Rgr+ be this number, shown in the last column of Table 1B. For the test instances,
the values of R* and Rgg+ are the same, which means that S, is a good solution for both R-robustness and B-robustness, but we
have seen before that its cost is high. Indeed, for these instances, we see that forcing a solution with R = R* to be optimally
balanced increases the cost by at least 33 %. Nevertheless, there is no guarantee in the general case that the best balanced
solution also has the best possible R-robustness, although the arcs incident to the root are involved in the computation of
B-robustness.

When trying to obtain the minimum value for R-robustness (see (RCStA) in Figure 3B), we saw that the associated solutions
have a reasonable cost, but their B-robustness is not good, since the tree remains too deep. When finding the Balanced Steiner
arborescence (see (BRCStA) in Figure 3C), we observed that its value for B-robustness is optimal and its value for R-robustness
is good enough, but the cost can be really high (an increase of the optimal cost to 64% on those data sets). Adding bounds on
both cost and R-robustness, while minimizing B-robustness (see (BRCStApounded—R_robust—cosz) 1N Figure 3D), yields solutions
which have both a reasonable cost and really good values for R-robustness and B-robustness. Hence, it seems that this approach
actually yields the best compromise between the three optimization criteria (the cost and the two types of robustness considered
here).

6.2 | Experimental results for (CRKACSN)

We tested the branch-and-cut framework for mixed-integer bilevel linear programs proposed in [ 18] to solve directly the bilevel
formulation (BILEVEL-RW), but the results were rather disappointing. This is probably due to several reasons. Firstly, this
method needs a linear second level, which requires the linearization of the quadratic terms y;;4;, and results in a huge for-
mulation. Secondly, the optimal value of the continuous relaxation obtained after linearizing the quadratic terms (using the
McCormick linearization) and relaxing the integrality constraints is known to be very bad (compared to the optimal value).
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FIGURE 3 Resulting arborescences. (A) (CStA); (B) (RCStA); (C) (BRCStA); (D) (BRCStAunded—R_robust—cost)
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Thirdly, the follower’s preprocessing has a large impact on the performance of this method, but it has probably little effect in
our case. Thus, we built a specific algorithm, based on a branch-and-cut scheme as in [18].

We give the results for sparse networks corresponding to small wind farms, that is, 30 < |V| < 90 and |E| ~ 3|V|. The
problem is very hard and digraphs with more vertices or a higher density would be too difficult to solve. All instances have
been generated in the following way: the vertices have been randomly generated in the plane, and the capacity of an arc is more
likely to be high if this arc is close to the root. The arc capacities are high enough to ensure that there is at least one feasible
solution to the problem with one breakdown, but low enough to keep the problem difficult to solve, the problem without capacity
constraints being much easier. More precisely, the capacities are chosen randomly among four values: |0.8|7| |, [0.6|T|] and,
except for the arcs with endpoints at distance 1 or 2 from the root, |0.4|7'|] and |0.2|7||. Furthermore, the cost of an arc
depends on both its length and its capacity (and hence is not necessarily integral), and any Steiner vertex has degree at least 3
(see Section 5.1).

All experiments were performed using the same computer and software as the ones described in the previous subsection.
We also used the package JuMP, a tool allowing mathematical modeling. For each test, the algorithm was stopped after 3000 s
if it still had not terminated.

We tested the flow formulation on all the instances. In spite of the fact that the optimal values of the continuous relaxations
of the flow and cutset formulations are equal (see Theorem 3.2), the flow formulation appeared to be much less efficient. It did
not allow us to solve instances with more than 60 vertices for k = 1; moreover, the solution time increases a lot for k = 2 or 3.
Thus, we only present the results for the bilevel and cutset formulations.

We first present the results for digraphs with nonuniform capacities and no protection allowed. In that case, the bilevel and
cutset formulations are equivalent (see Theorem 3.1), and we use the formulations given in Section 3.3.1. Since no systematic
theoretical comparison is possible between (SEC — BILEVEL) and (AUX — BILEVEL) for solving the separation problem (see
Proposition 3.5), we tested and compared different approaches for solving the problem. The best results, presented in the tables
given below, were obtained as follows:

1. CPLEX starts the resolution of (LIN-BILEVEL) with the initial subset of two Constraints (3.7) obtained by considering
the cutsets formed by all the arcs incident to s or r, which provides the values of A' and A%: we have 4, = 1 and 4% = 0
for all i adjacent to r, 4, = 0 and 47, = 1 for all j adjacent to s, as well as 4; = 4; = 0 for all i # r and j # s.

2. For each integer solution y found by CPLEX:

—Solve (AUX-BILEVEL)(). If there is no feasible solution, ¥ is a feasible solution of the complete problem (CPLEX
continues with a new active node or terminates). Otherwise, we obtain new values of ﬁ, and then of y.
—Solve (SEC—-BILEVEL)(9) to obtain a new point £, that is, a new constraint to add to the subset of Constraints (3.7).

Notice that the constraints are added as lazy constraints in the branch-and-bound of CPLEX.

Table 2 presents the results for the bilevel (or cutset) formulation for one to three arc deletions (i.e., k = 1,2, or 3, and
k' = 0). The column |V| gives the number of vertices of the digraphs, and, for each value of &, the column gap; ; gives the
gap in percentage between the optimal integer value and the optimal value of the initial continuous relaxation, taking into
account the valid inequalities given in Section 5. The column gap, gives the final gap in percentage between the best lower
bound best g and the value of the best feasible integral solution found best;: if the gap is equal to 0, then we have found an
optimal solution; otherwise, we give the gap obtained after 3000 s of computation (formally, we have gap, = 100(best; —
best g)/best;) . The column time gives the time in seconds needed to find an optimal solution, or 3000 if the algorithm has not
terminated yet.

We consider five instances for each different value of |V| with five different values of |7, from %|V| to |V| — 1 (which
corresponds to a spanning network). It appeared that the results vary little depending on the number of terminals, which essen-
tially means that, in digraphs with a root, the minimum-cost resilient capacitated network problem is as difficult to solve for

TABLE 2 Wind farm networks: results with the bilevel/cutset formulation for digraphs with nonuniform capacities, when k' = 0.

k=1 k=2 k=3
4 gap; p gap, Time (s) gap; p gap, Time (s) gap p gap, Time (s)
30 18.6 0.0 8.32 16.7 0.0 8.03 9.3 0.0 32.53
40 155 0.0 15.94 16.0 0.0 62.63 21.0 0.0 3.50
50 20.2 0.0 703.42 20.3 0.0 407.90 8.0 0.0 10.20
60 21:2 0.4 1038.00 19.0 2.3 1093.90 27.0* 12.0 3000.00
70 20.8 6.4 2449.10 21.5* 0.0 579.50 22.5* 1.5 2097.00
80 21.0 9.0 3000.00 22.0 4.0 3000.00 - — —
90 19.2 5.5 3000.00 16.2 7.8 2407.50 — — —
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spanning networks as it is for Steiner networks. That allows us to give the mean values of each set of five instances for k = 1.
For k = 2 or 3, several instances have no feasible solution because having instances difficult enough to solve for k = 1 makes
several instances infeasible for k = 2 or 3. So, the mean value is computed only over the instances admitting a feasible solution:
generally three or more instances, but only two instances (marked with a star) for |[V| = 70 and £ = 2 or 3, only one (marked
with a star) for |V| = 60, and no instance for k = 3 and | V| = 80 or 90.

We can see that we have an optimal solution for all the instances with at most 50 vertices, and that the final gap remains
small enough, since it is smaller than 9% for all the instances with k = 1 or 2, and smaller than 12 % for k = 3. Moreover, the
results do not seem to be very sensitive to an increase of k.

We also ran the tests without the addition of the valid inequalities proposed in Section 5. Adding these valid inequalities
has a huge impact: on average, the total solution time is divided by 3.24, and the optimal value of the continuous relaxation is
multiplied by 1.28.

We also applied our algorithm to denser networks from the SND Library [40]. These networks are given with demand
matrices and capacities on the edges. In our problem, the demands are equal to 1 (terminal vertices) or O (Steiner vertices). We
have adjusted the capacities to make instances difficult to solve in the case of a single arc failure, as for wind farm networks,
but as a consequence there is not always a feasible solution for these instances in the case of two or three arc failures. The root
and terminals have been placed randomly. The results given in Table 3 correspond to the mean value for four instances on each
network, with |7| = |0.2|V[], |0.4|V|], |0.6]V|] and |V| — 1, except in cases marked with *, where only one instance could be
processed (the other instances had no feasible solutions).

Table 4 presents the results for wind farms when the arcs have a uniform capacity. We ran the tests for the Regular-Cutset
formulation, which corresponds to the classic cutset formulation equivalent to the bilevel one, proposed in Section 3.2.2 (CUT),
and the specific Uniform-Cutset formulation (CUT-UNIF), which reduces the number of constraints in the case of uniform
capacities, given at the end of Section 3.2.2. The tests were made on the same instances as before with a capacity equal to
10.4|T1], [0.6]T|] or |0.8|T|], since for a capacity equal to [0.2|7|| we had no feasible solutions in any of the considered
instances. Again, the results are not sensitive to an increase of the number of terminals, so we give the mean values on five
instances.

We do not give the final gap since each instance has been optimally solved by both formulations within the 3000 s. We
neither give the results for k = 3, because too many instances have no feasible solution in that case. Column | V| gives the size
of the instances, and the next columns give the solution times in seconds for each formulation and for k = 1 or 2.

There are two main observations about these results. Firstly, the case with uniform capacities is much easier to solve than the
nonuniform case, since we always obtain optimal solutions. Secondly, the specific Uniform-Cutset formulation is much more

TABLE 3 SNDIib networks: results with the bilevel/cutset formulation for digraphs with nonuniform capacities, when k" = 0.

k=1 k=2 k=3

Network-|V| gap; gap, Time (s) gapy g gap, Time (s) gap gap, Time (s)
France-25 9.9 0 158.90 9.9 * 0 80.11 - - -
Germany-50 11.9 0 1180.22 - - - - - -
Giul-39 17.4 0 639.00 14.2 0 705.14 - - -
Janos-us-50 7.6 0 1223.00 133 % 0 396.40 102 0 187.55
Janos-ca-50 6.4 0 548.94 21.5* 0 2044.95 59.7 * 28 3000.00
Newyork-39 10.1 0 667.83 9.7 0 341.75 5% 0 1406.12
Pioro-40 18.8 0 33.22 14.4 0 30.77 - - -
Sun-27 13.0 0 5.20 124 * 0 1822 - - -

TABLE 4  Solution time (in s) for digraphs with uniform capacities, when k = 1,2 and k' = 0.

k=1 =2
4 Uniform-Cutset Regular-Cutset Uniform-Cutset Regular-Cutset
30 0.46 0.91 0.85 3.32
40 0.67 1.36 2.04 6.10
50 1.57 3.74 3.53 22.08
60 2.83 6.37 10.81 696.66
70 2.87 7.32 7.57 57.29
80 6.96 19.81 50.38 2656.92
90 12.68 45.08 45.92 1183.60
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TABLE 5 Results obtained with the cutset formulation for digraphs with nonuniform capacities, when k = 1 and k' = 1,2, or 3.
K =1 [ =7 k=3
V| gap; p gapy, Time (s) gap; gapy Time (s) gap; gapy Time (s)
30 23.5 0.0 8.5 26.0 0.0 12 29.0 0 17.5
40 2355 0.5 369.5 24.5 1.0 12 29.0 0 484.6
50 24.0 1.0 839.0 26.0 1.0 1072 28.0 2 1133.0
60 26.0 1.0 952.0 28.0 1.0 1207 30.0 2 1321.0
70 25.0 4.5 1564.0 27.5 55 1898 29.5 8 1938.0
80 24.0 8.0 2176.0 27.0 10.0 2590 29.0 13 2755.0
90 20.0 10.0 3000.0 23.0 14.0 3000 24.0 15 3000.0

efficient than the general Regular-Cutset formulation, and makes it possible to solve all the instances in less than 50 s: recall
that the number of constraints of the Uniform-Cutset formulation is highly reduced, and that the number of variables remains
the same. For k = 2, the Uniform-Cutset formulation appears to be even more efficient than the Regular-Cutset formulation:
with the former one, the mean solution time has only slightly increased compared to the case k = 1, unlike what happens with
the latter one.

Figure illustrates the cost of designing failure-resilient wind farm networks without protected arcs (i.e., when &’ = 0). Here,
we give the cost per instance, and the number of the corresponding test instance is displayed on the x-axis: for each size of
instance (|V|]), we give the cost for an increasing number of terminals from 1—10|V| to |V| — 1. Each time the curve falls, this
indicates a change in the number of vertices (next value of |V|) and a decrease in the number of terminals which is reinitialized
to %IVI. Note that we have selected a subset of instances to make the figure clearer. This figure gives the cost of an optimal
solution for the cases where k is equal to 0 (no arc deleted), 1, 2, and 3. As could have been expected, for a given number of
vertices, the optimal cost increases with the number of terminals. The figure also shows that designing a network resilient to
even a small number of arc-failures can be costly (the cost increases greatly with the value of k).

Finally, we obtain results for the case with protected arcs for all the instances with k = 1. As could be expected from
Theorem 4.1, the cutset formulation gave a better initial gap and better solution times than the bilevel formulation. Concerning
the flow formulation, it behaves even worse than in the case without protected arcs. So, we only give results for the cutset
formulation in Table 5. Notice that now, thanks to the protected arcs, we can obtain feasible solutions for some instances with
three arc failures, even when |V| = 80 or 90. Nevertheless, the solution time being too big for most of the instances with k > 2,
we only give the results for the case k = 1.

The addition of protected arcs deteriorates the optimal value of the continuous relaxation, but it appeared that the final
gaps are very similar to the final gaps for the problem without protection. On the contrary, the solution time increases when &’
becomes bigger.

7 | CONCLUSION

Our study focused on networks with a root and several terminals having a uniform demand, taking into account both capacities
on the arcs and resilience to failures. We have first designed arborescences minimizing the losses if an arc failure occurs. We
have shown that a restriction of the problem to the search of a spanning arborescence such that the failure of one arc disconnects
at most a given number f of terminals is strongly NP-complete, which strengthens a complexity result due to Papadimitriou,
who in addition considered costs on the arcs. Then, we have derived some new mathematical formulations to tackle the problem,
and compared the kind of arborescences obtained (i.e., their heights, widths, etc.) according to the selected objective function.

Then, we have designed networks able to route a flow of a given value even after the deletion of any k arcs. We have given
a bilevel formulation where the second level is a min-max problem, and we have reformulated the problem as a linear integer
program with an exponential number of constraints. We have used a cutting plane method for the main problem, with additional
valid inequalities, and we have compared different approaches to solve the separation problem: we have proved that they cannot
be theoretically compared, so we have compared their practical efficiency, and selected the best one. We have also proved that
the linear formulation of the bilevel program is theoretically equivalent to a cutset-based formulation, except in the case of
uniform capacities where the cutset formulation is better suited. Finally, we have shown that a third formulation based on a flow
model is not computationally efficient compared to the previous ones, despite the fact that they all yield the same optimal value
when the integrality constraints are relaxed. Nevertheless, if we only relax the integrality constraints on the first level decision
variables, keeping the integrality constraints on the flow variables, the bilevel formulation could provide a better optimal value
than the three others.
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In the last study, we have introduced the possibility of protecting some arcs against failures and proved that, in that case,
the bilevel and cutset formulations are no longer equivalent, a specific cutset formulation being better. For the problem with
nonuniform capacities and without protected arcs, we have been able to solve, in less than 1 h, instances in sparse digraphs
with up to 90 vertices and three arc failures, most of them being solved optimally, and the others with an optimality gap smaller
than 10%. For larger instances, a heuristic approach would be more appropriate, our exact method being able to guarantee its
efficiency at least for small instances. Notice that all our models and solutions exploit the fact that the flow is routed from a
given root to a set of terminals with a uniform demand: they could not be adapted to the case of multicommodity flows, since
the constraint matrix of the multicommodity flow problem with more than one commodity is no longer totally unimodular.

In future works, it could also be interesting to develop a primal heuristic to solve the problem, and see if a Benders decom-
position approach would be more efficient on some instances than the ones presented in this paper [11,28]. Notice, in particular,
that designing a good and fast primal heuristic could also enable us to apply additional preprocessing rules on the instances to
be solved, such as the domain propagation technique based on dual ascent and reduced-cost fixing proposed in [35].
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APPENDIX

Comparing the use of (SEC-BILEVEL) (), (SEC-BILEVEL)(y) and (AUX-BILEVEL)(9) to solve (LIN-BILEVEL): The proof of Proposition 3.5

Proof. Let us consider an instance without breakdown (i.e., we have k = 0) represented by the digraph G =
(V,A,U) given in Figure Al, where T = {t; = e,t) = f,13 = g,t4 = h} (and hence |T| = 4), U is the capacity
function (values in square brackets), and all the arc costs are positive. (Note that the only feasible, and hence
optimal, solution here consists in selecting all the arcs.) We start the resolution of (LIN-BILEVEL) with only the
constraints associated with the two cutsets incident to r and s, which impose that Z,-el-z(,) uyyri = |T| = 4 and
Ziel‘a(s) u;syis > |T| = 4: this immediately yields a first integral (partial) solution y containing all the arcs incident
to r or s and represented in G by the double arcs, since all the arc costs are positive (and, in fact, all these arcs
are mandatory) The (only) opt1ma1 solution of (AUX — BILEVEL)(y) is given by the cutset C; = {(r,a), (b,d)},
that is, Am = Abd = 1 and /1,, = 0 for each arc (i,j) & {(r,a),(b,d)}. Then, y is given by the double arcs
plus the arcs in bold: {(;,j) € As.t.§; = 1} = A \ {(b,d)}. For (SEC-BILEVEL) (with either y or ), on the
contrary, there exist several optimal solutions. On the one hand, an optimal solution of (SEC — BILEVEL)(Y) is
given, for instance, by the cutset C; = {(a, e), (a,f), (b,d)}, i.e. A = /1:,?7 = Ay = 1 and A;ec = 0 for each arc
(i,)) & {(a,e),(a,f),(b,d)}. On the other hand, an optimal solution of (SEC — BILEVEL)(y) is given, for instance,
by the cutset Cz = {(a,e),(a,f),(d,g),(d,h)}, that is, Aae = /1;;0 i;i,c = /ldh 1 and 2;76 = ( for each arc
(i) & {(a,e),(a.f),(d, g),(d,h)}.

Now, consider the two (partial) solutions y' and y? given in Figure A2: whatever the (positive) arc costs are, y'
(resp. y?) is an optimal solution obtained by solving (LIN-BILEVEL) again, after adding the one Constraint (3.7)
obtained by solving (AUX — BILEVEL)(y) (resp. (SEC — BILEVEL)(¥)), that is, the constraint associated with the
cutset C; (resp. with the cutset Cs).

Flrstly, we have Y4 uiyidy =0 < Z(z,})eA iy =2 <3=|T| -1, while obviously Z(l hea Uividy =

|T|. This implies that the solution y' would not have been feasible if, starting from 3, we had solved
(LIN-BILEVEL) again, after adding the one Constraint (3.7) obtained by solving either (SEC — BILEVEL)(¥) (i.e.,
the constraint associated with the cutset C;) or (SEC — BILEVEL)(Y) (i.e., the constraint associated with the cutset
C3), instead of (AUX — BILEVEL)(j})
Secondly, we have ¥, cq ujy2 Ay Z(u)eA wjyidi. =2 <3 =|T| - 1, while obviously Ziper wiyidy =
= |T|. This implies that the solution y*> would not have been feasible if, starting from 9, we had solved
(LIN-BILEVEL) again, after adding the one Constraint (3.7) obtained by solving either (AUX—BILEVEL)() (i.e.,
the constraint associated with the cutset C;) or (SEC — BILEVEL)(9) (i.e., the constraint associated with the cutset

(), instead of (SEC — BILEVEL)(y).
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Finally, let us consider a new instance, obtained by replacing in G the capacities of the arcs (r, b) and (r, ¢) by 4
and 2, respectively, and where, on the one hand, the cost of the arc (r, b) is equal to the sum of the costs of the arcs
(r,a) and (r, ¢), and, on the other hand, these two arc costs are equal: for instance, we can choose 2 as the cost of (, b),
and 1 as the cost of both (r, a) and (r, ¢). An initial solution y, optimal with respect to the constraints associated with
the cutsets incident to r and s, can be obtained by picking the arcs (r, a) and (r, ¢) and the four arcs incident to s: then,
¥ and the three cutsets Cy, C; and C5 are unchanged. An optimal solution y* obtained by solving (LIN — BILEVEL)
again, after adding the one Constraint (3.7) obtained by solving (SEC —BILEVEL)(y) (i.e., the constraint associated
with the cutset (), is given in Figure A2. Notice that we have . ; -, u;jy,’.‘ji;ux = Yijea u,-jy;;ﬁfjec =2<3=|T|-1,
while obviously Y, s uzyjAi = 4 = |T|, which implies that the solution y* would not have been feasible if,
starting from y, we had solved (LIN-BILEVEL) again, after adding the one Constraint (3.7) obtained by solving
either (AUX — BILEVEL)(Y) (i.e., the constraint associated with the cutset C;) or (SEC — BILEVEL)(Y) (i.e., the

constraint associated with the cutset C3), instead of (SEC — BILEVEL)(y). n

By modifying the costs in a suitable way, the proof of the previous proposition also yields the two following corollaries:

Corollary A.1. The optimal value of the continuous relaxation of (LIN-BILEVEL) obtained after adding a new
constraint generated by solving either (AUX — BILEVEL)(Y) or (SEC — BILEVEL)(Y) is not always better or worse
than the one obtained after adding a new constraint generated by solving (SEC — BILEVEL)(Y), even without any
breakdown.

Proof. We begin by defining the (partial) solution y* for the digraph G = (V, A, U) given in Figure A 1. This solution
is obtained from the (partial) solution y* given in Figure A2 by adding the arcs (r, a) and (r, ¢). It can be noticed
that, whatever the (positive) arc costs are, y3 is an optimal solution obtained by starting from the solution y, defined
in the proof of Proposition 3.5, and then solving (LIN-BILEVEL) once again, after adding the one Constraint (3.7)
obtained by solving (SEC — BILEVEL)(y) (i.e., the constraint associated with the cutset C,, defined in the proof of
Proposition 3.5).

On the one hand, the costs of the solutions y' (defined in the proof of Proposition 3.5) and y* can be made
arbitrarily large by increasing the cost of the arc (b, d). Since, from the proof of Proposition 3.5, the optimal solution

G ©;

FIGURE A1 A digraph with arc capacities and three cutsets to illustrate Proposition (3.5).
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FIGURE A2 Three solutions for the instance given in Figure A1.
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y? of the continuous relaxations of (LIN-BILEVEL) obtained after adding a new constraint generated by solving
(SEC — BILEVEL)(y) does not contain this arc, we have that the optimal value of the continuous relaxation of
(LIN-BILEVEL) obtained after adding a new constraint generated by solving either (AUX—BILEVEL)(y) or (SEC—
BILEVEL)(®) can be arbitrarily better than the optimal value of the continuous relaxation of (LIN-BILEVEL)
obtained after adding a new constraint generated by solving (SEC — BILEVEL)().

On the other hand, from the proof of Proposition 3.5, the cost of the solution y*> can be made arbitrarily large by
increasing the cost of the arc (d, g) or (d, h), for instance. Since the optimal solution of the continuous relaxations
of (LIN-BILEVEL) obtained after adding a new constraint generated by solving either (AUX — BILEVEL)(y) or
(SEC — BILEVEL)(®) does not contain any of these two arcs, we have that the optimal value of the continuous
relaxation of (LIN-BILEVEL) obtained after adding a new constraint generated by solving (SEC — BILEVEL)(y)
can be arbitrarily better than the optimal value of the continuous relaxation of (LIN-BILEVEL) obtained after
adding a new constraint generated by solving either (AUX — BILEVEL)(9) or (SEC — BILEVEL)(). m

Corollary A.2. The optimal value of the continuous relaxations of (LIN-BILEVEL) obtained after adding a new
constraint generated by solving (SEC — BILEVEL)(Y) can be arbitrarily better than the one obtained after adding
a new constraint generated by solving (AUX — BILEVEL)(Y), even without any breakdown.

Proof. From the proof of the previous corollary, the cost of the optimal solution y* of the continuous relaxations of
(LIN-BILEVEL) obtained after adding a new constraint generated by solving (SEC — BILEVEL)(y) can be made
arbitrarily large by increasing the cost of the arc (a, e) or (a, f), for instance. Since, from the proof of Proposition 3.5,
the optimal solution y! of the continuous relaxations of (LIN-BILEVEL) obtained after adding a new constraint
generated by solving (AUX — BILEVEL)(y) does not contain any of these two arcs, the corollary follows. [ ]

Note that neither of these two corollaries implies that the optimal value of the continuous relaxations of (LIN-BILEVEL)
obtained after adding a new constraint generated by solving (AUX — BILEVEL)(y) can be better than the one obtained after
adding a new constraint generated by solving (SEC — BILEVEL)(¥). Actually, we do not know whether this is indeed the case,
or whether the optimal value of the continuous relaxations of (LIN-BILEVEL) obtained after adding a new constraint generated
by solving (SEC — BILEVEL)(9) is always better than the one obtained after adding a new constraint generated by solving
(AUX — BILEVEL)(y).

9SUdIT SUOWIWIOY) AL 3|gedijdde ayy Aq paulanob ale s3pdipe YO ‘asn Jo sajnJ 1o} Aleiqr] auljuo A3jIp uo
(suonipuod-pue-swLia}/wod Asm Aieiqijauluo//:sdny) suonipuod pue swisl sy 935 ‘[€202/50/0L] uo Aleiqr auljuo A3jim ‘9duelq sueiydod Ag ‘€122 19u/200L 0L/1op/wod AsjimAleiqijauljuo//:sdny woly papeojumoq ‘0 ‘€202 'LE00L60L



