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Nonlocal Cahn-Hilliard equation with degenerate mobility:
Incompressible limit and convergence to stationary states

Charles Elbar∗† Benoît Perthame∗‡ Andrea Poiatti §¶ Jakub Skrzeczkowski‖∗∗

Abstract

The link between compressible models of tissue growth and the Hele-Shaw free boundary
problem of fluid mechanics has recently attracted a lot of attention. In most of these models,
only repulsive forces and advection terms are taken into account. In order to take into
account long range interactions, we include for the first time a surface tension effect by
adding a nonlocal term which leads to the degenerate nonlocal Cahn-Hilliard equation, and
study the incompressible limit of the system. The degeneracy and the source term are the
main difficulties. Our approach relies on a new L∞ estimate obtained by De Giorgi iterations
and on a uniform control of the energy despite the source term. We also prove the long-term
convergence to a single constant stationary state of any weak solution using entropy methods,
even when a source term is present. Our result shows that the surface tension in the nonlocal
(and even local) Cahn-Hilliard equation will not prevent the tumor from completely invading
the domain.
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1 Introduction

Nonlocal parabolic equations are commonly used to describe living tissues because cells experi-
ence two types of forces: repulsive and attractive. The repulsion arises at high volume fraction
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because, locally, cells occupy a non-vanishing volume, while cell adhesion and chemotaxis create
attraction at long range, i.e., low densities [4]. These effects, as well as surface tension effects,
can be considered by using the Cahn-Hilliard equation (see, e.g., [44] for a review on these
models). Our work is dedicated to the analysis of the nonlocal Cahn-Hilliard equation for long
range interactions with a repulsive potential. More precisely we are interested in two results:
the incompressible limit connecting mechanistic and free boundary descriptions of the tissue and
the long-time asymptotics of equations. Concerning the first result, the main difficulty is that
we lose any maximum principle and we have to rely on different arguments to obtain the same
results concerning the incompressible limit. Concerning the convergence to the stationary state,
we prove that it converges to a nonnegative constant which shows that the surface tension effect
(modeled by the Cahn-Hilliard equation) is not strong enough to prevent the tumor from invad-
ing the entire domain.

1.1 Mathematical setting

Our settings is as follows: we let Ω be the d = 1, 2, 3 dimensional flat torus in Rd, which is
particularly useful when treating nonlocal terms and we consider the equation

∂tu− div(u∇µ) = uG(p) in Ω× (0, T ),

µ = p+Bε(u) in Ω× (0, T ),
(1.1)

with the initial condition u(0) = u0 ≥ 0 in Ω and u(x, t) ≥ 0 represents the cell density. Here,
Bε denotes the nonlocal operator defined as

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫
Ω
ωε(y)(u(x)− u(x− y)) dy (1.2)

for fixed ε small enough (in order to be able to use [23, Lemma C.1] and Lemma A.3) and ωε is
a usual mollification kernel ωε(x) =

1
εd
ω(xε ) with ω compactly supported in the unit ball of Rd

satisfying ∫
Rd

ω(y) dy = 1, ω(·) is radial. (1.3)

The pressure and source term are defined, for u ≥ 0, as

p = uγ , γ ≥ 1, G(p) = pH − p, (1.4)

with pH > 0 a constant called the homeostatic pressure, which is the threshold where cells begin
to die, assuming that pressure produces an inhibitory effect on cell proliferation.

We comment the different terms appearing in the equation. First, u is the density of tumor cells
and can be thought of as being between 0 and 1. However, this fact is not easy to prove since
the maximum principle does not hold here. Using a De Giorgi iteration technique, we can prove
however that the bound holds with a small perturbation term which vanishes as γ → ∞ (see
Lemma 3.1). From the Cahn-Hilliard terminology, we refer to µ as the chemical potential, which
is composed by two terms: one is the pressure p = uγ and the other is Bε, the approximation
of the Laplace operator, which takes into account surface tension effects, see for instance [23].
Concerning the initial condition, we distinguish two sets of assumptions.
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Assumption 1.1 (Initial condition). We assume:

(A) 0 ≤ u0 ≤ p
1
γ

H for almost any x ∈ Ω.

Note that the same assumption has already been considered, e.g., in [13] and that it implies
u0 ∈ Lq(Ω), for any q ≥ 1, since Ω is of finite Lebesgue measure. For the single Section 3, we
need additionally:

Assumption 1.2 (Additional assumption for Section 3). We assume:
(B) There is γ0 > 0 and C = C(γ0) > 0 such that ∥∆(u1+γ

0 )∥L1(Ω)+∥∇u0∥L2(Ω)+∥∆u0∥L1(Ω) ≤
C, ∀γ ≥ γ0.

System (1.1) is associated with the energy E and entropy Φ, respectively defined by

E(u) := 1

4ε2

∫
Ω

∫
Ω
ωε(y)|u(x)− u(x− y)|2 dy dx+

∫
Ω

uγ+1

γ + 1
dx ≥ 0, (1.5)

Φ(u) :=

∫
Ω

 u

p
1
γ

H

log

 u

p
1
γ

H

− u

p
1
γ

H

+ 1

 dx ≥ 0. (1.6)

They formally satisfy the identities

d

dt
E(u) +

∫
Ω
u|∇µ|2 =

∫
Ω
uµG(p), (1.7)

d

dt
Φ(u) +

1

2ε2p
1
γ

H

∫
Ω

∫
Ω
ωε(y)|∇u(x)−∇u(x− y)|2 dx dy

+
1

p
1
γ

H

∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u|
γ+1
2

∣∣∣2 dx− 1

p
1
γ

H

∫
Ω
u log

 u

p
1
γ

H

G(p) dx = 0. (1.8)

Moreover they provide us with direct a priori estimates, provided we can control the integral
related to the source term in (1.7), which may change sign. Here, we assume that we have
existence of solutions with regularity typical of the Cahn-Hilliard equation. We do not include
the proof, since most of the a priori estimates are derived in Section 2. For a rigorous proof of
existence by means of an approximating scheme, we refer for instance to [23].

Lemma 1.3. Let u0 satisfy assumption (1.1). Then, for any T > 0, there exist constants
C0(T, E(u0),Φ(u0), ε) and C1(T, E(u0),Φ(u0), ε, γ) and a global weak solution u such that,

u ≥ 0 a.e. in Ω× (0,∞), (1.9)

u ∈ C([0,∞); (W 1,r(Ω))′) ∩ Cweak([0,∞);Lγ+1(Ω)), r =
(γ + 1)(2γ + 1)

γ2
, (1.10)

u(t) :=
1

|Ω|

∫
Ω
u(x, t) dx ≤ p

1
γ

H ∀t ≥ 0, (1.11)

∥u∥L2(0,T ;H1(Ω)) +
1

γ + 1
∥u∥γ+1

L∞(0,T ;Lγ+1(Ω))
+ ∥u∥L2γ+1(Ω×(0,T )) ≤ C0, (1.12)

∥∂tu∥L2(0,T ;(W 1,r(Ω))′) + ∥∂tu∥Lq′ (0,T ;(W 1,q(Ω))′) ≤ C1, (1.13)

3



where 1
q +

1
q′ = 1, q = 2(2γ+1)

γ . Moreover, for any v ∈ W 1,r(Ω), u satisfies

⟨∂tu, v⟩(W 1,r(Ω))′,W 1,r(Ω)) +

∫
Ω
u∇p · ∇v dx+

1

ε2

∫
Ω
u∇u · ∇v dx− 1

ε2

∫
Ω
u(∇ωε ∗ u) · ∇v dx

=

∫
Ω
uG(p)v dx, for almost every t > 0, (1.14)

with u(0) = u0 almost everywhere in Ω. Here ⟨·, ·⟩(W 1,r(Ω))′,W 1,r(Ω) denotes the duality product
between (W 1,r(Ω))′ and W 1,r(Ω).

Remark 1.4. The first continuity result follows from the bounds on ∂tu in (1.13). Moreover,
being u ∈ L∞(0, T ;Lγ+1(Ω)), we also deduce that u ∈ Cweak([0, T ];L

γ+1(Ω)), see [7, Lemma
II.5.9]. This clearly also implies that u =

∫
Ω u dx

|Ω| ∈ C([0, T ]).

1.2 The main results

Our first result establishes the incompressible limit γ → ∞ of the system (1.1) which links
two descriptions of the tumor growth: mechanistic and free-boundary. The main mathematical
novelty here is the nonlocality which makes it difficult to establish the uniform L∞ bound on uγ .
To overcome this problem, we apply the De Giorgi iterations, see Lemma 3.1, in the spirit
of [28, 48].

Theorem 1.5 (Incompressible limit). Let uγ be a weak solution to (1.1) as defined in Lemma 1.3
and initial datum satisfying Assumptions 1.1-1.2. Then, as γ → ∞, we have for all T > 0, up
to a (not relabeled) subsequence

uγ
∗
⇀ u∞ in L∞(Ω× (0,∞)),

uγ → u∞ in Lq(Ω× (0, T )) ∀q ∈ [2,+∞),

uγ ⇀ u∞ in L2(0, T ;H1(Ω)),

∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′),

pγ ⇀ p∞ in L2(0, T ;H1(Ω)),

pγ → p∞ in Lr(Ω× (0, T )), ∀r ∈ [2, 3),

where u∞ and p∞ satisfy in D′(Ω× [0,∞))

∂tu∞ − div(u∞∇(p∞ +Bε(u∞))) = u∞G(p∞), (1.15)

p∞

(
∆p∞ +

1

2ε2
∆u2∞ − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞)

)
= 0, (1.16)

0 ≤ u∞ ≤ 1, p∞ ≥ 0, p∞(1− u∞) = 0 almost everywhere in Ω× (0,∞), (1.17)

with u∞(0) = u0. Furthermore it holds ⟨∂tu∞, p∞⟩(H1(Ω))′,H1(Ω)) = 0 for almost any t ∈ (0,∞).

This theorem entails that in the limit γ → ∞ we can consider the measurable set Ω(t) := {x ∈
Ω : p∞(t) > 0}, where u∞ = 1 by the graph relation (1.17) so that it can be interpreted as the
‘tumor zone’. Note that it must hold

−∆p∞ − 1

2ε2
∆u2∞ = − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞) in Int(Ω(t))
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which yields a Hele-Shaw type equation.

Our second result is concerned with the convergence to stationary states. We distinguish two
cases: when G(p) = pH − p and when G(p) = 0. The main novelty lies in the first case which
is not conservative and its proof requires a careful analysis of the entropy. We prove that as

t → ∞, the solution converges to the constant p
1
γ

H > 0, which shows that the surface tension is
not strong enough to prevent the tumor from invading the entire domain. We have the

Theorem 1.6 (Long time behaviour). Let u be a solution to (1.1) with fixed γ ≥ 1 in the sense
of Lemma 1.3 and initial datum satisfying Assumption 1.1 Then, if u0 ̸≡ 0, there are two cases:

• for G(p) = pH − p, we have

∥u(t)− p
1
γ

H∥Lq(Ω) → 0 as t → ∞, ∀q ∈ [1, γ + 1). (1.18)

• For G(p) = 0 and γ ≥ 1, we have an exponential decay towards the mean value: there exists
a constant C = C(Ω, γ, q,Φ(u0), u0) such that

∥u(t)− u0∥Lq(Ω) ≲ e−Ct, ∀q ∈ [1, γ + 1). (1.19)

There are two possibilities to prevent steady states to be constant. The first one is to consider
different potentials than just repulsive ones like uγ . The second possibility is to include an
external force, which can be taken into account either by a generic force that acts directly on
the cells like it was done in [22]. One can also include the effects of nutriments and impose that
the tumor cells die in the regions where there are no nutriments.

Remark 1.7. In the case of nonzero source term G, Theorem 1.6 implies that the constant

solution u ≡ 0 is unstable, whereas p
1
γ

H is the only asymptotically stable equilibrium and any
weak solution u (in the sense of Lemma 1.3) departing from any nonzero initial datum converges

to p
1
γ

H .

1.3 Literature review

Incompressible limit for tumor model. The incompressible limit connects two models of
tumor growth: the compressible one studied in [47] and the free-boundary one analysed in [42].
Many substantial contributions followed [47], allowing nutrients [14], advection effects [15,34,35],
additional structuring variable [13], congesting flows [33], two species [19, 31] or including addi-
tional surface tension effects via the degenerate Cahn-Hilliard equation [21,22].

One major difficulty for establishing the incompressible limit is proving strong compactness of
the gradient of the pressure. The main tool is the celebrated Aronson-Benilan estimate [3, 12].
The estimate has been recently readressed in [5] but the generalization available there are not
applicable for the pressure p = uγ + 1

ε2
u as in our case cf. [5, Theorem 4.1]. Another direct

technique was developed in [38] which is based on deducing strong convergence from a sort of
energy equality. This is the strategy we follow in our proof.
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Nonlocal Cahn-Hilliard equation. The nonlocal Cahn-Hilliard is a variant of the Cahn-
Hilliard equation proposed to model dynamics of phase separation [9]. While originally intro-
duced in the context of material science, it is currently widely applied also in biology [2, 40, 46].
The nonlocal equation was obtained for the first time by Giacomin and Lebowitz as the limit
of interacting particle systems [29, 30]. Their work can be considered as the first derivation of
the Cahn-Hilliard equation up to a delicate limit from the nonlocal equation to the local one.
The latter problem was in fact addressed only recently, first for the case of the constant mobil-
ity [16–18, 41] and finally for the case of degenerate mobility [10, 23]. Another derivation as a
hydrodynamic limit of the Vlasov equation was proposed recently in [20], following [51]. In recent
years nonlocal Cahn-Hilliard equation was also studied in couplings with other hydrodynamic
models, like Navier-Stokes equations (see, e.g., [24–27] and the references therein). Moreover, it
has been adopted in many optimal control problems, we just mention [49,50].

Entropy dissipation methods and asymptotic analysis. For establishing convergence to
stationary states we use methods based on the entropy dissipation. In the simplest scenario, it
can be applied to PDEs equipped with the entropy Φ which decreases with some dissipation

∂tΦ(t) +DΦ(t) ≤ 0, DΦ(t) ≥ 0.

Then, one tries to prove that the dissipation is bounded from below by the entropy |Φ(t)|α ≤
DΦ(t) so that Φ(t) → 0 with an explicit convergence rate (exponential if α = 1 and polynomial
if α > 1). Finally, by virtue of Csiszár-Kullback inequality, one deduces convergence in L1. The
last step requires conservation of mass which is not available when G(p) ̸= 0 in (1.1). We present
the method in detail for the Cahn-Hilliard equation without the source term. Another method
to obtain convergence to equilibrium, applied in the context of the Cahn-Hilliard equation, is
via the Łojasiewicz-Simon inequality [1, 11, 39]. This method cannot be applied here due to the
degenerate mobility and the lack of separation property from the degenerate case u = 0.

2 Basic a priori estimates

The energy/entropy structure usually provides a priori estimates on the solutions. However,
in the case of a source term which may change sign, we first need to control their dissipation.
Before tackling this problem, we first show a basic estimate which ensures the control of the
mass of the system, uniformly in time. This estimate is useful to obtain a first L∞

t L1
x bound on

the solution. Our proof of these estimates is somehow formal but can be carried out rigorously
with an approximation scheme as, e.g., in [23]. These estimates are also fundamental to prove
the existence Lemma 1.3.

2.1 Control of the mass

We recall that the total mass of the system is defined in (1.11) and we prove the corresponding
bound.

Proposition 2.1 (Mass control). For all t ≥ 0 we have u(t) ≤ p
1
γ

H .
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Proof. Integrating equation (1.1), we obtain

d

dt
u =

1

|Ω|

∫
Ω
(u pH − uγ+1) dx. (2.1)

By the Hölder inequality, ∫
Ω
udx ≤

(∫
Ω
uγ+1 dx

) 1
γ+1

|Ω|
γ

γ+1

we deduce

d

dt
u ≤ pH

|Ω|

∫
Ω
udx−

(∫
Ω
udx

)γ+1 1

|Ω|γ+1
= pHu− u1+γ ,

so that, with the Assumption 1.1 on the initial condition, we can conclude (1.11).

2.2 Energy and entropy estimates

We recall that the energy, the entropy as well as their dissipation have been defined in (1.5)–(1.8).
We prove that, for a fixed time horizon T , we have the following inequalities.

Proposition 2.2 (Control of the energy and entropy dissipation). The inequalities hold

sup
t≥0

Φ(u(t)) +
1

2ε2p
1
γ

H

∫ ∞

0

∫
Ω

∫
Ω
ωε(y)|∇u(x)−∇u(x− y)|2 dx dy dt

+
1

p
1
γ

H

4γ

(γ + 1)2

∫ ∞

0

∫
Ω

∣∣∣∇|u|
γ+1
2

∣∣∣2 dx dt+ ∫ ∞

0

∫
Ω
u log

 u

p
1
γ

H

 (p− pH) dx dt ≤ Φ(u0),

(2.2)

d

dt
E(u) + 1

2ε2

∫
Ω
ωε(y)(u(x)− u(x− y))(uγ+1(x)− uγ+1(x− y)) dx+

∫
Ω
u|∇µ|2 dx

+
1

2

∫
Ω
u2γ+1 dx ≤ C(E(u) + 1),

(2.3)

and thus there exists C(E(u0), T, ε) > 0 such that

sup
t∈[0,T ]

E(u(t)) + 1

2

∫ T

0

∫
Ω
u2γ+1 dx dt ≤ C(E(u0), T, ε).

Remark 2.3. The above estimate in the energy E depends exponentially on the final time T . We
improve this result to a global one in Proposition 2.5.

Proof. Control of the entropy. Note that Φ(u) ≥ 0 by the inequality x log
(
x
y

)
− x + y ≥

(
√
x−√

y)2 for x ≥ 0 and y > 0 (x = u

p
1
γ
H

, y = 1 here). Then we have

−
∫
Ω
u log

 u

p
1
γ

H

G(p) dx = −
∫
Ω
u log

 u

p
1
γ

H

 (pH − p) dx ≥ 0,
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since u ≥ 0 and x 7→ log x is increasing for x ≥ 0. Therefore, all the terms in the dissipation of
entropy in (1.8) are nonnegative so that we can integrate in time and obtain (2.2), which clearly
implies the control of the entropy independently of T .

Energy control. Turning to the energy E , departing from (1.7), we observe that∫
Ω
uG(p)µdx =

∫
Ω
u(pH − p)p dx+

∫
Ω
uBε(u)(pH − p) dx.

The first term can be written as∫
Ω
u(pH − p)p dx = −

∫
Ω
up2 dx+

∫
Ω
upHp dx

≤ −
∫
Ω
up2 dx+

1

2

∫
Ω
up2 dx+

1

2
p2H

∫
Ω
udx ≤ −1

2

∫
Ω
up2 dx+ C,

where we used the mass control (1.11). For the second term we have, by symmetry of ω,∫
Ω
uBε(u)(pH − p) dx =

pH
2ε2

∫
Ω

∫
Ω
ωε(y)|u(x)− u(x− y)|2 dx dy

− 1

2ε2

∫
Ω

∫
Ω
ωε(y)(u(x)− u(x− y))(uγ+1(x)− uγ+1(x− y)) dx dy.

All together, these inequalities give immediately (2.3) and by the Gronwall lemma the energy
control.

Remark 2.4. In the limit γ → ∞ it holds that u∞ ≤ 1. This follows from the bound obtained
with the energy in Proposition 2.2 since

∥u∞∥L∞ = lim
γ→∞

∥u∞∥Lγ and ∥u∥Lγ+1 ≤ C
1

γ+1 (γ + 1)
1

γ+1 → 1

because of the weak convergence of uγ . We refer for instance to [21, 52]. However in the next
section we obtain a better control on u by the De Giorgi iteration method.
Now, we improve the local in time estimate on E to a global one, which is nontrivial due to the
presence of the source term. Since Proposition 2.2 gives the uniform control Φ(u(t)) ≤ Φ(u0) for
any t ≥ 0, our aim is to control in a uniform way the energy E as well.

Proposition 2.5 (Uniform in time estimates for the energy). There exists a constant independent
of time and γ such that

E(t) ≤ C, ∀t ≥ 0. (2.4)

Proof. Firstly, we estimate separately the two terms defining the energy in (1.5) using the entropy
estimate (2.2). It immediately gives that, for a constant C > 0 independent of time and γ, for
any sufficiently small ε,∫ t+1

t

1

4ε2

∫
Ω

∫
Ω
ωε(y)|u(x)− u(x− y)|2 dx dy ds ≤ C(Ω)

∫ t+1

t
∥u∥2H1(Ω) ds

≤ C

∫ t+1

t

1

4ε2

∫
Ω

∫
Ω
ωε(y)|∇u(x)−∇u(x− y)|2 dx dy ds+ C

∫ t+1

t
∥u∥2L1(Ω) ds (2.5)

≤ C + Cp
2
γ

H , ∀t ≥ 0.
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where the second inequality follows from Equations (A.4) and (1.11).

Secondly, we control the remaining part of the energy E , the one related to 1
γ+1

∫
Ω uγ+1 dx. To

this aim, we integrate Equation (2.1) in time over [t, t+ 1] and get

u(t+ 1)− u(t) =
1

|Ω|

∫ t+1

t

∫
Ω
(upH − uγ+1) dx ds,

so that, rearranging the terms, we control the second term of the energy as

1

|Ω|

∫ t+1

t

∫
Ω
uγ+1 dx ds ≤ 1

|Ω|

∫ t+1

t

∫
Ω
upH dx ds+ u(t) = (pH + 1)

∫ t+1

t
u(s) ds ≤ C

because u(·) ≤ p
1
γ

H for any t ≥ 0 thanks to (1.11). This, together with (2.5), implies that∫ t+1

t
E(s) ds ≤ C, (2.6)

with C > 0 independent of t ≥ 0 and γ.

We may now conclude the energy estimate. By Proposition 2.2, we have

d

dt
E(u) ≤ C(E(u) + 1).

Using the Gronwall lemma, we obtain for all t ≥ 0 and all 0 ≤ s ≤ 1,

E(u(t+ 1)) ≤ C E(u(t+ s)) + C.

Integrating in s and using the bound (2.6), we conclude the proof of Proposition 2.5.

2.3 A control on ∂tu

Here we prove the estimate on time derivative, which appears also in Lemma 1.3 and is used in
the proof of Theorem 1.6.

Proposition 2.6. There exists C = C(γ, T ) > 0 such that the bounds hold

∥∂tu∥Lq′ (0,T ;(W 1,q(Ω))′) ≤ C, q =
2(2γ + 1)

γ
,

1

q
+

1

q′
= 1, (2.7)

∥∂tu∥L2(0,T ;(W 1,r(Ω))′) ≤ C, r =
(γ + 1)(2γ + 1)

γ2
. (2.8)
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Proof. For γ ≥ 1 fixed, any T > 0, any φ ∈ Lq(0, T ;W 1,q(Ω)), we have∣∣∣ ∫ T

0
⟨∂tu, φ⟩(W 1,q(Ω))′,W 1,q(Ω)) dt

∣∣∣
≤
∣∣∣∣∫ T

0

∫
Ω
γuγ∇u · ∇φdx dt

∣∣∣∣+ ∣∣∣∣∫ T

0

1

ε2

∫
Ω
u∇u · ∇φdx dt

∣∣∣∣
+

∣∣∣∣∫ T

0

1

ε2

∫
Ω
u(∇ωε ∗ u) · ∇φdx dt

∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω
u(pH − uγ)φdx dt

∣∣∣∣
≤ γ

1
2 ∥u∥

γ+1
2(2γ+1)

L2γ+1(Ω×(0,T ))
∥γ

1
2u

γ−1
2 ∇u∥L2(Ω×(0,T ))∥∇φ∥Lq(Ω×(0,T ))

+ C(ε)∥u∥L2γ+1(Ω×(0,T ))∥∇u∥L2(Ω×(0,T ))∥∇φ∥
L

2(2γ+1)
2γ−1 (Ω×(0,T ))

+ C(ε)∥u∥L2(Ω×(0,T ))∥∇ωε ∗ u∥L∞(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C∥u∥L2γ+1(Ω×(0,T ))∥pH − uγ∥L2(Ω×(0,T ))∥φ∥
L

2(2γ+1)
2γ−1 (Ω×(0,T ))

≤ C(ε, T, γ)∥φ∥Lq(0,T ;W 1,q(Ω)).

More precisely, to estimate the first and second terms, we used the Hölder inequality with

exponents 2(2γ+1)
γ+1 , 2, q and 2γ+1, 2 and 2(2γ+1)

2γ−1 , respectively. Then, ∥u∥
γ+1

2(2γ+1)

L2γ+1(Ω×(0,T ))
is bounded

due to (2.3), ∥γ
1
2u

γ−1
2 ∇u∥L2(Ω×(0,T )) is estimated by (2.2) while the bound on ∇u follows from

(2.2) and nonlocal Poincaré inequality (A.4). The fourth term is bounded in the same spirit.
Concerning the third one, we simply estimate

∥∇ωε ∗ u∥L∞(Ω×(0,T )) ≤ ∥∇ωε∥L∞(Ω)∥u∥L∞(0,T ;L1(Ω)) ≤ C(ε)

and use the estimate on the total mass (1.11). The final conclusion follows from the inequalities
q > 2 and q ≥ 2(2γ+1)

2γ−1 for any γ ≥ 1.

Concerning (2.8), let φ ∈ L2(0, T ;W 1,r(Ω)), with r = (γ+1)(2γ+1)
γ2 . Then,∣∣∣∣∫ T

0
⟨∂tu, φ⟩(W 1,r(Ω))′,W 1,r(Ω)) dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
Ω
u∇µ · ∇φdx dt

∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω
u(pH − uγ)φdx dt

∣∣∣∣
≤ ∥u

1
2 ∥L∞(0,T ;L2(γ+1))∥u

1
2∇µ∥L2(Ω×(0,T ))∥∇φ∥

L2(0,T ;L
2(γ+1)

γ (Ω))

+ pH∥u∥L∞(0,T ;Lγ+1(Ω))∥φ∥
L1(0,T ;L

γ+1
γ (Ω))

+ ∥u∥L∞(0,T ;Lγ+1(Ω))∥u∥L2γ+1(Ω×(0,T ))∥φ∥
L

2γ+1
2γ (0,T ;Lr(Ω))

≤ C∥φ∥L2(0,T ;W 1,r(Ω)),

exploiting Proposition 2.2, recalling that r ≥ 2(γ+1)
γ > γ+1

γ and 2γ+1
2γ ≤ 2. This concludes the

proof.
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3 Incompressible limit: proof of Theorem 1.5

We see the incompressible limit of (1.1) as the limit γ → ∞ and the resulting problem turns
out to be a free boundary problem of Hele-Shaw type. Concerning the techniques adopted here,
we first show that, for any fixed T > 0, uγ is bounded in L∞(Ω × (0, T )) by a quantity which
converges to 1 as γ → ∞ (see (3.1)). Due to the presence of the convolution term, which makes
the equation nonlocal, we cannot apply any classical maximum principle, so that we need to
resort to De Giorgi iterations, exploiting the fact that the equation is a second order differential
equation.

With uniform estimates in L∞ at hand, we may apply standard energy estimates to gain sufficient
regularity on the pressure pγ , which we bounded in L3(Ω× (0, T )) ∩ L2(0, T ;H1(Ω)) uniformly
in γ. Then, one can obtain uniform controls in L∞(0, T ;L1(Ω)) for ∂tuγ and in L1(Ω × (0, T ))
for ∂tpγ , so as to deduce the strong convergence of uγ and pγ in L2(Ω× (0, T )) to some u∞ and
p∞. With the help of these bounds, we are able to pass to the limit as γ → ∞ in Equation (1.1)
and obtain Equations (1.15) and (1.17) for the limit concentration u∞.

In order to obtain more information on u∞, p∞, like complementarity conditions (1.16), we need
a stronger convergence for ∇pγ . The standard technique uses some control on ∆p thanks to the
Aronson-Bénilan inequality (see, e.g., [15]) which does not apply here due to the higher-order
term. In particular, the (formal) CH equation can be written as

∂tuγ −
γ

γ + 1
∆uγ+1

γ − 1

2ε2
∆u2γ +

1

ε2
div(uγ(∇ωε ∗ u)γ) = uγG(pγ),

and the extra term ∆u2γ , independent of γ, appearing, and this prevents us from obtaining the
Aronson-Bénilan inequality. Taking inspiration from [13, 38], in the second part of the present
section, we instead show the strong L2(Ω× (0, T )) convergence of

∇
(

γ

γ + 1
uγ+1
γ +

1

2ε2
u2γ

)
,

which is shown to be enough to guarantee the validity of the condition (1.16).

3.1 An L∞ bound on uγ

Lemma 3.1. Assume 0 ≤ u0 ≤ p
1
γ

H . For any T > 0 there exists γ(T, ε) > 2, explicitly computed
as a function of T , such that

0 ≤ uγ ≤ p
1
γ

H +
2
3
√
γ
, a.e. on Ω× (0, T ), ∀γ ≥ γ(T, ε). (3.1)

Remark 3.2. Notice that the bound (3.1) is useless to control the pressure, since
(
p

1
γ

H + 2
3
√
γ

)γ

→
+∞ as γ → +∞.

Proof. To simplify notations, we set ξ := 1
3
√
γ . The iterative scheme is as follows. Let us consider

the sequence

kn = p
1
γ

H + 2ξ − ξ

2n
, n ≥ 0,

11



and note that p
1
γ

H + ξ ≤ kn < p
1
γ

H + 2ξ. Now we define the sequences

An(t) := {x ∈ Ω : uγ ≥ kn}, yn :=

∫ T

0

∫
An(s)

dx ds.

By testing the equation against un,γ := (uγ − kn)
+, we immediately infer that

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω)+

∫
Ω
γuγγ |∇(uγ − kn)

+|2 dx+

∫
Ω
uγ∇Bε(uγ) · ∇(uγ − kn)

+ dx

=

∫
Ω
uγG(pγ)(uγ − kn)

+ dx.

By the definition of Bε, we get∫
Ω
uγ∇Bε(uγ) · ∇(uγ − kn)

+ dx =
1

ε2

∫
Ω
uγ |∇un,γ |2 dx− 1

ε2

∫
Ω
uγ(∇ωε ∗ uγ) · ∇un,γ dx.

The first term is nonnegative. For the second we use that γ > 2, ∥uγ∥L∞(0,∞;L1(Ω)) ≤ p
1
γ

H |Ω|
thanks to (1.11) as well as uγ ≥ kn ≥ p

1/γ
H + ξ on An to obtain

1

ε2

∫
Ω
uγ(∇ωε ∗ uγ) · ∇un,γ dx ≤ 1

ε4
1

2γ

∫
An

u2−γ
γ |∇ωε ∗ uγ |2 dx+

γ

2

∫
Ω
uγγ |∇un,γ |2 dx

≤ 1

ε4
1

2γ

(
p

1
γ

H + ξ

)γ−2 ∥∇ωε ∗ uγ∥2L∞(Ω)

∫
An

dx+
γ

2

∫
Ω
uγγ |∇un,γ |2 dx

≤ 1

ε4
1

2γ

(
p

1
γ

H + ξ

)γ−2 ∥∇ωε∥2L∞(Ω)∥uγ∥
2
L1(Ω)

∫
An

dx+
γ

2

∫
Ω
uγγ |∇un,γ |2 dx

≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx+
γ

2

∫
Ω
uγγ |∇un,γ |2 dx,

where C1 > 0 is a constant that depends on ε but not on T and γ. Moreover, since on An we

have uγ ≥ p
1
γ

H and thus pγ ≥ pH , we immediately infer that∫
Ω
uγG(pγ)(uγ − kn)

+ dx ≤ 0.

We can then sum up the results above to obtain

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω) +
γ

2

∫
Ω
uγγ |∇(uγ − kn)

+|2 dx ≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx,
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which also implies, since on An(t) we have uγγ ≥
(
p

1
γ

H + ξ

)γ

,

1

2

d

dt
∥(uγ − kn)

+∥2L2(Ω) +

γ

(
p

1
γ

H + ξ

)γ

2

∫
Ω
|∇(uγ − kn)

+|2 dx ≤ C1

γ

(
p

1
γ

H + ξ

)γ−2

∫
An

dx.

It is now clear that,

sup
t∈[0,T ]

∥un,γ(t)∥2L2(Ω) ≤
2C1

γ

(
p

1
γ

H + ξ

)γ−2 yn =: Zn, (3.2)

γ

(
p

1
γ

H + ξ

)γ ∫ T

0

∫
Ω
|∇(uγ − kn)

+(s)|2 dx ds ≤ Zn. (3.3)

where we used, by the assumptions on the initial conditions, ∥un,γ(0)∥L2(Ω) = 0. Now for any t
and for almost any x ∈ An+1(t), we get

un,γ(x, t) = uγ(x, t)−
[
p

1
γ

H + 2ξ − ξ

2n+1

]
︸ ︷︷ ︸

un+1,γ(x,t)≥0

+ξ

[
1

2n
− 1

2n+1

]
≥ ξ

2n+1
.

Then we have∫ T

0

∫
Ω
|un,γ |3 dx ds ≥

∫ T

0

∫
An+1(s)

|un,γ |3 dx ds ≥
(

ξ

2n+1

)3 ∫ T

0

∫
An+1(s)

dx ds =

(
ξ

2n+1

)3

yn+1.

Then we have (
ξ

2n+1

)3

yn+1 ≤
(∫ T

0

∫
Ω
|un,γ |

10
3 dx ds

) 9
10

(∫ T

0

∫
An(s)

dx ds

) 1
10

. (3.4)

For the sake of clarity we now present the argument in the case d = 3, but it can be easily
adapted to any dimension d ≥ 1. We recall that by a variant of the three-dimensional Sobolev-
Gagliardo-Nirenberg inequality (see, e.g., [8, Ch.9]) we get

∥v − v∥
L

10
3 (Ω)

≤ CG ∥v∥
2
5

L2(Ω)
∥∇v∥

3
5

L2(Ω)
∀v ∈ H1(Ω),

with CG > 0 depending only on Ω. Therefore,∫ T

0

∫
Ω
|un,γ |

10
3 dx ds ≤ 2

7
3

∫ T

0

∫
Ω
|un,γ − un,γ |

10
3 dx ds+ 2

7
3

∫ T

0

∫
Ω
|un,γ |

10
3 dx ds

≤ CG2
7
3

∫ T

0
∥∇un,γ∥2L2(Ω)∥un,γ∥

4
3

L2(Ω)
ds+

2
7
3

|Ω|
7
3

∫ T

0
∥un,γ∥

10
3

L1(Ω)

≤ CG2
7
3

∫ T

0
∥∇un,γ∥2L2(Ω)∥un,γ∥

4
3

L2(Ω)
ds+

2
7
3

|Ω|
2
3

∫ T

0
∥un,γ∥

10
3

L2(Ω)
,
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so that by (3.2) and (3.3) we immediately infer∫ T

0

∫
Ω
|un,γ |

10
3 dx ds

≤ CG

γ

(
p

1
γ

H + ξ

)γ sup
t∈[0,T ]

∥un,γ(t)∥
4
3

L2(Ω)
2

7
3γ

(
p

1
γ

H + ξ

)γ ∫ T

0
∥∇un,γ(s)∥2L2(Ω) ds

+ sup
t∈[0,T ]

∥un,γ(t)∥
10
3

L2(Ω)

T2
7
3

|Ω|
2
3

≤ 2
7
3CG

γ

(
p

1
γ

H + ξ

)γZ
5
3
n +

T2
7
3

|Ω|
2
3

Z
5
3
n ≤ T2

10
3

|Ω|
2
3

Z
5
3
n ≤ C2T

γ
5
3

(
p

1
γ

H + ξ

) 5
3
γ− 10

3

y
5
3
n ,

with C2 = C2(ε) > 0. Note that we have assumed γ sufficiently large, say γ ≥ γ0(T ) > 2 so that

γ

(
p

1
γ

H + ξ

)γ

≥ CG|Ω|
2
3

T
. (3.5)

Coming back to (3.4), we get

(
ξ

2n+1

)3

yn+1 ≤
C

9
10
2 T

9
10

γ
3
2

(
p

1
γ

H + ξ

) 3
2
γ−3

y
8
5
n ,

i.e., recalling the definition of ξ,

yn+1 ≤
23n+3C

9
10
2 T

9
10

γ
1
2

(
p

1
γ

H + ξ

) 3
2
γ−3

y
8
5
n .

Due to Lemma A.1 with b = 23 > 1, C =
23C

9
10
2 T

9
10

γ
1
2

(
p
1
γ
H+ξ

) 3
2 γ−3

> 0, ϵ = 3
5 , we get that yn → 0 if

y0 ≤ C− 5
3 b−

25
9 ⇐⇒ y0 ≤ 2−

25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2
γ−5

25C
3
2
2 T

3
2

(3.6)

As we have y0 ≤ T |Ω|, it is enough to ask for γ sufficiently large, say γ ≥ γ1(T, ε) ≥ γ0(T ) such
that

T
5
2 |Ω| ≤ 2−

25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2
γ−5

25C
3
2
2

,
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i.e.,

y0 ≤ T |Ω| ≤ 2−
25
3

γ
5
6

(
p

1
γ

H + ξ

) 5
2
γ−5

25C
3
2
2 T

3
2

.

This way yn → 0 as long as γ(T, ε) ≥ γ1(T, ε) and any γ ≥ γ(T, ε).

3.2 Higher-order regularity results, uniformly in γ.

Lemma 3.3. For any T > 0 there exists C = C(T, ε) > 0 such that

∥pγ∥L2(0,T ;H1(Ω)) + ∥pγ∥L3(Ω×(0,T )) ≤ C, ∀γ > 1, (3.7)

∥∂tuγ∥L2(0,T ;(H1(Ω))′) ≤ C, ∀γ ≥ γ(T, ε) (see (3.1)), (3.8)

∥∂tuγ∥L∞(0,T ;L1(Ω)) + ∥∂tpγ∥L1(Ω)×(0,T ) ≤ C, ∀γ ≥ 1. (3.9)

Proof. The arguments of the proof are often written formally for simplicity, but can be easily
made rigorous in a suitable approximating scheme. Note that from Proposition 2.2 we are able
to deduce that

pγ = uγγ ∈ L
2+ 1

γ (Ω× (0, T )) ↪→ L2(Ω× (0, T )) (3.10)

uniformly in γ. Thus, to prove the H1 bound in (3.7), we only need to find an estimate for the
gradient of pγ . Let us consider

∫
Ω uγγ dx and compute its time derivative: from (1.1) we infer

d

dt

∫
Ω
uγγ dx =

∫
Ω
γuγ−1

γ ∂tuγ dx

= −γ

∫
Ω
uγ∇(uγ−1)∇(uγγ) dx− γ

∫
Ω
uγ∇(uγ−1

γ ) · ∇Bε(uγ) dx+ γ

∫
Ω
uγ(pH − pγ)u

γ−1
γ dx

= −γ2(γ − 1)

∫
Ω
u2γ−2
γ |∇uγ |2 dx− γ

∫
Ω
uγ∇(uγ−1

γ ) · ∇Bε(uγ) dx+ γ

∫
Ω
uγ(pH − pγ)u

γ−1
γ dx

= −(γ − 1)

∫
Ω

∣∣∇(uγγ)
∣∣2 dx− γ(γ − 1)

∫
Ω
uγ−1
γ ∇uγ · ∇Bε(uγ) dx+ γ

∫
Ω
uγ(pH − pγ)u

γ−1
γ dx.

(3.11)

Due to (1.2), we have

γ(γ − 1)

∫
Ω
uγ−1
γ ∇uγ · ∇Bε(uγ) dx

=
1

ε2
γ(γ − 1)

∫
Ω
uγ−1
γ |∇uγ |2 −

1

ε2
γ(γ − 1)

∫
Ω
uγ−1
γ ∇uγ · ∇(ωε ∗ uγ) dx

By the Young inequality, recalling that ∥uγ∥L∞(0,T ;L2(Ω)) ≤ C (due to the uniform bound on the
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energy and the non-local Poincaré inequality (A.3), see Lemma 1.3), we get

1

ε2
γ(γ − 1)

∫
Ω
uγ−1
γ ∇uγ · ∇(ω ∗ uγ) dx

≤ γ2(γ − 1)

2

∫
Ω
u2γ−2
γ |∇uγ |2 dx+

1

ε4
γ − 1

2

∫
Ω
|∇ωε ∗ uγ |2 dx

≤ γ2(γ − 1)

2

∫
Ω
u2γ−2
γ |∇uγ |2 dx+

1

ε4
γ − 1

2
∥∇ωε∥2L1(Ω)∥uγ∥

2
L2(Ω)

≤ (γ − 1)

2

∫
Ω
|∇(uγγ)|2 dx+

C(T, ε)(γ − 1)

2
.

The last term in (3.11) can be controlled by∫
Ω
uγ(pH − pγ)γu

γ−1
γ dx ≤

∫
Ω
(pH − pγ)γu

γ
γ dx ≤

∫
pγ≤pH

(pH − pγ)γu
γ
γ dx ≤ γ|Ω|p2H .

Therefore, from (3.11) we get

1

γ − 1

d

dt

∫
Ω
uγγ dx+

1

2

∫
Ω

∣∣∇(uγγ)
∣∣2 dx ≤ C

2
+ C

γ

γ − 1
≤ C(T, ε), (3.12)

showing that ∇uγ ∈ L2(Ω×(0, T )) uniformly in γ so that uγγ is bounded uniformly in L2(0, T ;H1(Ω)).
We now need a similar estimate to show the L3 bound in (3.7). We have

1

2γ

d

dt

∫
Ω
u2γγ dx =

∫
Ω
u2γ−1
γ ∂tuγ dx

= −
∫
Ω
uγ∇(u2γ−1

γ )∇(uγγ) dx−
∫
Ω
uγ∇(u2γ−1

γ ) · ∇Bε(uγ) dx+

∫
Ω
uγ(pH − p)u2γ−1

γ dx

= −γ(2γ − 1)

∫
Ω
u3γ−2
γ |∇uγ |2 dx− 1

ε2
(2γ − 1)

∫
Ω
u2γ−1
γ |∇uγ |2 dx

+
1

ε2
(2γ − 1)

∫
Ω
u2γ−1
γ ∇uγ · (∇ωε ∗ uγ) dx+

∫
Ω
(pH − pγ)u

2γ
γ dx. (3.13)

Notice now that, by Young’s inequality for convolutions and after integration by parts,

1

ε2
(2γ − 1)

∫
Ω
u2γ−1
γ ∇uγ · (∇ωε ∗ uγ) dx

=
1

ε2
2γ − 1

2γ

∫
Ω
∇u2γγ · (∇ωε ∗ uγ) dx =

1

ε2
1− 2γ

2γ

∫
Ω
(∆ωε ∗ uγ)u2γγ dx

≤ 1

ε2
2γ − 1

2γ
∥∆ωε∥L∞(Ω)∥uγ∥L1(Ω)

∫
Ω
p2γ dx ≤ C(ε)

2γ − 1

2γ

∫
Ω
p2γ dx.

We thus get, integrating (3.13) over (0, T ) and using the L2 bound on pγ in (3.10),

1

2γ

∫
Ω
p2γ(T ) dx+ γ(2γ − 1)

∫ T

0

∫
Ω
u3γ−2
γ |∇uγ |2 dx ds+

2γ − 1

ε2

∫ T

0

∫
Ω
u2γ−1
γ |∇uγ |2 dx ds

+

∫ T

0

∫
Ω
p3γγ dx ds ≤ C(T, ε)

(
2γ − 1

2γ
+ 1

)
≤ C(T, ε),
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where we used that 2γ−1
2γ → 1 as γ → ∞. From this we deduce the uniform L3 estimate in (3.7).

To prove (3.8), we compute for any φ ∈ L2(0, T ;H1(Ω)) and γ ≥ γ, with γ(T ) as in (3.1)∣∣∣∣∫ T

0
⟨∂tuγ , φ⟩ dt

∣∣∣∣ ≤ ∣∣∣∣∫ T

0

∫
Ω
uγ∇pγ · ∇φdx dt

∣∣∣∣+ ∣∣∣∣∫ T

0

1

ε2

∫
Ω
uγ∇uγ · ∇φdx dt

∣∣∣∣
+

∣∣∣∣∫ T

0

1

ε2

∫
Ω
uγ(∇ωε ∗ uγ) · ∇φdx dt

∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω
uγ(pH − uγγ)φdx dt

∣∣∣∣ .
Note that by Young’s inequality for convolutions we get

∥∇ωε ∗ uγ∥2L2(Ω×(0,T )) ≤
∫ T

0
∥∇ωε ∗ uγ∥2L∞(Ω)|Ω|dt ≤ |Ω|∥∇ωε∥2L∞(Ω)

∫ T

0
∥uγ∥2L1(Ω) dt

≤ |Ω|∥∇ωε∥2L∞(Ω)

∫ T

0

(∫
Ω
p

1
γ

H dx

)2

dt ≤ |Ω|3∥∇ωε∥2L∞(Ω)p
2
γ

HT ≤ C(ε, T ),

by (1.11). Therefore, by Lemma 1.3, (3.1) and (3.7)∣∣∣∣∫ T

0
⟨∂tuγ , φ⟩dt

∣∣∣∣ ≤∥uγ∥L∞(Ω×(0,T ))∥∇pγ∥L2(0,T ;L2(Ω))∥∇φ∥L2(0,T ;L2(Ω))

+ C(ε)∥uγ∥L∞(Ω×(0,T ))∥∇uγ∥L2(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C(ε)∥uγ∥L∞(Ω×(0,T ))∥(∇ωε ∗ u)γ∥L2(Ω×(0,T ))∥∇φ∥L2(Ω×(0,T ))

+ C∥uγ∥L∞(Ω×(0,T ))∥pH − uγγ∥L2(Ω×(0,T ))∥φ∥L2(Ω×(0,T ))

≤C(ε, T )∥φ∥L2(0,T ;H1(Ω)),

Therefore, for any γ ≥ γ, we infer that ∥∂tuγ∥L2(0,T ;(H1(Ω)′) ≤ C(T ), thus showing (3.8).

It remains to prove (3.9). First note that, clearly, ∂tuγ and ∂tpγ share the same sign since uγ ≥ 0
almost everywhere in Ω× (0, T ). Then we differentiate in time (1.1) and get

∂ttuγ −
γ

γ + 1
∆∂t(u

γ+1
γ )− 1

2ε2
∆∂t(u

2
γ) +

1

ε2
div(∂tuγ(∇ωε ∗ uγ)) +

1

ε2
div(uγ(∇ωε ∗ ∂tuγ))

= ∂tuγ(pH − pγ)− uγ∂tpγ .

We test it against sign(∂tuγ) and use Kato’s inequality to obtain

∂t|∂tuγ | ≤
γ

γ + 1
∆(|∂t(uγ+1

γ )|) + 1

2ε2
∆(|∂t(u2γ)|) +

1

ε2
div(|∂tuγ |(−∇ωε ∗ uγ))

− 1

ε2
div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) + |∂tuγ |pH − pγ |∂tuγ | − uγ |∂tpγ |.

Now we rearrange the terms and integrate in space, deducing

d

dt

∫
Ω
|∂tuγ | dx+

∫
Ω
uγ |∂tpγ |dx+

∫
Ω
pγ |∂tuγ | dx

≤ − 1

ε2

∫
Ω

div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) dx+ pH

∫
Ω
|∂tuγ |dx.
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Then we have, by Young’s inequality for convolutions,

− 1

ε2

∫
Ω
div(uγ(∇ωε ∗ ∂tuγ)) sign(∂tuγ) dx

= − 1

ε2

∫
Ω
∇uγ · (∇ωε ∗ ∂tuγ) sign(∂tuγ) dx− 1

ε2

∫
Ω
uγ(∆ωε ∗ ∂tuγ) sign(∂tuγ) dx

≤ 1

ε2
∥∇uγ∥L1(Ω)∥∇ωε ∗ ∂tuγ∥L∞(Ω) +

1

ε2
∥uγ∥L1(Ω)∥∆ωε ∗ ∂tuγ∥L∞(Ω)

≤ C(ε)(1 + ∥∇uγ∥L1(Ω))

∫
Ω
|∂tuγ |dx,

since
∥∇ωε ∗ ∂tuγ∥L∞(Ω) ≤ ∥∇ωε∥L∞(Ω)

∫
Ω
|∂tuγ |dx ≤ C(ε)

∫
Ω
|∂tuγ |dx,

and the same for ∥∆ωε ∗ ∂tuγ∥L∞(Ω). Therefore we end up with

d

dt

∫
Ω
|∂tuγ |dx+

∫
Ω
uγ |∂tpγ |dx+

∫
Ω
pγ |∂tuγ | dx ≤ C(ε)(1 + ∥∇uγ∥L1(Ω))

∫
Ω
|∂tuγ | dx. (3.14)

To apply the Gronwall inequality, we need to estimate ∥∂tuγ(0)∥L1(Ω). From (1.1) we have

∥∂tuγ(0)∥L1(Ω) ≤C(ε)
( γ

γ + 1
∥∆(uγ+1

0 )∥L1(Ω) + ∥∆(u20)∥L1(Ω)+

+ ∥div(u0(∇ωε ∗ u0))∥L1(Ω) + ∥u0(pH − p0)∥L1(Ω)

)
.

Due to Assumption 1.2, the first term is bounded. Concerning next terms, we have by Assump-
tion 1.1 and 1.2

∥∆(u20)∥L1(Ω) ≤ 2∥∇u0∥2L2(Ω) + 2∥u0∆u0∥L1(Ω) ≤ 2∥∇u0∥2L2(Ω) + 2p
1
γ

H∥∆u0∥L1(Ω) ≤ C,

∥div(u0(∇ωε ∗ u0))∥L1(Ω) ≤ ∥∇u0 · (∇ωε ∗ u0)∥L1(Ω) + ∥u0(∆ωε ∗ u0)∥L1(Ω)

≤ ∥∇u0∥L1(Ω)∥∇ωε∥L∞(Ω)∥u0∥L1(Ω) + p
1
γ

H |Ω|∥∆ωε∥L∞(Ω)∥u0∥L1(Ω) ≤ C(ε).

It follows that ∥∂tuγ(0)∥L1(Ω) ≤ C(ε). Since uγ ∈ L2(0;T ;H1(Ω)) uniformly in γ (Lemma 1.3),
we may apply the Gronwall Lemma in (3.14) and obtain

∥∂tuγ∥L∞(0,T ;L1(Ω)) + ∥uγ∂tpγ∥L1(0,T ;L1(Ω)) ≤ C(T, ε), (3.15)

with C = C(T, ε) > 0 independent of γ. To conclude the argument we notice that∫
Ω
|∂tpγ |dx ≤

∫
uγ≤ 1

2

|∂tpγ |dx+ 2

∫
uγ>

1
2

uγ |∂tpγ | dx ≤ γ

2γ−1

∫
Ω
|∂tuγ |dx+ 2

∫
Ω
uγ |∂tpγ |dx,

so that, being γ
2γ−1 ≤ 1 for any γ ≥ 1, from (3.15) we deduce the second estimate in (3.9) and

conclude the proof of Lemma 3.3.
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3.3 The limit γ → ∞

We complete the convergence as γ → ∞ distinguishing two steps.

Step 1. Consequences of Lemmas 1.3, 3.1 and 3.3. Exploiting those lemmas, we can ob-
tain the following convergences, up to subsequences, which are deduced by standard compactness
arguments: for any T > 0, as γ → ∞,

uγ → u∞ almost everywhere in Ω× (0, T ), (3.16)

uγ
∗
⇀ u∞ in L∞(Ω× (0, T )), (3.17)

uγ → u∞ in Lp(Ω× (0, T )) ∀p ∈ [1,+∞), (3.18)

uγ ⇀ u∞ in L2(0, T ;H1(Ω)), (3.19)

∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′), (3.20)

pγ ⇀ p∞ in L2(0, T ;H1(Ω)), L3((0, T )× Ω). (3.21)

Moreover, by the Aubin-Lions-Simon Lemma,

pγ → p∞ in L2(0, T ;L2(Ω)), (3.22)

which, thanks to (3.7) can be improved by interpolation, to

pγ → p∞ in Lq(0, T ;Lq(Ω)), ∀q ∈ [2, 3). (3.23)

In order to obtain the complementarity condition, we study the function vγ := uγ+1
γ = uγpγ .

First we have

∥vγ∥L2(Ω×(0,T )) ≤ ∥uγ∥L∞(Ω×(0,T ))∥pγ∥L2(Ω×(0,T )) ≤ C(T, ε),

and

∥∇vγ∥L2(Ω×(0,T )) =
γ + 1

γ
∥uγ∇pγ∥L2(Ω×(0,T )) ≤

γ + 1

γ
∥uγ∥L∞(Ω×(0,T ))∥∇pγ∥L2(Ω×(0,T )) ≤ C(T, ε),

since γ+1
γ → 1 as γ → ∞. Therefore, up to subsequences, we have

vγ = uγpγ ⇀ v∞ in L2(0, T ;H1(Ω)),

for some v∞ ∈ L2(0, T ;H1(Ω)). To identify v∞, we observe that

∥uγpγ − u∞p∞∥L2(Ω×(0,T )) ≤ ∥uγ(pγ − p∞)∥L2(Ω×(0,T )) + ∥p∞(uγ − u∞)∥L2(Ω×(0,T ))

≤ ∥uγ∥L∞(Ω×(0,T ))∥pγ − p∞∥L2(Ω×(0,T )) + ∥uγ − u∞∥L6(Ω×(0,T ))∥p∞∥L3(Ω×(0,T )) → 0

as γ → ∞, thanks to the above results, in particular (3.1), (3.7), (3.18) and (3.22). From this
we clearly identify v∞ = u∞p∞ and obtain

vγ = uγpγ ⇀ v∞ = u∞p∞ in L2(0, T ;H1(Ω)). (3.24)

vγ → p∞u∞ in L2(Ω× (0, T )). (3.25)
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We are now able to pass to the limit in γ to obtain (1.15) and

p∞(1− u∞) = 0, 0 ≤ u∞ ≤ 1, p∞ ≥ 0. (3.26)

Indeed, we can argue as in [37] to see that, for any ϵ > 0 there exists γ0 = γ0(ϵ) such that for
any y ≥ 0 and γ ≥ γ0

yγ+1 ≥ yγ − ϵ.

Applying this to y = uγ , since we have that, up to subsequences, uγ = pγ → p∞ and vγ =

uγ+1
γ → p∞u∞ almost everywhere in Ω× (0, T ), we can pass to the limit and obtain,

u∞p∞ ≥ p∞ − ϵ, ∀ϵ. > 0,

which implies that p∞u∞ ≥ p∞. Since by (3.1) and (3.16) we get 0 ≤ u∞ ≤ 1 almost everywhere
in Ω × (0, T ), we get p∞ ≥ p∞u∞ ≥ p∞, i.e., (3.26), since it holds for any T > 0. In order to
pass to Step 2, we introduce the quantities

ṽγ :=
γ

γ + 1
vγ +

1

2ε2
u2γ , ṽ∞ = v∞ +

1

2ε2
u2∞, (3.27)

and study ∇ṽγ which is essential to obtain the complementarity condition (1.16).

Step 2. Strong convergence of ∇ṽγ.

Lemma 3.4. Let ṽγ, ṽ∞ be as in (3.27). Then, for any T > 0,

ṽγ → ṽ∞ in L2(0, T ;H1(Ω)) as γ → ∞.

Proof. Using (3.18) and (3.25) we obtain ṽγ → ṽ∞ in L2(Ω × (0, T )) so it is sufficient to prove
∇ṽγ → ∇ṽ∞ in L2(Ω× (0, T )). Of course, by (3.16)-(3.21) and (3.24), we have weak convergence

∇ṽγ ⇀ ∇ṽ∞ in L2(0, T ;L2(Ω)), γ → ∞. (3.28)

Let us first observe that (1.1) can be rewritten highlighting the presence of ṽγ :

∂tuγ −∆ṽγ = uγG(pγ)−
1

ε2
div(uγ(∇ωε ∗ uγ)). (3.29)

We multiply (3.29) by ṽγ − ṽ∞ and integrate over ΩT := Ω× (0, T ). Since∫
Ω
∂tuγvγ dx =

1

γ + 2

d

dt

∫
Ω
uγ+2
γ dx.

we obtain

γ

(γ + 2)(γ + 1)

∫
Ω
uγ+2
γ (T ) dx+

∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dx ds

=
γ

(γ + 2)(γ + 1)

∫
Ω
uγ+2
γ (0) dx− 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dx dt+

∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt

+
1

ε2

∫
ΩT

uγ(∇ωε ∗ uγ) · ∇(ṽγ − ṽ∞) dx dt+

∫ T

0
⟨∂tuγ , v∞⟩ dt. (3.30)
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The plan is to estimate lim supγ→∞
∫
ΩT

|∇ṽγ − ∇ṽ∞|2 dx dt from (3.30). First, we rewrite the
term 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dx dt. We have

1

2ε2

∫
Ω
∂tuγ(u

2
γ − u2∞) dx =

1

2ε2
⟨∂tuγ − ∂tu∞, u2γ − u2∞⟩+ 1

2ε2
⟨∂tu∞, u2γ − u2∞⟩

=
1

4ε2
d

dt

∫
Ω
(uγ − u∞)2(uγ + u∞) dx− 1

4ε2
⟨∂t(uγ + u∞), (uγ − u∞)2⟩+ 1

2ε2
⟨∂tu∞, u2γ − u2∞⟩

=
1

4ε2
d

dt

∫
Ω
(uγ − u∞)2(uγ + u∞) dx− 1

12ε2
d

dt

∫
Ω
(uγ − u∞)3 dx− 1

2ε2
⟨∂tu∞, (uγ − u∞)2⟩

+
1

2ε2
⟨∂tu∞, u2γ − u2∞⟩,

so that, integrating over [0, T ] and recalling that u∞(0) ≡ uγ(0) ≡ u0, we get

− 1

2ε2

∫
ΩT

∂tuγ(u
2
γ − u2∞) dx dt = − 1

4ε2

∫
Ω
(uγ(T )− u∞(T ))2(uγ(T ) + u∞(T )) dx

+
1

12ε2

∫
Ω
(uγ(T )− u∞(T ))3 dx+

1

2ε2

∫ T

0
⟨∂tu∞, (uγ − u∞)2⟩ dt− 1

2ε2

∫ T

0
⟨∂tu∞, u2γ − u2∞⟩dt.

(3.31)

Note that
1

4ε2

∫
Ω
(uγ(T )− u∞(T ))2(uγ(T ) + u∞(T )) dx− 1

12ε2

∫
Ω
(uγ(T )− u∞(T ))3 dx

=
1

4ε2

∫
Ω
(uγ(T )− u∞(T ))2

(
uγ(T ) + u∞(T )− 1

3
uγ(T ) +

1

3
u∞(T )

)
dx ≥ 0.

(3.32)

Therefore, taking into account (3.31), (3.32) and uγ ≥ 0 we obtain from (3.30)∫
ΩT

∇ṽγ ·∇(ṽ − ṽ∞) dx ds ≤ γ

(γ + 2)(γ + 1)

∫
Ω
uγ+2
γ (0) dx+

1

2ε2

∫ T

0
⟨∂tu∞, (uγ − u∞)2⟩ dt

−
∫ T

0
⟨∂tu∞,

1

2ε2
u2γ −

1

2ε2
u2∞⟩ dt+

∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt

+
1

ε2

∫
ΩT

uγ(∇ωε ∗ uγ) · ∇(ṽγ − ṽ∞) dx dt+

∫ T

0
⟨∂tuγ , v∞⟩dt. (3.33)

Observe that∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dx ds =

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds+
∫
ΩT

∇ṽ∞ · ∇(ṽγ − ṽ∞) dx ds,

but by the weak convergence in (3.28) we have∫
ΩT

∇ṽ∞ · ∇(ṽγ − ṽ∞) dx ds → 0,

since ∇ṽ∞ ∈ L2(0, T ;L2(Ω)). Thus we deduce that

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds = lim sup
γ→∞

∫
ΩT

∇ṽγ · ∇(ṽγ − ṽ∞) dx ds.
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Then, recalling also that ∂tuγ ⇀ ∂tu∞ in L2(0, T ; (H1(Ω))′) and that v∞ ∈ L2(0, T ;H1(Ω)), we
deduce from (3.33)

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds ≤ lim sup
γ→∞

(
γ

(γ + 2)(γ + 1)

∫
Ω
uγ+2
γ (0) dx

+
1

2ε2

∫ T

0
⟨∂tu∞, (uγ − u∞)2⟩ dt − 1

2ε2

∫ T

0
⟨∂tu∞, u2γ − u2∞⟩ dt+

∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt

+
1

ε2

∫
ΩT

uγ∇ωε ∗ uγ · ∇(ṽγ − ṽ∞) dx dt

)
+

∫ T

0
⟨∂tu∞, v∞⟩ dt. (3.34)

The plan is to prove that all the terms on the (RHS) of (3.34) converge to 0. First, we have

that 0 ≤ uγ(0) = u0 ≤ p
1
γ

H for any γ > 0 by assumption, so that in the end we deduce

uγ+1
γ (0) ≤ p

γ+2
γ

H ≤ C and thus, as γ → ∞,

γ

(γ + 2)(γ + 1)

∫
Ω
uγ+2
γ (0) dx → 0.

Then, using (3.18) and the fact that ∂tu∞ ∈ L2(0, T ; (H1(Ω))′), we immediately deduce

1

2ε2

∫ T

0
⟨∂tu∞, (uγ − u∞)2⟩ dt− 1

2ε2

∫ T

0
⟨∂tu∞, u2γ − u2∞⟩ dt → 0 as γ → ∞.

Concerning the term
∫
ΩT

uγG(pγ)(ṽγ − ṽ∞) dx dt, we simply use the fact that {uγ} is bounded
in L∞(Ω × (0, T )) (cf. (3.1)), {G(pγ)} is bounded in L2(Ω × (0, T )) (cf. (3.7)) and ṽγ → ṽ∞
strongly in L2(Ω × (0, T )). Similarly,

∫
ΩT

uγ∇ωε ∗ uγ · ∇(ṽγ − ṽ∞) dx dt → 0 because of weak
convergence (3.28) and strong convergence uγ∇ωε ∗ uγ → u∞∇ωε ∗ u∞ in L2(Ω× (0, T )) (which
follows by (3.18) and simple properties of convolutions).

We are left with the analysis of the last term, i.e.,
∫ T
0 ⟨∂tu∞, v∞⟩dt. Our aim is to show that this

term vanishes, exploiting Theorem A.2. We introduce the following indicator function on R:

IS(s) :=

{
0 if s ≤ 1,

+∞ if s > 1,
(3.35)

and define S = (−∞, 1], which is a closed, convex and nonempty set, so that IS : R → (−∞,+∞]
is proper, convex and lower semicontinuous (see, e.g., [45, Appendix 1]) and it holds

∂IS(x) = {y ∈ R : y · (x− s) ≥ 0, ∀s ≤ 1}.

We see that we have

• u∞ ∈ L2(0, T ;H1(Ω)) and ∂tu∞ ∈ L2(0, T ; (H1(Ω))′);

• for almost any (x, t) ∈ ΩT ,
v∞(x, t) ∈ ∂IS(u∞(x, t)),
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by (3.26) and being v∞ = p∞. Indeed,

v∞(x, t)(u∞(x, t)− s) ≥ 0, ∀s ≤ 1,

since, when u∞(x, t) = 1, being v∞(x, t) ≥ 0, the inequality is always verified for any s ≤ 1,
whereas, when u∞(x, t) < 1, it holds v∞(x, t) = 0 and thus the inequality is verified for
any s ≤ 1 as well.

• v∞ ∈ L2(0, T ;H1(Ω)).

Therefore, all the assumptions are verified and we can apply Theorem A.2 with h = IS , f = u∞,
g = v∞, to infer, after an integration over [0, T ],

0 =

∫
Ω
IS(u∞(x, T )) dx−

∫
Ω
IS(u∞(x, 0)) dx =

∫ T

0
⟨∂tu∞, v∞⟩ dt, (3.36)

by the definition of IS . Indeed, it holds
∫
Ω IS(u∞(x, ·)) dx ≡ 0 on [0, T ] for any T > 0. To see

this, first notice that, being u∞ ≤ 1 almost everywhere in Ω× [0,∞), we deduce that, for almost
any t ∈ [0,∞),

u∞(x, t) ≤ 1 for almost any x ∈ Ω.

Therefore,
∫
Ω IS(u∞(x, ·)) dx = 0, for almost any t ∈ [0, T ] and for any T > 0. Recall now

by Theorem A.2 that
∫
Ω IS(u∞(x, ·)) dx ∈ AC([0, T ]) for any T > 0, which ensures that∫

Ω IS(u∞(x, t)) dx ≡ 0 for any t ∈ [0, T ] and for any T > 0.

Having studied all the terms in the right-hand side of (3.34), in the end we conclude that

lim sup
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds ≤ 0,

implying that

lim
γ→∞

∫
ΩT

|∇(ṽγ − ṽ∞)|2 dx ds = 0.

Step 3. The complementarity condition. Now that we have all the necessary conver-
gences, let us consider the following equation in distributional sense (this equation comes from
multiplying (1.1) by vγ = uγ+1

γ ):

1

γ + 2
∂tu

γ+2
γ − vγ∆ṽγ +

1

ε2
vγdiv(uγ(∇ωε ∗ uγ)) = uγG(pγ)vγ .

Thanks to the results of Step 2. and Lemma 3.4, we can then pass the limit as γ → ∞ and
obtain the complementarity condition:

v∞(∆ṽ∞ − 1

ε2
div(u∞(∇ω ∗ u∞)) + u∞G(p∞)) = 0 in D′(Ω× (0, T )), (3.37)
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for any T > 0, so that in the end, recalling v∞ = p∞ and ṽ∞ = p∞ + 1
2ε2

u2∞,

p∞(∆p∞ +
1

2ε2
∆u2∞ − 1

ε2
div(u∞(∇ωε ∗ u∞)) + u∞G(p∞)) = 0 in D′(Ω× (0,∞)), (3.38)

which is the complementarity condition (1.16). In conclusion, since v∞ = p∞, we can repeat the
argument leading to (3.36), to infer that, for any t ∈ [0,∞),∫ t

0
⟨∂tu∞, p∞⟩ ds = 0, ⟨∂tu∞(t), p∞(t)⟩ = 0,

thus concluding the proof of Theorem 1.5.

4 Convergence to equilibria: proof of Theorem 1.6

Here, we prove Theorem 1.6. Numerical simulations illustrating the result in dimension 1 with
a source term are depicted in Figure 1.

4.1 Case G(p) = pH − p

Proof of Theorem 1.6. We now divide the proof of Theorem 1.6 in different steps.

Step 1: characterization of possible limits. We fix the initial datum u0 ̸= 0 as in the
statement of Theorem 1.6. We show the following key result:

Lemma 4.1. From any divergent sequence {tn}n ⊂ R+ we can extract a subsequence (not rela-
beled) such that, as n → ∞, un(t) := u(t+ tn) converges to the same limit u∗ strongly in Lp

t,x for

all 1 ≤ p < 2γ + 1. Moreover, either u∗ ≡ 0 and Φ(u(t)) → |Ω| as t → ∞, otherwise u∗ ≡ p
1/γ
H

and Φ(u(t)) → 0 as t → ∞.

We fix T > 0, we also consider n large enough such that tn > T . Observe that un solves the
problem {

∂tun − div(un∇µn) = unG(pn) in Ω× (−T, T ),

µn = pn +Bε(un), pn = uγn.
(4.1)

By Propositions 2.2 and 2.5, we have the following uniform-in-n bounds :

E(un(t)) ≤ C ∀t ∈ [−T, T ], (4.2)
Φ(un(t)) ≤ Φ(u0) ∀t ∈ (−T, T ), Φ(un(t)) non-increasing. (4.3)

From this and Propositions 2.2 and 2.6, we deduce the following uniform bounds, for any T > 0,

∥un∥L∞(−T,T ;Lγ+1(Ω)) + ∥un∥L2(−T,T ;H1(Ω)) + ∥un∥L2γ+1(Ω×(−T,T ))

+ ∥∂tun∥Lq′ (−T,T ;(W 1,q(Ω))′) + ∥∂tun∥L2(−T,T ;(W 1,r(Ω))′) + ∥∇u
γ+1
2

n ∥L2(−T,T ;L2(Ω)) ≤ C(T ),
(4.4)

24



with q and r as in Proposition 2.6 which implies, by standard arguments, the following conver-
gences (up to subsequences) as n → ∞ to the same function u∗ ≥ 0

un ⇀ u∗ in L2(−T, T ;H1(Ω)) and L2γ+1(Ω× (−T, T ))

∂tun ⇀ ∂tu∗ in Lq′(−T, T ; (W 1,q(Ω))′) and in L2(−T, T ; (W 1,r(Ω))′),

un → u∗ in Lp(Ω× (0, T )), p ∈ [1, 2γ + 1), and almost everywhere,

∇u
γ+1
2

n ⇀ ∇u
γ+1
2

∗ in L2(Ω× (0, T )).

We want to characterize u∗. Notice that from (2.2), we have for all T > 0,∫ T

−T

∫
Ω

∫
Ω
ωε(y)|∇un(x)−∇un(x− y)|2 dx dy ds

=

∫ tn+T

tn−T

∫
Ω

∫
Ω
ωε(y)|∇u(x)−∇u(x− y)|2 dx dy ds → 0 as n → ∞

by integrability on (0,∞). By weak-lower semicontinuity, in the limit∫ T

−T

∫
Ω

∫
Ω
ωε(y)|∇u∗(x)−∇u∗(x− y)|2 dx dy ds = 0

so that u∗(t) is constant in space for a.e. t ∈ [0, T ]. In fact, u∗(t) is constant in space for all
t ∈ [0, T ] because u∗ ∈ Cweak([−T, T ];Lγ+1(Ω)) (see Remark 1.4) so that for all φ ∈ C∞

c (Ω), the
function t 7→

∫
Ω u∗(t, x) divφ(x) dx is continuous. Similarly, from (2.2) and the Fatou lemma,

u∗ log

 u∗

p
1
γ

H

 (uγ∗ − pH) = 0, for a.e. t ∈ (−T, T ),

so that either u∗(t) = 0 or u∗(t) = p
1
γ

H . Since u∗ ∈ Cweak([−T, T ];Lγ+1(Ω)), the average
u∗(·) ∈ C([0, T ]) so that u∗ ≡ u∗ can attain only one of the values for all times.

Because Φ(u(t)) is non-increasing in time, it has a limit as t → ∞, say Φ∗. Then clearly

Φ∗ = limn→∞Φ(u(t+tn)) = Φ(u∗), and thus either Φ∗ = Φ(0) = |Ω| if u∗ = 0 or Φ∗ = Φ(p
1
γ

H) = 0

if u∗ = p
1
γ

H . Clearly this also implies that, given another sequence of times {tm}m, we can repeat
the same argument and extract a (non relabeled) subsequence {u(tm)}m converging to the same
constant u∗. This concludes the proof of Lemma 4.1.

Step 2. Stability of the equilibria. We complete Lemma 4.1 with the following

Lemma 4.2. Under notation of Lemma 4.1, if u∗ ≡ 0 then u0 = 0 almost everywhere in Ω.

Proof. Since Φ(u(t)) is nonincreasing in time and, by Lemma 4.1, Φ(u(t)) → |Ω|, we obtain

|Ω| = lim
t→∞

Φ(u(t)) ≤ Φ(u0) ≤ |Ω|.

Thus we infer Φ(u0) = |Ω|. Being the entropy function g : x 7→ x

p
1
γ
H

log

(
x

p
1
γ
H

)
− x

p
1
γ
H

+1 decreasing

for x ∈ [0, p
1
γ

H), and since u0 ≤ p
1
γ

H , it follows that u0 = 0 almost everywhere in Ω.
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Step 3. Existence of the Lq(Ω)-limit as t → ∞.

Lemma 4.3. Assume that u0 ̸≡ 0. Then it holds

lim
t→∞

u(t) = p
1
γ

H in Lq(Ω) ∀q ∈ [1, γ + 1).

Proof. First note that, the pointwise values u(t) as an Lγ+1(Ω)-function makes sense thanks to
the weak continuity obtained in Lemma 1.3. Now, we consider the decomposition of Φ:

Φ(u) =
1

p
1
γ

H

∫
Ω
u log

(u
u

)
dx+

∫
Ω
u log

 u

p
1
γ

H

 dx+

∫
Ω
(p

1
γ

H − u) dx

 (4.5)

and we study the limits of terms appearing in (4.5). Since u0 ̸≡ 0, from Lemma 4.1 we obtain
limt→∞Φ(u(t)) = Φ(p

1/γ
H ) = 0.

By Proposition 2.1, for any sequence {tn}n there exists a (nonrelabeled) subsequence such that,
for some κ,

u(tn) → κ ∈ [0, p
1
γ

H ]. (4.6)

We prove that κ = p
1
γ

H . Indeed, the function g : x 7→ x

p
1
γ
H

log

(
x

p
1
γ
H

)
− x

p
1
γ
H

+ 1 is convex and

continuous. As Φ(u(t)) =
∫
Ω g(u(t)) dx, by Jensen’s inequality we get

0 ≤ g(u(t)) ≤ 1

|Ω|
Φ(u(t)) → 0 as t → ∞

so that g(κ) = 0 and the claim follows. It follows that u(t) → p
1
γ

H as t → ∞.

Hence, passing to the limit in (4.5)∫
Ω
u(t) log

(
u(t)

u(t)

)
dx → 0 when k → ∞. (4.7)

From Lemma A.4 and (4.7), together with the fact that u(t) → p
1
γ

H as n → ∞, we then deduce

∥u(t)− p
1/γ
H ∥L1(Ω) → 0 when k → ∞.

Furthermore, by the bound in L∞
t Lγ+1

x given by the control of the energy E in Proposition 2.2,
we can deduce the convergence (1.18) by interpolation. The proof of Theorem 1.6 in the case of
a nonzero source term G is thus concluded.
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(a) Initial condition (b) Evolution at t = 0.03

(c) Evolution at t = 0.14 (d) Evolution at t = 0.25

Figure 1: We provide here 1D numerical simulations illustrating this theoretical result. We
assume γ = 10 and pH = 0.7. We thus have p

1/γ
H ≈ 0, 96. The initial condition is taken as a

double gaussian as in Figure (a).

4.2 Case G(p) = 0

When there is no source term, the solution converges to the mean value. The argument is a simple
consequence of the logarithmic Sobolev inequality and the Csiszár–Kullback–Pinsker inequality.
We refer to [43] for other systems where it is applied. We consider the relative entropy between
the solution u and a stationary state u∗, defined as

Φ(u|u∗) =
∫
Ω

(
u log

(
u

u∗

)
− u+ u∗

)
dx.

In our case u∗ = u0 a.e. in Ω. Notice that, by the conservation of mass, we have

Φ(u|u) =
∫
Ω
u log

(u
u

)
dx.
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Since u(·) ≡ u0, we see that Φ(u|u) satisfies the identity (or at least the inequality for weak
solutions): for almost any t ≥ 0,

dΦ(u|u)
dt

+
1

2ε2

∫
Ω

∫
Ω
ωε(y)|∇u(x)−∇u(x− y)|2 dx dy +

∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u|
γ+1
2

∣∣∣2 dx = 0.

The generalized logarithmic Sobolev inequality [43, Section 3.1] provides us the exponential decay
of the relative entropy. Indeed we have

Lemma 4.4. For any m ≥ (d− 2)+/d, there exists C(Ω,m) such that∫
Ω
|∇(u

m
2 )|2 dx ≥ C(Ω,m)um−1

∫
Ω
u log

(u
u

)
dx.

In our case m = γ+1 and u ≡ u0 is bounded from below by a positive constant since we consider
an initial condition u0 ̸≡ 0. Therefore, by the Gronwall Lemma we conclude that the entropy Φ
experiences an exponential decay as t → ∞:

dΦ(u|u)
dt

+ C(Ω, γ)uγ0Φ(u|u) ≤ 0

Therefore, we have, for some C = C(Ω, γ,Φ(u0), u0),

Φ(u|u) ≤ Ce−Ct, ∀t ≥ 0.

To prove that this implies the exponential decay of the solution we use the Csiszár–Kullback–Pinsker
inequality of Lemma A.4: there exists C(Ω) such that

Φ(u|u) ≥ C(Ω)∥u− u0∥2L1(Ω).

The exponential decay in L1(Ω) of u towards u0 then easily follows. By the L∞(0, T ;Lγ+1(Ω))
bound given by the control of the energy E (which is the same as in the case with a source term
G given in Proposition 2.2), we can in conclusion deduce the exponential convergence (1.19) by
interpolation. This ends the proof of Theorem 1.6.

4.3 Longtime behavior of the local Cahn-Hilliard equation

The nonlocal Cahn-Hilliard equation can be also seen as an approximation of the local Cahn-
Hilliard equation: 

∂tu− div(u∇µ) = uG(p) in Ω× (0, T ),

µ = p−∆u, p = uγ ,

u(0) = u0 in Ω.

(4.8)

This follows, at least formally, with a Taylor expansion, using the symmetry of the kernel ωε

in the operator Bε of (1.1), and for a rigorous proof we refer, e.g., to [23]. Therefore, one may
wonder whether the previous results obtained for the nonlocal Cahn-Hilliard equation also hold
for the local one. It turns out that for the convergence to the stationary states, the result is the
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same. Indeed, one mainly uses arguments based on the entropy, so that the nonlocal term does
not play a role: concerning the entropy Φ, we can consider again (1.6) and formally get for (4.8)

d

dt
Φ(u) +

1

p
1
γ

H

∫
Ω
|∆u|2 dx+

1

p
1
γ

H

∫
Ω

4γ

(γ + 1)2

∣∣∣∇|u|
γ+1
2

∣∣∣2 dx−
∫
Ω
u log

 u

p
1
γ

H

G(p) dx = 0,

(4.9)

which is very similar to the result in Proposition 2.2. Concerning the energy, we set

El(u) :=
1

2

∫
Ω
|∇u|2 dx+

∫
Ω

u1+γ

1 + γ
dx

and thus

d

dt
El(u) +

∫
Ω
u|∇µ|2 dx =

∫
Ω
uG(p)µdx.

Now we observe that, integrating by parts,∫
Ω
uG(p)µdx =

∫
Ω
u(pH − p)p dx−

∫
Ω
u(pH − p)∆udx

=

∫
Ω
u(pH − p)p dx+

∫
Ω
|∇u|2(pH − p) dx−

∫
Ω
u∇p · ∇udx

=

∫
Ω
u(pH − p)p dx+

∫
Ω
|∇u|2(pH − p) dx− γ

∫
Ω
p|∇u|2 dx.

Moreover, notice that, since the relation (1.11) still holds with the same proof,

pH

∫
Ω
updx ≤ 1

2

∫
Ω
up2 dx+

p2H
2

∫
Ω
udx ≤ 1

2

∫
Ω
up2 dx+ C.

Then we can rewrite the energy inequality as

d

dt
El(u) +

∫
Ω
u|∇µ|2 dx+

1

2

∫
Ω
p2udx+

∫
Ω
|∇u|2p dx+ γ

∫
Ω
p|∇u|2 dx

≤
∫
Ω
|∇u|2 dx+ C ≤ C(El(u) + 1),

which is again very similar to the one obtained in Proposition 2.2 for the nonlocal case. Therefore,
with these estimates we can basically perform again all the arguments of Section 4 and obtain
again the same result as in Theorem 1.6. Note that in the local case, differently from the nonlocal
one, we can also repeat the same arguments in the case of a smooth bounded domain Ω ⊂ Rd

with homogeneous Neumann boundary conditions u∇µ · n = 0 and ∇u · n = 0 on ∂Ω× (0,∞),
where n is the outward unit normal.

Remark 4.5. The incompressible limit, γ → ∞, is very different and remains an open question
in the local Cahn-Hilliard case. Indeed, obtaining an equation for the pressure p from which
to deduce a uniform-in-γ L2(0, T ;H1(Ω))-control on p seems still out of reach. Therefore no
analogous of Theorem 1.5 can be stated in this local case.
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A Technical tools

Several tools have been used to carry out some proofs. First, we present a lemma about geometric
convergence of numerical sequences, whose proof can be easily obtained by induction (see, e.g.,
[36, Ch.2, Lemma 5.6] ):

Lemma A.1. Let {yn}n∈N∪{0} ⊂ R+ satisfy the recursive inequality

yn+1 ≤ Cbny1+ϵ
n , ∀n ≥ 0, and y0 ≤ θ := C− 1

ϵ b−
1
ϵ2 , (A.1)

for some C > 0, b > 1 and ϵ > 0. Then, yn → 0 for n → ∞ with geometric rate

yn ≤ θb−
n
ϵ , ∀n ≥ 0. (A.2)

Next, we state a theorem concerning the absolute continuity of some integrals of convex functions
in R, whose proof can be found, e.g. in [32, p.101]:

Theorem A.2. Let T > 0 and let h : R → R be a convex and lower semicontinuous function.
Assume that

• f ∈ L2(0, T ;H1(Ω)) and ∂tf ∈ L2(0, T ; (H1(Ω))′),

• g(x, t) ∈ ∂h(x, t) for almost every (x, t) ∈ Ω× (0, T ),

• g ∈ L2(0, T ;H1(Ω)).

Then, the function t 7→
∫
Ω h(f(x, t)) is absolutely continuous on [0, T ] and,

d

dt

∫
Ω
h(f) dx = ⟨∂tf, g⟩ for almost any t ∈ (0, T ).

We then propose a control on the H1(Ω)-norm related to the use of ωε.

Lemma A.3. There exists ε0 > 0 and a constant C such that for ε ∈ (0, ε0) and all f ∈ L2(Ω)
we have

∥f − f∥2L2(Ω) ≤
C

2ε2

∫
Ω

∫
Ω
ωε(y)|f(x)− f(x− y)|2 dx dy, (A.3)

where f is the average of f over Ω. Similarly, for all α, there exists ε0(α) > 0 and constant
C(α) such that for all ε ∈ (0, ε0) and all f ∈ H1(Ω) we have

∥f∥2H1(Ω) ≤
α

2ε2

∫
Ω

∫
Ω
ωε(y)|∇f(x)−∇f(x− y)|2 dx dy + C(α)∥f∥2L1(Ω). (A.4)
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Proof. The proof is identical to the one in [23, Lemma C.3] by substituting the norm ∥ · ∥L2(Td)

with the norm ∥·∥L1(Td). Indeed, with the notation of the proof of that Lemma, also n∥gn∥L1(Td) <

1 implies that the limit function g = 0, exactly as in the case L2(Td).

In conclusion, we recall the Csiszár–Kullback–Pinsker inequality (see, e.g., [6]), which is essential
to study the asymptotic behavior of weak solutions

Lemma A.4. For any non-negative u ∈ L1(Ω)

4|Ω|u
∫
Ω
u log

(u
u

)
dx ≥ ∥u− u∥2L1(Ω).
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