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DIMENSIONAL REDUCTION FOR A SYSTEM OF 2D ANYONS

Anyons with a statistical phase parameter ∈ (0, 2) are a kind of quasiparticles that, for topological reasons, only exist in a 1D or 2D world. We consider the dimensional reduction for a 2D system of anyons in a tight wave-guide. More specifically, we study the 2D magnetic-gauge picture model with an imposed anisotropic harmonic potential that traps particles much stronger in the -direction than in the -direction. We prove that both the eigenenergies and the eigenfunctions are asymptotically decoupled into the loose confining direction and the tight confining direction during this reduction. The limit 1D system for the -direction is given by the impenetrable Tonks-Girardeau Bose gas, which has no dependency on , and no trace left of the long-range interactions of the 2D model.

1. INTRODUCTION 1.1. Motivation. Fundamental particles are sorted into two symmetry classes: bosons (e.g. photons and other force carriers) and fermions (e.g. electrons, quarks and other matter particles). Bosons follow Bose-Einstein statistics, while fermions obey Fermi-Dirac statistics and hence comply with the Pauli exclusion principle. For topological reasons, particles with statistics in between those of bosons and fermions cannot exist except in a one or twodimensional system. Such so-called anyons can thus exist only as emergent quasi-particles.

Recent experiments [START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF][START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF] provided firm evidence that the charge carriers in fractional quantum Hall systems [START_REF] Goerbig | Quantum Hall effects[END_REF][START_REF] Laughlin | Nobel lecture: Fractional quantization[END_REF][START_REF] Jain | Composite fermions[END_REF][START_REF] Rougerie | Some contributions to many-body quantum mathematics[END_REF] behave like anyons. This is due to the strong correlation between electrons under a strong magnetic field, leading to the formation of incompressible quantum liquids such as the Laughlin state. Charge carriers couple to excitations thereof (Laughlin quasi-particles or quasi-holes), and thereby can acquire exotic quantum statistics. In these experiments, anyons are observed via transport along one-dimensional edges of the two-dimensional samples, which provides part of our motivation to study the dimensional reduction for 2D anyons trapped in 1D.

There is essentially a single agreed-upon model for 2D anyons, which was derived formally as an emergent description in fractional quantum Hall physics [START_REF] Arovas | Fractional statistics and the quantum Hall effect[END_REF][START_REF] Rougerie | Emergence of fractional statistics for tracer particles in a Laughlin liquid[END_REF][START_REF] Lambert | On quantum statistics transmutation via magnetic flux attachment[END_REF]. On the other hand, there are several different inequivalent models for 1D anyonic behavior [START_REF] Myrheim | Topological aspects of low dimensional systems[END_REF][START_REF] Ouvry | Anyons and lowest Landau level anyons[END_REF][START_REF] Girardeau | Anyon-fermion mapping and applications to ultracold gases in tight waveguides[END_REF][START_REF] Andrić | Quantum fluctuations of the Chern-Simons theory and dynamical dimensional reduction[END_REF][START_REF] Fresta | Approaching off-diagonal long-range order for 1 + 1-dimensional relativistic anyons[END_REF][START_REF] Moosavi | Exact Dirac-Bogoliubov-de Gennes dynamics for inhomogeneous quantum liquids[END_REF][START_REF] Rabello | 1d generalized statistics gas: A gauge theory approach[END_REF][START_REF] Aglietti | Anyons and chiral solitons on a line[END_REF][START_REF] Kundu | Exact solution of double function Bose gas through an interacting anyon gas[END_REF][START_REF] Batchelor | One-dimensional interacting anyon gas: Lowenergy properties and haldane exclusion statistics[END_REF][START_REF] Santos | Anyon Hubbard model in one-dimensional optical lattices[END_REF][START_REF] Tang | Ground-state properties of anyons in a one-dimensional lattice[END_REF][START_REF] Bonkhoff | Bosonic continuum theory of one-dimensional lattice anyons[END_REF]. Here we prove that, to leading order, 2D anyons confined to a 1D wave-guide always behave as fermions, independently of the original statistical parameter ∈ (0, 2). The different proposed 1D anyons models hence seem to describe each a physics of their own, a priori unrelated to 2D anyons, but accessible to different emergence phenomena [START_REF] Edmonds | Simulating an interacting gauge theory with ultracold bose gases[END_REF][START_REF] Valentí-Rojas | Synthetic flux attachment[END_REF][START_REF] Cardarelli | Engineering interactions and anyon statistics by multicolor lattice-depth modulations[END_REF][START_REF] Chisholm | Encoding a onedimensional topological gauge theory in a Raman-coupled Bose-Einstein condensate[END_REF][START_REF] Frölian | Realizing a 1d topological gauge theory in an optically dressed BEC[END_REF]. Our results were announced in [START_REF] Yang | Anyons in a tight wave-guide and the Tonks-Girardeau gas[END_REF], where the reader can find more physics background and discussion.

1.2. The model. Formally, one might want to describe ≥ 2 anyons by a (multi-valued) complex many-body wave-function Ψ ∈ 2 (ℝ ) in a -dimensional space ℝ satisfying

Ψ(… , , … , , … ) = i Ψ(… , , … , , … ) (1.1)
for some constant . The cases = 0, 1 correspond to usual bosons and fermions respectively, and one can restrict to ∈ [0, 1) by periodicity and complex conjugation. Free, non-relativistic, 2D anyons of statistics parameters ≠ 0, 1 would be described by acting on such wave-functions with a usual Schrödinger Hamiltonian

∑ =1 -Δ + ( ) .
Studying the spectral properties of this operator on an appropriate domain incorporating a symmetry such as (1.1) would require modelling wave-functions as sections of line bundles, a formalism that one often prefers to bypass for analysis purposes [START_REF] Myrheim | Topological aspects of low dimensional systems[END_REF][START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF]. This means using the so-called "magnetic gauge picture" as we explain next.

Let us consider the 2D system of anyons represented by the Hamiltonian

 2D ∶= ∑ =1 -Δ + ( )
defined on the domain of anyonic wave "functions" [START_REF] Myrheim | Topological aspects of low dimensional systems[END_REF], where, for some > 0

( ) = ( , ) = 2 + 1 2 2 .
We write an anyonic wave "function" Φ as

Φ( 1 , … , ) = ∏ 1≤ < ≤ i arg( -) Ψ( 1 , … , ),
where Ψ is some symmetric (i.e. bosonic) function in 2 sym (ℝ 2 ) and arg is the angle of as a two-dimensional vector in the plane. The multi-valued phase related to this angle can be written as

i arg = | | for = ( , ) and = + i ,
and its derivative with respect to on a branch of is

i arg = i ⟂ | | 2 i arg with ⟂ = (-, ).
With this observation, one can check that acting on Φ with  2D (anyonic gauge-picture) is formally equivalent to acting on the corresponding Ψ with the modified Hamiltonian (magnetic gauge-picture)

2D ∶= ∑ =1 2 + ( ) = ∑ =1 -i + ( ) 2 + ( ) , (1.2) 
where

( ) ∶= ∑ ≠ - ⟂ | | -| | 2 ,
i.e. it is equivalent to study the operator 2D defined on 2 sym (ℝ 2 ). Note that is a function on ℝ 2 instead of on ℝ 2 , we write it in this form for the sake of simplicity. The effective gauge vector potential is associated with a magnetic field perpendicular to the plane, of magnitude

curl ∶= ⟂ ⋅ = ∑ ≠ Δ ln | | -| | = 2 ∑ ≠ ( -),
where we denoted ⟂ = (-, ).

Hence, in this model, particles feel one another as carrying Aharonov-Bohm magnetic fluxes of intensity 2 . This generates the long-range magnetic interactions in (1.2). Throughout the paper, we use the above magnetic gauge picture for our system of 2D anyons, as in e.g. [START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF]Local exclusion principle for identical particles obeying intermediate and fractional statistics[END_REF][START_REF]Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics[END_REF]. We investigate the most stable states of the above Hamiltonian, i.e. the low-lying energy spectrum. Letting the parameter in 2D go to 0, intuitively, the trapping potential will force particles together around the one-dimensional line = 0, and the vector potential will keep particles apart. We find that the Tonks-Girardeau gas is the correct limit 1D system on = 0, i.e. we find a model of impenetrable bosons in one dimension, described by the free Hamiltonian

1D ∶= ∑ =1 -2 + 2
but restricted to the domain of symmetric functions vanishing on diagonals,

 1D ∶= ∈ 2 (ℝ ), ≡ 0 on 1D , where 1D ∶= ( 1 , … , ) ∈ ℝ ∶ = for some ≠ .
One can find more details in Section 2 below.

We note that the repulsive effect of the vector potential is well-documented in the literature (see e.g. [START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF]Local exclusion principle for identical particles obeying intermediate and fractional statistics[END_REF][START_REF]Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics[END_REF][START_REF] Larson | Exclusion bounds for extended anyons[END_REF][START_REF] Girardot | A Lieb-Thirring inequality for extended anyons[END_REF] for rigorous results). In our situation of strong confinement along one spatial direction, this repulsion is so strong that it forces a kind of hard-core exclusion upon the particles. This is in some sense our main finding here.

The movement in the direction will be, in the → 0 limit, frozen in the ground state of the harmonic oscillator

HO ∶= -2 + 2 2 , namely ( ) ∶= √ -1 2 - 2 2 .
(1.

3)

The corresponding eigenvalue (ground state energy) is ∶= 1 .

1.3. Main results and discussion. We define our Hamiltonians as Friedrichs extensions of non-negative quadratic forms. Regarding the 2D Hamiltonian, we close the quadratic form starting from the core ∞ ℝ 2 ⧵ 2D , where 2D ∶= ( 1 , … , ) ∈ ℝ 2 ∶ = for some ≠ , and then consider the unique self-adjoint extension 2D whose domain is included in the form closure of the above. Other self-adjoint extensions exist [START_REF] Oddis | Hamiltonians for two-anyon systems[END_REF][START_REF] Correggi | Magnetic perturbations of anyonic and Aharonov-Bohm Schrödinger operators[END_REF] but shall not be considered hereafter. More details on these definitions will be provided in Section 2 below.

Our main results are stated as follows: Theorem 1.1 (Relation between energies). Let 2D and 1D be the -th eigenvalues of 2D and 1D respectively (counting the multiplicity), and let be the ground energy of HO . For any fixed , we have, in the → 0 limit, 2D = + 1D + (1).

Theorem 1.2 (Relation between eigenfunctions).

With the same notation as in Theorem 1.1, let {Ψ 2D } be an orthonormal basis of eigenfunctions corresponding to the eigenvalues { 2D } . Then, after extracting a subsequence, there exists an orthonormal basis of eigenfunctions { 1D } corresponding to eigenvalues { 1D } such that, in the → 0 limit, for any fixed ,

Ψ 2D -1D → 0 strongly in 2 (ℝ 2 )
and → 1D strongly in 1 (ℝ ∖ 1D ), where

( 1 , … , ) = ∏ =1 ( ) (1.4) 
with as in (1.3) and

( 1 , … , ) ∶= ∫ ℝ Ψ 2D ( 1 , … , ) i ( 1 ,…, ) ( 1 , … , )d 1 ⋯ d , (1.5) ( 1 , … , ) = ∑ 1≤ < ≤ arctan - - . (1.6)
We emphasize the role of the phase factor

i ( 1 ,…, ) = ∏ < i arctan - - apparent in (1.5).
Extracting it from the many-body wave-functions has the effect of gauging the long-range magnetic interactions away, explaining that our limit model does not depend on . The only remnant of the 2D interactions is the hard-core constraint upon particle encounters imposed in the domain of the 1D Hamiltonian. As we explain in more detail in [START_REF] Yang | Anyons in a tight wave-guide and the Tonks-Girardeau gas[END_REF], failing to perform this singular gauge transformation would lead to a limit 1D model of Calogero-type

Cal ∶= ∑ =1 -2 + | | 2 + 2 2 ∑ 1≤ < ≤ 1 | -| 2 ,
which is also a candidate for the description of 1D anyons. Indeed, the energy of an ansatz

( 1 , … , ) ( 1 , … , )
under 2D is almost the sum of and the energy of under Cal instead of 1D . The correct ansatz actually is of the form

( 1 , … , ) ( 1 , … , ) -i ( 1 ,…, ) (1.7) 
with as in (1.6), whose gradient is close to and thus compensates its action on in the above ansatz. One may check that = (1.8)

when ≠ for all ≠ , with a distributional component on the 1D diagonals {∃ ≠ , = } that gives no contribution when combined with the vanishing of trial states on this set. Note that is invariant under the exchange of particle labels, so that (1.7) does have the necessary bosonic symmetry, unlike the function obtained by changing (1.6) into

∑ 1≤ < ≤ arg - .
The proof for Theorem 1.1 will be separated into proving two opposite inequalities in two separate sections, upper and lower bounds for 2D . Theorem 1.2 follows from these sharp energy bounds, as we prove in the last section. In essence we follow a Γ-convergence approach, which is an equivalent way of checking convergence of operators in resolvent sense [START_REF] Maso | An introduction to Γ-convergence[END_REF].
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PRELIMINARIES

We first collect a few general facts. The more technically crucial in the sequel is the Hardy inequalities for 2D anyons that we recall and/or improve below. Before this, we briefly recall the definition of the operators of interest as Friedrichs extensions of non-negative quadratic forms. We conclude the section with standard definitions for the spectral data we are interested in, and by recalling elements of Girardeau's exact solution for the impenetrable 1D Bose gas [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF][START_REF] Minguzzi | Strongly interacting trapped one-dimensional quantum gases: Exact solution[END_REF][START_REF] Mistakidis | Cold atoms in low dimensions -a laboratory for quantum dynamics[END_REF].

2.1. Domain of the Hamiltonians. We start by defining the domains on which the operators 2D and 1D will be defined hereafter. Throughout the paper, we use Friedrichs extensions to define the Hamiltonians in a weak (distributional) sense. For a more general discussion on that topic, readers can refer to, for example, [31, Chapters 2 and 3] or [START_REF] Reed | Methods of Modern Mathematical Physics. I. Functional analysis[END_REF][START_REF]Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness[END_REF].

2.1.1. 2D model. We first discuss 2D . As an operator on 2 sym (ℝ 2 ), it can clearly be defined on the subspace

 2D ∶=  ∞ (ℝ 2 ∖ 2D ) ∩ 2 sym (ℝ 2 ), where 2D represents the diagonals in ℝ 2 , i.e. 2D ∶= ( 1 , … , ) ∈ ℝ 2 ∶ = for some ≠ and  ∞ (ℝ 2 ∖ 2D
) is the set of smooth functions with compact support contained in ℝ 2 ∖ 2D . Our operator is symmetric and corresponds to the quadratic form  2D defined by

 2D ( ) ∶= ⟨ | 2D ⟩ 2 = ∑ =1 ∫ ℝ 2 | | 2 + ( )| | 2 , ∈  2D .
Since the above is non-negative, i.e.  2D ( ) ≥ 0 for all ∈  2D , it is closable and we denote its closure by ( 2D ,  ( 2D )), where  ( 2D ) is the completion of

 2D under the norm √  2D (⋅) + ‖⋅‖ 2
and is a dense subspace of 

 ( 2D ) = ∈ 2 sym (ℝ 2 ) ∶ ∀ , , | | ∈ 2 (ℝ 2 )
is independent of [36, Theorem 5].

2.1.2. 1D model. Our approach to 1D is similar. It can be defined naturally on the dense subspace  1D ∶=  ∞ (ℝ ∖ 1D ) ∩ 2 sym (ℝ ) that is a nice enough subspace of symmetric functions vanishing on diagonals. Clearly, ( 1D ,  1D ) is symmetric and its quadratic form is

 1D ( ) ∶= ⟨ | 1D ⟩ 2 = ∑ =1 ∫ ℝ | | | | | | 2 + | | 2 | | 2 , ∈  1D ,
which is also bounded below by 0. Then its closure is defined on  ( 1D ), the completion of  1D under the norm

√  1D (⋅) + ‖⋅‖ 2 i.e.  ( 1D ) = ∈ 1 0 (ℝ ∖ 1D ) ∩ 2 sym (ℝ ) ∶ ∀ , ∈ 2 ℝ , where 1 0 (ℝ ∖ 1D ) is the completion of  ∞ (ℝ ∖ 1D
) under the natural 1 -norm. The Friedrichs extension of ( 1D ,  1D ) has domain ( 1D ) contained in  ( 1D ). According to the trace theorem [15, Section 5.5], there exists a unique bounded linear operator

∶ 1 (ℝ ) → ⨁ 1≤ < ≤ 2 ( 1 , … , ) ∈ ℝ ∶ = (2.1) such that = ( | = ) < if ∈ 1 (ℝ ) ∩ (ℝ ).
A function in 1 (ℝ ) has zero trace on the diagonals 1D , i.e. = 0, if and only if it is in 1 0 (ℝ ∖ 1D ).

Hardy inequalities for 2D

anyons. An important ingredient of our proof below is that the magnetic-gauge picture 2D Hamiltonian defined above controls the inverse square distance between any pair of particles. Such Hardy-type inequalities were investigated in [START_REF] Hoffmann-Ostenhof | Many-particle Hardy Inequalities[END_REF][START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF][START_REF]Local exclusion principle for identical particles obeying intermediate and fractional statistics[END_REF][START_REF] Larson | Exclusion bounds for extended anyons[END_REF][START_REF] Qvarfordt | Exchange and exclusion in the non-abelian anyon gas[END_REF], and we recall some of the known results here. We first consider the case where two particles out of are isolated from the others. A Hardy inequality for any ≠ 0 follows from [START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF] in this case. We next deal with the general case to obtain an inequality for any ≠ 0 by combining the isolated case with estimates from [START_REF] Hoffmann-Ostenhof | Many-particle Hardy Inequalities[END_REF].

Theorem 2.1 (Isolated two-anyon Hardy).

Let be an open subset of ℝ 2( -1) , and let ∈ (0, ∞] be a constant. Then 

( ; , 3 , … , ) ∶= ⟂ | | 2 + ∑ =3 + 2( -) ⟂ | | + 2( -) | | 2 + -2( -) ⟂ | | -2( -) | | 2
is antipodal-antisymmetric with respect to . By definition of , we have

| | < 2 | | -| | , ∀ ≥ 3. Hence, ∧ = 0 on ∖{ } and ∫ Γ ⋅ d = 2
for any simple loop Γ in ∖{ } enclosing { }. Applying [34, Lemma 2] to , we obtain Theorem 2.4 (Many-anyon Hardy for ∈ (0, 2)).

Let ∈ 2 sym (ℝ 2 ) such that ∀ , | | ∈ 2 (ℝ 2
), then we have

∑ =1 ∫ ℝ 2 | | | | 2 ≥ 2 ( -1) 2 + 3( -2) ∑ 1≤ < ≤ ∫ ℝ 2 | | 2 | -| 2 .
with as in (2.3).

Observe that the constant in the above scales as -2 for large , which is worst than the optimal -1 obtained in [START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF]Theorem 4] for special values of . We shall work at a fixed in the sequel.

Proof. With the same notation as in Theorem 2.1, we let be ∞ and let be ℝ 2( -1) . It is clear that

ℝ 2 ∖ ∞ = ⋃ =3 , where ∶= ( 1 , … , ) ∈ ℝ 2 ∶ | | 1 -2 | | ≥ | | 1 + 2 -2 | | . Hence, for ( 1 , … , ) ∈ , we have | | 1 -2 | | ≥ max | | 1 -| | , | | 2 -| | , and then 2 ≤ 3 | | 1 -2 | | 2 ,
where 2 is defined in Lemma 2.2. Therefore, with the help of the estimate (2.5), it turns out that

∑ =3 ∫ ℝ 2 | | 1 | | 2 + | | 2 | | 2 + | | | | 2 ≥ ∑ =3 3 ∫ ℝ 2 | | 2 2 ≥ ∑ =3 3 ∫ | | 2 2 ≥ ∑ =3 ∫ | | 2 | 1 -2 | 2 ≥ ∫ ℝ 2 ∖ ∞ | | 2 | 1 -2 | 2 . (2.6) Combining (2.
2) with (2.6), we obtain

-2 + -1 ∫ ℝ 2 | | 1 | | 2 + | | 2 | | 2 + ∑ =3 ∫ ℝ 2 | | | | 2 ≥ ∫ ℝ 2 | | 2 | 1 -2 | 2 . (2.7)
Since is symmetric, the estimate (2.7) above implies

-2 + -1 ∫ ℝ 2 | Corollary 2.5 ( 1 -

regularity).

Consider the quadratic form domain of the harmonic oscillator

1 (ℝ 2 ) ∶= ∈ 1 (ℝ 2 ) ∶ ∀ , | | ∈ 2 (ℝ 2 ) .
Then the domain of the quadratic form of 2D ,  ( 2D ), is contained in 1 (ℝ 2 ).

Proof. Let be in  ( 2D ), then ∈ 2 sym (ℝ 2 ) and | | ∈ 2 (ℝ 2 ) for all . Using the Cauchy-Schwarz inequality and applying Theorem 2.4 to , we have

∫ ℝ 2 | | | | | | 2 ≤ ∑ 1≤ ≤ , ≠ ∫ ℝ 2 | | 2 | -| 2 < ∞, which implies that | | ∈ 2 (ℝ 2 ). Since | | is also in 2 (ℝ 2 ), | | | | | | = | | | i - | | | is clearly in 2 (ℝ 2
) for all , which concludes the proof.

Eigenvalues and eigenfunctions.

2.3.1. 1D model. The Tonks-Girardeau gas is exactly soluble via Bose/Fermi mapping [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF][START_REF] Minguzzi | Strongly interacting trapped one-dimensional quantum gases: Exact solution[END_REF][START_REF] Mistakidis | Cold atoms in low dimensions -a laboratory for quantum dynamics[END_REF]. This means that there is a one-to-one correspondence between its eigenfunctions and those of the free Fermi gas (Slater determinants). Any eigenfunction 1D of 1D is of the form

1D ( 1 , … , ) = ∏ < sgn( -) det , ( ( )) 
,

where 1 , … , are eigenfunctions of the one-particle harmonic oscillator

-+ 2 .
The corresponding eigenvalue 1D is the sum of the one-particle eigenvalues corresponding to 1 , … , . With this correspondence, we know that the eigenfunctions of 1D are all of the form

1D ( 1 , … , ) = ( 1 , … , ) ∏ 1≤ < ≤ | | | - | | | -( 2 1 +⋯+ 2 )∕2
for some polynomial , and that they form an orthonormal basis of 2 (ℝ ).

2D model.

As regards the eigenfunctions of 2D , we prove that

Proposition 2.6 (Diagonalization of 2D

).

There exists an orthonormal basis (Ψ 2D ) ∈ℕ * of 2 sym (ℝ 2 ), and a non-decreasing divergent sequence ( 2D ) ∈ℕ * such that 2D Ψ 2D = 2D Ψ 2D .

Proof. Since the quadratic form  2D is non-negative,

2D + 1 ∶ ( 2D ) → 2 sym (ℝ 2
) is invertible and

( 2D + 1) -1 ∶ 2 sym (ℝ 2 ) → ( 2D ) ⊂ 2 sym (ℝ 2
) is bounded. With the help of Corollary 2.5 above and the fact that 1 (ℝ 2 ) is compactly embedded in 2 (ℝ 2 ), we deduce that ( 2D + 1) -1 is a compact operator. Applying the spectral theorem [31, Chapters 4 and 5], there exists an orthonormal basis (Ψ 2D ) ∈ℕ * of 2 sym (ℝ 2 ), and a decreasing vanishing sequence ( ) ∈ℕ * such that

( 2D + 1) -1 Ψ 2D = Ψ 2D .
This implies that such Ψ 2D 's are all in ( 2D ) and

2D Ψ 2D = ( -1 -1)Ψ 2D ,
which concludes the proof.

We shall characterize eigenvalues by standard min-max formulae [31, Section 5.5]: Theorem 2.7 (Courant-Fischer min-max formulae). Let ( , ( )) be a bounded-below self-adjoint operator, and let (,  ( )) be its corresponding closed quadratic form. Then

∶= inf subspace ⊂( ) dim = sup Ψ∈ , ‖Ψ‖=1 ⟨Ψ| Ψ⟩ = inf subspace ⊂ ( ) dim = sup Ψ∈ , ‖Ψ‖=1 (Ψ)
is the -th eigenvalue of counted with multiplicity or is inf ( ), the bottom of the essential spectrum of .

Thanks to the diagonalization property of 2D and 1D , we know that they have empty essential spectrum. Hence, their eigenvalues can be characterized by the min-max formulae above.

ENERGY UPPER BOUNDS

In this section, we bound the 2D eigenvalues from above by constructing appropriate trial states: Theorem 3.1 (Upper bounds for 2D eigenvalues). Let 2D and 1D be the -th eigenvalues of 2D and 1D respectively (counting the multiplicity), and let be the ground energy of HO . Then we have the following inequality:

2D ≤ + 1D .
Proof. According to the min-max formulae in Theorem 2.7, the energy 2D can be written as 2D = inf linearly independent

Ψ 1 ,…,Ψ ∈ ( 2D ) sup ‖Ψ‖ 2 (ℝ 2 ) =1 Ψ∈span{Ψ 1 ,…,Ψ }  2D (Ψ). (3.1) 
We hence obtain an upper bound for 2D by constructing trial states of the form

Ψ( 1 , … , ) = ( 1 , … , ) ( 1 , … , ) -i ( 1 ,…, ) (3.2) 
with ∈  ( 1D ), and as in (1.4) and (1.6) respectively. Notice that is smooth away from the -direction diagonals, i.e. is well-defined and differentiable on

Λ 0 ∶= ( 1 , … , ) ∈ ℝ 2 , | -| > 0, ∀1 ≤ < ≤ . ( 3.3) 
One can check that has a gap on the -direction diagonals, hence, fails to be in 1 loc (ℝ 2 ), but is however in 1 loc (Λ 0 ). A direct calculation based on (1.8) yields

-i = -i Ψ i = -i Ψ i + Ψ i = -i + Ψ i = Ψ i (3.4)
in the sense of distributions in  ′ (Λ 0 ). Hence Ψ ∈ 2 (Λ 0 ). But ∈  ( 1D ) vanishes on the diagonals and thus Ψ is continuous across the components of Λ 0 despite the jumps in its phase. It follows that (3.4) also holds around the singularity of , i.e. can be extended to  ′ (ℝ 2 ). Hence, Ψ is in 2 (ℝ 2 ), and then the trial state Ψ is indeed in  ( 2D ) with the energy relation:

 2D (Ψ) = ∑ =1 ∫ ℝ 2 | | | Ψ | | | 2 + ( )|Ψ| 2 = ∑ =1 ∫ ℝ 2 | + 1 2 | | 2 | | 2 | | 2 =  1D ( ) + . ( 3.5) 
Take now 1D 1 , … , 1D to be orthonormal eigenfunctions for the 1D eigenvalues 1D 1 , … , 1D respectively. The corresponding trial states as in (3.2) are clearly orthonormal in 2 (ℝ 2 ). Using (3.1) and (3.5), we obtain

2D ≤ sup Ψ= -i , ∈span{ 1D 1 ,…, 1D }  2D (Ψ), = + sup ∈span{ 1D 1 ,…, 1D }  1D ( ) = + 1D ,
where the suprema are over 2 -normalized functions. This concludes the proof of Theorem 3.1.

ENERGY LOWER BOUNDS

In this section, we will conclude the proof of Theorem 1.1 by proving the lower bounds matching the upper bounds of Theorem 3.1.

Theorem 4.1 (Lower bounds for 2D eigenvalues).

Let 2D and 1D be the -th eigenvalues of 2D and 1D respectively (counting the multiplicity), and let be the ground energy of HO . Then

lim inf →0 2D - ≥ 1D .
Let Ψ 2D be an eigenfunction of the 2D Hamiltonian, corresponding to the eigenvalue 2D . Recall that defined in (1.4) is strictly positive, so that we can rewrite Ψ 2D as

Ψ 2D ( 1 , … , ) = Φ ( 1 , … , ) ( 1 , … , ).
Then we can express the energy 2D in terms of Φ and as follows: With the same notation as above, the following identity holds:

To make this idea more rigorous, we express some properties of { , } in terms of the weighted Sobolev spaces

2 ℝ 2 ∶= 2 ℝ 2 ; 2 1 ( 1 , … , )d 1 ⋯ d , 1 Λ 0 ∶= 1 Λ 0 ; 2 1 ( 1 , … , )d 1 ⋯ d . Proposition 4.3 (Convergence of { , } ).
After possibly extracting a subsequence, , → 0, strongly in 2 (Ω ) for any bounded subset Ω ⊂ ℝ 2 and weakly in 1 Λ 0 with Λ 0 as in (3.3). Furthermore, the limit 0, ( 1 , … , ) = 0, ( 1 , … , ) ∈ 1 (ℝ ∖ 1D ) has no dependence on the -coordinates, and it satisfies the following property:

lim inf →0 2D - ≥ ∑ =1 ∫ ℝ ∖ 1D | | | 0, | | | 2 + ∫ ℝ | | 2 | | 0, | | 2 . (4.8)
Proof. From (4.7) we deduce that { , } is bounded in 1 (Λ 0 ). According to the Banach-Alaoglu Theorem, we can extract a (not relabeled) subsequence converging weakly to some function 0, in the Hilbert space 1 Λ 0 . Because of the coefficient -1 multiplying the -derivatives in (4.7), we deduce that the limit 0, only depends on the -coordinates. Then we have

lim inf →0 ‖ ‖ , ‖ ‖ 2 ( Λ 0) ≥ ‖ ‖ 0, ‖ ‖ 2 ( Λ 0) = ‖ ‖ 0, ‖ ‖ 2 (ℝ ∖ 1D ) = ‖ ‖ 0, ‖ ‖ 2 (ℝ ) , lim inf →0 ‖ ‖ ‖ , ‖ ‖ ‖ 2 ( Λ 0) ≥ ‖ ‖ ‖ 0, ‖ ‖ ‖ 2 ( Λ 0) = ‖ ‖ ‖ 0, ‖ ‖ ‖ 2 (ℝ ∖ 1D ) , ∀ . ( 4.9) 
Using Sobolev embeddings, ( , ) converges strongly to 0, in the weighted Sobolev space 2 ( ) ∶= 2 ; 2 1 ( 1 , … , )d 1 ⋯ d for any bounded set ⊂ Λ 0 , equivalently for any bounded set ⊂ ℝ 2 . After passing to a further subsequence, ( , ) also converges to 0, almost everywhere on . By a diagonal argument, we can choose a subsequence such that ( , ) converges to 0, almost everywhere on ℝ 2 . Then, with the help of Fatou's lemma, we have weakly in ( 2 (Λ 0 )) 2 , we obtain that such convergence is in fact strong, which concludes the proof of Lemma 5.1.

lim inf →0 ∫ ℝ 2 | | 2 | | , | | 2 2 1 ≥ ∫ ℝ 2 | | 2 | | 0, | | 2 2 1 = ∫ ℝ | | 2 | | 0, | | 2 , ∀ . ( 4 
Proof of Theorem 1.2. Using a diagonal extraction, we can construct a sequence { , } which converges to some 0, in the sense of Proposition 4.3 for all . We know from Proposition 4.11 that these limit 0, are eigenfunctions corresponding to the 1D eigenvalues 1D respectively, and from now on we denote them by 1D . Similarly to the proof of Proposition 4.11 above, we can deduce that { 1D } is an orthonormal set in 2 (ℝ ), hence, it is an orthonormal basis.

Recall the notation in the proof of Proposition 4.3, we have

‖ ‖ ‖ Ψ 2D -1D ‖ ‖ ‖ 2 (ℝ 2 ) = ‖ ‖ ‖ -i -1D ‖ ‖ ‖ 2 (ℝ 2 ) ≤ ‖ ‖ ‖ -1D -i ‖ ‖ ‖ 2 (ℝ 2 ) + ‖ ‖ ‖ 1D -i -1 ‖ ‖ ‖ 2 (ℝ 2 ) ≤ ‖ ‖ ‖ , -1D ‖ ‖ ‖ 2 (ℝ 2 ) + ‖ ‖ ‖ ‖ 1D -i √ -1 ‖ ‖ ‖ ‖ 2 (ℝ 2
) .

The first term ‖ , -1D ‖ 2 (ℝ 2 ) vanishes as goes to 0 because of the strong convergence of Lemma 4.10. It is clear that 1D ( -i √ -1) is dominated by 2 1D , so using the dominated convergence theorem, the second term ‖ 1D ( -i √ -1)‖ 2 (ℝ 2 ) also vanishes as goes to 0. Hence,

Ψ 2D -1D → 0 strongly in 2 (ℝ 2 ).
Recall the definition of in (1.5). We can rewrite it with the same notation as in the proof of Proposition 4.3:

( 1 , … , ) = ∫ ℝ , ( 1 , … , ) 2 1 ( 1 , … , )d 1 ⋯ d .
Meanwhile, we can rewrite the eigenfunction 1D in the similar form:

1D ( 1 , … , ) = ∫ ℝ 1D ( 1 , … , ) 2 1 ( 1 , … , )d 1 ⋯ d .
Similarly to their derivatives, we then obtain

‖ ‖ ‖ -1D ‖ ‖ ‖ 1 (ℝ ∖ 1D ) ≤ ‖ ‖ ‖ , -1D ‖ ‖ ‖ 1 (Λ 0 ) . (5.2)
Since { , } converges strongly to 1D in 1 (Λ 0 ) by Lemma 5.1 above, the control (5.2) implies → 1D strongly in 1 (ℝ ∖ 1D ), which concludes the proof of Theorem 1.2.

ECOLE NORMALE SUPÉRIEURE DE LYON & CNRS, UMPA (UMR 5669)

Email address: nicolas.rougerie@ens-lyon.fr ECOLE NORMALE SUPÉRIEURE DE LYON, UMPA (UMR 5669) Email address: qiyun.yang@ens-lyon.fr

Proposition 4 . 2 (

 42 Energy decoupling).

  2 sym (ℝ 2 ) [31, Theorem 3.10]. For simplicity, we denote by  2D the closure in the sequel. Then there exists a unique self-adjoint extension of 2D , called Friedrichs extension, with extended domain ( 2D ) contained in  ( 2D ) [31, Corollary 3.17]. One can check that

  With the help of Proposition 4.9, the limit 0, is indeed in  ( 1D ).According to the proof of Proposition 4.3 and Lemma 4.11, the right-hand side of (5.1) is bounded from below by 1D , which implies that

	.10) on | Moreover, Inequal-Combining (4.6), (4.9) and (4.10), we obtain (4.8) and conclude the proof. Applying the diamagnetic inequality to Φ , we obtain Let ⊂ ℝ -1 be defined in Lemma 4.8, then integrating over (-√ ∕2, √ ∕2) × both sides of the identity (4.26), we have ity (4.8) implies lim inf →0 2D -≥  1D ( 0, ). (4.29) Combining with the upper bounds in Theorem 3.1, we deduce  1D ( 0, ) ≤ 1D . (4.30) →0 ‖ ‖ , ‖ ‖( 2 (Λ 0 )) 2 = ‖ ‖ ‖ 0, ‖ ‖ ‖( 2 (Λ 0 )) 2 . ( lim Combining it with the fact proved in Proposition 4.3 that

1 , … , )d 1 ⋯ d ≤ (4.36) , →

1D

d ≥ 2 ∫ Ω( ,

,…, ) | | 2 | | 2 d , (2.4)

+ | | | | 2 + ∑ 1≤ ≤ , ≠ , ∫ ℝ 2 | | | | 2 ≥ ∫ ℝ 2 | | 2 | -| 2 , ≠ .Summing over all possible pairs, we conclude the proof of Theorem 2.4.One application of the above is to clarify the quadratic domain of the 2D magnetic-gauge operator: it must be contained in the usual 1 space.

√∕2, √ ∕2 ) ×

where

Integrating the estimate (2.4) over on both sides gives

Using the fact that

we finally get the isolated Hardy inequality (2.2).

To estimate the integral on the complementary domain of the isolated two-anyon domain defined in Theorem 2.1, we need the following lemma, which follows immediately from [START_REF] Hoffmann-Ostenhof | Many-particle Hardy Inequalities[END_REF]Lemma 3.6]: Lemma 2.2 (Three-particle Hardy). Let ∈ 1 (ℝ 2 ), then for any integer ∈ [3, ], we have

where

Remark 2.3 (Three-particle Hardy for anyons).

With the help of the diamagnetic inequality from [START_REF]Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics[END_REF]Lemma 4], | | is in 1 (ℝ 2 ) provided that ∈ 2 sym (ℝ 2 ) and ∀ , | | ∈ 2 (ℝ 2 ). Applying Lemma 2.2 above to such | | and using the diamagnetic inequality, yields

(2.5)

The above gives a control on three-particle encounters that we may combine with Theorem 2.1 to prove a many-anyons Hardy inequality on the whole configuration space with fewer restrictions on than in [START_REF] Solovej | Hardy and Lieb-Thirring inequalities for anyons[END_REF]Theorem 4]. where (Ψ) ∶= i Ψ Ψ -Ψ Ψ . , and we complete the proof by summing over .

Returning to (3.4), we have

Then Proposition 4.2 becomes

where ( 1 , … , ) ∶= Φ ( 1 , … , ) i ( 1 ,…, ) . We next rescale the tightly-confined space variables and denote

Then Equation (4.4) becomes

where 1 is defined by setting = 1 in (1.4).

Applying the upper bounds in Theorem 3.1 to Equation (4.6), yields

where the right-hand side does not depend on . Intuitively, it follows from the above that , will have less and less dependence on the -coordinates as goes to 0. In the limit, , will depend only on the -coordinates and the left-hand side of (4.7) will reduce to the energy of , under the 1D Hamiltonian 1D . Asymptotically the left-hand side of (4.7) will be larger than the corresponding eigenvalue 1D (concluding the proof) if we can prove that , converges to a function of the -coordinates only, vanishing on the diagonals. 

Then Proposition 4.2 implies

Note that the limit 0, in Proposition 4.3 may not be unique, i.e. it depends on the extracted subsequence. We will later recover some form of uniqueness by proving that these limits are all eigenfunctions of 1D corresponding to the eigenvalues 1D . Hence, the limit 0, is unique if and only if the energy level 1D is non-degenerate.

In order to finish the proof for the target lower bounds, it principally remains to prove that the right-hand side of Inequation (4.8) is bounded from below by 1D , i.e.

The inequality of (4.12) follows from the next series of lemmas. The first four aim at proving that the limit 0, is in the quadratic form domain of 1D , i.e. 0, ∈  ( 1D ). The main issue is to prove that the limit 0, vanishes on diagonals (Proposition 4.9). The last two lemmas are to check that the limit 0, is indeed an eigenfunction of 1D corresponding to the eigenvalue 1D .

Lemma 4.5 (Being 1 accross diagonals).

Consider ∈ 2 sym (ℝ ) such that ∈ 1 (ℝ ∖ 1D ). Then is in 1 (ℝ ). Proof. We have that is in 1 outside of an interface, and continuous across the interface, because of the symmetry constraint. That is globally in 1 is then a classical result.

It suffices to show that [14, Theorem 3 in Section 5.8.2], for any unit ∈ ℝ and ℎ ∈ (0, 1), there exists some constant independent of ℎ and such that

Since is symmetric on ℝ , it is equivalent to prove that, under the same notations,

Fix ℎ ∈ (0, 1) and a unit . Let

. There exists a permutation on {1, … , } such that

Then we have

Under this construction, +ℎ( ) ( ) is actually in Λ for almost every ∈ Λ, that is, except for a zero measure set in ℝ , + ℎ( ) ( ) and are both in Λ. Since a zero-measure set does not matter in our proof, we will ignore it from now on. On the other hand, the domain Λ is clearly convex, and is in 1 (Λ). So we can apply the Newton-Leibniz theorem [16, Section 4.9.2] to on Λ as follows:

One can check that |ℎ( )| ≤ ℎ. Thus, the identity (4.13) above leads to

It is not hard to verify that for each and ℎ, the function

for each permutation on {1, … , }, where

With this observation, we can integrate over Λ on both sides of (4.14) and obtain

, which concludes the proof of Proposition 4.5.

From Proposition 4.3, we know that the limit 0, ∈ 1 (ℝ ∖ 1D ), and that with the help of the upper bounds in Theorem 3.1, 0, ∈ 2 (ℝ ) for all . Since Ψ 2D , and are all symmetric, = Ψ 2D -1 i is clearly symmetric, and so are , and its limit 0, . With the help of Proposition 4.5, we obtain that the limit 0, ∈ 1 (ℝ ). Therefore, to prove that 0, ∈  ( 1D ), it remains to prove that 0, has zero trace on 1D , i.e. 0, ∈ 1 0 (ℝ ∖ 1D ). Since we already know that 0, is symmetric, it suffices to prove that the limit 0, vanishes on the diagonal { 1 = 2 }. Lemma 4.6 (Estimate near { 1 = 2 }). Consider 1 defined in (1.4) for = 1 and , defined in (4.5). Then we have

for some constant ′ > 0 independent of , where

Proof. Thanks to the upper bounds in Theorem 3.1 and the energy decoupling in Proposition 4.2, there is a constant independent of such that

where Ψ 2D = Φ with the same notation as above. Consider the region where is small, i.e. for > 0, consider

and observe that in the region Ω (recall the definition of in (1.3)),

then we can take out the -direction ground state from the integral in (4.15) as follows:

(4.17)

We define an open set in ℝ 2( -1) ,

One can check that is contained in Ω . Applying the isolated Hardy inequality in Theorem 2.1 to the function Φ and the domain , we obtain that

Combining (4.16), (4.17) and (4.18), we deduce

which after rescaling in the -direction, ↦ √ , yields

for some constant ′ independent of . One can check that × is contained in ̃ when = √ , which concludes the proof of Lemma 4.6.

We shall use a simple consequence of the Sobolev embedding: 

Then, to prove { | | 2 } is bounded in ( ), it suffices to prove { } is bounded in ( ). Using Hölder's inequality, yields

for ∈ [1, min{2, ∕( -2)}] and for such that

which shows { } is bounded in ( ) because of the Sobelev embeddings mentioned above. Therefore, it follows from (4.20) that { } is bounded in ( ), which concludes the proof.

In the following, we would like to concentrate on the properties of , in the -direction, so we consider the function , on ℝ defined by Let be a bounded open subset in ℝ -1 . For a constant ≥ 0, we define

Then when ≥ , we have

for some constants > 0 and ∈ (0, 1) both independent of .

Proof. Using the Cauchy-Schwarz inequality, we have

where

is a constant independent of and is defined in Lemma 4.6. And this implies that { , } is bounded in 2 (ℝ ):

On the other hand, we can control the derivative of , as follows:

(Cauchy-Schwarz inequality)

With the help of (4.11), the estimate in (4.24) becomes 

Using Hölder's inequality next, it turns out that

where = 1--1 ∈ (0, 1) and | | is the Lebesgue measure of in ℝ -1 . Since {| , | 2 } is bounded in 1, ( ), the estimate in (4.27) implies

(4.28) for some constant ′ > 0 independent of .

On the other hand, if 

for some constant ′′ > 0 independent of , which together with the controls in (4.28) shows that

for some constant > 0 independent of , concluding the proof.

Proposition 4.9 (Vanishing on diagonals).

The limit 0, defined in Proposition 4.3 vanishes on the diagonals 1D .

Proof. Notice that | 0, | can be rewritten as

where is defined in Lemma 4.6 and 1 is defined in (4.23). Let , be defined in (4.21). Then for each bounded subset ⊂ ℝ , using the Cauchy-Schwarz inequality, we have

where Ω is a bounded subset in ℝ 2 such that Ω contains × . Hence,

). Meanwhile, we know that { , } is bounded in 1 (ℝ ) from the proof of Lemma 4.8. Then according to the Banach-Alaoglu Theorem, { , } also converges weakly to 1 | 0, | in 1 (ℝ ) after passing to a subsequence. Since the trace operator defined in (2.1) is continuous,

weakly in 2 (ℝ -1 ). Therefore, with the estimate in Lemma 4.8, for each > 0 independent of , we have

which implies that 0, ( 2 , 2 , 3 , … , ) equals to 0 in 2 ( ) for any bounded open subset in ℝ -1 and for any constant > 0 independent of . Letting finally → 0 after → 0 it follows that 0, ( 2 , 2 , 3 , … , ) equals to 0 in 2 (ℝ -1 ), i.e. 0, vanishes on the diagonal { 1 = 2 }, which concludes the proof of Proposition 4.9.

We next need the following strong 2 -compactness:

With the same notation as in Proposition 4.3, we have , → 0, strongly in 2 (ℝ 2 ). Hence, the limit 0, is normalized in 2 (ℝ ).

Proof. Applying the diamagnetic inequality to the 2D eigenfunction Ψ 2D , we obtain

We next decompose | | Ψ 2D | | into its orthogonal projection on and a remainder:

where

By definition, we can deduce and , are orthogonal on -direction:

) and then (4.31) above yields

, (4.33) where in the last inequality we also use the fact that the second eigenvalue of -2 + -2 2 is equal to 3 . Combining the above estimate (4.33) with the upper bounds in Theorem 3.1, we can deduce that { , } converges strongly to 0 in 2 (ℝ 2 ) as goes to 0. After rescaling the -coordinates, ↦ √ , the identity (4.32) becomes

where , is the same one as in (4.5) and

We then note that

→ 0. With the same notation as in Proposition 4.3, it follows that 

.

Since {| , |} is bounded in 1 (ℝ 2 ) by Proposition 4.4, we obtain that { , } is bounded in 1 (ℝ ). Again using the Banach-Alaoglu Theorem, { , } also converges weakly to | 0, | in 1 (ℝ ) after passing to a subsequence, i.e. , -| 0, | ⇀ 0 in 1 (ℝ ). Referring to [START_REF] Lewin | Describing lack of compactness in Sobolev spaces[END_REF]Lemma 14], for a positive sequence { } going to infinity, again after passing to a subsequence, { , -| 0, |} satisfies the following local estimate:

On the other hand, the orthogonality of and in the -direction leads to 

for some constant ̃ independent of . It follows that 

which together with the weak convergence 

Lemma 4.11 (Limiting eigenfunctions).

The limit 0, defined in Proposition 4.3 is an eigenfunction of 1D corresponding to the eigenvalue 1D .

Proof. Let { , } converge to 0, in the sense of the one in Proposition 4.3. Then after passing to a subsequence, { , } converges to some 0, in the same sense for all ≤ . Proposition 4.10 tells us that { , } converges strongly to 0, in 2 (ℝ 2 ). Therefore, for ≠ ≤ , we have

i.e. { 0, } =1 is an orthonormal set in 2 (ℝ ).

We now prove the lemma by induction. Firstly, for = 1, it is clear that  1D ( 0,1 ) ≥ 1D 1 , and with the upper bounds in (4.30) we obtain that 0,1 is the eigenfunction corresponding to 1D 1 . Suppose that for = -1, the set of limit { 0, } -1 =1 is a set of eigenfunctions corresponding to the eigenvalues { 1D } -1 =1 respectively. According to the identity (4.38), we have 0, ⟂ 2 (ℝ ) { 0, } -1 =1 , which implies  1D ( 0, ) ≥ 1D . With the help of the upper bounds in (4.30), this gives  1D ( 0, ) = 1D .

Then we can deduce that 0, is an eigenfunction corresponding to 1D . Thanks to Lemma 4.11,Inequality (4.29) gives

which concludes the proof of Theorem 4.1.

RELATION BETWEEN EIGENFUNCTIONS

In this section, we conclude the proof for the relation between eigenfunctions stated in Theorem 1.2.

Similarly to Lemma 4.10, we also have the corresponding strong 1 -compactness: With the same notation as in Proposition 4.3, we have , → 0, strongly in 1 (Λ 0 ).

Proof. Since we have proved the corresponding strong 2 -compactness in Lemma 4.10, it remains to prove that , → 0, strongly in ( 2 (Λ 0 )) 2 .

Recalling the estimate (4.7), it follows that , → 0 = 0, strongly in 2 (Λ 0 ) for all , and that (5.1)