
HAL Id: hal-04094087
https://hal.science/hal-04094087

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A robust, open-source implementation of the locally
optimal block preconditioned conjugate gradient for

large eigenvalue problems in quantum chemistry
Tommaso Nottoli, Ivan Giannı̀, Antoine Levitt, Filippo Lipparini

To cite this version:
Tommaso Nottoli, Ivan Giannı̀, Antoine Levitt, Filippo Lipparini. A robust, open-source implemen-
tation of the locally optimal block preconditioned conjugate gradient for large eigenvalue problems in
quantum chemistry. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, In press.
�hal-04094087�

https://hal.science/hal-04094087
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

A robust, open-source implementation of the

locally optimal block preconditioned

conjugate gradient for large eigenvalue

problems in quantum chemistry

Tommaso Nottoli1†, Ivan Gianǹı1†, Antoine Levitt2

and Filippo Lipparini*1

1Dipartimento di Chimica e Chimica Industriale, Università di
Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy.

2Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay,
Orsay, 91405, France.

Contributing authors: filippo.lipparini@unipi.it;
†These authors contributed equally to this work.

Abstract

We present two open-source implementations of the Locally Opti-
mal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm
to find a few eigenvalues and eigenvectors of large, possibly sparse
matrices. We then test LOBPCG for various quantum chemistry
problems, encompassing medium to large, dense to sparse, well-
behaved to ill-conditioned ones, where the standard method typi-
cally used is Davidson’s diagonalization. Numerical tests show that,
while Davidson’s method remains the best choice for most appli-
cations in quantum chemistry, LOBPCG represents a competitive
alternative, especially when memory is an issue, and can even outper-
form Davidson for ill-conditioned, non diagonally dominant problems.

1 Introduction

Computing eigenvalues and eigenvectors of matrices is probably the most
prominent linear-algebra operation in quantum chemistry. Eigenvalues and

1

Springer Nature 2021 LATEX template

2 LOBPCG

eigenvectors are computed in the self-consistent field (SCF) algorithm,[1–3] in
restricted-step second-order optimizations,[4] response theory calculations,[5,
6], algebraic diagrammatic construction (ADC)[7, 8], and unitary coupled-
cluster (UCC)[9–11]. Moreover they are calculated in ground and excited state
configuration interaction (CI) calculations,[12, 13] including in state-average
complete active space self-consistent field (CASSCF) [14–16]. Quantum chem-
istry calculations are typically performed using localized basis sets, most
commonly made by Gaussian atomic orbitals (GTOs). Thanks to the com-
pactness of such basis sets, the generalized eigenvalue problem in SCF can
be solved using dense linear-algebra techniques. Despite the cubic scaling,
diagonalizing the Fock (or Kohn-Sham) matrix is usually not a significant bot-
tleneck for standard calculations, which are instead dominated by the cost
of assembling the Fock matrix. Iterative diagonalization techniques are there-
fore mostly used for post-Hartree Fock calculations, such as CASSCF and CI,
where the combinatorially-scaling size of the CI Hamiltonian makes it impos-
sible to build it in memory, let alone diagonalize it, but for the smallest cases.
They are also used to compute the direction and step length in second-order
SCF and CASSCF strategies, and to compute excited states in CI singles and
time-dependent SCF. Most of these applications involve computing one, or
a small number (up to a few hundreds) of eigenvalues and eigenvectors, and
involve symmetric, diagonally dominant matrices.

Since its introduction in 1975, the iterative method proposed by Ernest R.
Davidson has been the method of choice[17] and the default strategy used by
the majority of quantum chemistry codes. Davidson’s diagonalization performs
particularly well for diagonally dominant symmetric eigenvalue problems, for
which it exhibits fast and robust convergence, and has been generalized to non-
symmetric problems and to deal with multiple eigenvalues and eigenvectors
[18, 19]. However, the method suffers of a few drawbacks. First, its perfor-
mance degrades if the matrix is not diagonally dominant. Even though most
algorithms in quantum chemistry involve diagonally dominant matrices, this
is not always the case, with the parameter Hessian in second-order CASSCF
being a prominent example. Finally, as the vector subspace used in Davidson’s
method to expand the sought eigenvectors can become quite large, especially
if many eigenvalues are needed, the cost of diagonalizing the matrix pro-
jected in the subspace and of orthogonalizing the new trial vectors can become
non-negligible, and memory requirements problematic.

The Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) method offers a way out by more aggressively truncating the
approximation space, while attempting to preserve the convergence properties
of Davidson [20]. Since its introduction, it has been successfully used in sev-
eral applications, and in particular in approaches to the quantum many-body
problem in condensed-matter physics [21] and [22], but to our knowledge it
has not permeated quantum chemistry to the same extent.

One important caveat with LOBPCG is its potential numerical instabilities,
which can degrade convergence significantly if care is not taken. This point was

Springer Nature 2021 LATEX template

LOBPCG 3

emphasized in [23], which describes an appropriately stable procedure to build
an orthogonal basis of expansion vectors. This relies crucially on a ortho(X,Y)

primitive, whose goal is to orthogonalize the vectors in X with respect to those
in Y and among themselves. This turns out to be surprisingly hard to perform
reliably in the presence of roundoff errors. The strategy suggested in [23] relies
on the ortho(X,Y) function in [24], which is based on a modified singular
value decomposition (SVD). This however can sometimes fail [25], and the
use of the SVD can become expensive. For this reason, [25] suggests dropping
ill-conditioned directions.

In this paper, we clarify the origins of numerical instabilities, in partic-
ular due to the ill-conditioned orthogonalizations and reuse of matrix-vector
products. We then present an implementation that uses exclusively Cholesky
decompositions for orthogonalizations. These decompositions are known to
be efficient but unstable, and for this reason the Cholesky orthogonalization
has often been regarded as impractical; however, it was recently realized that
appropriate stabilizations based on repeated, potentially shifted factorizations,
turn it into a completely reliable orthogonalization algorithm [26]. The result-
ing LOBPCG algorithm is extremely stable (converging, if desired, to close to
machine precision, with no degradation in convergence rate), simple (with no
dropping of directions, and with a single parameter controlling the accuracy
of the orthogonalizations), and efficient.

In this paper, we present two opensource implementations of the LOBPCG
algorithm. One is diaglib, an opensource, library written in Fortran 95
that also includes an implementation of Davidson’s method, and that can be
obtained at the following address: https://github.com/Molecolab-Pisa/diaglib.
The library has been interfaced with the CFOUR suite of quantum chem-
istry programs [27, 28], which we have used to test its performance choosing
a variety of test cases. The other is included in the DFTK Julia software
package[29], supports generalized eigenvalue problems and GPUs, and is avail-
able at https://github.com/JuliaMolSim/DFTK.jl/. These implementations
are more focused on numerical stability than on sheer speed, but are overall
efficient, thanks to the extensive use of highly optimized BLAS and LAPACK
routines.

We then test the LOBPCG implementation on a selection of quantum
chemistry problems, that include full CI, second-order SCF, and CASSCF
calculations. For such methods, we compare the performance of LOBPCG
to the ones of Davidson’s method. Our preliminary results show that, while
Davidson diagonalization is more efficient for strongly diagonally dominant
problems, as the ones encountered in Full CI, LOBPCG is a viable alternative,
as it exhibits similar performance and, for difficult cases such in CASSCF, can
even slightly outperform Davidson.

This paper is organized as follows. In section 2, we present the LOBPCG
algorithm. In section 3, we discuss in detail the numerical implementation of
LOBPCG, analyzing the possible numerical issues and proposing cost-effective,

https://github.com/Molecolab-Pisa/diaglib
https://github.com/JuliaMolSim/DFTK.jl/

Springer Nature 2021 LATEX template

4 LOBPCG

yet robust, solutions. In section 4, we test our implementation of a few quantum
chemistry applications. Finally, some final remarks are given in section 5.

2 Theory

In this section, we describe the LOBPCG algorithm in infinite precision arith-
metic, without consideration for numerical stability. In this paper, we will
focus on real symmetric matrices, but everything of course extends to Her-
mitian complex matrices. Let A ∈ Rn×n be a symmetric matrix, for which
we seek m � n eigenvalues. Given a set of vectors Y = (y1, . . . , yp) ∈ Rn×p

with p ≥ m, the Rayleigh-Ritz variational procedure obtains an approxima-
tion RR(Y) ∈ Rn×m to the first m eigenpairs by building an orthonormal basis
of Y , computing the p × p matrix representation of A on that set of vectors,
diagonalizing it and taking the first m eigenvectors.

To use this procedure to obtain an iterative algorithm, a way of construct-
ing Y must be specified. A standard method for doing so is to use the residuals,

defined for a vector x by r(x) = Ax − ρ(x)x, where ρ(x) = xTAx
xT x

is the
Rayleigh quotient of x. In ill-conditioned problems, these residuals might not
however be a good search direction, and therefore it is useful to precondition
them according to

w = Tr(x)

where T is a given preconditioner (for instance, when A is diagonally dominant,
T = (diag(A)− ρ(x)I)−1).

This choice of search direction results in the block Davidson algorithm,
starting from an initial set of vectors X [0] ∈ Rn×m:

X [k+1] = RR(X [1],T[1]R[1] . . . ,T[k]R[k])

where R[k] = AX [k] − X [k]Λ[k] is the residual at the k-th iteration, and Λ[k]

is the diagonal matrix composed of the Ritz values. Since the expansion sub-
space is only ever enlarged, the implementation is standard: each block of
vectors added to the subspace is orthogonalized against the previous vectors
and against itself (although see subtleties of this operation in the next section).

Since the Davidson method performs the Rayleigh-Ritz procedure in the
full convergence history, its computational requirements can increase quickly.
The LOBPCG algorithm instead only keeps the last two iterates:

X [k+1] = RR(X [k−1], X [k], T [k](AX [k] −X [k]Λ[k])).

The method is locally optimal (LO) because the Rayleigh-Ritz procedure opti-
mizes the Rayleigh quotient in the local expansion subspace. It is a block
algorithm (B), and uses a preconditioner (P). Finally, the intuition of keeping
only the previous iterate comes from the conjugate gradient (CG) algorithm

Springer Nature 2021 LATEX template

LOBPCG 5

for solving linear systems. This algorithm can seem like a drastic truncation of
the Davidson method. There is however reason to believe that it can converge
asymptotically as quickly as the full Davidson algorithm, inspired by the opti-
mality in the Krylov space of the three-terms conjugate gradient algorithm
[20].

The convergence properties of this algorithm are sensitive to the gap
between eigenvalues m and m+ 1, which might be small. This is particularly
clear in the case of a simplified version of the LOBPCG algorithm, the block
gradient descent with fixed step (which might be termed “BG”, since it is
obtained by removing the locally optimal, preconditioning and conjugate fea-
tures of LOBPCG), where explicit convergence rates can be obtained easily
[30]. Accordingly, as is standard, in practice one uses a block size m which
is larger than the number of eigenvalues msought actually sought, and stops
the algorithm as soon as the first msought eigenvalues are converged. The con-
vergence rate is then dependent on the gap between eigenvalues msought and
m+ 1.

3 Implementation

3.1 The LOBPCG algorithm

When implementing the above algorithm on a computer, we face the diffi-
culty that the basis (X [k−1], X [k], T [k](AX [k] − X [k]Λ[k])) is extremely badly
conditioned. This is because, as the iteration progress, X [k] becomes close
to X [k−1], and the residual becomes small. Therefore, if we try to solve
the Rayleigh-Ritz problem as a generalized eigenvalue problem, the results
will be inaccurate. Instead, following [23], we construct systematically an
orthogonal basis (X [k],W [k], P [k]) of the expansion subspace spanned by
(X [k−1], X [k], T [k](AX [k] − X [k]Λ[k])). The P [k] is implicitly constructed as
the orthogonalization of X [k] against X [k−1]; the W [k] is constructed as the
orthogonalization of T [k](AX [k] −X [k]Λ[k]) against X [k] and P [k].

To obtain these orthogonal bases, we introduce the primitive ortho(X,Y)

which, given a set of orthogonal vectors Y , returns an orthogonal basis of the
projection of the vectors in X onto the space orthogonal to Y . In infinite pre-
cision arithmetic, this would be given by an orthogonalization of X − Y Y TX;
in finite precision arithmetic, care has to be taken, as we will see in the next
section. Given this primitive, the LOBPCG algorithm is given in Algorithm 1.

Basis selection

In such algorithm, X [k],W [k], P [k] are the n × m matrices that contain the
m desired eigenvectors (X) and the corresponding preconditioned residuals
(W) and increments (P), and we denote with a ∼ symbol the vectors before
orthogonalization. The matrices AX [k], AW [k], AP [k] contain the results of the
application of A to such vectors. LOBPCG is a matrix-free algorithm, i.e., it
does not require to assemble and store in memory the matrix A but just to
be able to perform the relevant matrix-vector multiplications. More details on

Springer Nature 2021 LATEX template

6 LOBPCG

Algorithm 1 LOBPCG

Input: Initial guess X [0], operator A.
Output: X,λ, the lowest eigenpairs of A.
Intermediates: Residuals R, preconditioned residuals W , differences P ,

unorthogonalized quantities (tildes).

1: AX [0] = AX [0]

2: a[0] = (X [0])TAX [0] . Initial Rayleigh-Ritz

3: solve a[1]u[1] = u[1]λ[1]

4: X [1] = X [0]u[1] and AX [1] = AX [0]u[1]

5: R[1] = AX [1] −X [1]λ[1]

6: W̃ [1] = TR[1] . Preconditioned residuals...

7: W [1] = ortho(W̃ [1]; X [1]) orthogonalized

8: AW [1] = AW [1]

9: k = 0
10: while k < kmax do
11: k = k + 1
12: if k = 1 then . Expansion subspace V [k]

13: V [k] = (X [k],W [k])
14: else
15: V [k] = (X [k],W [k], P [k])
16: end if
17: a[k] = (V [k])TAV [k] . Rayleigh-Ritz in V [k]

18: solve a[k]u[k] = λ[k]u[k], get lowest eigenvectors u
[k]
x

19: X [k+1] = V [k]u
[k]
x and AX [k+1] = AV [k]u

[k]
x

20: R[k] = AX [k] −X [k]λ[k]

21: Lock converged eigenvectors, exit if done

22: Compute ũ
[k]
p from unconverged u

[k]
x . Components of P in V [k]...

23: u
[k]
p = ortho(ũ

[k]
p ; u

[k]
x) orthogonalized

24: P [k+1] = V [k]u
[k]
p and AP [k+1] = AV [k]u

[k]
p

25: W̃ [k+1] = TR[k] . Preconditioned residuals...

26: W [k+1] = ortho(W̃ [k+1]; (X [k+1], P [k+1])) orthogonalized

27: AW [k+1] = AW [k+1]

28: end while

the orthogonalization procedure are given in section 3.2. The reduced matrix
a[k] ∈ R3m×3m is diagonalized using standard dense linear algebra routines (in
our implementation, we use LAPACK’s dsyev).

In the block implementation of LOBPCG, computing P̃ [k] as X [k]−X [k−1]

can become problematic, as these vectors become smaller and smaller when
approaching convergence, which can create numerical instabilities. As a more

robust alternative, the P̃ [k] vectors are computed in a different way. Let u
[k]
x ∈

Springer Nature 2021 LATEX template

LOBPCG 7

R3m×m be the first m eigenvectors of the reduced matrix. The eigenvectors
have a block structure, that is

u[k] =

 u
[k]
xx

u
[k]
wx

u
[k]
px

 (1)

where each block is a m×m square matrix. The new eigenvectors are computed
as (line 19)

X [k+1] = X [k]u[k]xx +W [k]u[k]wx + P [k]u[k]px (2)

To compute the P [k+1] vectors, we first get the expansion coefficients ũp
[k+1]

of X [k+1]−X [k] in V [k], which are obtained by subtracting the identity matrix

from the unconverged components of u
[k]
xx. Then, we orthogonalize them against

ux, and use them to compute the new P [k+1] vectors. Note that we assemble
the P vectors only corresponding to the active eigenvectors, i.e., the ones
that have not yet converged; for this reason, it is important to perform such

operation before orthogonalizing ũp
[k+1]

.

Reuse of applications

Apart from the choice of a basis and its orthogonalization, a numerically sen-
sitive point is the reuse of the applications of A. Since this is a potentially
costly operation, it is not feasible to recompute for instance AP [k] before the
Rayleigh-Ritz procedure; instead, we use the fact that P [k] is built as a linear
combination of other vectors, on which we know the application of A. If this is
done naively however this can result in a large error. This is because, in gen-
eral, if AV is known to some precision ε, then (AV)u will be an approximation
of A(V u) with a precision of the order of ‖u‖ε.

Consider the problem of computing AP [k], line 24 of the algorithm. In exact

arithmetic, we could compute P̃ [k] = V [k]ũ
[k]
p , compute AP̃ [k+1] = (AV [k])ũ

[k]
p ,

orthogonalize P̃ [k+1] against X [k+1] and update AP̃ [k+1] accordingly, etc. This
however amounts to obtaining AP [k+1] by right-multiplying AV [k] with a
sequence of potentially ill-conditioned (and therefore of large norm) matrices,
which incurs a large error on AP [k+1]. Instead, we obtain directly the expan-

sion coefficients u
[k]
p of P [k+1] on V [k], and obtain AP [k+1] as (AV [k])u

[k]
p .

Since both P [k+1] and V [k] are orthogonal, so is u
[k]
p , and therefore no preci-

sion is lost in the update AP [k+1] = AV [k]u
[k]
p . The same is true for the update

AX [k+1] = AV [k]u
[k]
x (line 19).

Locking

Another crucial aspect of an efficient and stable implementation concerns the
treatment of converged eigenvectors. In our implementation, we freeze the first
mconv consecutive eigenvectors, which means that we only compute mact =
m−mconv new residuals,W and P vectors. The converged eigenvectors are kept

Springer Nature 2021 LATEX template

8 LOBPCG

into X, to enforce the orthogonality of the active search subspace. This means
that the reduced matrix and the V subspace dimensions are m + 2mact, and
that only mact matrix-vector multiplications are performed at each iteration,
combining thus stability and efficiency.

3.2 A robust and stable ortho(X,Y) procedure

One of the most crucial steps in LOBPCG is the orthogonalization of a set
of vectors against a given set, and its subsequent orthonormalization. We first
tackle the ortho(X) routine, which orthogonalizes a set of vectors.

The ortho(X) procedure

The gold standard for orthogonalizing a set of vectors is to compute the (thin)
singular value decomposition of X and then take the left singular vectors. A
slightly less expensive, yet very stable alternative, is to use the QR decompo-
sition of X, which in our tests performs equivalently well. Another good option
is the modified Gram-Schmidt algorithm. However, these algorithms can all
become expensive, especially if a large number of eigenvalues are sought.

An alternative and cheaper strategy is to compute the Cholesky decompo-
sition of the overlap matrix

XTX = M = LLT (3)

The orthogonal vectors can then be obtained by solving the triangular linear
system

ortho(X)LT = X. (4)

This is often more efficient, as it allows for greater parallelization and full use
of BLAS3 routines.

This procedure works in infinite precision, but has two issues in finite pre-
cision. First, even after a first Cholesky orthogonalization, the vectors can fail
to be orthogonal. Second, the Cholesky decomposition can fail, because M
may not be positive-definite to machine precision; this happens when the con-
ditioning of X is larger than the square root of the inverse machine epsilon,
about 108 in double precision arithmetic.

Fortunately, there is a simple fix to the first problem: orthogonalize twice.
This has been established to produce vectors orthogonal to machine precision
[31]. For the second problem, following [26], we level shift the metric before
its Cholesky decomposition by adding a small constant to its diagonal. Such a
constant can be chosen very small (in our implementation, we start from 100
times the norm of X times the machine precision) and, if the decomposition
still fails, increased until the Cholesky decomposition is successful. In our tests,
the shifted decomposition never failed, and therefore, with at most 4 Cholesky
orthogonalizations (one failed unshifted, one shifted, then two unshifted) we
are guaranteed to obtain vectors that are orthogonal to machine precision. In
practice, often much less than this is needed – failures of the first Cholesky

Springer Nature 2021 LATEX template

LOBPCG 9

orthogonalization have been observed only exceptionally. A pseudo-code for
the ortho procedure is given in algorithm 2.

Algorithm 2 ortho(X̃): Orthonormalize a set of vectors X̃ using the Cholesky
decomposition of the overlap with iterative refinement.

Input: non orthogonal vectors X̃, threshold τortho.
Output: X, orthonormal vectors.

1: X = X̃
2: while ‖XTX − Id‖ > τort do
3: M = XTX
4: Attempt Cholesky factorization M = LLT

5: if fail then
6: Add αε‖X‖ to the diagonal of M until successful
7: end if
8: X = XL−T

9: end while

The algorithm as given is somewhat wasteful, as in the common case where
only one or two successful Cholesky factorizations are needed it recomputes
the overlap to check for termination. This can potentially be alleviated by
computing a cheap estimation to the norm of L−T : if this is moderate, then the
new vectors are orthogonal to a good accuracy, and a new round is unnecessary.

The ortho(X,Y) procedure

Using the previous orthogonalization algorithm, we could implement the
ortho(X,Y) as ortho(X − Y Y TX). This is however numerically unstable: if
X − Y Y TX is of order δ (because X was almost in the range of Y), then the
orthogonalization above will multiply it by a factor of order 1/δ, meaning that
Y T ortho(X−Y Y TX) will be of order ε/δ, where ε is the machine epsilon, and
the vectors will not be sufficiently orthogonal to Y . To avoid this, we use a
loop: first project out Y , then orthogonalize, iteratively until convergence. In
practice, two steps are usually enough to achieve convergence. The algorithm
for the ortho(X,Y) procedure is given in algorithm 3.

Similar to before, this algorithm is relatively wasteful in the common case
where one or two passes are enough, because it recomputes Y TX to check
for termination. This can be remedied by monitoring the growth factor of
ortho(X) (the maximum amplification of errors in X caused by the ortho rou-
tine, and therefore a measure of the lack of Y -orthogonality after one iteration),
and exiting the loop when that number is moderate.

3.3 Generalized eigenvalue problems

Missing from this algorithm is a discussion of generalized eigenvalue problems,
simply because they are not often encountered in quantum chemistry. In the

Springer Nature 2021 LATEX template

10 LOBPCG

Algorithm 3 ortho(X̃, Y): given a set of orthonormal vectors Y and a set of

vectors X̃, orthogonalize X̃ to Y and orthonormalize X̃.

Input: orthonormal vectors Y , non orthogonal vectors X̃, threshold τortho.
Output: X, orthonormal vectors also orthogonal to Y .

1: X = X̃
2: while ‖Y TX‖ > τortho do
3: X = X − Y Y TX
4: X = ortho(X)
5: end while

generalized eigenvalue problem, one solves Ax = λBx, where B is a symmet-
ric positive definite matrix. Eigenvectors are orthogonal with respect to the
modified inner product 〈x, y〉B = xTBx. The theoretical LOBPCG algorithm
is unchanged except for the fact that residuals are now Ax − λBx, and that
all orthogonalizations are with respect to the modified inner product.

Our practical algorithm has to be modified by keeping a B-orthogonal basis
V . This could be done by using the B inner product in the orthogonalization
of W , line 26 of the algorithm above, and maintaining the values of BV along
the iterations. However, a naive implementation of this step requires either
multiple applications of B (twice per iteration, on W̃ [k+1] and on W [k+1]), or
potentially unsafe reuses of applications of B. As a compromise, a good option
is to use the intermediate quantity

Ŵ [k+1] = ortho(W̃ [k+1], (BX [k+1],BP [k+1])),

which is B-orthogonal to X [k+1] and P [k+1], but whose vectors are only
orthogonal (and not B-orthogonal) to each other. This set of vectors Ŵ [k+1]

is however well conditioned (with respect to the B-inner product). We can

therefore B-orthogonalize it to compute W [k+1] = Ŵ [k+1]L−T with L a well-
conditioned matrix; it is then safe to re-use the B application as BW [k+1] =
(BŴ [k+1])L−T . This appeared to perform very well in our tests, even if B itself
was not well-conditioned. If more stability is needed, reuses of B applications
appear necessary.

4 Numerical experiments

To test our implementation of LOBPCG, and to compare its performance
with respect to the block-Davidson method, we interfaced the diaglib library
with the CFOUR quantum chemistry package [27, 28]. As typical prob-
lems where an iterative procedure to compute one or a few eigenvectors is
required, we selected three different test cases, coming from full CI Hamilto-
nian, quadratically convergent self-consistent field (SCF), and quadratically
convergent complete active space self-consistent field (CASSCF). In all the
calculations, we use a threshold of 10−14 for the ortho(X,Y) and ortho(X)

Springer Nature 2021 LATEX template

LOBPCG 11

10 15 20 25 30 35 40 45 50

eigenvectors required

1000

2000

3000

4000

5000

6000

7000

8000
Ti

m
e

(s
)

Davidson
LOBPCG

10 15 20 25 30 35 40 45 50

eigenvectors required

0

100

200

300

400

Ti
m

e
(s

)

Davidson
LOBPCG

Fig. 1 All-electron Full CI calculations for water using Davidson or LOBPCG. Total timings
(left panel) and cumulative time for the Rayleigh-Ritz and orthogonalization procedures
(right panel).

procedures. Together with the convergence threshold for the eigenvectors, this
is the only parameters that control the LOBPCG calculation. For Davidson,
we use a subspace dimension of 25, i.e., we keep in memory up to 25 vectors
per eigenvector in the history. For both the algorithms we exploit a locking
procedure for the converged eigenvectors.

4.1 Full CI calculations

We compute the first few totalsymmetric electronic states of water at the Full
CI level of theory, using a determinant CI direct implementation. The Full CI
Hamiltonian is sparse and diagonally dominant, but extremely large, and thus
provides a good testcase for well-behaved, large, sparse systems. Furthermore,
the iterative solution of (Full) CI problems is a quite common task in quan-
tum chemistry, as it is encountered in CASCI/CASSCF, and truncated CI
(including for excited states at the CI singles level of theory). We use Pople’s
6-31G∗ basis set,[32] and perform both all-electron and frozen-core calcula-
tions, correlating thus 10 electrons in 18 orbitals (18 360 640 determinants)
or 8 electrons in 10 orbitals (1 416 732 determinants). We seek 10, 20, or 50
eigenpairs. Convergence is achieved when the root-mean-square norm of the
residual is smaller than 10−9, and its maximum absolute value is smaller than
10−8. For LOBPCG, we seek 5 additional eigenpairs, as numerical tests proved
that this improves convergence and, despite the additional matrix-vector prod-
ucts required, improves overall performance. Note that we do not check that
the additional eigenvalues are converged, as they are only used to increase the
expansion subspace. No additional eigenpairs are sought for Davidson, as this
choice showed the overall best performance. A brief description of the process
that led us to these choices is reported in the Supporting Information.

It comes as no surprise that Davidson outperforms LOBPCG for Full-CI
calculations. As the full-CI Hamiltonian is strongly diagonally dominant for
closed-shell systems, it is an ideal scenario for Davidson, an algorithm orig-
inally conceived for exactly this problem. Nevertheless, the performance of
LOBPCG are comparable, the latter algorithm being about 20-30% slower

Springer Nature 2021 LATEX template

12 LOBPCG

10 15 20 25 30 35 40 45 50

eigenvectors required

100

150

200

250

300

350

400
Ti

m
e

(s
)

Davidson
LOBPCG

10 15 20 25 30 35 40 45 50

eigenvectors required

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(s

)

Davidson
LOBPCG

Fig. 2 Frozen-core Full CI calculations for water using Davidson or LOBPCG. Total timings
(left panel) and cumulative time for the Rayleigh-Ritz and orthogonalization procedures
(right panel).

than the former. It is interesting to note that, while for LOBPCG the cost of
the Rayleigh-Ritz and orthogonalization procedures is overall negligible with
respect to the cost of computing matrix-vector multiplications, this is not the
case for Davidson. Keeping up to 25 vectors in the history comes with a cost,
that can be clearly seen in the right panels of figures 1, 2. On the other hand,
the larger subspace used in Davidson’s method allows for faster convergence,
which is achieved in 28, 37, and 24 iterations for the calculation seeking 10,
20, and 50 eigenpairs, respectively, both for the all-electron and the forzen-
core calculations. This has to be compared with 26, 41, and 45 iterations for
LOBPCG, again, for both sets of calculations. On the other hand, the long
history is also a limitation for Davidson, as the amount of memory required to
perform a calculation can become very high. As an example, the largest cal-
culation performed (all-electron, 50 states) required about 356 GB of memory
for Davidson, to be compared with 55 for LOBPCG. Using a smaller sub-
space dimension in Davidson is of course possible, but such a size must be
chosen with some care. To better illustrate this point, we repeated the David-
son calculations using a maximum of 10 points in the history: no calculation
fully converged within 100 iterations, with 1, 3, and 2 non converged roots.
Therefore, while Davidson is optimal for Full-CI calculations if enough mem-
ory is available to use a large expansion subspace, LOBPCG can be seen as a
competitive alternative when this is not the case.

4.2 Quadratically convergent SCF calculations

In quadratically convergent implementations of the self-consistent field, the
Hartree-Fock wavefunction is optimized by using a second-order method. In
CFOUR, this is done using an efficient numerical realization of the Levenberg-
Marquardt method [33], known as norm-extended optimization, where the step
is computed from the lowest eigenpair of the (augmented) orbital-rotation
Hessian [34]. The same matrix is used in response calculations and for the
analysis of the stability of the Hartree-Fock wavefunction, which requires again
to compute a few eigevalues and eigenvectors of the orbital-rotation Hessian.

Springer Nature 2021 LATEX template

LOBPCG 13

2 4 6 8 10

eigenvectors required

14

16

18

20

22

24

26
It

er
at

io
ns

Davidson
LOBPCG

2 4 6 8 10

eigenvectors required

50

75

100

125

150

175

200

225

It
er

at
io

ns

Davidson
LOBPCG

Fig. 3 Orbital rotation Hessian diagonalization at SCF convergence (left panel) and with
extended-Hückel guess orbitals (right panel). The number of iterations required to achieve
convergence is reported as a function of the number of seeked eigenpairs.

For closed-shell systems, such a matrix is dense, but typically diagonally dom-
inant. While computing and storing in memory the full Hessian is possible,
such a task is expensive and exhibits a steep scaling in computational cost
with respect to the system’s size, as assembling it requires a costly partial inte-
gral transformation. Direct implementations are therefore usually preferred.
To compare Davidson to LOBPCG, we compute the first few eigenpairs (up
to 10) of the Hessian after convergence of the SCF procedure for a transition
metal complex, FeC(CO)3, using Dunning’s cc-pVDZ basis set. To provide an
example on a somewhat more challenging case, we further repeat the calcu-
lations, but at the beginning of the SCF calculations, that is, using orbitals
computed with an extended Hückel guess. Far from convergence, the Hessian
has many negative eigenvalues and is not guaranteed to be as diagonally domi-
nant as with fully converged orbitals. In the following calculations, convergence
is achieved when the root-mean-square norm of the residual is smaller than
10−7, and its maximum absolute value is smaller than 10−6. Such threshold
are adequate for stability analysis, but also for the first steps of a second-order
optimization procedure. For both Davidson and LOBPCG, to improve conver-
gence, we seek twice the eigenpairs required, and stop the calculation when just
the required ones are converged. The size of the subspace for Davidson is 25.
For the calculations at SCF convergence, where the Hessian is strongly diag-
onally dominant (figure 3, left panel) Davidson outperforms again LOBPCG.
On the other hand, the less well-behaved case (figure 3, right panel) shows
a different picture. LOBPCG and Davidson exhibit a very similar behavior,
with LOBPCG even outperforming Davidson in a few cases. As orbital rota-
tion Hessians are hardly very large matrices (for the case reported here, the
size is 3849), using large expansion subspaces in Davidson can probably fur-
ther improve convergence, but for difficult cases, LOBPCG can be a valid
alternative.

We report in figure 4 (left panel), the root mean square residual as a func-
tion of the iterations for the computation of the first eigenpair of the orbital
rotation Hessian. As expected the behaviors between the two algorithms are
analogous.

Springer Nature 2021 LATEX template

14 LOBPCG

0 5 10 15 20 25

iterations

10 7

10 6

10 5

10 4

10 3
R

M
S

re
si

du
al

Davidson
LOBPCG

0 20 40 60 80 100

Iterations

10 7

10 6

10 5

10 4

10 3

R
M

S
re

si
du

al

Davidson
LOBPCG

Fig. 4 Root mean square (RMS) of the residual along the iterations for the diagonalization
of the orbital rotation Hessian at SCF convergence seeking for one eigenpair. The subspace
for the Davidson algorithm is of size 25 (left panel) and 3 (right panel).

We would like here to underline the fact that LOBPCG manages to behave
similarly to Davidson even despite the very small size of the subspace used
for the Rayeligh-Ritz procedure. To show how remarkable this is, we report in
figure 4 (right panel) a comparison between LOBPCG and Davidson, where
for the latter we use a three dimensional subspace – that is, the same dimen-
sion used in LOBPCG. Davidson eventually manages to converge, however,
it requires a much larger number of iterations. While this is purely an aca-
demic example, as such small expansion subspaces are never used in practice,
it testifies to the effectiveness of the LOBPCG 3-terms sequence.

4.3 CASSCF calculations

CASSCF calculations can be very challenging from a numerical point of
view, which makes second-order methods particularly attractive [4, 35–
37]. In CFOUR, the same technique used for Hartree-Fock, namely, the
norm-extended optimization algorithm is used. The (augmented) Hessian in
CASSCF is made by a dense, typically quite ill-conditioned, medium-sized
block for the orbital optimization, and a large, sparse, usually diagonally dom-
inant block that corresponds to the Hamiltonian in the CAS space. Even for
well-behaved systems, computing the NEO step, which in turn requires com-
puting the first eigenpair of the augmented Hessian, can be challenging. To
illustrate this, we report calculations on niacin (vitamin B3), a small con-
jugated organic molecule. We correlated all the π electrons, resulting in a
CAS(6,6) calculation, and we employ Pople’s 6-31G* basis set [32]. Symmetry
broken unrestricted natural orbitals are used as a guess [38, 39]. The system
is very well behaved, and convergence of the wavefunction is achieved in just
3 second-order iterations. Nevertheless, the iterative calculation of the step,
i.e., the augmented hessian lowest eigenvector, can still be challenging. We
report in the left figure 5 the convergence pattern for Davidson and LOBPCG
at the first second-order iteration. LOBPCG outperforms Davidson at every
second-order iterations, 27, 25, and 23 iterations at the first, second, and third
second-order step, to be compared with 32, 28, and 31 iterations for Davidson.

Springer Nature 2021 LATEX template

LOBPCG 15

0 5 10 15 20 25 30

eigenvectors required

10 7

10 6

10 5

10 4

10 3
It

er
at

io
ns

Davidson
LOBPCG

1 2 3 4 5

eigenvectors required

25

30

35

40

45

50

It
er

at
io

ns

Davidson
LOBPCG

Fig. 5 Root mean square (RMS) of the residual along the iterations seeking for one eigen-
pair (left panel) and number of iterations to achieve convergence as a function of the number
of seeked eigenpairs (right panel) for the diagonalization of the CASSCF augmented Hessian
at the first macroiteration.

Also when more than one eigenpair is required, as it is the case for state-
specific excited state calculations, LOBPCG keeps being the best performing
algorithm, as reported in the right panel of figure 5. This behavior is not sur-
prising, as the CASSCF augmented Hessian is not diagonally dominant, and
is consistent with what observed for second-order SCF calculations starting
with extended Hückel orbitals Davidson’s performance may be improved by
increasing the size of the expansion subspace. This is, however, not the best
option, as for large active spaces the size of the Hessian can become very large
– comparable with the sizes reported for Full CI calculations. Using very large
expansion subspaces is therefore very demanding in terms of memory, and
can make the orthogonalization expensive. LOBPCG seems therefore a more
robust choice for this specific problem.

4.4 Preconditioning

To improve the convergence of both LOBPCG and Davidson one can devise
different types of preconditioners. In most quantum chemistry applications,
computing and storing in memory the matrix of which one seeks one or a
few eigenpairs is prohibitively expensive, which forces the choice of a Jacobi
(diagonal) preconditioner in most cases. This is definitely the case for the full
CI and CASSCF examples showed in the previous section. However, for both
second-order SCF and CASSCF, we have implemented the explicit construc-
tion of the orbital rotation Hessian, mainly as a debug option, which allows
us to perform a few numerical experiments. In particular, we compare three
possible choices, and focus on the CASSCF orbital-rotation Hessian as a test
case, as it is notoriously ill-conditioned and therefore we expect that a more
advanced preconditioning strategy may be particularly beneficial. For these
examples, we only seek to compute one eigenpair. The first preconditioner that
we test is, as in the previous sections, appoximates the matrix to its diagonal.
The second one, which will be here addressed as tridiagonal, improves upon
the diagonal approximation by also including the upper and lower diagonal

Springer Nature 2021 LATEX template

16 LOBPCG

elements. These two options should perform particularly well in diagonally-
dominant matrices. As a third choice, we propose a sparse approximation M
to the matrix A, that is

Mij =

{
Aij , if |Aij | > tol or i = j

0, otherwise
(5)

where we set tol equal to 0.5 and decreased it to 0.1 as soon as the root mean
square norm of the residual is close to convergence. For both the second and
third options it is necessary to solve a linear system. For the tridiagonal case
we simply exploit a LAPACK routine which performs a Gaussian elimination
with partial pivoting. Instead, in the case of the sparse M matrix, the linear
system is solved using the incomplete LU (iLU) decomposition[40] as imple-
mented by Saunders et al[41]. In table 1 we compare the behavior of LOBPCG
and Davidson when changing the preconditioner. As expected the precondi-
tioner based on the sparse approximation of A is the one that performs best.
However, such an option may become expensive and requires to store the
full matrix in core or at least to have an heuristic procedure to estimate the
elements. From this simple-minded experiment, we note that both methods
benefit from better preconditioners, with LOBPCG exhibiting slightly more
marked improvements. However, assembling such preconditioners is expensive,
as it requires to build the matrix, or at least some approximation to it, in
memory, which in many practical cases is far too demanding. Given the rel-
atively small beneficial effect of going beyond a diagonal preconditioner, we
believe that the latter is the optimal compromise choice.

Table 1 Total number of iterations required to converge the lowest eigenvalue of the
CASSCF orbital-rotation Hessian at the first macroiteration using the LOBPCG and
Davidson solvers with three different preconditioners.

LOBPCG Davidson

diagonal tridiagonal iLU diagonal tridiagonal iLU

56 53 47 52 54 50

5 Conclusions and perspectives

In this contribution, we have described an efficient and numerically robust
implementation of LOBPCG, available both in the DFTK plane-wave density
functional program, and in the opensource library diaglib. We have discussed
in detail how to avoid numerical problems and error propagation, and pre-
sented a cost-effective, yet stable strategy to orthogonalize a set of vectors
using Cholesky decomposition of the overlap matrix. We have then compared
the resulting implementation to Davidson’s method for a selection of test-cases

Springer Nature 2021 LATEX template

LOBPCG 17

in quantum chemistry. Davidson’s method is the de facto standard for solv-
ing large eigenvalue problems in quantum chemistry, and for good reasons.
As many of such problems are characterized by strongly diagonally dominant
matrices, Davidson’s method always exhibits reliable, fast convergence. This
comes, however, at a price. To be efficient, Davidson’s method requires a rather
large expansion subspace, which can become cumbersome for large-scale cal-
culations, both in terms of memory requirements and computational effort
in the orthogonalization step. Furthermore, the method has some difficulties
dealing with non diagonally dominant matrices, as the ones encountered in
CASSCF calculations. For all these reasons, LOBPCG represents a valid alter-
native. Due to its low memory requirements, it can be used to treat systems
for which deploying Davidson’s method would be too costly. It can also be a
backup method in cases where Davidson fails or, for particularly hard cases
as in CASSCF, used as a default method. The implementation in diaglib is
free and accessible, and can be used under the terms of the LGPL v2.1 license,
while the one in DFTK is available under the MIT license. It is our hope that it
will provide an useful tool to the developers community in quantum chemistry.

Our numerical experiments highlight the degradation of the convergence
rate of the Davidson method as the history size is truncated. On the other
hand, LOBPCG is able to maintain a good convergence rate (although slightly
inferior to untruncated Davidson) with a subspace of size 3N . It would be
an interesting topic of further research to devise a method that is able to
interpolate between the two, being able to use a large history size if available,
but preserving the good behavior of LOBPCG when used with a smaller history
size. This could pave the way towards a fully adaptive method that truncates
the history size dynamically based on available information.

Acknowledgments

This paper is dedicated to Maurizio Persico, an invaluable teacher, mentor,
and colleague, and the most enthusiastic mountaineer. A.L. wishes to thank
Michael Herbst for help implementing and stress-testing the algorithm. F.L.
T.N. and I.G. acknowledge financial support from ICSC-Centro Nazionale di
Ricerca in High Performance Computing, Big Data, and Quantum Computing,
funded by the European Union – Next Generation EU – PNRR, Missione 4
Componente 2 Investimento 1.4. F.L. further acknowledges funding from the
Italian Ministry of Research under grant 2020HTSXMA 002 (PSI-MOVIE).

References

[1] Roothaan, C.C.J.: New developments in molecular orbital theory. Rev.
Mod. Phys. 23, 69–89 (1951)

[2] Roothaan, C.C.J.: Self-consistent field theory for open shells of electronic
systems. Rev. Mod. Phys. 32, 179–185 (1960)

Springer Nature 2021 LATEX template

18 LOBPCG

[3] Almlöf, J., Faegri Jr., K., Korsell, K.: Principles for a direct scf approach
to licao–moab-initio calculations. J. Comp. Chem. 3(3), 385–399 (1982)

[4] Jensen, H.-J.A., Jørgensen, P.: A direct approach to second-order mcscf
calculations using a norm extended optimization scheme. J. Chem. Phys.
80(3), 1204–1214 (1984)

[5] Christiansen, O., Jørgensen, P., Hättig, C.: Response functions from
fourier component variational perturbation theory applied to a time-
averaged quasienergy. Int. J. Quant. Chem. 68(1), 1–52 (1998)

[6] Casida, M.E.: Time-Dependent Density Functional Response Theory for
Molecules, pp. 155–192. World Scientific, ??? (1995)

[7] Schirmer, J.: Beyond the random-phase approximation: A new approxi-
mation scheme for the polarization propagator. Phys. Rev. A 26(5), 2395
(1982)

[8] Dreuw, A., Wormit, M.: The algebraic diagrammatic construction scheme
for the polarization propagator for the calculation of excited states.
WIREs: Comp. Mol. Sci. 5(1), 82–95 (2015)

[9] Bartlett, R.J., Kucharski, S.A., Noga, J.: Alternative coupled-cluster
Ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett.
155(1), 133–140 (1989)

[10] Taube, A.G., Bartlett, R.J.: New perspectives on unitary coupled-cluster
theory. Int. J. Quant. Chem. 106(15), 3393–3401 (2006)

[11] Liu, J., Asthana, A., Cheng, L., Mukherjee, D.: Unitary coupled-cluster
based self-consistent polarization propagator theory: A third-order formu-
lation and pilot applications. J. Chem. Phys. 148(24), 244110 (2018)

[12] Handy, N.C.: Multi-root configuration interaction calculations. Chem.
Phys. Lett. 74(2), 280–283 (1980)

[13] Olsen, J., Roos, B.O., Jørgensen, P., Jensen, H.J.A.: Determinant based
configuration interaction algorithms for complete and restricted configu-
ration interaction spaces. J. Chem. Phys. 89(4), 2185–2192 (1988)

[14] Werner, H.-J.: Matrix-formulated direct multiconfiguration self-consistent
field and multiconfiguration reference configuration-interaction methods.
Adv. in Chem. Phys. 69, 1–62 (2009)

[15] Roos, B.O.: The complete active space self-consistent field method and
its applications in electronic structure calculations. Adv. Chem. Phys. 69,
399–445 (1987)

Springer Nature 2021 LATEX template

LOBPCG 19

[16] Shepard, R., et al.: The multiconfiguration self-consistent field method.
Adv. Chem. Phys. 69, 63–200 (1987)

[17] Davidson, E.R.: The iterative calculation of a few of the lowest eigenval-
ues and corresponding eigenvectors of large real-symmetric matrices. J.
Comp. Phys. 17(1), 87–94 (1975). https://doi.org/10.1016/0021-9991(75)
90065-0

[18] Liu, B.: The simultaneous expansion method for the iterative solution of
several of the lowest eigenvalues and corresponding eigenvectors of large
real-symmetric matrices. Numerical algorithms in chemistry: algebraic
methods, 49–53 (1978)

[19] Zuev, D., Vecharynski, E., Yang, C., Orms, N., Krylov, A.I.: New algo-
rithms for iterative matrix-free eigensolvers in quantum chemistry. J.
Comp. Chem. 36(5), 273–284 (2015)

[20] Knyazev, A.V.: Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM journal
on scientific computing 23(2), 517–541 (2001)

[21] Bottin, F., Leroux, S., Knyazev, A., Zérah, G.: Large-scale ab initio calcu-
lations based on three levels of parallelization. Computational Materials
Science 42(2), 329–336 (2008)

[22] Shao, M., Aktulga, H.M., Yang, C., Ng, E.G., Maris, P., Vary, J.P.: Accel-
erating nuclear configuration interaction calculations through a precon-
ditioned block iterative eigensolver. Computer Physics Communications
222, 1–13 (2018)

[23] Hetmaniuk, U., Lehoucq, R.: Basis selection in lobpcg. Journal of
Computational Physics 218(1), 324–332 (2006)

[24] Stathopoulos, A., Wu, K.: A block orthogonalization procedure with
constant synchronization requirements. SIAM Journal on Scientific Com-
puting 23(6), 2165–2182 (2002)

[25] Duersch, J.A., Shao, M., Yang, C., Gu, M.: A robust and efficient
implementation of lobpcg. SIAM Journal on Scientific Computing 40(5),
655–676 (2018)

[26] Fukaya, T., Kannan, R., Nakatsukasa, Y., Yamamoto, Y., Yanagisawa, Y.:
Shifted Cholesky QR for computing the QR factorization of ill-conditioned
matrices. SIAM Journal on Scientific Computing 42(1), 477–503 (2020)

[27] Stanton, J.F., Gauss, J., Cheng, L., Harding, M.E., Matthews, D.A.,
Szalay, P.G.: CFOUR, Coupled-Cluster techniques for Computational

https://doi.org/10.1016/0021-9991(75)90065-0
https://doi.org/10.1016/0021-9991(75)90065-0

Springer Nature 2021 LATEX template

20 LOBPCG

Chemistry, a quantum-chemical program package. With contributions
from A. Asthana, A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E.
Bernholdt, S. Blaschke, Y. J. Bomble, S. Burger, O. Christiansen, D.
Datta, F. Engel, R. Faber, J. Greiner, M. Heckert, O. Heun, M. Hilgen-
berg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, M.-P.
Kitsaras, K. Klein, G.M. Kopper, W.J. Lauderdale, F. Lipparini, J. Liu,
T. Metzroth, L.A. Mück, D.P. O’Neill, T. Nottoli, J. Oswald, D.R. Price,
E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C.
Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts, C.
Zhang, X. Zheng, and the integral packages MOLECULE (J. Almlöf and
P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa.
Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin
and C. van Wüllen. For the current version, see http://www.cfour.de.

[28] Matthews, D.A., Cheng, L., Harding, M.E., Lipparini, F., Stopkowicz,
S., Jagau, T.-C., Szalay, P.G., Gauss, J., Stanton, J.F.: Coupled-cluster
techniques for computational chemistry: The CFOUR program package.
J. Chem. Phys. 152(21), 214108 (2020)

[29] Herbst, M.F., Levitt, A., Cancès, E.: DFTK: A Julian approach for
simulating electrons in solids. Proc. JuliaCon Conf. 3, 69 (2021)

[30] Cancès, E., Kemlin, G., Levitt, A.: Convergence analysis of direct mini-
mization and self-consistent iterations. SIAM Journal on Matrix Analysis
and Applications 42(1), 243–274 (2021)

[31] Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., Fukaya, T.: Roundoff
error analysis of the CholeskyQR2 algorithm. Electron. Trans. Numer.
Anal 44(01), 306–326 (2015)

[32] Hehre, W.J., Ditchfield, R., Pople, J.A.: Self—consistent molecular orbital
methods. XII. Further extensions of Gaussian—type basis sets for use
in molecular orbital studies of organic molecules. J. Chem. Phys. 56(5),
2257–2261 (1972)

[33] Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, ???
(2013)

[34] Nottoli, T., Gauss, J., Lipparini, F.: A black-box, general purpose
quadratic self-consistent field code with and without cholesky decom-
position of the two-electron integrals. Mol. Phys. 119(21-22), 1974590
(2021)

[35] Werner, H.-J., Knowles, P.J.: A second order multiconfiguration SCF pro-
cedure with optimum convergence. J. Chem. Phys. 82(11), 5053–5063
(1985)

Springer Nature 2021 LATEX template

LOBPCG 21

[36] Werner, H.-J., Meyer, W.: A quadratically convergent multiconfiguration–
self-consistent field method with simultaneous optimization of orbitals
and ci coefficients. J. Chem. Phys. 73(5), 2342–2356 (1980)

[37] Jensen, H.J.A., Ågren, H.: A direct, restricted-step, second-order mc scf
program for large scale ab initio calculations. Chem. Phys. 104(2), 229–
250 (1986)

[38] Pulay, P., Hamilton, T.P.: UHF natural orbitals for defining and starting
MC-SCF calculations. J. Chem. Phys. 88(8), 4926–4933 (1988)

[39] Tóth, Z., Pulay, P.: Comparison of methods for active orbital selection in
multiconfigurational calculations. J. Chem. Theor. and Comput. 16(12),
7328–7341 (2020)

[40] Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Maintaining lu
factors of a general sparse matrix. Linear Algebra Appl. 88, 239–270
(1987)

[41] Saunders, M.: LUSOL: Sparse LU for Ax=b; freely available at https:
//github.com/nwh/lusol. (accessed Apr 26, 2023)

https://github.com/nwh/lusol
https://github.com/nwh/lusol

	Introduction
	Theory
	Implementation
	The LOBPCG algorithm
	Basis selection
	Reuse of applications
	Locking

	A robust and stable ortho(X,Y) procedure
	The ortho(X) procedure
	The ortho(X,Y) procedure

	Generalized eigenvalue problems

	Numerical experiments
	Full CI calculations
	Quadratically convergent SCF calculations
	CASSCF calculations
	Preconditioning

	Conclusions and perspectives

