
HAL Id: hal-04094004
https://hal.science/hal-04094004

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensuring the Functional Correctness of IoT through
Formal Modeling and Verification

Samir Ouchani

To cite this version:
Samir Ouchani. Ensuring the Functional Correctness of IoT through Formal Modeling and Verifica-
tion. Model and Data Engineering - 8th International Conference, Oct 2018, Marrakesh, Morocco.
pp.401-417, �10.1007/978-3-030-00856-7_27�. �hal-04094004�

https://hal.science/hal-04094004
https://hal.archives-ouvertes.fr

Ensuring the Functional Correctness of IoT through
Formal Modeling & Verification

Samir Ouchani

LINEACT, Laboratoire d’Innovation Numérique;
École d’Ingénieur en Informatique, CESI eXia, Aix-en-Provence, France.

Abstract. Recent research initiatives dedicated to formal modeling, functional
correctness and security analysis of IoT systems, are generally limited to, model
abstract behavioral patterns and look forward possible attacks beneath gauging
and providing feasible attacks. This research considers the complementary prob-
lem by looking for more accurate attacks in IoT by capturing richer behaviors
-technical, physical, and social- including their quantitative features. We propose
IoT-SEC framework that establishes an adequate semantics to the IoT’s compo-
nents and their interactions including social actors that behave differently than
automated processes. For security analysis, we develop a general approach based
on a library of attack trees from where we generate automatically the monitor,
the security policies and requirements to harden the IoT model and to check how
well the model is secure. We use PRISM model checker to analyze the function-
ality and to check security of the IoT model. Precisely this contribution ensures
the functionality of IoT systems by analyzing their functional correctness.

Keywords: IoT; Security Assessment; Attack Tree; Security Policies; Formal Verifi-
cation; Formal Modeling; Model Checking; Functional Correctness.

1 Introduction

Internet of Things (IoT) is the network of physical objects -devices, vehicles, buildings
and other items embedded with electronics, software, sensors, and network connectivity-
that enables to collect and exchange massively data. This technology of intelligent
device-to-device communication provides the much-needed leverage to IoT which make
it growing extensively. It promises immense potential for improving the quality of life,
health-care, manufacturing, transportation, etc.From a technology perspective, the rise
of IoT is not changing widely while using the same technology, connectivity, and
trimmed mobile applications. In this context, the challenging issue is checking and
ensuring functionality, security and privacy of IoT from the existing and hidden vul-
nerabilities of the linked objects and the expanded inefficient cyber-security. Behinds,
many attack vectors are difficult to manage and to get protected from in IoT especially
against computational, memory, and energy limitations due to the large amount of data
and messages; e.g. insecure web, cloud, mobile interfaces, network services, and the
lack of transport encryption, etc.

For example in IoT health-care system, objects are engaged to monitor remotely
patients and in case of a substantial change in the critical data, a notification is sent to

alert emergencies. Objects such as fit-bits and pacemakers enclosing different sensors
like EEG, BP, ECG, and EMG are deployed to control blood pressure, hearing, etc.For
communication, IoT uses a wide range of protocols to transport real-time data which
make it critical to ensure the integrity of data and its inaccessibility for unauthorized
users. Further, in crisis situations, patients are generally weak which make them an
easy target against social engineering attacks [10]. At this level of complexity, security
analysis of IoT is tricky while the components of the game are of different nature: peo-
ple, physical and digital objects, software, cloud services, and infrastructures of mul-
tiple forms. We strengthen our analysis methodology by relying to security protocols
and formal methods [12,13] to handle different type of IoT assets, and their communi-
cations that may happen via conventional and non-conventional protocols (e.g. visual,
auditory, kinesthetic). Despite the raising interest in this subject, we target to develop
sound techniques that help to automate the security analysis of IoT and to scrutinize
whether, how, at what cost, and with which probability, IoT is secure.

Contributions. This research, firstly, develops IoT-SEC framework that initiates a
modeling formalism by capturing the underlying semantics of IoT which is flexible
to be extended for more elaborated features. It is rich by covering social behaviors,
physical and digital objects, communication protocols, internal and external servers,
and computation and storing cloud services. The formalism proposes assigning a cost
e.g. time, to the execution of atomic actions, and the IoT components may behave non-
deterministically, probabilistically, or deterministically where actions can be guarded by
contextual conditions. The formalism also models a library of intruders, as particular
process proper to each IoT components, able to act maliciously according to realistic
abilities and specific conditions.

Further, this research develops a security analysis methodology for IoT. It is a sta-
tistical analysis and model-checking based approach built-up over PRISM tool [9]. To
automate their use, we define a mapping from IoT models, expressed in the proposed
formalism, to PRISM. Further, to overcome the downside of the expressiveness of mon-
itors and security properties used in PRISM, we propose a library of pre-configured at-
tack trees and we develop instantiation mechanism that help to generate automatically
relevant monitors and security properties. Unfortunately due to the limited space, we
focus only on the modeling mechanism and the correctness validation approach.

Outline. In summary, we review the related work in Section 2 and we describe the
main components and goals of the global framework in Section3. Then in Section 4,
we develop a theory to model for IoT and we detail our approach focusing mainly
on the functional correctness. In section 5, we develop a tool that shows the obtained
experimental results. Finally, Section 6 concludes the paper and sketches the future
directions.

2 Related Work

To position our contribution in literature, we compare it within the works that deal with
modeling, functional analysis, and security specification, and protocols in IoT. Since
IoT research is young, the recent initiatives survey the IoT issues and challenges.

A. Habtamu [1] discusses guidelines to how adapt security standards, practices,
and technologies in IoT. Fink et al. [3] classify the vulnerabilities that might arise
high impact in IoT. In fact, they discuss a specific class of threats without precising its
applicability on which configurations. To trustworthy a model they propose to exploit
the physical randomness in IoT to generate keys for authentication and access control
that ensure anonymity, likability, and observability. Xu et al. [17] survey design and
security challenges in IoT. They propose the digital physical un-clonable function as
solution to enable the direct use of hardware security primitives inside an arbitrary
digital logic to create secure information flow and public key protocols that require only
one clock cycle. Zhang et al. [18] highlight the ongoing challenges in IoT,especially
identification, authentication and authorization, privacy, protocols, the related systems
and software vulnerabilities. We believe that our framework contributes very well to the
discussed challenges and it is a strong starting point to develop and extend easily the
discussed research directions.

Hu et al. [5] proposed a face identification and resolution based technique for fog
computing to improve processing capacity and save the bandwidth in IoT. To check se-
curity and preserve privacy, they propose an authentication and session key agreement
protocol using data encryption and integrity checking by expressing CIA attributes in
BAN logic. Islam et al. [6] analyzes security requirements in the presence of threat
models for a health care scenario by minimizing security risk. They rely on the exist-
ing e-health policies and regulations to determine how much a requirement is violated.
Ould-Yahia et al. [15] apply Ant colony optimization to care-off between random and
uncertain behavior of sensors deployed during medical diagnosis towards e-health mea-
sures for IoT and intelligent social insects. The differences between intensities of mea-
sures result on the affected or safe path of the propagation of medical information show
and quantify different e-health security vulnerabilities. Mohsin et al. [11] proposed a
security analysis approach based on SMT for IoT entities mainly device configurations,
network topologies, user policies and their related attack surfaces. Entities are formu-
lated as a high-order logic formula, and the policies are a set of discrete constraints.
To check the existing vulnerabilities, SMT solver outputs the possible solutions satis-
fying the constraints within an attack formula. Compared to our framework, this one is
applicable only to a well guided configuration and scenario. The proposed approach is
limited to a strict IoT schemes and the analysis method is not automated.

F. Kammüller et al. [7,8] investigate how Isabelle might help to improve detec-
tion of attack traces in IoT e-health by combining ethical requirement elicitation with
automated reasoning. To provide trustworthy and secure IoT for vulnerable users in
health-care scenarios, they employ high level logical modeling using dedicated Isabelle
frameworks for: infrastructures, human actors, security policies, attack tree analysis,
and security protocol. Torjusen et al. [16] present the high level instantiation of the run-
time verification in color Petri net and its validation. They integrate runtime verification
enablers in the feedback adaptation loop to guarantee the achievement of self-adaptive
security and privacy properties for an e-health settings. At run-time, they enable the
contextual state model, the requirements specifications, and the dynamic context moni-
toring and adaptation.

With respect to the commented work, IoT-SEC covers the probability and costs
of actions, formalizes IoT, analyzes the correctness and measures their security level.
Moreover, IoT-SEC is automatic by relying on the probabilistic model checking and it
takes advantage from the algorithms built within.

3 IoT-SEC Framework

Prior deeper details, we explore first the IoT architecture adopted in IoT-SEC frame-
work, then we overview the global analysis approach and the proposed security model.

3.1 Architecture

We describe the IoT architecture by presenting its components and their interactions.
Figure 1 illustrates the proposed IoT architecture enclosing five main components, ob-
ject devices are physical objects embedded with sensors and software, user devices are
physical objects that communicate with servers and collect data from objects, comput-
ing services provided by internal, external, and cloud servers; social actors are human
agents that can hold and manipulate devices, the environment is the infrastructures and
spaces that envelops the IoT entities.

These components interact through communication protocols of different ranges
(Human-machine, Bluetooth, ZigBee, WiFi, Cellular, SSH, IpSec, etc.).

send
rec.

send
rec.

security-finance datasave-check datacritical data

Users devices

• Mobile
• Tablet
• PC, etc.

servers

• Web app.,
• middleware,
• OS, etc.
– Processing,
– Saving, etc.

Cloud
• Computing
• Storing, etc.

Ext. servers
• Public
• Private
– Security
– Authentication,

etc.

Social actors

• Patient,
• Practitioner,
• Robber, etc.
– Manipulate,
– Hold, etc.

Object devices

• Sensor
• Actuator
• Tag, etc.

usehold

Environment

Services

Transportation, hospitals, infrastructures, home, etc.

Fig. 1: IoT-SEC Components Architecture.

3.2 Methodology

The IoT methodology depicted in Figure 2 shows the main involved steps to evaluate
and ensure the well functionality in IoT. It takes as input the IoT model MIoT , the
intruder model AIoT , and a library of attack-trees TIoT . First, an instantiation of AIoT
(ÂIoT) is generated by the function GA to contend MIoT in order to produce a composed
model M̃IoT . For security analysis the composed model M̃IoT is abstracted then mapped
into a PRISM code (MP) by the function TP [13].

The approach also demonstrates the use of TIoT which produces relevant attack trees
T̂IoT to the composed model. To benefit from, the function GM,P instantiates from T̂IoT
a temporal logic formula that expresses the security property and a monitor that control
the mal-behaves of the intruder. Finally, the tool (|=) checks the satisfiability of the
security properties in the considered model, and produces the verification result in terms
of probability and cost.

MIoT M̃IoT MP

AIoT ÂIoT |= R

TIoT T̂IoT

TP

GA

GT
GM,P

Fig. 2: IoT Methodology.
In the current work we focus only on ensuring the functional correctness instead of

analyzing security.

4 Functional Correctness

To ensure the functional correctness [14] of an IoT-based system, we rely on IoT-
SEC framework presented in Section 3 by extracting the approach depicted in Fig.
3 that shows the main steps to be followed in order to answer safely if the system under
test functions properly or not, and/or with which probability/cost it can fail. We describe
the steps as follows.

– IoT architecture defines the components composing an IoT-based system including
social and non-social actors, sensors, applications, web services, physical infras-
tructures, etc.Further the way they communicate and interact.

– IoT model formalizes the architecture in a process algebra form by precizing the
atomic actions for each component and the composition operator between each
couple or group of components.

– IoT requirements express in PCTL formula different functional properties that we
need to ensure.

– PRISM code is the transformation of the IoT model into the PRISM input language.
This function should be an isomorphism i.e. each action defined in the IoT model
has only one comportment that differs from the others.

– PRISM checks how much a requirement is ensured on the IoT model.
– Results are the output of PRISM, and it can be qualitative (true or false), or quanti-

tative (a probability or a cost).

Following the above described steps we detail the modeling, the generation of
PRISM code, and the expression of the requirements.

IoT architecture
– Sensors, web services
– Social behavior
– Physical infrstructure

IoT Model
– Process algebra
– Precise actions
– Different aspects

PRISM Code:
– Modules
– Commands
– Composition

PRISM
– Probabilistic choice
– Nondeterminism
– Support CSP

PCTL expression
– Temporal operators
– Propositional logic
– Probabily estimate

Results
– Qualitative
– Quantitative
– Probabily,

cost

Modeling Transforming

Input Input

Sp
ec

if
yi

ng

Output

Fig. 3: Functional Correctness Framework for of IoT.

4.1 IoT Formal Model

Here we develop a formal model by considering the IoT architecture previously showed
in Figure 1 as a composition of interconnected physical objects (devices and controllers,
e.g. sensors and buildings), mobiles applications, cloud and computing online services,
and people. We describe an IoT system S by the tuple 〈Obj,Srv,Act,Env,Prot〉 that de-
fines formally the IoT entities: the connected objects (Obj), the environment (Env), the
client-server applications and services (Srv), the social actors (Act), and the communi-
cation protocols (Prot) that ensure the interaction and the communication between the
different types of IoT entities.

Objects An object can be either physical (e.g. sensor, USB key) or digital (e.g. data,
message, information) with different specificities and abilities. An object can be a con-
tainer, lockable (by digital or physical key), movable or/and destroyable by a program,
an intelligent or human being actor. Sensor objects send data to the apps and receive it
from the environment. An object Obj is a tuple 〈O,attrO,ActuatorO,ΣO,BehO〉, where:

– O is a finite set of tags εo,o,o′,oi, · · · ∈ O identifying the objects, and εo is the
empty object.

– attrO : O→ 2T returns the attributes of an object, whereT= {p,c,m,d,r}, p stands
for physical, c for container, m for movable, d for destroyable, and r for repro-
ducible.

– ActuatorO : O→ L×2O×O×B returns the tuple 〈locO,contO,keyO, lockedO〉 that
specifies the status of an object o by specifying respectively its: location, contained
objects, key, and if it is locked or not.

– ΣO is a finite set of atomic actions that can be executed by an object, where:

ΣO = {StartO,TerminateO,SendO(o,o′),ReceiveO(o,o′),UpdateO(o,o
′),

LockO(o,o′),UnlockO(o,o′),MoveO(l, l′) : o,o′ ∈ O and l, l′ ∈ L}

StartO and TerminateO starts and terminates the process of an object, SendO(o,o′)
and ReceiveO(o,o′) sends and receives o to/from o′, UpdateO(o,o

′) updates o by
o′, LockO(o,o′) and UnlockO(o,o′) lock and unlock o with o′, respectively.

– BehO : O→LO returns the expression written in the language LO that describes
the behaviour of an object. The syntax of LO is given by: BO ::= StartO ·BO ·
TerminateO | αO ·B | αO +go α ′O | αO, where αO ∈ ΣO\{StartO,TerminateO}
and “ · “ composes sequentially the actions, and +go is a guarded choice decision.

Services Srv ensures a client-server architecture including client applications, compu-
tation servers and web services. Srv is presented by the tuple 〈V,OV ,srvV ,ΣV ,BehV 〉,
where:

– V is a finite set of computing and storage services v, v′, etc.
– OV is a finite set of physical objects hosting services from V .
– srvV : OV → 2V assigns for a given object a set of services.
– ΣV is a finite set of actions supported by a service V , where:

ΣV = {StartV ,TerminateV ,SendV (o,o′),ReceiveV (o,o′),UpdateV (o,o
′),

LockV (o,o′),UnlockV (o,o′) : o,o′ ∈ O}

StartO and TerminateO starts and terminates the process of an object, SendO(o,o′)
and ReceiveO(o,o′) sends and receives o to/from o′, UpdateO(o,o

′) updates o by
o′, LockO(o,o′) and UnlockO(o,o′) lock and unlock o with o′, respectively.

– BehV : OV →LV returns the behaviour of an object hosting a service. The syntax
of LV is expressed as follows: BV ::= StartV ·BV | αV +gV α ′V | αV , where αV ∈
ΣV\{StartV} and “ · “ composes sequentially the actions and +gV selects the left
action if the guard gV is true otherwise, the right action is selected.

Actors Actors are of different categories, they can be, patients hosting sensors, nurses,
doctors, or any other types of agents. An actor interacts with others, manipulates ob-
jects, and accessing to resources by executing actions depends on his status and con-
text. The execution is constrained by the environment, the possessed objects, the ac-
tor’s intention and knowledge, and the access policies, etc. Formally, Act is a tuple
〈A,categA,ΣA,BevA〉 where:

– A is a finite set of actors.
– categA : A→ C returns the category of an actor.
– ActuatorA : A→ L× 2O returns the location (locA ∈ L) and the possessed objects

(possA ⊆ 2O) by an actor.
– The finite set of the actors actions ΣA encloses all actions that can be executed by

an agent.

ΣA ={StartA,MovingA(l, l
′),LockA(o,o′),UnlockA(o,o′),SendA(o,x),

ReceiveA(o,x),UpdateA(o,o
′),TerminateA :

l, l′ ∈ L and o,o′ ∈ O and a ∈ A and x ∈ L∪O∪A}

As the actions’ names mean, they express respectively the moving between loca-
tions, locking/unlocking objects, sending/receiving objects from a location, an ob-
ject, an actor; cloning or updating the content of an object (destroying and cloning
objects are a special case of the update).

– BevA : A→LA returns the expression that describes the behaviour of an actor. It
expresses the probabilistic decision and the cost (as time) of an execution. The
syntax of LA is generated by B ::= Stop | αA.B | B+B | B+g B | B+p B, where α

is an atomic action in ΣA, +p is a probabilistic decision, and +g is a deterministic
choice.

Environment Env can be any human body or other natural species, or even a physical
space that hosts objects to measure the needed metrics in order to be exploited/ana-
lyzed by the IoT system. In this model, we consider human body as an actor and the
environment as a physical entity hosting all IoT entities. From this perspective we
can model the environment as a connected container objects. Formally, Env is a tuple
〈E,L,OE ,ActuatorE〉, where:

– E is a finite set of environments denoted by e, e′, etc..
– L is a finite set of locations (l, l′, etc.).
– OE is a finite set of physical objects of type container.
– ActuatorE : OE×OE → 2O returns the set of objects linking containers by physical

objects (e.g. doors connecting two rooms).

Interaction Protocol Prot orchestrates and symphonies the communication and the
interaction between the IoT entities. Since these entities differ in their nature, we define
different communication protocols. Formally, Prot is a tuple 〈Proth,o,Proto,o,Proto,s〉
where Proth,o ensures the communications between social actors and the objects, Proto,o
between objects, Proto,s between objects and services on servers.

Considering an initial configuration of an IoT that defines the evaluation of ob-
jects, actors, and services attributes; Prot defines the changes of the attributes of each
IoT entity regarding the executed actions. The IoT configuration is the association of
all states of IoT entities and the changes of a configuration is ruled by transitions. An
IoT’s state S = 〈SO,SV ,SA,SE〉 is composed from states of objects, services, actors, and
the environment as an instance of 〈Obj,Srv,Act,Env〉. The transitions between states

are labeled and denoted by S
`,c,p
↪→ S′, l names the action to be executed, c returns its cost

and p is its probability value to be run. Due to the space limitation, we selected the
following operational rules that synthesize transitions when two physical objects o and
o′ exchange a digital object o′′ (SYN-O-O), an actor a takes an object o′ from an object
o (REC-A-O), and encrypt an object o′ by an object o using o′′ (LOC-O-O).

BehO(o) = SendO(o′, [[o′′]]).Beh′O(o)∧o′′ ∈ contO(o)∧ [[o′′]] 6= εo

BehO(o′) = ReceiveO(o′′′, [[o′′]]).Beh′O(o
′)∧o′′′ ∈ contO(o)∧ p 6∈ attrO(o′′)

SYN-O-O
〈〈o,−,<−,{o′′, [[o′′]]}>,−〉,〈o′,−,<−,{o′′′, [[o′′′]]}>,−〉〉

SendO(o,o′,[[o′′]]),c,p
↪→

〈〈o,Beh′O(o),<−,{o′′, [[o′′]]}>,−〉,〈o′,Beh′O(o
′),<−,{o′′′, [[o′′]]}>,−〉〉

BevA(a) = ReceiveA(o,o′).Bev′A(a)∧ locA(a) = locO(o)

¬lockedO(o)∧o′ ∈ contO(o)∧ p ∈ attrO(o′)
REC-A-O

〈〈a,−,<−,−>,−〉,〈o,−,<−,{o′}>,−〉〉
ReceiveA(a,o,o′),c,p

↪→
〈〈a,Bev′A(a),<−,{o′}>,−〉,〈o,Beh′O(o),<−,−>,−〉〉

BehO(o) = LockO(o′,o′′).Beh′O(o)∧{o′,o′′} ⊂ contO(o)∧ [[o′,o′′]] 6= εo
LOC-O-O

〈〈o,−,<−,{o′,o′′}>,−〉,〈o′,−,<−,−>,¬lockedO(o′)〉〉
lockO(o,o′,o′′),c,p

↪→
〈〈o,Beh′O(o),<−,{o′,o′′}>,−〉,〈o′,−,<−,−>, lockedO(o′)〉〉

We define an IoT’s state and how this changes by the effect of actions as a labelled
state transition system 〈S,S0,→〉 where, S is the set of the IoT states, S0 ∈ S is the
initial state, and → ⊆ (S×L× S) the transition relation between states labled by

L. A transition ↪→∈→ denoted by S
`,c,p
↪→ S′ defines how IoT states change when the

IoT entities behave. For example,

4.2 PRISM

PRISM is a probabilistic symbolic model checker that checks probabilistic specifica-
tions over probabilistic models. A specification can be expressed either in the proba-
bilistic computation tree logic (PCTL) [2] or in a continuous stochastic logic. A model
can be described using PRISM language. A PRISM program is a set of modules, each
having a countable set of boolean or integer, local, variables. A module’s state is fully
defined by the evaluation of its local variables, while the program’s state is defined by
the evaluation of all variables, local and global.

In PRISM, the behavior of a module is defined by a set of probabilistic and/or Dirac
commands that specifies textually the effect of an action in a probabilistic transition
system. A probabilistic command is expressed by [α] g→ p1 : u1+...+pm : um, where

pi are probabilities (pi ∈]0,1[and
m
∑

i=0
pi = 1), α is a label describing the name of an

action, g is a propositional logic formula over local and global variables (i.e. a guard),

and ui are updates for variables. An update, written as (v′j = val j)& · · ·&(v′k = valk),
assigns only values vali to local variables vi. It means that for a given action α , if the
guard g is true, an update ui is enabled with a probability pi. The guard is an expression
consisting of the evaluation of both local and global variables, and the propositional
logic operators. The Dirac case where p = 1 is a command written simply by [a] g→ u.

Syntactically, a module named M is delimited by two keywords: the module head
“module M”, and the module termination “endmodule”. Further, we can model costs
with reward module R delimited by keywords “rewards R” and “endrewards”. It is
composed from a state reward or a transition reward. A state reward associates a cost
(reward) of value r to any state satisfying g that is expressed by g : r. A transition reward
has the form [a] g : r expresses that the transitions labeled a, from states satisfying g,
are acquiring the reward of value r.

PRISM supports also composition where modules communicate à la CSP process
algebra (e.g. see [4]). For two modules M1 and M2, the following composition operators
are supported.

– Synchronization: the full synchronization on all shared action is written as M1||M2,
– Interfacing: the parallel interface synchronization limited to the set of shared ac-

tions {a,b, · · ·} is given by M1|[a,b, · · ·]|M2,
– Interleaving: the interleaving is expressed by M1|||M2,
– Hiding: M/{a,b, · · ·} expresses hiding the actions a,b, · · · in the module M.
– Renaming: M{a← b,c← d, . . .} is to rename actions a by b, c by d,

4.3 Transformation of IoT to PRISM

To generate a PRISM program P proper to the provided IoT formalism, we define the
function TP that assigns for each IoT entity behavior its proper PRISM code fragment
that is bounded by ’module IoT entity name’ and ’endmodule’ and the semantic
rules of each action is expressed by a PRISM command.

Due to the space limitation, we present the PRISM commands of actions that their
semantics rules are already defined in Section 4.1. The left side specifies the premises
of a rule whereas the right side describes the results of the rules. For example, oo2 is an
atomic proposition showing the the object o possess o2, la and lo present the locations,
and po3 precises the physicality attribute of o3. Variables and propositions are evaluated
first to describe the initial state of the IoT entities by relying on the tuple obtained by
the Actuator proper to each entity.

TP(α)=

[Syno2]oo2 ∧o1o3
∧¬po2 ∧¬po3 → (o′2 = o2); iff:

[Syno2]oo2 ∧o1o3
∧¬po2 ∧¬po3 → (o′3 = o2); SendO(o1,o2) ∈ Σ

o1
O ,

ReceiveO(o3,o2) ∈ Σ
o2
O .

[Tako1]la = lo∧oo2 ∧¬locko∧ po2 → (a′o2
=>);

[Tako1]la = lo∧oo2 ∧¬locko∧ po2 → (o′o2
=⊥); ReceiveA(o,o2) ∈ Σ a

A.

[loco1]oo1 ∧oo2 ∧¬ko1 ∧ po1 = po2 → (k′o1
=>); LockO(o1,o2) ∈ Σ o

O.

[loco1]oo1 ∧oo2 ∧¬ko1 ∧ po1 = po2 → (o′o1
=>);

4.4 Functional Requirements

We comment here what properties can be of relevance and how to express them in such
a way that they can be checked by running PRISM. A formalism that is able to express
all the factors that diagrams describe, paths of actions, propositions on state variables,
probabilities of occurrence of one or a sequence of actions.

PCTL formulas φ in such a logic are generated by the following BNF grammar:

φ ::= > | ap | φ ∧φ | ¬φ | P./ p[ψ] | R./r[Fφ]

ψ ::= Xφ | φUφ | φU≤k
φ

Here, k ∈ N, r ∈ R+, p ∈ [0,1], and ./∈ {<,≤,>,≥}. A state formula can be “ap”,
an atomic proposition, or any propositional expression built from “ap”. P./ p[ψ], called
probabilistic path predicate, returns true if the probability to satisfy the path formula ψ

is ./ p. The cost predicate R./r[φ] returns true if the cost to satisfy φ is ./ r. Here, F is
the temporal logic operator eventually. A path formula is built from the typical temporal
operators next (X), until (U), and bounded until (U≤k).

As usual, other logic operators can be derived from the basic operators, such as G
refers to Generally. The semantics of these operators are given as follows.

– ⊥≡ ¬>, φ ∨φ ′ ≡ ¬(¬φ ∧¬φ ′), φ → φ ′ ≡ ¬φ ∨φ ′, and
– φ ↔ φ ′ ≡ φ → φ ′ ∧ φ ′→ φ .
– Fφ ≡ >U φ , F≤ kφ ≡ >U≤ k φ , Gφ ≡ ¬(F¬φ), and
– G≤ kφ ≡ ¬(F≤ k¬φ) where k ∈N.
– P≥p[Gφ]≡ P≤1−p[F¬φ].

Besides, Pmin, Pmax, Rmin, and Rmax are operators that can be used within path
or state formulas to specify the minimum (resp. maximum) probability or cost.

5 Experiments Results

Here we apply the approach presented in Section 4, by following the discussed steps
above, on a use case presenting a smart health care emergency room.

The IoT Architecture. Fig. 4 depicts the main components of a smart emergency
composed of: one patient, two rooms, set of sensors, local server, and a station. The
goal is to ensure a collection of defined functional requirements.

Fig. 4: smart emergency room

The IoT model. In the smart emergency presented in Fig. 4, two rooms l1 and l2 are
accessible through the object o1 (unique door) that is initially locked with the physical
key ok

1. The patient a1 is in l1 without possessing ok
1 but he has the sensor object os

1 to
measure his vital parameters and communicate it to the local server via the station od

1
situated in l2 at the end of medical services: monitoring, analysis, and cloud storage.
Herein, we describe briefly the behaviours of the patient a1, the sensor object os

1, the
door o1, the physical key ok

1, and the station od
1 , respectively.

- With a probability value of 0.3, a1 can unlock o1 before moving to l2.
BevA(a1) =StartA.(UnlockA(o1,ok

1)+0.3 MovingA(l1, l1)).MovingA(l1, l2).

TerminateA s.t. ActuatorA(a1) = 〈l1,{os
1}〉.

- ok
1 moves within its possessor, this possession is described with the guard gk

1.
BehO(ok

1) =StartO.(MoveO(l1, l2)+gk
1
MoveO(l1, l1)).TerminateO

s.t. ActuatorO(ok
1) = 〈l1,εo,εo,⊥〉.

- os
1 moves within a1, and sends the value [[om

1]] received from a1 to the station od
1 .

BehO(os
1) =StartO.((ReceiveO(a1, [[om

1]]).UpdateO(o
m
1 , [[o

m
1]]).SendO(od

1 , [[o
m
1]]))

+(ReceiveO(od
1 , [[o

m
2]]).UpdateO(o

m
2 , [[o

m
2]]))+(MoveO(l1, l2)

+gs
1
MoveO(l1, l1))).TerminateO s.t. ActuatorO(os

1) = 〈l1,εo,εo,⊥〉.
- od

1 synchronizes with os
1 to send [[om

2]]) and to receive [[om
2]]).

BehO(od
1) =StartO.((ReceiveO(os

1, [[o
m
1]]).UpdateO(o

m
2 , [[o

m
1]])))

+(SendO(os
1, [[o

m
2]]))).TerminateO s.t. ActuatorO(od

1) = 〈l2,εo,εo,⊥〉.

The PRISM Model. For the performance assessment of the smart emergency, its
IoT model is encoded into PRISM presented in Listing 1.1. It shows the code frag-
ments of a1, os

1, ok
1, and od

1 . Here we sketch a selected commands for each entity. The

module a1 describes the behavior of a1, its location la1 is initialized to the first room
and its action MovingA(l1, l1) is expressed by the command M11. The action Ra1(om

1)
evaluates the body measure om

1 . The status of o1 is defined nondeterministically with
actions Uo1 and Lo1 to evaluate equally the predicate locko1 . Actions in the module ok

1
assigns the locations of a1 when it is possessed by him otherwise its location does not
change. Further, os

1 synchronizes with a1 in Ra1(om
1) and with od

1 in Sos
1 to receive aok

1
sent by a1. The module ‘cost’ assigns a cost of value 2 to the actions Ra1(om

1) and Sos
1.

Furthermore, to add more entities, a user should just instantiates the proper module by
renaming only its local variables.

mdp

module a1
la1 : [1..2] init 1;

aos
1
: bool init true;

a1(om
1): [1..5] init 1;

aok
1
: bool init true;

aUok
1
: bool init false;

[Uo1] (la1 =1)&(locko1)⇒
0.3: (a′Uok

1
=true)+0.7 :(l′a1

=1);

[M11](la1 =1)&(locko1)⇒(l′a1
=1);

[M12](la1 =1)&(¬locko1)⇒(l′a1
=2);

[M21](la1 =2)&(¬locko1)⇒(l′a1
=1);

[M22](la1 =2)⇒(l′a1
=2);

[Uo1](locko1)&(aok
1
)⇒(l′a=la);

[Lo1](¬(locko1))&(aok
1
)⇒(l′a=la);

[Ra1(om
1)](a1(om

1)< 5)⇒
(a1(om

1)
′ = a1(om

1)+1);
[Ra1(om

1)](a1(om
1) = 5)⇒(a1(om

1)
′ = 1);

endmodule

module o1
locko1 :bool init true;

[Uo1](locko1) ⇒ (lock′o1
= f alse);

[Lo1](¬(locko1)) ⇒ lock′o1
= true);

endmodule

module ok
1

lok
1

: [1..2] init 1;

[M11](aok
1
)⇒ (l′ok

1
= la1);

[M12](aok
1
)⇒ (l′ok

1
= la1);

[M21](aok
1
)⇒ (l′ok

1
= la1);

[M22](aok
1
)⇒ (l′ok

1
= la1);

[M22](aok
1
)⇒ (l′ok

1
= la1);

[](¬(aok
1
))⇒(l′ok

1
= lok

1
);

endmodule

module os
1

los
1
:[1..2] init 1;

os
1(o

m
1):[0..5] init 0;

[M11](aos
1
)⇒(l′os

1
= la1);

[M12](aos
1
)⇒(l′os

1
= la1);

[M21](aos
1
)⇒(l′os

1
= la1);

[M22](aos
1
)⇒(l′os

1
= la1);

[M22](aos
1
)⇒(l′os

1
= la1);

[Ra1(om
1)](aos

1
)⇒(os

1(o
m
1)
′ = a1(om

1));

[Sos
1](o

m
1)! = 0⇒ (os

1(o
m
1)
′ = a1(om

1));
endmodule

module od
1

los
1
:[1..2] init 1;

od
1(o

m
1):[0..5] init 0;

[M11](aos
1
)⇒(l′os

1
= la1);

[M12](aos
1
)⇒(l′os

1
= la1);

[M21](aos
1
)⇒(l′os

1
= la1);

[M22](aos
1
)⇒(l′os

1
= la1);

[M22](aos
1
)⇒(l′os

1
= la1);

[Sos
1](o

m
1 ! = 0)⇒(od

1(o
m
1)
′ = os

1(o
m
1));

endmodule

rewards cost

true :1;

[Ra1(om
1)] (la = 2) : 2;

[Sos
1] (la = 2) : 2;

[](a1(om
1)> 3): 3;

[](a1(om
1)< 4): 2;

endrewards

Listing 1.1: The PRISM Fragment Code of the
Smart Emergency.

The Functional Requirements. To ensure the functionality of the smart emergency
system, we specify the following functional requirements.

1. Property 1. “What is the maximum probability for the patient a1 to move from l1
to l2 when the measure of a1(om

1) is greater then 2?”. The PCTL expression of this
property is: Pmax =?[(lo1 = l1)∧(a1(om

1)< 4)U ≤ step (lo1 = l2)∧(a1(om
1)> 3)].

The variable step is the number of steps (transitions) to reach the state that satisfies:
(lo1 = l2)∧ (a1(om

1)> 3).
2. Property 2. “What is the maximum probability to keep both the sensor object os

1
and the station object od

1 functioning together?”. Its PCTL expression is:
Pmax =?[G(os

1(o
m
1)> 0∧od

1(o
m
1)> 0)].

3. Property 3. it looks to measure the minimum cost to read a1(om
1) and communicate

it between os
1 and od

1 . It is expressed in PCTL by Rmin =?[F(a1(om
1)> 0)].

4. Property 4. It measures the maximum cost for a1 to move safely and keeping os
1

functioning. Its PCTL expression is: Rmax =?[F(os
1(o

m
1)> 0){la1 = l1, la1 = l2}].

The Correctness Checking. The verification results of the above properties are de-
picted in Figure 5. The results of Property 1 in Figure 5(a) show the convergence of the
probability evaluation from 0 to 0.001 after 3 steps, then it increases up to 0.00125 after
9 steps. This result shows that the risk is low for a patient to move. Figure 5(b) shows
that the probability obtained from the satisfiability of Property 2 is 1 after step 6 and it
converges to 0.9 after 4 steps. It means that the smart emergency model reliable at the
most time.

(a) Property 1. (b) Property 2.

Fig. 5: The correctness checking results

The verification results depicted in Figure 6(a) show that the minimum reward value
obtained from the satisfiability of Property 3 is 121.59 and Figure 6(b) presents that the
the cost to satisfy Property 4 is at least 14.13. It means that the cost to keep the system
always reliable is relatively high for communication and relatively low for the reliability
of the smart emergency.

(a) Property 3. (b) Property 4.

Fig. 6: The correctness checking results

6 Conclusion

This paper sets the fundamentals of a fully automatic framework for modeling and
analysis of IoT. Principally, we detail a part of it by presenting a formalism that captures
the main structure and comportment of IoT entities covering physical and information
infrastructures, services, assets, social actors, and also their activities and interactions.
The execution of an action has a cost and guided by probabilities and/or contextual
conditions. Further, the formalism has a rich and flexible semantics, which we use it
to capture the IoT functional requirements expressing the possibility, the likelihood,
and the cost of actions. Further, it is developed to be easy for other extensions and
refinements. To carry our functional correctness analysis automatically, we devised an
algorithm that maps an IoT model into the input language of PRISM in order to be
checked against the requirements expressed in PCTL. Finally, the effectiveness of the
proposed framework is validated on a case study.

This work sets the stage for further development. In the extended version of this
work, we provide the complete set of rules, a detailed transformation function, and
more experiments. Further, we intend to enrich our model with more assets: refine the
contextual conditions, provide the security aspect of the IoT model, complete the other
parts of the framework. Also from a solid theoretical point of view, we have to prove
the correctness and the soundness of each developed step in a proof assistant (e.g. Coq).
Furthermore, we implement the framework as a full standing tool and validated it on
different case studies and real systems.

References

1. Habtamu Abie. Adaptive Security for the Internet of Things: Research, Standards, and Prac-
tices. Syngress Publishing, 1st edition, 2017.

2. Christel Baier and Joost Pieter Katoen. Principles of Model Checking. The MIT Press, may
2008.

3. G. A. Fink, D. V. Zarzhitsky, T. E. Carroll, and E. D. Farquhar. Security and privacy grand
challenges for the internet of things. In 2015 International Conference on Collaboration
Technologies and Systems (CTS), pages 27–34, June 2015.

4. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, Incorpo-
rated, 1985.

5. P. Hu, H. Ning, T. Qiu, H. Song, Y. Wang, and X. Yao. Security and Privacy Preservation
Scheme of Face Identification and Resolution Framework Using Fog Computing in Internet
of Things. IEEE Internet of Things Journal, 4(5):1143–1155, 2017.

6. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak. The internet of things
for health care: A comprehensive survey. IEEE Access, 3:678–708, 2015.

7. F. Kammüller, J. C. Augusto, and S. Jones. Security and privacy requirements engineering for
human centric iot systems using efriend and isabelle. In 2017 IEEE 15th International Con-
ference on Software Engineering Research, Management and Applications (SERA), pages
401–406, June 2017.

8. Florian Kammüller. Formal Modeling and Analysis with Humans in Infrastructures for IoT
Health Care Systems, pages 339–352. Springer International Publishing, 2017.

9. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of Proba-
bilistic Real-time Systems. In 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer Verlag, 2011.

10. Gabriele Lenzini, Sjouke Mauw, and Samir Ouchani. Security Analysis of Socio-technical
Physical Systems. Comput. Electr. Eng., 47:258–274, 2015.

11. M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman. Iotsat: A formal frame-
work for security analysis of the internet of things (iot). In 2016 IEEE Conference on Com-
munications and Network Security (CNS), pages 180–188, Oct 2016.

12. S. Ouchani, O. A. Mohamed, and M. Debbabi. a security risk assessment framework for
sysml activity diagrams. In 2013 IEEE 7th International Conference on Software Security
and Reliability.

13. Samir Ouchani, Otmane Ait Mohamed, and Mourad Debbabi. Efficient Probabilistic Ab-
straction for SysML Activity Diagrams. In Proceedings of the 10th International Conference
on Software Engineering and Formal Methods, SEFM’12, pages 263–277. Springer-Verlag,
2012.

14. Samir Ouchani, Otmane Ait Mohamed, Mourad Debbabi, and Makan Pourzandi. Verification
of the Correctness in Composed UML Behavioural Diagrams, pages 163–177. Springer
Berlin Heidelberg, 2010.

15. Youcef Ould-Yahia, Soumya Banerjee, Samia Bouzefrane, and Hanifa Boucheneb. Exploring
Formal Strategy Framework for the Security in IoT towards e-Health Context using Compu-
tational Intelligence, pages 63–90. Springer International Publishing, 2017.

16. Arild B. Torjusen, Habtamu Abie, Ebenezer Paintsil, Denis Trcek, and AAsmund Skomedal.
Towards run-time verification of adaptive security for iot in ehealth. In Proceedings of the
2014 European Conference on Software Architecture Workshops, ECSAW ’14, pages 4:1–
4:8. ACM, 2014.

17. Teng Xu, James B. Wendt, and Miodrag Potkonjak. Security of iot systems: Design chal-
lenges and opportunities. In Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD ’14, pages 417–423. IEEE Press, 2014.

18. Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, and S. Shieh. Iot security:
Ongoing challenges and research opportunities. In 2014 IEEE 7th International Conference
on Service-Oriented Computing and Applications, pages 230–234, Nov 2014.

View publication stats

