Ouchani Samir

Lineact

Ensuring the Functional Correctness of IoT through Formal Modeling & Verification

Keywords: IoT, Security Assessment, Attack Tree, Security Policies, Formal Verification, Formal Modeling, Model Checking, Functional Correctness

Recent research initiatives dedicated to formal modeling, functional correctness and security analysis of IoT systems, are generally limited to, model abstract behavioral patterns and look forward possible attacks beneath gauging and providing feasible attacks. This research considers the complementary problem by looking for more accurate attacks in IoT by capturing richer behaviors -technical, physical, and social-including their quantitative features. We propose IoT-SEC framework that establishes an adequate semantics to the IoT's components and their interactions including social actors that behave differently than automated processes. For security analysis, we develop a general approach based on a library of attack trees from where we generate automatically the monitor, the security policies and requirements to harden the IoT model and to check how well the model is secure. We use PRISM model checker to analyze the functionality and to check security of the IoT model. Precisely this contribution ensures the functionality of IoT systems by analyzing their functional correctness.

Introduction

Internet of Things (IoT) is the network of physical objects -devices, vehicles, buildings and other items embedded with electronics, software, sensors, and network connectivitythat enables to collect and exchange massively data. This technology of intelligent device-to-device communication provides the much-needed leverage to IoT which make it growing extensively. It promises immense potential for improving the quality of life, health-care, manufacturing, transportation, etc.From a technology perspective, the rise of IoT is not changing widely while using the same technology, connectivity, and trimmed mobile applications. In this context, the challenging issue is checking and ensuring functionality, security and privacy of IoT from the existing and hidden vulnerabilities of the linked objects and the expanded inefficient cyber-security. Behinds, many attack vectors are difficult to manage and to get protected from in IoT especially against computational, memory, and energy limitations due to the large amount of data and messages; e.g. insecure web, cloud, mobile interfaces, network services, and the lack of transport encryption, etc.

For example in IoT health-care system, objects are engaged to monitor remotely patients and in case of a substantial change in the critical data, a notification is sent to A. Habtamu [START_REF] Abie | Adaptive Security for the Internet of Things: Research, Standards, and Practices[END_REF] discusses guidelines to how adapt security standards, practices, and technologies in IoT. Fink et al. [START_REF] Fink | Security and privacy grand challenges for the internet of things[END_REF] classify the vulnerabilities that might arise high impact in IoT. In fact, they discuss a specific class of threats without precising its applicability on which configurations. To trustworthy a model they propose to exploit the physical randomness in IoT to generate keys for authentication and access control that ensure anonymity, likability, and observability. Xu et al. [START_REF] Xu | Security of iot systems: Design challenges and opportunities[END_REF] survey design and security challenges in IoT. They propose the digital physical un-clonable function as solution to enable the direct use of hardware security primitives inside an arbitrary digital logic to create secure information flow and public key protocols that require only one clock cycle. Zhang et al. [START_REF] Zhang | Iot security: Ongoing challenges and research opportunities[END_REF] highlight the ongoing challenges in IoT,especially identification, authentication and authorization, privacy, protocols, the related systems and software vulnerabilities. We believe that our framework contributes very well to the discussed challenges and it is a strong starting point to develop and extend easily the discussed research directions.

Hu et al. [START_REF] Hu | Security and Privacy Preservation Scheme of Face Identification and Resolution Framework Using Fog Computing in Internet of Things[END_REF] proposed a face identification and resolution based technique for fog computing to improve processing capacity and save the bandwidth in IoT. To check security and preserve privacy, they propose an authentication and session key agreement protocol using data encryption and integrity checking by expressing CIA attributes in BAN logic. Islam et al. [START_REF] Islam | The internet of things for health care: A comprehensive survey[END_REF] analyzes security requirements in the presence of threat models for a health care scenario by minimizing security risk. They rely on the existing e-health policies and regulations to determine how much a requirement is violated. Ould-Yahia et al. [START_REF] Ould-Yahia | Exploring Formal Strategy Framework for the Security in IoT towards e-Health Context using Computational Intelligence[END_REF] apply Ant colony optimization to care-off between random and uncertain behavior of sensors deployed during medical diagnosis towards e-health measures for IoT and intelligent social insects. The differences between intensities of measures result on the affected or safe path of the propagation of medical information show and quantify different e-health security vulnerabilities. Mohsin et al. [START_REF] Mohsin | Iotsat: A formal framework for security analysis of the internet of things (iot)[END_REF] proposed a security analysis approach based on SMT for IoT entities mainly device configurations, network topologies, user policies and their related attack surfaces. Entities are formulated as a high-order logic formula, and the policies are a set of discrete constraints. To check the existing vulnerabilities, SMT solver outputs the possible solutions satisfying the constraints within an attack formula. Compared to our framework, this one is applicable only to a well guided configuration and scenario. The proposed approach is limited to a strict IoT schemes and the analysis method is not automated. F. Kammüller et al. [START_REF] Kammüller | Security and privacy requirements engineering for human centric iot systems using efriend and isabelle[END_REF][START_REF] Kammüller | Formal Modeling and Analysis with Humans in Infrastructures for IoT Health Care Systems[END_REF] investigate how Isabelle might help to improve detection of attack traces in IoT e-health by combining ethical requirement elicitation with automated reasoning. To provide trustworthy and secure IoT for vulnerable users in health-care scenarios, they employ high level logical modeling using dedicated Isabelle frameworks for: infrastructures, human actors, security policies, attack tree analysis, and security protocol. Torjusen et al. [START_REF] Arild | Towards run-time verification of adaptive security for iot in ehealth[END_REF] present the high level instantiation of the runtime verification in color Petri net and its validation. They integrate runtime verification enablers in the feedback adaptation loop to guarantee the achievement of self-adaptive security and privacy properties for an e-health settings. At run-time, they enable the contextual state model, the requirements specifications, and the dynamic context monitoring and adaptation.

With respect to the commented work, IoT-SEC covers the probability and costs of actions, formalizes IoT, analyzes the correctness and measures their security level. Moreover, IoT-SEC is automatic by relying on the probabilistic model checking and it takes advantage from the algorithms built within.

IoT-SEC Framework

Prior deeper details, we explore first the IoT architecture adopted in IoT-SEC framework, then we overview the global analysis approach and the proposed security model.

Architecture

We describe the IoT architecture by presenting its components and their interactions. Figure 1 illustrates the proposed IoT architecture enclosing five main components, object devices are physical objects embedded with sensors and software, user devices are physical objects that communicate with servers and collect data from objects, computing services provided by internal, external, and cloud servers; social actors are human agents that can hold and manipulate devices, the environment is the infrastructures and spaces that envelops the IoT entities.

These components interact through communication protocols of different ranges (Human-machine, Bluetooth, ZigBee, WiFi, Cellular, SSH, IpSec, etc.).

Methodology

The IoT methodology depicted in Figure 2 shows the main involved steps to evaluate and ensure the well functionality in IoT. It takes as input the IoT model M IoT , the intruder model A IoT , and a library of attack-trees T IoT . First, an instantiation of A IoT (A IoT) is generated by the function G A to contend M IoT in order to produce a composed model M IoT . For security analysis the composed model M IoT is abstracted then mapped into a PRISM code (M P) by the function T P [START_REF] Ouchani | Efficient Probabilistic Abstraction for SysML Activity Diagrams[END_REF].

The approach also demonstrates the use of T IoT which produces relevant attack trees TIoT to the composed model. To benefit from, the function G M,P instantiates from TIoT a temporal logic formula that expresses the security property and a monitor that control the mal-behaves of the intruder. Finally, the tool (|=) checks the satisfiability of the security properties in the considered model, and produces the verification result in terms of probability and cost. In the current work we focus only on ensuring the functional correctness instead of analyzing security.

M IoT M IoT M P A IoT A IoT |= R T IoT TIoT T P G A G T G M,P

Functional Correctness

To ensure the functional correctness [START_REF] Ouchani | Verification of the Correctness in Composed UML Behavioural Diagrams[END_REF] of an IoT-based system, we rely on IoT-SEC framework presented in Section 3 by extracting the approach depicted in Fig. 3 that shows the main steps to be followed in order to answer safely if the system under test functions properly or not, and/or with which probability/cost it can fail. We describe the steps as follows.

-IoT architecture defines the components composing an IoT-based system including social and non-social actors, sensors, applications, web services, physical infrastructures, etc.Further the way they communicate and interact. -IoT model formalizes the architecture in a process algebra form by precizing the atomic actions for each component and the composition operator between each couple or group of components. -IoT requirements express in PCTL formula different functional properties that we need to ensure. -PRISM code is the transformation of the IoT model into the PRISM input language.

This function should be an isomorphism i.e. each action defined in the IoT model has only one comportment that differs from the others.

-PRISM checks how much a requirement is ensured on the IoT model.

-Results are the output of PRISM, and it can be qualitative (true or false), or quantitative (a probability or a cost).

Following the above described steps we detail the modeling, the generation of PRISM code, and the expression of the requirements.

IoT Formal Model

Here we develop a formal model by considering the IoT architecture previously showed in Figure 1 as a composition of interconnected physical objects (devices and controllers, e.g. sensors and buildings), mobiles applications, cloud and computing online services, and people. We describe an IoT system S by the tuple Obj, Srv, Act, Env, Prot that defines formally the IoT entities: the connected objects (Obj), the environment (Env), the client-server applications and services (Srv), the social actors (Act), and the communication protocols (Prot) that ensure the interaction and the communication between the different types of IoT entities.

Objects

Σ O = {Start O , Terminate O , Send O (o, o), Receive O (o, o), Update O (o, o), Lock O (o, o), Unlock O (o, o), Move O (l, l) : o, o ∈ O
::= Start O • B O • Terminate O | α O • B | α O + g o α O | α O , where α O ∈ Σ O \{Start O , Terminate O }
and " • " composes sequentially the actions, and + g o is a guarded choice decision.

Services Srv ensures a client-server architecture including client applications, computation servers and web services. Srv is presented by the tuple V, O V , srv V , Σ V , Beh V , where:

-V is a finite set of computing and storage services v, v , etc.

-O V is a finite set of physical objects hosting services from V.

srv V : O V → 2 V assigns for a given object a set of services.

-Σ V is a finite set of actions supported by a service V , where: -Beh V : O V → L V returns the behaviour of an object hosting a service. The syntax of L V is expressed as follows:

Σ V = {Start V , Terminate V , Send V (o, o), Receive V (o, o), Update V (o, o), Lock V (o, o), Unlock V (o,
B V ::= Start V • B V | α V + g V α V | α V , where α V ∈ Σ V \{Start V } and "
• " composes sequentially the actions and + g V selects the left action if the guard g V is true otherwise, the right action is selected.

Actors Actors are of different categories, they can be, patients hosting sensors, nurses, doctors, or any other types of agents. An actor interacts with others, manipulates objects, and accessing to resources by executing actions depends on his status and context. The execution is constrained by the environment, the possessed objects, the actor's intention and knowledge, and the access policies, etc. Formally, Act is a tuple A, categ A , Σ A , Bev A where:

-A is a finite set of actors.

categ A : A → C returns the category of an actor.

-Actuator A : A → L × 2 O returns the location (loc A ∈ L) and the possessed objects (poss A ⊆ 2 O) by an actor. -The finite set of the actors actions Σ A encloses all actions that can be executed by an agent.

Σ A ={Start A , Moving A (l, l), Lock A (o, o), Unlock A (o, o), Send A (o, x), Receive A (o, x), Update A (o, o), Terminate A : l, l ∈ L and o, o ∈ O and a ∈ A and x ∈ L ∪ O ∪ A}
As the actions' names mean, they express respectively the moving between locations, locking/unlocking objects, sending/receiving objects from a location, an object, an actor; cloning or updating the content of an object (destroying and cloning objects are a special case of the update). -Bev A : A → L A returns the expression that describes the behaviour of an actor. It expresses the probabilistic decision and the cost (as time) of an execution. The syntax of L A is generated by

B ::= Stop | α A .B | B + B | B + g B | B + p B
, where α is an atomic action in Σ A , + p is a probabilistic decision, and + g is a deterministic choice.

Environment Env can be any human body or other natural species, or even a physical space that hosts objects to measure the needed metrics in order to be exploited/analyzed by the IoT system. In this model, we consider human body as an actor and the environment as a physical entity hosting all IoT entities. From this perspective we can model the environment as a connected container objects. Formally, Env is a tuple E, L, O E , Actuator E , where:

-E is a finite set of environments denoted by e, e , etc..

-L is a finite set of locations (l, l , etc.).

-O E is a finite set of physical objects of type container.

- Considering an initial configuration of an IoT that defines the evaluation of objects, actors, and services attributes; Prot defines the changes of the attributes of each IoT entity regarding the executed actions. The IoT configuration is the association of all states of IoT entities and the changes of a configuration is ruled by transitions. An IoT's state S = S O , S V , S A , S E is composed from states of objects, services, actors, and the environment as an instance of Obj, Srv, Act, Env . The transitions between states are labeled and denoted by S ,c,p → S , l names the action to be executed, c returns its cost and p is its probability value to be run. Due to the space limitation, we selected the following operational rules that synthesize transitions when two physical objects o and o exchange a digital object o (SYN-O-O), an actor a takes an object o from an object o (REC-A-O), and encrypt an object o by an object o using o (LOC-O-O).

Actuator E : O E × O E → 2 O returns
Beh O (o) = Send O (o , [[o]]).Beh O (o) ∧ o ∈ cont O (o) ∧ [[o]] = ε o Beh O (o) = Receive O (o , [[o]]).Beh O (o) ∧ o ∈ cont O (o) ∧ p ∈ attr O (o) SYN-O-O o, -, < -, {o , [[o]]} >, -, o , -, < -, {o , [[o]]} >, - Send O (o,o ,[[o]]),c,p → o, Beh O (o), < -, {o , [[o]]} >, -, o , Beh O (o), < -, {o , [[o]]} >, - Bev A (a) = A (o, o).Bev A (a) ∧ loc A (a) = loc O (o) ¬locked O (o) ∧ o ∈ cont O (o) ∧ p ∈ attr O (o) REC-A-O a, -, < -, ->, -, o, -, < -, {o } >, - Receive A (a,o,o),c,p → a, Bev A (a), < -, {o } >, -, o, Beh O (o), < -, ->, - Beh O (o) = Lock O (o , o).Beh O (o) ∧ {o , o } ⊂ cont O (o) ∧ [[o , o]] = ε o LOC-O-O o, -, < -, {o , o } >, -, o , -, < -, ->, ¬locked O (o) lock O (o,o ,o),c,p → o, Beh O (o), < -, {o , o } >, -, o , -, < -, ->, locked O (o)
We define an IoT's state and how this changes by the effect of actions as a labelled state transition system S, S 0 , → where, S is the set of the IoT states, S 0 ∈ S is the initial state, and → ⊆ (S × L × S) the transition relation between states labled by L. A transition →∈→ denoted by S ,c,p → S defines how IoT states change when the IoT entities behave. For example,

PRISM

PRISM is a probabilistic symbolic model checker that checks probabilistic specifications over probabilistic models. A specification can be expressed either in the probabilistic computation tree logic (PCTL) [START_REF] Baier | Principles of Model Checking[END_REF] or in a continuous stochastic logic. A model can be described using PRISM language. A PRISM program is a set of modules, each having a countable set of boolean or integer, local, variables. A module's state is fully defined by the evaluation of its local variables, while the program's state is defined by the evaluation of all variables, local and global.

In PRISM, the behavior of a module is defined by a set of probabilistic and/or Dirac commands that specifies textually the effect of an action in a probabilistic transition system. A probabilistic command is expressed by [α] g → p 1 : u 1 +...+p m : u m , where p i are probabilities (p i ∈]0, 1[and m ∑ i=0 p i = 1), α is a label describing the name of an action, g is a propositional logic formula over local and global variables (i.e. a guard), and u i are updates for variables. An update, written as

(v j = val j)& • • • &(v k = val k),
assigns only values val i to local variables v i . It means that for a given action α, if the guard g is true, an update u i is enabled with a probability p i . The guard is an expression consisting of the evaluation of both local and global variables, and the propositional logic operators. The Dirac case where p = 1 is a command written simply by [a] g → u.

Syntactically, a module named M is delimited by two keywords: the module head "module M", and the module termination "endmodule". Further, we can model costs with reward module R delimited by keywords "rewards R" and "endrewards". It is composed from a state reward or a transition reward. A state reward associates a cost (reward) of value r to any state satisfying g that is expressed by g : r. A transition reward has the form [a] g : r expresses that the transitions labeled a, from states satisfying g, are acquiring the reward of value r.

PRISM supports also composition where modules communicate à la CSP process algebra (e.g. see [START_REF] Hoare | Communicating Sequential Processes[END_REF]). For two modules M 1 and M 2 , the following composition operators are supported.

-Synchronization: the full synchronization on all shared action is written as M 1 ||M 2 , -Interfacing: the parallel interface synchronization limited to the set of shared actions {a, b,

• • • } is given by M 1 |[a, b, • • •]|M 2 , -Interleaving:

Transformation of IoT to PRISM

To generate a PRISM program P proper to the provided IoT formalism, we define the function T P that assigns for each IoT entity behavior its proper PRISM code fragment that is bounded by 'module IoT entity name' and 'endmodule' and the semantic rules of each action is expressed by a PRISM command.

Due to the space limitation, we present the PRISM commands of actions that their semantics rules are already defined in Section 4.1. The left side specifies the premises of a rule whereas the right side describes the results of the rules. For example, o o 2 is an atomic proposition showing the the object o possess o 2 , l a and l o present the locations, and p o 3 precises the physicality attribute of o 3 . Variables and propositions are evaluated first to describe the initial state of the IoT entities by relying on the tuple obtained by the Actuator proper to each entity.

T P (α) =                                  [Syn o 2]o o 2 ∧ o 1 o 3 ∧ ¬p o 2 ∧ ¬p o 3 → (o 2 = o 2); iff: [Syn o 2]o o 2 ∧ o 1 o 3 ∧ ¬p o 2 ∧ ¬p o 3 → (o 3 = o 2); Send O (o 1 , o 2) ∈ Σ o 1 O , Receive O (o 3 , o 2) ∈ Σ o 2 O . [Tak o 1]l a = l o ∧ o o 2 ∧ ¬lock o ∧ p o 2 → (a o 2 =); [Tak o 1]l a = l o ∧ o o 2 ∧ ¬lock o ∧ p o 2 → (o o 2 = ⊥); Receive A (o, o 2) ∈ Σ a A . [loc o 1]o o 1 ∧ o o 2 ∧ ¬k o 1 ∧ p o 1 = p o 2 → (k o 1 =); Lock O (o 1 , o 2) ∈ Σ o O . [loc o 1]o o 1 ∧ o o 2 ∧ ¬k o 1 ∧ p o 1 = p o 2 → (o o 1 =);

Functional Requirements

We comment here what properties can be of relevance and how to express them in such a way that they can be checked by running PRISM. A formalism that is able to express all the factors that diagrams describe, paths of actions, propositions on state variables, probabilities of occurrence of one or a sequence of actions.

PCTL formulas φ in such a logic are generated by the following BNF grammar: As usual, other logic operators can be derived from the basic operators, such as G refers to Generally. The semantics of these operators are given as follows.

φ ::= | ap | φ ∧ φ | ¬φ | P p [ψ] | R r [Fφ] ψ ::= Xφ | φ Uφ | φ U ≤ k φ Here, k ∈ N, r ∈ R + , p ∈ [0, 1
-

⊥ ≡ ¬ , φ ∨ φ ≡ ¬(¬φ ∧ ¬φ), φ → φ ≡ ¬φ ∨ φ , and -φ ↔ φ ≡ φ → φ ∧ φ → φ . -Fφ ≡ U φ , F ≤ k φ ≡ U ≤ k φ , Gφ ≡ ¬(F¬φ), and -G ≤ k φ ≡ ¬(F ≤ k ¬φ) where k ∈ N. -P ≥p [Gφ] ≡ P ≤1-p [F¬φ].
Besides, Pmin, Pmax, Rmin, and Rmax are operators that can be used within path or state formulas to specify the minimum (resp. maximum) probability or cost.

Experiments Results

Here we apply the approach presented in Section 4, by following the discussed steps above, on a use case presenting a smart health care emergency room.

The IoT Architecture. Fig. 4 depicts the main components of a smart emergency composed of: one patient, two rooms, set of sensors, local server, and a station. The goal is to ensure a collection of defined functional requirements.

Conclusion

This paper sets the fundamentals of a fully automatic framework for modeling and analysis of IoT. Principally, we detail a part of it by presenting a formalism that captures the main structure and comportment of IoT entities covering physical and information infrastructures, services, assets, social actors, and also their activities and interactions. The execution of an action has a cost and guided by probabilities and/or contextual conditions. Further, the formalism has a rich and flexible semantics, which we use it to capture the IoT functional requirements expressing the possibility, the likelihood, and the cost of actions. Further, it is developed to be easy for other extensions and refinements. To carry our functional correctness analysis automatically, we devised an algorithm that maps an IoT model into the input language of PRISM in order to be checked against the requirements expressed in PCTL. Finally, the effectiveness of the proposed framework is validated on a case study.

This work sets the stage for further development. In the extended version of this work, we provide the complete set of rules, a detailed transformation function, and more experiments. Further, we intend to enrich our model with more assets: refine the contextual conditions, provide the security aspect of the IoT model, complete the other parts of the framework. Also from a solid theoretical point of view, we have to prove the correctness and the soundness of each developed step in a proof assistant (e.g. Coq). Furthermore, we implement the framework as a full standing tool and validated it on different case studies and real systems.

Fig. 1 :

 1 Fig. 1: IoT-SEC Components Architecture.

Fig. 2 :

 2 Fig. 2: IoT Methodology.

 the interleaving is expressed by M 1 |||M 2 , -Hiding: M/{a, b, • • • } expresses hiding the actions a, b, • • • in the module M. -Renaming: M{a ← b, c ← d, . . .} is to rename actions a by b, c by d,

(a) Property 3 .

 3 (b) Property 4.

Fig. 6 :

 6 Fig. 6: The correctness checking results

 An object can be either physical (e.g. sensor, USB key) or digital (e.g. data, message, information) with different specificities and abilities. An object can be a container, lockable (by digital or physical key), movable or/and destroyable by a program, an intelligent or human being actor. Sensor objects send data to the apps and receive it from the environment. An object Obj is a tuple O, attr O , Actuator O , Σ O , Beh O , where: -O is a finite set of tags ε o , o, o , o i , • • • ∈ O identifying the objects, and ε o is the empty object. attr O : O → 2 T returns the attributes of an object, where T = {p, c, m, d, r}, p stands for physical, c for container, m for movable, d for destroyable, and r for reproducible. -Actuator O : O → L × 2 O × O × B returns the tuple loc O , cont O , key O , locked O that specifies the status of an object o by specifying respectively its: location, contained objects, key, and if it is locked or not. -Σ O is a finite set of atomic actions that can be executed by an object, where:

 and l, l ∈ L} Start O and Terminate O starts and terminates the process of an object, Send O (o, o) and Receive O (o, o) sends and receives o to/from o , Update O (o, o) updates o by o , Lock O (o, o) and Unlock O (o, o) lock and unlock o with o , respectively. -Beh O : O → L O returns the expression written in the language L O that describes the behaviour of an object. The syntax of L O is given by: B O

 Interaction Protocol Prot orchestrates and symphonies the communication and the interaction between the IoT entities. Since these entities differ in their nature, we define different communication protocols. Formally, Prot is a tuple Prot h,o , Prot o,o , Prot o,s where Prot h,o ensures the communications between social actors and the objects, Prot o,o between objects, Prot o,s between objects and services on servers.

the set of objects linking containers by physical objects (e.g. doors connecting two rooms).

], and ∈ {<, ≤, >, ≥}. A state formula can be "ap", an atomic proposition, or any propositional expression built from "ap". P p [ψ], called probabilistic path predicate, returns true if the probability to satisfy the path formula ψ is p. The cost predicate R

r [φ] returns true if the cost to satisfy φ is r. Here, F is the temporal logic operator eventually. A path formula is built from the typical temporal operators next (X), until (U), and bounded until (U ≤ k).

View publication stats

The IoT model. In the smart emergency presented in Fig. 4, two rooms l 1 and l 2 are accessible through the object o 1 (unique door) that is initially locked with the physical key o k 1 . The patient a 1 is in l 1 without possessing o k 1 but he has the sensor object o s 1 to measure his vital parameters and communicate it to the local server via the station o d 1 situated in l 2 at the end of medical services: monitoring, analysis, and cloud storage. Herein, we describe briefly the behaviours of the patient a 1 , the sensor object o s 1 , the door o 1 , the physical key o k 1 , and the station o d 1 , respectively. -With a probability value of 0.3, a 1 can unlock o 1 before moving to l 2 .

Bev A (a 1) =Start A .(Unlock

1 moves within its possessor, this possession is described with the guard g k 1 .

1 moves within a 1 , and sends the value

The PRISM Model.

1) < 4) : 2; endrewards Listing 1.1: The PRISM Fragment Code of the Smart Emergency.

The Functional Requirements. To ensure the functionality of the smart emergency system, we specify the following functional requirements.

1. Property 1. "What is the maximum probability for the patient a 1 to move from l 1 to l 2 when the measure of a 1 (o m 1) is greater then 2?". The PCTL expression of this property is:

]. The variable step is the number of steps (transitions) to reach the state that satisfies:

The Correctness Checking. The verification results of the above properties are depicted in Figure 5. The results of Property 1 in Figure 5(a) show the convergence of the probability evaluation from 0 to 0.001 after 3 steps, then it increases up to 0.00125 after 9 steps. This result shows that the risk is low for a patient to move. Figure 5(b) shows that the probability obtained from the satisfiability of Property 2 is 1 after step 6 and it converges to 0.9 after 4 steps. It means that the smart emergency model reliable at the most time. The verification results depicted in Figure 6(a) show that the minimum reward value obtained from the satisfiability of Property 3 is 121.59 and Figure 6(b) presents that the the cost to satisfy Property 4 is at least 14.13. It means that the cost to keep the system always reliable is relatively high for communication and relatively low for the reliability of the smart emergency.