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ALMOST-FUCHSIAN STRUCTURES ON DISK BUNDLES OVER A
SURFACE

SAMUEL BRONSTEIN

ABSTRACT. Considering an integer d > 0, we show the existence of convex-cocompact
representations of surface groups into SO(4,1) admitting an embedded minimal map with
curvatures in (—1, 1) and whose associated hyperbolic 4-manifolds are disk bundles of degree
d over the surface, provided the genus g of the surface is large enough. We also show that
we can realize these representations as complex variation of Hodge structures. This gives
examples of quasicircles in S® bounding superminimal disks in H* of arbitrarily small second
fundamental form. Those are examples of generalized almost-Fuchsian representations which
are not deformations of Fuchsian representations.
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1. INTRODUCTION

1.1. Context.

1.1.1. Minimal surfaces and convex-cocompact representations. In this paper, we consider
representations of a closed surface group into SO(4,1) & Isom(H?*) and minimal surfaces
in the hyperbolic 4-space equivariant under the group action. We prove the existence of
”exotic” minimal surfaces of small curvature, that is minimal surfaces with arbitrarily small
second fundamental form while the quotient of the hyperbolic space by the group action is
a nontrivial disc bundle over the surface considered.

Minimal surfaces are surfaces which are locally critical points of the area functional. Con-
sidering an immersion from a Riemann surface ¥ to H*, the image of an immersion is a
minimal surface if the immersion is conformal and harmonic.

The study of minimal surfaces in hyperbolic manifolds is a rich and diverse topic. Schoen
and Yau [SY79] and Sacks—Uhlenbeck [SU82| showed that in any isotopy class of an incom-
pressible surface in a compact manifold, there is a weakly branched immersion whose image
is minimal. See [MIY82] for the case when the target manifold has mean convex bound-
ary. In the case of a hyperbolic three-dimensional manifold with convex boundary, there is
an immersion, who will be an embedding if we’re in the isotopy class of an incompressible
surface.

Considering a faithful and discrete representation p in Isom(H"), it is then natural to
ask whether the quotient manifold p\H" contains a non-empty compact convex set. When
that is the case, we say that p is convex-cocompact. In particular, for a convex-cocompact
representation p from a closed surface group in Isom(H"), there is always an equivariant
weak immersion D? — H* whose image is minimal (but has branch points in general).

While branch points can be ruled out for least area minimal surfaces in hyperbolic 3-
manifolds with convex boundary, it is not true from the dimension 4 on. In this regard,
our theorem gives examples of minimal maps into a disc bundle over a surface which are
embeddings, so without branch points and self-intersections.

1.1.2. Hyperbolic structures on disc bundles. Among the family of hyperbolic 4-manifolds
whose fundamental group is a surface group, one family is of specific interest to us: disc
bundles over a Riemann surface. Considering a Fuchsian representation of a surface group
into SO(4, 1), it preserves a totally geodesic disc in H* and the quotient manifold identifies
with the normal bundle to the quotient of the disc. Topologically the quotient manifold is
the product of a disc with the Riemann surface. However, these are not the only examples of
hyperbolic disc bundles. Gromov-Lawson—-Thurston [GLJT88] were the first to give examples
of hyperbolic structures on nontrivial disc bundles over a surface, considering equivariant
piecewise-linear embeddings of the disc into H*. Kuiper [Kui88] also gave examples of those,
using tessellations of the hyperbolic 4-space.

Topologically, disc bundles over a Riemann surface are classified by the Euler characteristic
of the surface and the Euler class of the bundle. The precise list of disc bundles over a
closed surface admitting a hyperbolic structure is still an open problem. Gromov-Lawson—
Thurston conjecture that a necessary condition to admit a hyperbolic structure would be
that the degree d is smaller in absolute value than the Euler characteristic 2g — 2. Kapovich
[Kap89] showed that for 0 < d < g — 1/11, there is indeed a hyperbolic structure on the
corresponding disc bundle.
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Our result gives a new method of finding some of those hyperbolic structures, with more
geometric properties, although we don’t have an explicit condition on how small the degree
has to be with regard to g. Check Ho [Hol4] for the latest results concerning Gromov—
Lawson—Thurston’s conjecture.

1.1.3. Almost-Fuchsian representations. Another important question regarding minimal sur-
faces is the potential uniqueness in a fixed isotopy class. Already in dimension 3, there are
examples of hyperbolic 3-manifolds containing arbitrarily many isotopic minimal surfaces, see
Huang and Wang [HW15]. However, we may get uniqueness if we add some conditions on the
manifold: In 1983, Uhlenbeck [UhI83] introduced the notion of almost-fuchsian representation
which are faithful and discrete representations of a surface group into PSL(2,C) admitting
an equivariant immersion D? — H3 minimal and with principal curvatures in (—1,1).

Remark that asking the principal curvatures to be zero is equivalent to ask that our
immersion is totally geodesic. Here as we relaxed this closed condition into asking the
principal curvatures to be in (—1, 1), the notion is open in the character variety.

This differential geometric assumption has several consequences: the representation is
then convex-cocompact, the map f is the only minimal map in its isotopy class and it is an
embedding.

Since then, the notion of almost-fuchsian representation has been extended to almost-
fuchsian immersions [KS07]. Seppi [Sep16] studied almost-fuchsian discs in H?, Donaldson
[Don03], Hodge [Hod05] and Trautwein [Tral9] considered the hyperkéhler structure on
the moduli space of almost-fuchsian representations extending the hyperkahler structure on
Teichmiiller space. With Smith [BS23|, we have exhibited a parametrization of the set of
almost-fuchsian discs in H? by a convex set of bounded holomorphic quadratic differentials on
the disc. There are important questions related to foliations by surfaces of almost-fuchsian
manifolds, see [GHW10] and [CMS23].

Jiang [Jia21] considered almost-fuchsian discs in H". For faithful and discrete represen-
tations into SO(n, 1), the existence of an equivariant minimally immersed disc whose scalar
second fundamental forms have curvatures in (—1, 1) actually implies the uniqueness of the
minimal surface in its isotopy class, its embeddedness, and the convex-cocompactness of the
representation.

Recently, Davalo [Dav23] extended the notion of almost-fuchsian immersion into nearly-
geodesic immersion into a higher rank symmetric space of noncompact type. The only known
examples of nearly-geodesic immersions are deformations of totally geodesic immersions.
While in PSL(2,C) those are indeed the only examples, we bring here examples of such
immersions which cannot be deformed to totally geodesic ones. In particular, the limit set of
our representations is a quasi-circle, there is a quasiconformal homeomorphism of S* sending
our limit set to a round curve, but this homeomorphism cannot be made equivariant.

1.1.4. Superminimal maps and complex variations of Hodge structures. The construction we
will exhibit will naturally give examples of complex variations of Hodge structures in SO(4, 1).
The notion of complex variation of Hodge structures for representations of surface groups
come from the Nonabelian Hodge Correspondence, see for instance this survey by Wentworth
[FMS*16]. The Nonabelian Hodge Correspondence is a 1 to 1 correspondence between
the moduli space of representations of surface group with the moduli space of an object
called Higgs bundle, on which there is an action of C*. The fixed points of this action are
called complex variations of Hodge structures. Loftin-McIntosh [LM19] give an extensive
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description of those representations in their article about equivariant minimal surfaces in H*.
For a representation p with an equivariant minimal immersion f, asking that p is a complex
variation of Hodge structure is equivalent to asking that f is superminimal, i.e. that it has
circular ellipse of curvature, see Definition 2.5.

The term superminimal was coined by Kommerell in [Kom97]. In particular, it implies the
minimality of the image of the map. Regarding the study of superminimal surfaces in the
sphere S*, there are some impressive results: see for instance Bryant [Bry82|, who exhibited
a duality between superminimal surfaces in S* and holomorphic legendrian curves in CP3.
Check Forstneri¢ [For21] for the analogous statement in H*.

More precisely, Loftin—-McIntosh show that for any pair of integers d and g > 2 such
that |d| < 2g — 2, there are representations from m %, into SO(4,1) with an equivariant
superminimal immersion whose normal bundle is of degree d over X,. Our result states that
for d very small before g, there are such pairs (p, f) where f is actually embedded and p is
convex-cocompact. We also have, as the normal bundle to f will identify to the quotient
manifold p\H*, hyperbolic structures on degree d disc bundles over 3.

1.1.5. Solving "mized” Toda systems. Finally, the method used to build our examples is to
solve a non-linear PDE system which we call a mixed Toda system. Toda systems, and Toda
systems with opposite signs are defined by Guest-Lin [GL14] and designate PDE systems
where the unknown is (w;) and satisfy an equation of the type

(11) sz — 6wi_wi—1 _ e’wi—’wi+1

While our system definitely cannot be written in this form, it belongs to a class of equations
arising frequently when dealing with flat curvature equations.

This kind of system appears quite easily in the theory of flat bundles. Li—Mochizuki
[LM20] encounter Toda systems (of the opposite type) when dealing with cyclic Higgs bundles
associated to representations in rank 2 Lie groups. Malchiodi-Ruiz [MR11] and Battaglia—
Jevnikar-Malchiodi-Ruiz [BJMR15] made use of the Moser—Trudinger inequality to solve
some Toda systems motivated by the non-abelian Chern-Simons theory. Here in rank 1 with
the complex Hodge variation structure assumption, we get something alike, but with tweaked
signs:

(1.2) { Au = —1+ e* + e 2e?|al?

Av = 29%2 — 72| al?

We think the method used in this article to solve this system could be applied to a broader
class of PDE systems, yet to be described.

1.2. Statement of the results. First, we state our result in dimension 4 concerning degree
1-disc bundles over Riemann surfaces.

Theorem 1.1. Fiz r € (0,1). There is go > 2 such that, for any g > go and ¥ a closed
Riemann surface of genus g, there is a representation p : 1% — Isom(H?*) and an immersion
f:S? — H* satisfying:

(a) p is faithful, discrete, convex-cocompact, almost-fuchsian

(b) f is a p-equivariant embedding, superminimal

(¢) The second fundamental form of f satisfies |I¢| < r everywhere.

(d) The quotient hyperbolic 4-manifold p\H* is a degree 1 disc bundle over X.
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As a corollary, we have the existence of almost-fuchsian representations uniformizing de-
gree d disc bundles over Riemann surfaces of high genus.

Corollary 1.2. Let d > 0. For any gy > 0, there is g > go, X a surface of genus g ;
p:mY — Isom(H*) and f: D? — H*satisfying:

(a) p is faithful, discrete, convez-cocompact, almost-fuchsian

(b) f is a p-equivariant embedding, superminimal.

(¢) The second fundamental form of f satisfies Iy < r everywhere.

(d) The quotient manifold p\H* is a degree d disc bundle over X.

1.3. Scheme of proof.

1.3.1. Writing the Flat curvature equations. In order to build a hyperbolic structure on a
degree d disc bundle, we first show the existence of a hyperbolic structure on a degree 1 disc
bundle over a surface with the desired properties. Once this example is built, we can take a
cover of degree d of this bundle in order to obtain a hyperbolic structure on a degree d disc
bundle over a surface (of genus large enough).

Consider a Riemann surface Y of genus g. Our proof will rely on solving a PDE system
of the following kind:

(1.3) { Au = —1+e™ + e *e”af

Ay = 2{]%2 - €2v6—2u|a‘2

where « has to be a holomorphic section of a degree 4g — 3 line bundle over . The Laplacian
is always taken with respect to the Poincaré volume form on the surface, and every line
bundle will be considered endowed with a metric whose curvature form is proportional to
the Poincaré volume form, hence defining the norm |a/.

The second section will be devoted to showing how solving this system yields a minimal disc
in H* equivariant under a representation p. With the good pointwise control on e**e~2“|a/|?,
the representation p will be almost-fuchsian and the quotient manifold p\H* will be a degree
1 disc bundle over the Riemann surface.

The associated minimal map will have a holomorphic second fundamental form (see Defi-
nition 2.2.) a @ 0, hence be superminimal.

1.3.2. Controlling the geometric data. The third section will be devoted to finding fami-
lies (3,,) of surfaces with genus going to infinity, with data («,) associated, while controlling
the behavior of solutions of PDEs on (3,,) depending on (a;,). To do so, we need to control

the systole and spectral gap of (X,,), and the ratio {O‘CO;";‘Q

Controlling the systole is the easiest part, as the systole is nondecreasing when taking the
Riemannian cover of a surface. Controlling the spectral gap is trickier, but can be done by
taking (X,) a random cover of a genus 2 surface thanks to a result of Magee-Naud—Petri
[MNP22]: considering a cover ¥’ — 3 of closed Riemann surfaces, the relative spectrum of
Y is defined to be the part of the spectrum of ¥’ which is not in the spectrum of 3. Magee—
Naud—Petri states that for a random cover of large degree of ¥, the probability that the
relative spectral gap is lower than % — ¢ goes to zero when the degree goes to infinity. Using
this result, we are able to find families of coverings of a Riemann surface whose spectral gap

is uniformly lower bounded.
2
Finally, we need to build «, such that the ratios ﬁ;’lb‘g
property will be called balanced family of sections. We will show that multiplying a cover of

are uniformly bounded. This
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a section with a section of a line bundle of degree 1 yields a balanced family of sections of
the desired type.

1.3.3. Building the maps ® and V. Once this is done, we need to solve our PDE system.
For this, we will consider each line of the system and build two maps. Fixing v and solving
the first line in u, we will build a map @ : C%*(X) — C%*(X) which will be well-defined on
the set K, where:

1
(1.4) I, i={v e C¥(%) : e*|al? < 5}
And it happens that the image of I, is in the set IC,, where
In 2
(1.5) K, = {u e (%) : —“7 <u <0}

We would like to do the same work for the second equation, fixing v, solving in u to get
a map V. However, the work to build VU is considerably harder. The third section will be
devoted to the study of ¥. The method used to solve it is heavily inspired from the analysis
of the prescribed curvature equation in the projective plane RP?: for an even function on
the sphere which is nonnegative on an open set, it is the curvature of a metric conformal
to the round metric on S? (and even). See Chang—Yang [CY03] for a precise explanation
of this. With the same tools, we are able to solve the second line and to get the following
estimate: There is a constant C' > 0 such that the solution v satisfies:

2v —2u 2 C
(1.6) ee M al* < 2 2
The involved constant C' will depend on three parameters: § the systole of the surface, A its
spectral gap and the ratio between the L>®-norm of a and its L?-average. Hence thanks to
the third section it can be bounded on surfaces of arbitrarily large genus.

1.3.4. Piecing everything together. Considering a family of covers (X,,) with a balanced fam-
ily of sections of sections («a,) and controlled systole and spectral gap, we are able, provided n
is large enough, to build a map ¥ : K, — IC,, which will be continuous.

With ¥ constructed and well-defined, We will show that the composed map ® o ¥ de-
fined on K, has image in a compact convex subset of IC,. Hence by Schauder’s fixed-point
theorem, C%%(X) being a Banach space, ® o ¥ has a fixed point u € K,. Denote v = U(u).

It is clear that (u,v) is a solution of the PDE system considered, and so it corresponds to
an almost-fuchsian representation p whose quotient manifold is a degree 1 disc bundle over
the Riemann surface.

The author thanks Nicolas Tholozan (DMA) for his help and guidance during this work.

2. THE CURVATURE EQUATIONS

2.1. Minimal equivariant immersions in H*. Let ¥ be a closed oriented surface of
genus g > 2.

Consider a representation p : mY% — SOg(4,1) ~ Isom(H*). We will always assume
that p is faithful and discrete. Let f : D? = ¥ — H* be an equivariant immersion with
minimal image.

Endowing > with the induced metric by f, we get a conformal and harmonic map.

Associated to f, there is a flat R*! vector bundle E, which decomposes as follows:
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Denote I the second fundamental form of f, and B its shape operator. The vector bun-
dle (E,Vg) splits as F = Og @ Tg @ Ng, where Og is the trivial vector bundle of rank 1, Ty
the tangent bundle is a rank 2 vector bundle, and Nk is the normal bundle to f, again of
rank 2. In this splitting, the connection has the following expression:

vV a0
0 I Vu
Denote q the quadratic form in R*! given by
(2.2) q(z1, ... x5) = 2% + a5 + 25 + 1] — 1}
As the map f is valued in the quadric ¢ = —1 in R*!, the image of f gives a reduction

of E into a S(O(1) x O(4)) bundle. The differential of f being valued, by definition, in the
Tangent bundle, we denote a = df the nonvanishing section of 7*¥ ® Hom(Og,T). The
definition of Il and of B gives the desired decomposition of V.

Remark 2.1. This splitting is orthogonal with respect to b the signature (4, 1) bilinear form,
with Or being a negative line. As the surface is oriented and our representation is into
orientation-preserving isometries SOg(4,1) ~ Isom,(H*), Tz and Ngr are endowed with
an SO(2) structure, corresponding to the induced metrics on the tangent and normal bundle
to f. The nondegenerate metric b also implies that II and B are antiadjoint with respect
to b:

(2.3) b(B(w)u,v) + b(I(u,v),w) =0 ¥Y(u,v) € Tg, w € Ng.
We denote B = —1I', where f denotes the transposition, identifying Hom(E, F) with Hom(F*, E*).

Complexify now the bundles T and Ng. As each of these are equipped with an SO(2)-
structure, their complexification splits into the sum of two line bundles, the restriction of B
giving a nondegenerate pairing between those. Now for each line subbundle of £ coming into
play, we consider V, the induced connection of Vz and we take its (0, 1)-part to get d; a
holomorphic structure on L. Remark that the (0, 1)-part is well-defined because the induced
metric endows the surface with a Riemann surface structure.

The diagonalization of the SO(2) structure with regard to the metrics yields:

Proposition 2.1. Viewing (lIc) as a 1-form valued in Hom(K~', N), the complezification
of the second fundamental form can be written:

(2.4) (Tg)c=KoK=K'oK
(2.5) (Np)c=N@ON=N@N*

(2.6) me=(5 )

with o and B (1,0)-forms.

Proof. The splitting of the complexification of an SO(2)-bundle is given by the eigenspaces
of J the fiberwise rotation of angle 7. Remark that this splitting diagonalizes V7 and V.
In this splitting, write down the second fundamental form:

(2.7) @kz(% })
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As I is real-valued, we have:

(2.8) Y
(2.9) )
Finally, as f is minimal, I is traceless, and so the (1, 1)-part of the second fundamental form
is zero: This implies that both o € I'(K ® Hom(K ', N)) and 8 € I'(K ® Hom(K ', N71))
are (1, 0)-forms. O

I
2l =l
I

/6*
a*
(

Remark 2.2. In the process, we endowed the bundle £ ® C with the following holomorphic
structure:

(2.10) EC=0a0K'@#aKeNoN*
(211) EE = 5(9 @51(—1 D 51{ D 5]\/ @D 5]\/—1

It is clear that the sections «, 8 characterize wholly the second fundamental form. Hence
we define the Holomorphic second fundamental form:

Definition 2.2. Let f : D? < H* be a minimal immersion. The Holomorphic second
fundamental form of f is the (2,0)-part of the complexification of the second fundamental
form:

(2.12) I’ =a@pel(K*NoN'))

2.2. Writing the flat curvature equations as a scalar PDE system. In order to write
this system as a scalar PDE system, we need to write down each metric as a conformal
change of a preferred one. For the metric on K, we denote e?“o the induced metric, where o
is the unique complete hyperbolic metric in the conformal class.

Denote w the Poincaré (1, 1)-form associated to o, which is locally dzAdz. Also, we denote
by A the Laplace-Beltrami operator on (3, ). Note that A is defined to be locally 9% + 02,
so it is a nonpositive operator satisfying:

(2.13) V(f,g9) € C(Y), /E(Af)gw—l—/EVf-ng:O

Generally, on a holomorphic line bundle L of degree d, there is a hermitian metric hp
whose curvature form is the following:
i d
2.14 —Fpp, = ——
(2.14) on Bl T 9y 9%

The metric hy, is uniquely defined up to multiplicative constant. From now on, every line
bundle will be endowed with a metric of this kind, and a given fiberwise norm | - |.
Let’s write down the flat curvature condition as a scalar PDE system:

Theorem 2.3. Let f : 3 < M be a conformal harmonic immersion into a complete hyper-
bolic 4-manifold. Consider o ® 3 its holomorphic second fundamental form. Denote e*o
the induced metric on ¥, e**hy the induced metric on the normal bundle. Then the flat
curvature equations are equivalent to the system:

Ja =0
B =0
2.1
( 5) Au — e2u -1 + e—2u(e2v|a|2 + 6—2U|6|2

AU =c— 6—2u(e2v|a|2 _ e—2v|5|2)
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Proof. First, as B = —II', we have the explicit description of B

_O{T’* _/6T7*
Now the flat curvature equation is Fy, = 0, so coordinatewise:
Va =0
Vg =0

(2.17) Fg-1+aa* —ata— 18 =0

FN — OéOé*’]L — ﬁ*ﬁT =0
where we wrote aa* for the wedge product oo A a*. Also, the notation Va = 0 means that «

is parallel for the connection on Hom(K !, N), namely Vy Ao+ a A Vg1 = 0.
The standard formula for the curvature under a conformal change of metric is

iFg-1 =e 2(=Au—1)w
iFy  =e?(—=Av+c)w

Now recall that as a is a (1,0)-form, and locally dz A dz = —2idx A dy, hence

(2.18)

*

aa* =w
(2.19) iaa = e e |alfw
Zﬁﬁ* — 6—4u6—2v|5|2w
So the flat curvature equation is equivalent to:
(2.20) e (Au+1) =14 e "(e®al®+e2|[)?)
. 6_2U(AU _ C) — 6_4u(—€2v|0é|2 + 6—2v|5|2)

Also, as « is of type (1,0), necessarily da = 0. Hence Va = 0 rewrites as da = 0, and
the same applies to (. Finally, rearranging the right and left hand sides, we get the desired
scalar PDE system:

0o =0
B =0

(221> Au = —1 + €2u + €—2u(€2v|a‘2 + e—2v‘ﬁ|2)
Av =c— €—2u(€2v‘a|2 _ €—2U‘/6|2)

O

Remark 2.3. The Higgs bundle associated to f can be read with our notation, it will be the
following: £ = O® K '® K ® N @ N~!, and the holomorphic structure with the Higgs field
have the explicit description:

290 0 0 0 0 a 000
00 0 —a* —p* 0 0000
(2.22) de=100 0 0 0 , Pe=1|a 00 0 0
00 p* 0 0 0 00 0O
00 o 0 0 0 00 O0O0
Recall that we chose N so that deg N > 0. Observing that O @ K~! @ N is an invariant

subbundle, the stability condition implies:

(2.23) 0<degN <2g—2.



10 SAMUEL BRONSTEIN

Proposition 2.4. Let f be a minimal map with o« = 0. Then deg N = 0 and f is totally
geodesic.

Proof. As a =0, N is an invariant subbundle of the corresponding Higgs bundle to f. Then
by semi-stability, deg N = 0. Now if 5 # 0, v is solution of:

(2.24) Av = e e 2| B2
Integrating this identity implies
(2.25) / e e B =0
b
Hence S is the zero section and f is totally geodesic, as asserted. O

We will be interested in the specific case when the second fundamental form, viewed as a
map Tr — (Tr)*, has circular ellipse of curvature, i.e. the image of the unit circle in Ty by
the map X — I[(X, X) is a circle. This corresponds to asking the (2,0) and (0, 2) part of Ii¢
to be orthogonal.

Following Loftin-McIntosh [LM19]:

Definition 2.5. We say that f is superminimal if f is harmonic, conformal and its Holo-
morphic second fundamental form o @ [ satisfies:

(2.26) a-f=0¢c H (K"

Remark 2.4. The notion of superminimal maps goes back to 1897 with Kommerell [Kom97]
who studied superminimal immersions in S*. See Forstneri¢ [For21] for a recent review of
the topic. Another interpretation of the superminimality is that it is equivalent to asking
the normal Gauss map, valued in the Grassmannian of geodesic disks in H*, is conformal.

Depending on the degree of N superminimal maps behave differently:

Proposition 2.6. Let f be a superminimal map with deg N = 0, equivariant under a faithful
and discrete representation p : m% — SO(4,1), ¥ being a closed surface. Then f is totally
geodesic and p is a fuchsian representation.

Proof. While this proposition can be found in [LM19], we reproduce it here as it can be seen
as a consequence of our PDE system: As the normal bundle is trivial, we have ¢ = 0 and the
superminimality implies a = 0 or 5 = 0. For convenience’s sake, assume 8 = 0. Then (u,v)
must be a solution of the system

{ Au _ —1+€2u+6_2u62v|0é|2

(227) Ay = _62u62v|a|2

Fix u, and observe that, on a closed Riemann surface, we must have [ Av = 0. Hence ao = 0,
the immersion f is totally geodesic and p is fuchsian. O

2.3. Almost-fuchsian disks in H*. First introduced by Uhlenbeck for immersions into H?
[Uhl83], the notion of almost-fuchsian immersion naturally generalizes to immersions into H*.

Definition 2.7. Let f : D < H* be a proper immersion. f is said to be almost-fuchsian if
it is minimal and there is 4 > 0 such that the second fundamental form satisifes:

(2.28) Vu € Ty, [M(u,u)| < (1 —6)|ul?
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Proposition 2.8. Let f : D — H* be a proper almost-fuchsian immersion. Then the
exponential map Ny — H* is a diffeomorphism

As this constitutes, with the following result, the lemma 2.2. of [Jia21], we won’t reproduce
a proof here. Note that Jiang’s convention for the second fundamental form differs from ours
by a factor one half, hence the difference in the condition. More specifically, almost-fuchsian
disks in H* are embeddings, bound a quasi-circle at infinity, and if they are p-equivariant for
some p : I' = SO(4, 1) discrete and faithful, p is convex-cocompact. In particular,

Proposition 2.9. Let ¥ be a closed hyperbolic surface, and p : m¥% — SO(4,1) a faithful
and discrete representation such that there exists f : D < H* a p-equivariant proper almost-
fuchsian immersion. Then p is convex-cocompact, [ is an embedding and the hyperbolic
4-manifold M = p\H* is diffeomorphic via exp; to a disk bundle over ¥.

Also f 1s the unique p-equivariant minimal immersion.

Definition 2.10. A representation p : I' — SO(4, 1). is said to be almost-fuchsian if it is
discrete, faithful and it admits a proper almost-fuchsian p-equivariant immersion f : ¥ — H?*.

It is not known which disk bundles can be uniformized by almost-fuchsian representations.
Fuchsian representations uniformize the trivial bundle, and we will show in this paper that
for a surface of large enough genus, there are almost-fuchsian representations uniformizing
vector bundles with positive degree over the surface.

Proposition 2.11. Let ¥ be a closed hyperbolic surface of genus g. Denote w its volume
form. Consider N a line bundle of degree d > 0, endowed with a metric h of curvature

Jorm cw = 2;%2@ Let « € H°(K2N) be such that there exist smooth functions u,v on %
satisfying:

(2.29) Au = —1+ e 4 e 24e2|q?

(2.30) Av =c— e e |al?

(2.31) supe e*|al? < 1

Then there is a convex-cocompact representation p : m% — SO(4,1) and a minimal, super-
minimal, p-equivariant and almost-fuchsian immersion f : 1D — H* such that:

(1) The induced metric by f is e*“w

(2) The hyperbolic manifold p\H* identifies with the normal bundle to f and has degree d
(3) The metric induced on the normal bundle is e*h

(4) The Holomorphic second fundamental form of f is c.

Proof. With the given data, consider the bundle £ = O @ K~' ® K ® N @ N~!, with the
metric gotten by product of the metrics on each line. Adding « and its h-dual o*, the 2
equations are exactly the flat curvature equation, corresponding to a representation p and a
map f : D — H* whose Holomorphic second fundamental form satisfies:

(2.32) (If)c=ad0e(K*(N®N1))
It is clear that such an f is minimal and superminimal. The last hypothesis
(2.33) supe e |al? < 1

ensures that f and p are almost-fuchsian, as asserted. U
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3. BALANCED HOLOMORPHIC SECTIONS OF POSITIVE LINE BUNDLES

In this section, we show that there are families of holomorphic sections of line bundles of
degree 49 — 3 which behave roughly like covers in the following sense:

Definition 3.1 (Balanced family). Let (3,;) be a family of genus g Riemann surfaces,
equipped with their hyperbolic metric. Let N, be a family of line bundles of degree n, > 0
Let (ay) be a family of holomorphic sections of N,.

On each ¥,, denote by w, the Poincaré volume form. On each N,, denote hy the metric

on N, with curvature form 2;—f2wg. We say that (o, N,) is balanced if there is C' > 0 such
that:
2
SUD,cx, |0gl2
(3.1) su EX9| g| gyhg S C

P
9 fXg |O‘g|igdwg
The main idea behing this control is that when solving elliptic PDEs depending on ay, as
oy is coarsely periodic, then the solutions should be too, and we will show that the solutions
satisfy estimates which are independent of the genus g.
We will make extensive use of the following notations:

Notation 3.2. In this section, > denotes a closed hyperbolic surface of genus g. We denote
respectively by 6 and A the systole and spectral gap of 3. Any N positive line bundle over %
is endowed with a metric of curvature form proportional to the Poincaré volume form w.

Remark 3.1. It is easy to exhibit examples of balanced sections for n, proportional to g — 1:
Indeed, if n, = a(g — 1), consider Ny a degree a line bundle over 3, and « a holomorphic
section of N,. and consider covers ¥y — Y. Then the family of lifts of N, and « yields a
balanced family.

Here we will prove the existence of balanced families for line bundles of degree 4g — 3:

Theorem 3.3. Let ¥ be a closed hyperbolic surface of genus g > 2 Consider (X,) a family
of covers of ¥ of degree n. Then there is a balanced family (o, Ny,), with N, a line bundle
of degree (4g — 4)n + 1 over %,,.

The main idea will be to consider covers to get a balanced section of a degree 4n(g — 1)
line bundle, and then to tensorize with a well-chosen degree 1 line bundle to get the desired
family of sections. This requires a description of the oscillatory behavior of a degree 1 bundle
section, which we provide here.

Before all, we will make use of the continuous embedding W22 « L,

Lemma 3.4. Let X be a hyperbolic surface with systole 6. Denote M the constant of conti-
nuity of the embedding W22(H?) — L°°(H?). Then, for any u € W%?(X)

C
(3.2) [ulso < < lulz-

Proof. As smooth maps are dense in W22(X), consider u € W22(X) smooth. Let z € X.
By definition of the systole, there is an isometric embedding from a hyperbolic disk of
radius § around zy. Fix x a smooth radial map on D(z, 5),% Lipschitz, between 0 and 1,

such that x(zp) = 1 and x(0D(zp,6)) = 0. Choose for x a rescaling of a cutoff map
on D(0,1) C H?, so that

1
(3.3) sup Dy = sup D*y = 5



ALMOST-FUCHSIAN STRUCTURES ON DISK BUNDLES OVER A SURFACE 13

Then we can extend by zero to consider uy € W?%2(H?). Using our cutoff function, we get

M
(3.4) [u(z0)| = Jux(20)] < ux|oe < Mlux|22 < F|U|2,2
, as asserted. O

Proposition 3.5. Let zo € X Denote D = D(zy,0) the disk of radius § around zy. Denote
by a the constant a = Consider g : ¥ — R the C! function satisfying:

Vo l(D
Jsg =0
(3.5) { Ag = Tl—Z —alp
Then there is a bound C(6,\) such that:
(3.6) [supg — inf g| < C(6, A)
Proof. as a = Vi%,
1
. ——  _alp=
(3.7) /2 sy~ ol =0

hence ¢ is well-defined.
First, we have [ gAg = —|Vygl3, so

(3.8) V|5 = a/ g < 2msupg
D

Recall Bochner’s identity

(3.9) [ 197 = [aor+ [ 199P

which translates to give the estimate

472 om

2 12
. V < _
(3.10) Voglz < Vol(D) 2g —2

+ 2msup g

As [ g =0, by definition of the spectral gap

(3.11) l9l3 < A|[Vg|3 < 2rAsupg.
Combining all this, we bound the W22 norm
472 27
(3.12) 932 = V29l + [Vgl3 +|gl3 < - +2m(2+ A)supg

Vol(D) 2g—2
By lemma 3.4, this implies

D=

) 2M [ 4Ar? 2m
(3.13) |sup g — inf g| <

21(2 + A
5 \Voupy “2g—2 T2 )Sng)

Because [¢g =0, we know that inf g < 0 and sup g > 0. Thus

4AM? ( 472

: < 2 < I
(3:14) 0= Guw9) = =\ o) ~ =1

+2m(2+ A)sup g)
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Going to the squares, this is a control of the type X? < AX + B, with A, B > 0. Explicitely,
A and B are the following

A = 8m(24+A)M?
= S

(3.15) w2 (a2 -

B = 45—1 V;ll(D) T g1
so it implies the existence of C(6, A) = 44+ guch that
(3.16) supg < C(6,A)
Replugging this into the Inequation 3.13, we get the existence of C (0, A) satisfying
(3.17) |sup g — inf g| < C(5, A)
as asserted. O

It happens that the oscillations of g away from D(zg,r) are actually the same as those of
the log of the section s associated to the line bundle of divisor {zo}.

Proposition 3.6. Let N be a degree 1 line bundle over ¥ and s € H°(N) section, with a

unique zero zg. Denote D = D(zy,d) the disk of radius 6 around zy. Denote a = —VfZZFD).

Consider g : % — R the function associated to zy defined in Proposition 3.5. Denote by f
the function f = —% log |s|?. Then f — g is bounded and constant on ¥ — D(zp, d).

Proof. Let r be the radial geodesic coordinate on D(zg,d). With the notations above, define
the map h: D — R:

(3.18) h(r) = —2aln cosh(g) + B + In(tanh g) :

As h is radial, we can explicitly compute the laplacian of h:

(3.19) Ah = 0*h + mn%arh = —a

As we also have

(3.20) |z — 20| = tanh(g)

Because 2z is a simple zero of s, locally:

(3.21) [s(2)? % K|z = 20, f() = —Intanh 5 + O(1).

And so f + h is bounded.
Also, we compute the radial derivative at the boundary of the disk of A:

1 ) 1
.22 h(0) = (= —a)tanh - + ——
(3:22) 9(9) (2 a) tan 2+2tanhg
But by definition of a,
2m 27 1

3.23 - - -
(3:23) “ T Vol(D) " 4rsinh®(Z)  2sinh?L

which implies

(3.24) 9,h(6) =0.
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Hence with the appropriate choice of B we can extend h by zero to get a C' function on X
such that f + h is bounded and satisfies

1
3.25 A h)=———al
(3.25) (F +h) = 5—5 —alp
This implies that f + h = g + A for some constant : wA. As h is constant out of D, this
means that f — g is constant on ¥ — D, as asserted. U

Corollary 3.7. Let X be a hyperbolic surface with systole 6 and spectral gap A. Let N
be a degree 1 line bundle over ¥ and o € H°(N) section, with a unique zero zy. Denote
D = D(zy,9) the disk of radius 6 around zy. Then there is some C(6, ) and A\ > 0 such that

1
3.26 Vze X — D(z,0 — <M< C(,A
( ) z e (Z(]u )7 C((;,A) = |OA‘ — ( ) )
Proof. With the g defined in proposition 3.5, we know
(3.27) |sup g —inf g| < C(6,A)
Denote f = —1In|al®. By proposition 3.6, f — g is constant on ¥ — D. Thus
. . _ . <

(3.28) Igg%f Jnf f] Igt_lgg Jnf gl < C (5, A)
which directly gives, on X — D:

sup |al? 2C(5,A)
3.29 < ;
(3:29) mf a2 = °
Multiply by A such that (sup A|a|?)(inf A\|a|?) = 1 to get the desired result:
(3.30) Vze X —D, e “CN < )\af’(z) <O

U

It remains to check that we can also have an upper bound on D. We can do this by some
version of the Schwarz lemma adapted to sections of positive line bundles:

Proposition 3.8. Let 3 be a hyperbolic surface with systole § and spectral gap A. Let N be a
degree 1 line bundle over ¥ and o € H°(N) section, with a unique zero zy. Let D = D(zg,6)
the disk of radius § around zy. Then there is C(§) > 0 satisfying:

(3.31) VzeD, |a*(z) < C(é)\z|2351[1)3|a\2.
Proof. Denote f = —%ln|a|2. f satisfies

(3.32) Af = %%2

Denote r the radial geodesic coordinate on D, and consider the map h
(3.33) h=f+ lntanhg T In cosh%

Then h is bounded on D and satisfies
(3.34) Ah =0
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By the minimum principle,

. . . o 1 5
(3.35) 1%fh = laanh = laanf + In tanh R In cosh 3
Exponentiating, we get the upper bound on |«|:
2
lo|? r. 2 , (cosh 2)7=7
3.36 Vze D, —=cosh(=)s1 < sup|a|"—=—
0 B ) < plel T

Because g > 1 and cosh(¢) > 1, this implies
(3.37) |a*(2) < |2]*sup|a
oD

O

Finally, we combine these results to show our estimate of oscillations of sections of degree
1 line bundles:

Proposition 3.9. Let X be a hyperbolic surface. Denote § its systole, A its spectral gap and
consider r < g. There are constants C;(5, A, 1) such that, for any holomorphic section s of
a degree 1 line bundle with a unique zero zy € X3, there is a A > 0 such that:

(3.38) |As|* < Cy on B(z,7)

and
1

(3.39) oA < |As]2 < Cy on ¥ — B(z,7)
1

Remark 3.2. Up to renormalizing our section, one can always assume the first condition to
be satisfied on the ball of radius r, and then the results states that the oscillations away
from the zero of the section are controlled, essentially by the spectral gap and the systole of
the surface.

Proof. Let X be a hyperbolic surface with systole ¢ and spectral gap A. Let N be a degree
1 line bundle over ¥, with o € H(N) a holomorphic section having one unique zero 2.
Consider D = D(zy,d). Thanks to corollary 3.7, up to renormalizing «, there is C'(§, A) > 0
such that

(3.40) Vi€ - D, ﬁ < Ja’() < C(5, A)

Now because of proposition 3.8, there is C'(§) such that

(3.41) Vze D, la|*<C(86)C(s,A)

as asserted. O

Multiplying those sections with covers of a section of a degree 4(g — 1) line bundle will
result in a balanced section of a bundle of desired degree 4n(g — 1) + 1.

proof of theorem 5.5. Let ¥ be a closed hyperbolic surface of genus g > 2. Consider ¥, a
family of degree n covers of ¥ such that the spectral gap of ¥,, remains lower bounded by
A > 0. This kind of cover exists, for instance we can use the result of [MNP22], which states
that for a random cover of 3, the probability that the relative spectral gap (i.e. the part
of the spectral gap which is not in ) of the cover is bigger than 13—6 — ¢ goes to 1 when
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the degree is large. Hence for any n < min{A, %}, we can choose a family of covers whose
spectral gap is larger than 7.

Of course, the systole is nondecreasing by taking a finite cover, hence we can consider 0
the systole of X.

Consider s a 2-form on X, hence a section of K2, which is of degree 4g — 4. Denote s,, the

lift of s to X,,, which is a section of a degree 4n(g — 1) line bundle. Obviously, we have

(3.42) /wﬁzn/m% 5uloo = [5lec

Also, consider (z,) a sequence of points, z, € ¥,. Define L, = O(z,) the degree 1 line
bundle associated to the divisor {z,}.
Thanks to Proposition 3.9, there are sections 7, of L,, and constants C;(d, A) such that

m < |m|? < Ci(0,A) outof D(z,,9)
[7l? < Ca(6.0) on Dz, )

Consider now N,, = K?L,, and «,, = s,7, section of N,, line bundle of degree 4n(g — 1) + 1.
By construction, we have the estimates

(3.43)

1
(3.44) mﬁﬁo < o2 < Ca(6,A)|s|Z,

(3.45) o [ W= [l <cim—n [1s4 e 15

Eventually,

(3.46) ol o Bl o 5 0 eu6 A)VOI(S)
. f‘an|2_’n—1f|8|2 1\Y, 2\Y,
which is bounded in n, so the family (N, a,,) is balanced. O

Remark 3.3. In a broader setting, given a section s of a degree d line bundle, we expect
the ratio between the L? average and the L* norm to be an quantitative indicator of how
much does s look like a lift of a section on a smaller surface. With this in mind, we expect
this ratio to be controlled by the lowest distance between the zeroes of s. This would have
the advantage of being an open property, and that when it is actually possible, the minimal
ratio is gotten by a lift.

Remark 3.4. The same proof can be adapted to show that for any a,d > 0, we can build a
balanced family (X,, Ny, a,) with N, of degree a(g — 1) + d.
4. ESTIMATES ON THE SOLUTIONS TO THE FLAT CURVATURE EQUATIONS

Throughout this section, ¥ will be a closed hyperbolic surface of genus g > 2. Unless
otherwise precised, N will be a degree 1 line bundle over ¥ and a will be a holomorphic
2-form valued in N, i.e. a € H'(K2N). Fix ¢ = 5, and consider the following PDE

2g—27
system:
Au= e*—1+ e 2"e?|al?
(41) { Av= c— €—2ue2v|a‘2

In this part, we consider each equation separately, considering the first as giving u de-
pending on v, and vice-versa for the second.



18 SAMUEL BRONSTEIN

4.1. Dealing with Gauss’equation. Fixing a map u, the first equation is the famous
Gauss equation, and is well-behaved. As the data v and « are fixed, we denote f = e?¥|al?,
and our problem boils down to solve

(4.2) Au=—1+e*"+e2f

Denote by C%%(X) the set of continuous a-Hoélder functions on . Looking at the results of
[BS23], we can apply the same sub-supersolution method to get:

Theorem 4.1. Let n € (0,1]. Consider the set

n

4.3 C={feC™X®):0<f<——
(4.3 (Feconm) << i
Then for any f € C, there is a unique u € C**(X) satisfying:

In2
(4.4) —HT <u<0
(4.5) Au=e* —14e2f
Moreover, u satisfies the following upper bound:
(4.6) ef <.

Proof. We will proceed with the sub-supersolution method. A subsolution v_ to the equa-
tion Au = F(u) is a function v_ satisfying Av_ > F'(v_). Analogously, a supersolution is a
function v, satisfying Av, < F(vy).

The sub-supersolution principle states that the existence of a subsolution v_ and a super-
solution v, satisfying v_ < v, ensures the existence of a solution v satisfying v_ < v < v,.

Freely, 0 is a supersolution to the equation 4.5. As f € C, the constant map —M is a
subsolution. Hence by the sub-supersolution principle, there is a solution u satisfying
(4.7) — h172 <u<0.

To prove uniqueness, assume u; and uy are both solutions in (—1%2, 0) of
(4.8) Au; = e* — 1+ e 2 f

Then the difference w = u; — uy satisfies

(4.9) Aw = ("2 — e 22 f)(e® — 1) + fe 22(e® +e 2" — 2).
We observe that the second term is nonnegative, thus

(4.10) Aw > (2 — e 22 f)(e** — 1)

but as f € C and us > =%, we get

(4.11) et f <1

which implies

(4.12) e —e 22 f| >0

hence, by the maximum principle, at a maximum of w,

(4.13) (e*2 —e 22 f)(e* — 1) <0

Hence

(4.14) w<0.
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Exchanging the roles of u; and uy shows

(415) Uy = Uy .
So there is a unique solution in [—22,0].
Finally, because _M <u <0, we deduce
_ n
4.16 < — <.
(4.16) f_1+n_n
As asserted. O

Proposition 4.2. The map ® : C**(%, [0, 3]) — C**(X) which to f associates the unique
u solution of
(4.17) Au=e"" —1+e 2f

satisfying # < u <0 is continuous.

Proof. Thanks to Theorem 4.1, ® is well-defined. For f € C%%(%, [0, %]) given, consider the
linearized equation

(4.18) At = 2(e* — e 2" f)u

The assumptions on u imply

(4.19) e —ef >0

By a maximum principle, the only solution of the linearized equation is 0, hence our solutions
are stable and the defined map is continuous. O

4.2. Dealing with Ricci’s equation. Considering the second equation, we will fix v and
express a solution v as the maximizer of the following functional:

Notation 4.3. For u € CH*(X), consider W, *(X) the Sobolev space of zero average func-
tions that are square integrable with square integrable gradient. Define the functional
Ju W% (2) = R as

1
— —2u 2 2w\ _ 2
(4.20) Ju(w) :=log (][e la]“e ) A / |Vwl

2g%2. The notation f is used for the average of the considered function.

We will also use the notation |w|? for the squared L*-norm:

(421 wi= [ Juf
%

When no confusion is possible, we will write J for J,. We will prove that J attains its
maximum at a function w which will be, up to an addittive constant, the solution v that we
are looking for. This proof is heavily inspired from the method used to solve the prescribed
curvature equation on the sphere when the prescribed data is even. Chang—Yang [CY03]
use this method in this precise case. Keep in mind that our equation is not a prescribed
curvature equation on the surface, but rather a prescribed curvature equation on a disk
bundle on it.

with ¢ =

Lemma 4.4. J is well-defined and weakly continuous on Wy (%),
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Proof. First, we need to check that J is well-defined. This is true as ¥ is compact, and the
Sobolev constants in the injections W2 — LP are exponentially integrable (see Ilias [I1i83])

(4.22) 3C > 0: Yw € W, ?, with /|Vw|2 <1: /62w <C

As e7?*|a|? is bounded on ¥, we deduce that J(w) is finite. Hence J is well-defined. It is
standard that the L? norm of the gradient is weakly continuous on W12?(3). To be sure
that J is weakly continous, it remains to prove that the map

(4.23) H:wwlog (][6_2“|a|262w)

is. A simple computation shows that H is actually convex, hence it is weakly continuous if
and only if it is strongly continuous. It is strongly continuous because of the aforementioned
property, equation (4.22). O

In order to study explicitly the behavior of J, we will need a more precise control on the
Sobolev constants of the functions involved, namely we will use a precise Moser-Trudinger
inequality obtained in [Bro23].

Theorem 4.5 (Moser—Trudinger, B.). Denote respectively by § and A the systole and spectral
gap of ¥. There is a constant C(6,\) depending only on 6, N and continuously in those
parameters such that:

(4.24) Yu € Wy (%), /|vu|2 <1= /(64”2 —1) < C(5,A)

Corollary 4.6. The functional J is upper bounded on Wol’2(2), and we have the following
estimate:

A
(4.25) log (][6_2“|a\2) < sup J < logmaxe *|af® + log (1 + %) :
Also, J is proper on Wol’z(E), as the following holds
1 0, A
(4.26) Vw € W, (%), J(w) + E\Vw\g < log max e >*|a|” + log (1 + ?/EJZEE))) :
Proof. Let w € W,*(X). Consider that
w? Vw3
4.2 2w <4
(4.27) w= W\Vw\% 47
Exponentiating this inequality, we get
(4.28) 2w < Tt ()
Using theorem 4.5 to bound the integral of the right-hand side,
w|2
(4.29) / €20 < (O(6,A) + Vol(E))e -
We deduce
1 1 C(5,A)
' < —2u) 2, ( 2 ;
(4.30) J(w) < logmaxe™*"|a|® + (47r CVOIE)\VUJ\Q +log (1 + Voo )



ALMOST-FUCHSIAN STRUCTURES ON DISK BUNDLES OVER A SURFACE 21

As Vol(¥) = 4n(g — 1),and the bundle is of degree 1, necessarily
1 1 1

4.31 - =
(4:31) 47 ¢Vol(X) A

Inserting it on the left-hand side, we get
(s, A))
Vol(2) 7~

So J is indeed proper and upper-bounded with the desired explicit upper bound.
The lower estimate for sup J is gotten by expliciting J(0) < sup J. O

1
(4.32) J(w) + 4—|Vw|§ < logmax e~ **|a|? + log (1 +
7r

Proposition 4.7. The functional J attains its mazimum at w € Wol’z(Z) satisfying

C(3,A)

max e
fe—2u[al?

Proof. Thanks to Corollary 4.6, we know that J is upper bounded. Consider a maximizing
sequence (w,) of J is W, *(X). Writing down our estimate

1 —2u 2
(4.33) — |Vl <log o]

C(5,A)
VolX )

As (J(wy)) is upper bounded by sup J, so is (|Vw,|3, We deduce that (]Vw,|3) is bounded.
The explicit bound, assuming J(w,) > J(0), is

1
(4.34) J(wy) + 4—|an|§ < logmax e >*|a|* +log (1 +
7r

max e
£ e—2u|a)?

—2u 2
o] + log (1 + 70(5’ A>) .

1 2
: nly <
(4.35) y |Vw,|; <log Voo

As (w,) is bounded in W, *(¥), extracting a subsequence we can assume it converges weakly
towards some w € Wy*(X). By lemma 4.4, J is weakly continuous, so w is a maximizer
of J. As |[Vw|? < liminf |Vw,|3, we get the desired bound on w. O

Theorem 4.8. Let N be of degree 1, o € H(K?N), ¢ = 52— and u € C**(Z, [=22,0]).

2g—2
Then there is a solution v to

(4.36) Av = ¢ — e*e *|al?
satisfying

1 max e 2%|cr|? C(9,A)
4. — 2 <log ————— +1log (1 ’ .
(4.37) 47T|Vv|2 <log Feap? + log (1 + Vol )

Proof. Thanks to proposition 4.7, there exist w € W,*(X) a maximizer of the functional J.
For any s € Wy%, DyJ - s = 0 and so

2 [e?|al?e®™s 2

(4.38) Vol(2) fe-2ual2e2r  cVol(%) /Vw Vs=0

Weakly, this means

1 —2u 2 2w
(4.39) LN

2y .1
c f€—2u|a‘2e2w < (LO)
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As the orthogonal of the zero average functions are the constant maps, there is a constant A
such that

e—2u |Oé|2€2w
f 6_2u‘04|262w
By the elliptic regularity principle, as v is in C%*(X), w belongs to C**(X) and satisfies the

above equation strongly.
Writing [ Aw = 0, we deduce

(4.41) A=c.
Consider the element of W?(%):

(4.40) Aw=A-c

1 c
(4.42) v=w+gln (W)
As Av = Aw, we get
(4.43) Av = c— e *|al?e®
As |Vw|? = |Vvl|3, the estimate of Proposition 4.7 ensures the desired bound on |Vv[3. O

Remark 4.1. In contrast with the Gauss equation, we cannot in this case establish the
uniqueness of the solution v. We will address this problem by showing stability of the
solutions under some conditions after stating some precise estimates on the solution w and v.

4.3. Estimating the regularity of the solution. In order to apply later a fixed point
theorem, we need to understand the behavior of the solutions v. Particularly, we need an L>™
bound on e?’|a|?. Because of the sign difference with Gauss’equation, applying a maximum
principle won’t yield bounds on v. We get our upper bound via a W?2-estimate on the
maximizer w of J,,.

Proposition 4.9. Assume u € C%%(X). Then a mazimizer w of the functional J, satisfies

(4.44)
2 —2u| |2
2,2 < 2 max |af® 5 max e~ 2| a C(6,A)
|IV-w|; < ¢ ((V0E+C(5,A))(7f‘a|2 ) —Volx | +4r log—fe_%m‘2 +log (14 VoD )

Proof. Let w be a maximizer of J. First, we use the Bochner identity to estimate the Hessian
of w

(4.45) Vel = [(duf+ [ [vup.

Since Aw satisfies

C|Oé|2€_2u€2w

- f 6—2u‘a|2€2w :

(4.46) Aw =c

We deduce that

—4u 4 4w
2 2 2 o Jealle
(4.47) /(Aw) = —c*VolX + ¢*(VolX) ([ e 22y
To control the right hand side, we estimate 4w
2 2
(4.48) s < 27w Vel

~ |Vw|3 s
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and apply the Moser—Trudinger inequality of Theorem 4.5 to get

(4.49) / e < (VolZ + C(6, A))e‘vfi .
This ensures

2
(4.50) / lalte™ e < (VoIX + C'(6, A)) max e **|al* exp (M) :

It remains to estimate the denominator of the right hand side. As c¢Vol¥X = 27 and by
maximality J(w) > J(0), we have

1
(4.51) log][ laf?e" < log][e_2“|a|262w - %|Vw|§
Exponentiating this,
—Uu 1 —Uu w
(4.52) /e 2| ) exp (%|Vw|§) < /e 2| ) ?e?

Combining this with the upper bound on the numerator, we get
[ et altet - (VolX + C(6, A)) max 6‘4“|a|4exp(|v7i”|§)
2> 2
([ e2]al2e™) ([ e ]al?exp(g|Vw(3))
It happens that the left-hand side simplifies to give

(4.53)

—2u| ,|2)2
) ) ) (max e™?|af?)
(4.54) / (B0 < ~EHVolE - (VoIZ + €0, A) g
Combining with the bound on |Vw|3 from Proposition 4.7, we get the desired result. O

We sum up with the local upper bound on the solution, which will be key to building
solutions of the PDE system:

Proposition 4.10. Let u: X — R be a map in C%*(X) such that

(4.55) 1<e®<2.

Then there is a constant Cy = C4(0, A, ﬁ—‘j’"}), and v € C**(X) a solution of
(4.56) Av = c— e 2e*|al?

satisfying

C1(0, A, 1)

4.57 a2 <
(4.57) sup e®faf? < ——3

The constant Cy is continuous in the parameters 6, A and f‘off“g

Proof. Once again, consider w € VVO1  a maximizer of J And build the solution v as a
translated of w so that

(4.58) w=v-—7.
Thanks to Proposition 4.9, there is a bound C; (4, A, %) such that
(4.59) |wlao < C1(0, A %)

: 22 < C1(0, " Flaf?
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As the continuous embedding W22 < L* depends only on the systole ¢, this implies that
we have Cy > 0 with the same dependencies such that

(4.60) |w|eo < Ca(0, A, —Ojo)

We compute the average of €2*|a|?

(461) c= ][6_2u62v|a|2 — 62U][6—2u62w|a|2

from which we get the estimate:

- 1 _
(4.62) e 202 ][ la]? < < 27202 ][ ||
29 — 2
Combining this, we get
_ 4C5 | |2
e !
4.63 621) a 2 _ 62ve2w a 2 < 00
(163) o ol < 5o e
as asserted. As the constant C from Proposition 4.9 is continuous in the parameters, so is
the exhibited constant Cj. ]

It remains to show the stability of the solutions under suitable perturbations.

Lemma 4.11. Consider f > 0 a function in C%*(X), such that there is v solution of
(4.64) Av=c—ef

satisfying 2¢*° f < A. Consider the operator H = A + 2e* f : W*2(X) — L?(X). Then H is
wnvertible, and we have the upper bound on its inverse:

(4.65) 17| < max{(A — 2[e™ flo) ™, 7'}

Proof. H is a self-adjoint operator between Hilbert spaces. Moreover, for A large enough, we
have the estimate:

(4.66) |\ — H)w|3|(A = € flw — Aw;
(4.67) <O %)2 / w? + / (Aw)? — 2 / (A — e Flwhw

(4.68) < O|w|;2

Hence for A large enough, (A — H) has compact inverse, so it is a Fredholm operator, and
H has discrete spectrum.
To conclude the lemma, it remains to check that H has no eigenvalue in the range (—A +

2% f| o, 2¢).
Let t be in this range. If ¥ is an eigenvector for the value ¢, we have
(4.69) AD+ (2e*f —t)p =0

Decompose v = m(v) + 0 with m(v) being the average of ©. Then it comes
(4.70) m(v) /2e2vf —t=- /(262”f L
(4.71) /|v7>|2 — (2e*f — t)0? = m(d) /(262”f — )0
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Combining these two equations with [ €?”f = ¢, we get
(4.72) / Vo2 — (2e* f — t)9* = —2m(v)*(2¢c — t)VolX

As t < 2¢, the right-hand side is nonpositive, while because —A + 2¢*’f < ¢, the left-hand
side is nonnegative. So both must be zero, and v = 0, as desired. U

A consequence of this lemma is that we locally able to lift solutions to Av = ¢ — e?"f.
But we will need to be able to lift to a continuous branch for all f obtained from solving the
Gauss-Codazzi equation. To this aim, we give a more precise description of the open set on
which we are able to lift:

Theorem 4.12. Let ¥ be a closed hyperbolic surface. We will denote by (C;) constants

|oZ,

depending on the systole, the spectral gap, and the ratio Tlaiz- Consider vy a solution of
(4.73) Avy = ¢ — e*™|al?
satisfying
(4.74) e*|al? < G <A

. <359 .
Fiz e > 0. Consider the functional H : C**(X) x Wao(X) — L*(X):
(4.75) H(f,v) = Av — c + e* fla|?
Then there is Cy > 0, such that for |f —1]|s < \/2092__2; there is a unique v € W?? satisfying:

v — gl <€
(4.76) { Av =c— ¥ flal?
In particular, this v also satisfies:
Cs

4.77 Plal? <
(4.7 ol <

Proof. This explicit lift comes from an estimation of the bounds appearing in the implicit
function theorem. We will use the version in [Hol70]. With the notations of the theorem, we

need to compute k; = [(D,H(fo,v0))"|. The lemma 4.11 shows that, provided m <A,

(4.78) by < %(29 _9).

Now we need to find § > 0 and ¢; such that, for s € [0,6], v € [0, €]

(4.79) |f = 1] <6, [v —wolo2 < e = [|DyH(f,v) = DyH(L,v0)|| < 91(]f = 1o, [v — v0l2,2)

But, as
(4.80)

g g v v g 402 V=0 :
D)0 = DAL )il = [ (e =)o)t < el 1 = fl. il
from which we deduce
C
(4.81) IDH(f,v) — DyH(1,v)|| < s—se?@lvmmobe|p — f]

2g — 2
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Finally, we must find g, such that

(4.82) [f = 1oo <6 = [[H(f,v0)l] < g2(If = Lloo)
Explicitly,
C
(4.83) ()= [ laP(f = 17F < 5
Of which we get
078

4.84 R
( ) 92(S> \/297_2
Now we can lift a continuous branch satisfying H(f, U(f)) = 0 provided 0 satisfies
(485) ]{7191(5, 8) <n< 1 and ]{7192(5) < 8(1 — 7])
This is verified for ¢ of the kind:

C
(4.86) §=——2

V2g—2

and the solutions v = WU(f) satisfy

(4.87) v —vglae < €
Of which we deduce
(4.88) e*|al? < €2CQ|U—UO|2,2€2vo‘a|2 < Cho
29 — 2
as desired. B

5. PROOF OF THE MAIN THEOREM
In this section we will prove the geometric meaning of all this study:

Theorem 5.1. Let ¥ be a closed hyperbolic surface of genus g. Fixn € (0,1) and consider
a family (£, Ny, on)n>2 satisfying:

(a) X, is a degree n cover of &, equipped with the lift of the hyperbolic metric on X.

(b) N, is a degree 4n(g — 1) + 1 line bundle over ¥, equipped with a metric of constant

sectional curvature.

(c) an, € HY(N,,) is a section of N,,.

(d) There is Ag > 0 such that for all n the spectral gap of ¥, is bigger than Ay.

(e) The family of sections is balanced, i.e.

. SUp—-———"5 Q.
w22 f [ ?

Then, for n large enough, there are u,v : %, — R such that

(5.2) sup e *e?’|al*(2) < n
Zezn
Au = e — 1+ e 2e?|a,|?
(53) { Av = (21_2 _ €—2ue2v|an‘2
n(29—2)

As a corollary, we get the desired existence theorem for almost-fuchsian representations
with nontrivial normal bundle.
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Corollary 5.2. There is a genus gy such that for any g > go, there exists a representation
p:mYE, — SO(4,1) which is almost-fuchsian, a complex variation of Hodge structure and
the hyperbolic 4-manifold p\H* is a degree 1 disk bundle over ¥,.

Proof. Assuming Theorem 5.1, let ¥ be a closed hyperbolic surface of genus 2. Thanks to
the result of Magee-Naud—Petri [MNP22], we know the existence of a family of covers (¥,,)
satisfying condition (d) of Theorem 5.1. Thanks to Theorem 3.3, there is a balanced se-
quence (v, N,,) satisfying conditions (b), (¢) and (e). Thus for n large enough we have (u, v)
satisfying

(5.4) sup e *e®|a?(2) < 1
ZEZ'!L

and

(55) Ay = 1 _ 6—2ue2v|an|2

{ Au = e* — 1+ e 2ue?|a,|?
- n(29-2)

Thanks to Theorem 2.11, this corresponds to an almost-fuchsian representation and complex
variation of Hodge structure, with holomorphic data «, and the hyperbolic 4-manifold is a
degree 1 disk bundle over X,,. O

The main argument of Theorem 5.1 will be a fixed point theorem, namely Schauder’s fixed
point theorem: a continuous map which preserves a compact convex set has a fixed point.

Proof of Theorem 5.1 . Denote K7} the following convex set:

In(1
(5.6) K= {u e C%(%,) : —w <u <0}
Thanks to Theorem 4.8, for u = 0, there is a function vy solution of
1
(5.7) Avy = ———— — 2|, |?
IX(Zn)]

|an |

and by Proposition 4.10, there is Cy > 0 depending continuously on d, A and the ratio ,fmff?
such that '

Co
58 2vo " 2 < _ 79
The assumptions (a), (d) and (e) ensure that the constant C' can be chosen to be independent
of n, as it must be for our proof. Recall Ay defined in (d) as a common lower bound to the
spectral gaps of (3,,). Consider now n large enough so that:

Co 1
- < in{Aq,. =
(g — 1)~ minide 5}

Thanks to proposition 4.12, there are constants C4, Cs, C'3 independent of n, and a con-
tinuous map

(5.9)

& Cy
5.10 U {u e C%|e* — 1o € ———=-1} = V]|t — Yloe € ==
(510 (e €O — 11 £ ) = (ol =l < 5 )
such that v = ¥(u) is a solution of
1
(5.11) Av = — e Mo,

IX(Xn)]
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And v = ¥(u) satisfies
Cs
~ 2n(g—1)
theorem 4.1 gives us a map ¢ and an n-independent constant Cy

N G v __ <

n(g—1)
such that u = ®(v) is a solution of
(5.14) Au=e* — 1+ e 2e*|a,|?
and u satisfies
(5.15) sup e e*|a,|? < n
Finally for n sufficiently large,

(5.12) e |, | <

; Cs n
Provided T < T

(5.13) D : {v|62”|0zn|2

Co &
2n(g—1) = /2n(g — 1)
and ® o U is a well-defined self-map of K = {u||e* — 1] < 2n(g T } C K. We also point out
that ,by ellipticity, every element in the image of ® is in C? and satisfies

{—1“72 <u<0

(5.16)

(5.17) 1P <Au<i1

And so the image of @ is in the following set :
In2
(5.18) Q={ucC*(%,):-1<Au<1and _nT <u <0}

whose closure in C%%(%,,) is a convex compact set.

Finally, ® o ¥ is a continuous self-map of I, which is convex, and its image is contained in
a compact convex set. Hence by Schauder fixed point theorem, it has a fixed point u. Denote
v = W(u), then (u,v) is solution of the desired PDE system, as asserted. By construction, it
satisfies the estimate

(5.19) e~ e a2 < 7.



ALMOST-FUCHSIAN STRUCTURES ON DISK BUNDLES OVER A SURFACE 29

REFERENCES

[BIJMR15] Luca Battaglia, Aleks Jevnikar, Andrea Malchiodi, and David Ruiz. A general existence result

[Bro23]
[Bry82]

[BS23]

[CMS23]

[CY03]

[Dav23]
[Don03]

[FMS*16]

[For21]
[GHW10]
[GL14]
[GLJTSS]
[Hol4]
[Hod05]
[Hol70]
[HW15]
[ig3)
[Jia21]
[Kap89)]
[Kom97]
[KS07]
[Kuiss]
[LM19]

[LM20]

for the Toda system on compact surfaces. Advances in Mathematics, 285:937-979, 2015.

Samuel Bronstein. On the moser-trudinger inequality for surfaces. PREPRINT, 2023.

Robert L Bryant. Conformal and minimal immersions of compact surfaces into the 4-sphere.
Journal of Differential Geometry, 17(3):455-473, 1982.

Samuel Bronstein and Graham Andrew Smith. A geometric description of the set of almost-
fuchsian representations. arXiv preprint arXiv:2301.00715, 2023.

Diptaishik Choudhury, Filippo Mazzoli, and Andrea Seppi. Quasi-fuchsian manifolds close to the
fuchsian locus are foliated by constant mean curvature surfaces. Mathematische Annalen, pages
1-30, 2023.

Sun-Yung Alice Chang and Paul C Yang. The inequality of moser and trudinger and applications
to conformal geometry. Communications on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences, 56(8):1135-1150, 2003.

Colin Davalo. Nearly geodesic immersions and domains of discontinuity. arXiv preprint
arXiv:2303.11260, 2023.

Simon K Donaldson. Moment maps in differential geometry. Surveys in differential geometry,
8(1):171-189, 2003.

Vladimir Fock, Andrey Marshakov, Florent Schaffhauser, Constantin Teleman, Richard Went-
worth, and Richard Wentworth. Higgs bundles and local systems on riemann surfaces. Geometry
and quantization of moduli spaces, pages 165-219, 2016.

Franc Forstneric. The calabi-yau property of superminimal surfaces in self-dual einstein four-
manifolds. The Journal of Geometric Analysis, 31(5):4754-4780, 2021.

Ren Guo, Zheng Huang, and Biao Wang. Quasi-fuchsian 3-manifolds and metrics on teichmiiller
space. Asian Journal of Mathematics, 14(2):243-256, 2010.

Martin A Guest and Chang-Shou Lin. Nonlinear pde aspects of the tt* equations of cecotti and
vafa. Journal fiir die reine und angewandte Mathematik (Crelles Journal), 2014(689):1-32, 2014.
Michael Gromov, HB Lawson Jr, and William Thurston. Hyperbolic 4-manifolds and conformally
flat 3-manifolds. Publications Mathématiques de l’IHE‘S, 68:27-45, 1988.

Son Lam Ho. On conformally flat circle bundles over surfaces. PhD thesis, University of Maryland,
College Park, 2014.

Thomas Wolf Stephen Hodge. Hyperkahler geometry and Teichmiiller space. PhD thesis, Imperial
College London, 2005.

JM Holtzman. Explicit € and ¢ for the implicit function theorem. SIAM Review, 12(2):284-286,
1970.

Zheng Huang and Biao Wang. Counting minimal surfaces in quasi-fuchsian three-manifolds.
Transactions of the American Mathematical Society, 367(9):6063-6083, 2015.

Said Ilias. Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes
compactes. In Annales de linstitut Fourier, volume 33, pages 151-165, 1983.

Ruojing Jiang. Counting essential minimal surfaces in closed negatively curved n-manifolds. arXiv
preprint arXiw:2108.01796, 2021.

ME Kapovich. Conformally flat structures on 3-manifolds: Existence problem. Siberian Mathe-
matical Journal, 30(5):712-722, 1989.

Karl Kommerell. Die Krimmung der zweidimensionalen Gebilde im ebenen Raum von vier Di-
mensionen. H. Laupp, 1897.

Kirill Krasnov and Jean-Marc Schlenker. Minimal surfaces and particles in 3-manifolds. Geome-
triae Dedicata, 126(1):187-254, 2007.

Nicholaas H Kuiper. Hyperbolic 4-manifolds and tesselations. Publications Mathématiques de
I'THES, 68:47-76, 1988.

John Loftin and Ian McIntosh. The moduli spaces of equivariant minimal surfaces in RH® and
RH* via higgs bundles. Geometriae Dedicata, 201(1):325-351, 2019.

Qiongling Li and Takuro Mochizuki. Complete solutions of toda equations and cyclic higgs bundles
over non-compact surfaces. arXiv preprint arXiw:2010.05401, 2020.



30
[MIY82]
[MNP22]
[MR11]
[Sep16]
[SU82

[SY79]

[Tral9]

[UhI83]

SAMUEL BRONSTEIN

William W Meeks ITI and Shing-Tung Yau. The existence of embedded minimal surfaces and the
problem of uniqueness. Mathematische Zeitschrift, 179(2):151-168, 1982.

Michael Magee, Frédéric Naud, and Doron Puder. A random cover of a compact hyperbolic surface
has relative spectral gap 3 16-¢. Geometric and Functional Analysis, 32(3):595-661, 2022.
Andrea Malchiodi and David Ruiz. A variational analysis of the Toda system on compact surfaces.
arXiv preprint arXiw:1105.3701, 2011.

Andrea Seppi. Minimal discs in hyperbolic space bounded by a quasicircle at infinity. Commentarii
Mathematici Helvetici, 91(4):807-839, 2016.

Jonathan Sacks and Karen Uhlenbeck. Minimal immersions of closed riemann surfaces. Transac-
tions of the American Mathematical Society, 271(2):639-652, 1982.

Richard Schoen and Shing-Tung Yau. Existence of incompressible minimal surfaces and the topol-
ogy of three dimensional manifolds with non-negative scalar curvature. Annals of Mathematics,
110(1):127-142, 1979.

Samuel Trautwein. The hyperkahler metric on the almost-fuchsian moduli space. EMS Surveys
in Mathematical Sciences, 6(1):83-131, 2019.

Karen K Uhlenbeck. Closed minimal surfaces in hyperbolic 3-manifolds. In Seminar on minimal
submanifolds, volume 103, pages 147-168, 1983.



	1. Introduction
	1.1. Context
	1.2. Statement of the results
	1.3. Scheme of proof

	2. The curvature equations
	2.1. Minimal equivariant immersions in H4
	2.2. Writing the flat curvature equations as a scalar PDE system
	2.3. Almost-fuchsian disks in H4

	3. Balanced holomorphic sections of positive line bundles
	4. Estimates on the solutions to the flat curvature equations
	4.1. Dealing with Gauss'equation
	4.2. Dealing with Ricci's equation
	4.3. Estimating the regularity of the solution

	5. Proof of the main theorem
	References

