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We consider the kinetics of the imperfect narrow escape problem, i.e. the time it takes for a particle
diffusing in a confined medium of generic shape to reach and to be adsorbed by a small, imperfectly
reactive patch embedded in the boundary of the domain, in two or three dimensions. Imperfect
reactivity is modeled by an intrinsic surface reactivity κ of the patch, giving rise to Robin boundary
conditions. We present a formalism to calculate the exact asymptotics of the mean reaction time in
the limit of large volume of the confining domain. We obtain exact explicit results in the two limits
of large and small reactivities of the reactive patch, and a semi-analytical expression in the general
case. Our approach reveals an anomalous scaling of the mean reaction time as the inverse square
root of the reactivity in the large reactivity limit, valid for an initial position near the extremity
of the reactive patch. We compare our exact results with those obtained within the “constant flux
approximation”; we show that this approximation turns out to give exactly the next-to-leading order
term of the small reactivity limit, and provides a good approximation of the reaction time far from
the reactive patch for all reactivities, but not in the vicinity of the boundary of the reactive patch
due to the above mentioned anomalous scaling. These results thus provide a general framework to
quantify the mean reaction times for the imperfect narrow escape problem.

I. INTRODUCTION

How much time does it take for a random walker to
reach a target point? The answer to this question has re-
ceived a lot of attention in the last decade in the physics
literature [1–9]. First passage problems appear in vari-
ous areas of biological and soft matter physics and are
in particular relevant to the problem of reaction kinet-
ics, since two reactants have to meet before being able
to react [10, 11]. When the reaction is “perfect”, i.e.
when it occurs instantaneously upon each encounter, its
kinetics is controlled by the first passage statistics of one
reactant molecule, seen as a random walker, to the sec-
ond reactant, seen as a “target”. However, many reac-
tions do not occur at first contact between the random
walker and the targets, leading to imperfect reactivity.
Imperfect reactivity can have diverse origins at the mi-
croscopic scale, such as orientational constraints on the
reactive particles [11], the fact that the surface of the re-
active particles is not entirely covered by reactive patches
(such as in the chemoreception problem [12]), the need
to overcome an energetic [13] (or entropic [14]) activation
barrier before reaction, the presence of a gate that can be
randomly closed or opened when the reactant meets the
target [15, 16], etc (see Ref. [17] and references therein
for a recent review on imperfect reactivity).

Imperfect reactivity was early investigated for
molecules diffusing in infinite space [11, 18–20] (with an
imposed concentration at infinity). The search problem
for a single random walker moving in a confining volume
for an imperfect target, initially considered in Ref. [21]
for centered spheres, has also attracted recent attention
and several asymptotic results for imperfect search kinet-
ics have been derived [22–30]. Recently, explicit asymp-

totics of the reaction time statistics have been obtained
for general Markovian random walks [31]. Besides the
case of reactive targets located in the bulk of a confin-
ing domain, the narrow escape problem (NEP) consists
in calculating the escape time of a random walker out
of a confining domain, through a small window at the
boundary of the domain (see Figure 1(a)). While the
NEP is now well characterized for perfect reactions, for
spherical domains [8, 32–35] and large domains of arbi-
trary shapes [36], fewer results are available for imper-
fect reactions (i.e. for a partially adsorbing patch). The
imperfect narrow escape problem has been investigated
for particular geometries in cylindrical [37, 38] or spher-
ical domains [39][40] in which case the analysis depends
on the eigenfunctions of the particular confining volume
that is considered and relies on the so-called uniform flux
approximation introduced in Ref. [20].

The aim of the present paper is to apply the formal-
ism introduced in Ref. [31] to cover the case of the im-
perfect narrow escape problem in a domain of generic
shape. Our formalism is asymptotically exact in the limit
of large confining volume – it does not involve the con-
stant flux approximation – and provides explicit results
in both regimes of small and large reactivity. Of partic-
ular interest for imperfect reaction problems is the mean
reaction time when the initial position is located on the
reactive patch; this time is exactly zero for perfect re-
actions and scales as 1/κ for targets in the interior of
the volume. We identify a region for which the reaction
time behaves anomalously with the reactivity κ. This
region, which does not exist for targets in the bulk of the
confining domain, is located at the boundary of the im-
perfectly reactive patch. While one would naively expect
this time to be inversely proportional to κ, we find in-
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FIG. 1. (a) Illustration of the imperfect narrow escape prob-
lem. A partially reactive patch (thick red line) is embedded
in the boundary of a confining domain. A random walker,
starting from the initial position (red sphere) diffuses in the
domain and is eventually adsorbed on the patch. (b) Zoom
on the portion of space delimited by the dashed blue lines
around the reactive patch.

stead that when the initial position is at the boundary of
the reactive domain, the mean reaction time 〈T 〉e is ac-
tually anomalously high (∝ κ−1/2) and follows the exact
asymptotics

〈T 〉e ∼
κ→∞

V

(d− 1)(2π κDa)1/2ad−2
. (1)

Here, d = 2 or d = 3 is the spatial dimension, D is the
diffusion coefficient, a is the radius of the reactive patch,
and V the volume of the confining domain. Here, we
assume that the confining volume is taken large enough,
and the patch small enough, so that the confining bound-
aries at the vicinity of the target can be considered as a
flat wall in which the reactive patch is embedded, the
latter being considered as a line segment of length 2a in
d = 2 or as a flat disk of radius a in d = 3. We show
below how to obtain this anomalous scaling relation by
solving a Wiener-Hopf integral equation. We will also
show how this “anomalous” behavior (1) of 〈T 〉 with κ
can be related to the divergence of fields in Laplacian
problems near surfaces presenting asperities, as occurs in
electrostatics near conducting edges [41] or in the coffee
ring effect [42].

More generally, we show that the mean escape time
for an arbitrary initial position far from the target, and
for any finite reactivity κ satisfies the following exact
asymptotics:

〈T 〉/V ∼
r�a

{
1
πD ln(r/a) + C∞ (d = 2)

− 1
2πDr + C∞ (d = 3)

, (2)

where C∞ is independent of the initial distance r from the
target. For finite values of the reactivity κ, we show that
C∞ can be obtained through a semi analytical procedure.
In the limit of large reactivity, we show that C∞ can be

determined explicitly and is given by :

C∞ ∼
κa�D

{
ln 2
πD + 1

π2κa

(
ln 8κa

D + γe + 1
)

(d = 2)
1

4Da + 1
4πκa2

(
ln 2κa

D + γe + 1
)

(d = 3)

(3)

where γe is Euler’s constant. This expression is under-
stood as the first two terms in the expansion of C∞ in
powers of 1/κ. Interestingly, this result shows that the
term C∞ is not analytic in powers of κ, which originates
from the anomalous scaling (1). Finally, we also give
exact results in the small reactivity limit, which will be
found to be exactly the same (at first order) as the re-
sults obtained within the self-consistent, “constant flux
approximation” that has been invoked to study the im-
perfect narrow escape in the literature [20, 37, 39, 40]. It
is found that, far from the reactive patch this approxima-
tion is very accurate (for any reactivity), while it fails for
initial positions close to the reactive patch, and in partic-
ular does not predict the behavior (1) near the boundary
of the patch.

The outline of the paper is as follows. First, we re-
call the formalism of Ref. [31] in the particular case of
the imperfect narrow escape problem for diffusing par-
ticles to obtain equations for the mean escape time in
the large volume limit (Section II A). We show how the
formalism can be presented under the form of an inte-
gral equation that is suitable for studying the large and
small reactivity limits in Section II B. The large reactiv-
ity limit is investigated in Section III where Eqs. (1) and
(3) are derived. In this Section, we also give a simple
scaling argument that relates the anomalous behavior of
〈T 〉 near the extremity of the patch to the divergence of
electric fields near the edges of conducting objects. The
small reactivity limit is examined in Section IV. Last, we
study briefly how the constant flux approximation can
be implemented within our formalism in Section V. An
exact, but formal solution for any reactivity parameter
(that requires numerical tools, however) is presented in
Appendix A.

II. FORMALISM FOR THE IMPERFECT
NARROW ESCAPE PROBLEM IN THE LARGE

VOLUME LIMIT

A. General formalism

We consider the stochastic motion of an overdamped
particle moving with diffusion coefficient D in a confining
volume Ω. The boundary of the volume is ∂Ω and con-
tains a small window Sr which is partially reactive, the
rest of the confining boundary is assumed to be smooth
and perfectly reflecting, see Fig. 1(a). We assume that
Sr is formed by the region of the surface at geodesic dis-
tance less than a from the center, and a is called the
radius of the patch Sr. The Fokker-Planck equation for
the probability density p(r, t) to observe the particle at
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position r and time t is

∂tp = D ∇2p (r ∈ Ω), (4)

n · ∇p = 0 (r ∈ ∂Ω\Sr), (5)

D n · ∇p+ κ p = 0 (r ∈ Sr). (6)

where n is the unit vector normal to the surface, pointing
to the exterior of the volume. For a partially reactive sur-
face, the reactivity parameter κ is defined in such a way
that the probability that the particle is absorbed by an
infinitesimal surface element dS located around rs during
dt is κ p(rs, t)dSdt. We assume that the space dimension
is d = 2 (2D) or d = 3 (3D). It is very well known that
an equation for the mean first passage time can be ob-
tained by identifying the adjoint transport operator [1],
which in our case leads to the following equation for the
mean reaction time 〈T 〉(r) to the target, where r now
represents the initial position of the particle:

D∇2〈T 〉 = −1 (r ∈ Ω), (7)

n · ∇〈T 〉 = 0 (r ∈ ∂Ω\Sr), (8)

D n · ∇〈T 〉+ κ〈T 〉 = 0 (r ∈ Sr). (9)

Integrating Eq. (7) over the whole volume, and using the
divergence formula and the boundary conditions leads to
the exact integral relation:

κ

∫
Sr

dS(r)〈T 〉 = V, (10)

where V = |Ω| is the volume of the domain. Now, we
consider the large volume limit, which is obtained when
the confining volume extends without changing its shape,
keeping constant the size of the target and the initial dis-
tance to the target. We define the rescaled mean escape
time Φ by

Φ(r) = lim
V→∞

〈T (r)〉/V. (11)

In the large volume limit, the boundary at the vicinity of
the reactive target becomes increasingly similar to a flat
surface in which the reactive patch is a flat disk of radius
a in 3D (or a flat segment of length 2a in 2D). Here, we
denote the distance to the reflecting surface containing
reactive patch as z, see Fig. 1(b). With this in mind,
inserting the ansatz (11) into the above equations yields
a closed system of equations in the large volume limit:

∇2Φ = 0 (if z > 0), (12)

κ

∫
Sr

dS(r)Φ = 1, (13)

D∂zΦ =

{
0 (if z = 0, |r| > a),

κ Φ (if z = 0, |r| < a).
(14)

Importantly, we see that in the large volume limit,
Eq. (11), the obtained equations are independent of the
shape of the confining volume, which is present only

though the scale factor V in the definition of Φ. We
have directly controlled this aspect by performing nu-
merical stochastic simulations of trajectories in the con-
fined domain. The results of such simulations are shown
on Fig. 2 and confirm that our formalism correctly pre-
dicts the mean reaction time in the large volume limit,
independently on the shape of the confining domain.

Equations (12), (13), (14) generalize the formalism of
Ref. [36] to the case of imperfect reactions. The fact
that the mean first reaction time scales with the volume
is actually more general than the specific diffusive walk
that we have considered here [31]. To solve the above
equations, we may be tempted to use spheroidal coordi-
nates, which can be used to solve the problem for either
infinite or vanishing reactivity. For finite reactivity how-
ever, the resulting equations in such coordinates involve
Robin conditions with non-uniform coefficients, so that
the mean reaction time can be obtained only in terms
of the solution of an infinite linear system. This proce-
dure is described in Appendix A, and it indeed leads to
a generic numerical solution that will be useful to test
our analytical insights in all the paper. However, it is
not suitable for analytical calculations. For this reason,
we adopt a different approach, consisting in deriving an
integral equation satisfied by Φ on the reactive patch.

B. Obtaining an integral equation for the mean
reaction time

Let us first characterize the large distance behavior of
the rescaled mean first reaction time Φ. The condition
(13), combined with the boundary condition at z = 0,
implies that ∫

S0

dS n · ∇Φ = 1/D, (15)

for any surface S0 whose intercept with the plane z = 0
encloses the reactive patch. Taking such surface S0 to be
a half-disk of radius R (in 2D) or a half-sphere (in 3D),
we see that

∂rΦ ∼
r→∞

{
1/[πDr] (d = 2),

1/[2πDr2] (d = 3),
(16)

where r is the distance to the center of the reactive patch.
Hence, the behavior of Φ for large r takes the form

Φ(r) ∼
|r|→∞

{
1
πD ln |r|+ C∞ + o(1) (d = 2),

− 1
2πDr + C∞ + o(1) (d = 3),

(17)

where C∞ does not depend on r. The quantity C∞ thus
characterizes the behavior of the mean reaction time far
from the target, it could be used in matched asymptotics
expansions if one aims to identify the first passage times
distributions, as in ref. [22] (which deals with interior
targets).
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FIG. 2. (a) Geometry of the confining domains (called
A and B) that are considered for stochastic simulations.
In 2D, these domains are defined in polar coordinates by
r(θ) = Rf(θ) with f = 1.6(1 + 0.5 cos2 θ) for domain A and
f = 1.6(1+0.1 sin θ+0.3 sin 3θ) for domain B. Domains in 3D
are obtained by considering revolution of 2D curves around
the vertical dashed line. The reactive patch is indicated by a
thick red line, and the initial position is taken at a distance r
from the center of the patch along the black dashed line. In
the figure, we have used R = 6a. (b),(c) Results of Brownian
dynamics simulations for the mean reaction time in 2D/3D
(parameters are indicated in the legend) compared to gen-
eral theoretical expressions as obtained in Appendix A. In all
simulations, we used a time step ∆t = 10−4a2/D. Boundary
conditions are implemented as follows: if, at the end of a time
step, the random walker falls outside the domain, then if it is
“behind” a reflecting wall it is reflected with respect to this
wall, and if it falls “behind” the reactive patch, it is absorbed
with probability Pa = κ

√
πdt/D (in which case the trajectory

ends) and it is reflected with probability 1−Pa, see Ref. [43].

Let us now introduce the Green’s function GN for the

Laplace problem with Neumann boundary conditions at
z = 0 (including on the reactive region). Such Green’s
function satisfy

∇2GN (r|r0) = −δ(r− r0), (18)

n · ∇GN (r|r0) = 0 (z = 0). (19)

The expression of GN is easily found by using the image
method [44]:

GN (r|r0) =

{
− 1

2π [ln |r− r0|+ ln |r− r∗0|] (d = 2),
1

4π

[
1

|r−r0| + 1
|r−r∗0 |

]
(d = 3),

(20)

where r∗0 represents the symmetric image of r0 with re-
spect to the plane z = 0. We note that the large r be-
havior of GN is

GN (r|r0) =
|r|→∞

{
− 1
π ln |r|+ o(1/r) (d = 2),

1
2πr + o(1/r2) (d = 3),

(21)

We now use manipulations that are standard in
Green’s function problems [44] to put the problem for Φ
on the form of an integral equation. Using the Eq. (18)
and ∇2Φ = 0 we see that the following equality holds:

Φ(r0) =

∫
z≥0

dr[GN (r|r0)∇2
rΦ− Φ(r)∇2

rGN (r|r0)].

(22)

Using the divergence formula, we obtain

Φ(r0) =∫
S

dS(r)n · [GN (r|r0)∇rΦ(r)− Φ(r)∇rGN (r|r0)], (23)

where S is any closed surface in the half-space z ≥ 0.
Taking this surface to be a half-circle (or half-sphere in
3D) of radius R joined with a segment of size 2R on the
axis z = 0, we see that in the limit R→∞

Φ(r0) = C∞ −
κ

D

∫
Sr

dS(rs)Φ(rs)GN (rs|r0), (24)

where we have used Eqs. (17),(21),(19) and (14) to sim-
plify the integrals over the surfaces in Eq. (23). The
above equation means that Φ(r) can be constructed for
any position as soon as one knows its value on the reac-
tive patch. Taking r0 to be on the reactive patch yields
an integral equation for Φs, defined to be the value of
Φ on the reactive patch. Since the above equation in-
volves an unknown constant C∞ it must be accompanied
by a supplementary condition, which is provided by the
relation (13). Let us finally write explicitly the integral
equations for Φ for the 2D and the 3D cases. For d = 2,
we obtain:

Φs(x0) = C∞ +
κ

Dπ

∫ a

−a
dx Φs(x) ln |x− x0|, (25)∫ a

−a
dx Φs(x) = 1/κ, (26)
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In the case d = 3, we note that Φs(r) depends only on the
radial distance to the disk center, Φs(r) = Φs(r). The
kernel of the integral equation can be simplified after
a few algebraic manipulations detailed in Appendix B,
leading to

Φs(r0) = C∞ −
κ

D

∫ a

0

dr
2 r Φs(r)

π(r + r0)
K

(
2
√
rr0

r + r0

)
, (27)

2π

∫ a

0

dr r Φs(r) = 1/κ, (28)

where K(k) is the complete elliptic integral of the first

kind, defined as K(k) =
∫ 1

0
dt[(1−t2)(1−k2t2)]−1/2 with

k the Elliptic modulus (to be distinguished from the pa-
rameter m = k2). These integral equations admit no
known analytical solution in general. In the next sec-
tions, we focus on their asymptotic study. From now
on, without loss of generality, we set the units of length
and time so that a = 1 and D/a2 = 1. The remaining
parameter κ then represents κa/D in full units.

III. THE LIMIT OF LARGE REACTIVITY

A. A scaling argument for the anomalous behavior
of the mean reaction time for large reactivity.

Here we present a brief scaling argument that leads to
the anomalous scaling (1). In the case of perfect reactions
κ =∞, it is clear from Eqs. (12),(14),(15) that Φ can be
seen as the electrostatic potential generated by a charged
conducting disk that is embedded in an insulating sur-
face, with the prescription that Φ = 0 on this disk. In
fact, using the image methods, it is easy to show that Φ
is also the electrostatic potential in infinite space gener-
ated by an infinitely thin disk. It is well known [41] that,
for this electrostatic problem, the “electric field” −∇Φ
diverges near the edge as 1/ρ1/2, where ρ is the distance
from the disk extremity. Therefore, at a distance ρ � a
from the edges, Φ ∝ ρ1/2. In the case that κ is large but
finite, since the natural length scale associated to finite
reactivity is `∗ = D/κ [17], we may therefore assume that
the mean reaction time is comparable to the mean first
passage time when the starting position is located at a
distance `∗ from the reactive patch. In this condition,
with ρ = `∗ we obtain the anomalous scaling Φ ∝ 1/

√
κ,

as announced in Eq. (1). In what follows, we show how
to rigorously derive this scaling law, with the prefactor.

B. 2D case

1. Leading order

Consider now the limit κ→∞ in the case d = 2. Since
this situation corresponds to a first passage problem, we
know that the asymptotic value of C∞ does not depend

on κ. The fact that Φs vanishes in the large κ limit leads
us to postulate in line with Eqs. (25)-(26) that

Φs(x0) ∼
κ→∞

1

κ
Φ1(x0), C∞ ∼

κ→∞
C1, (29)

where C1 and Φ1 do not depend on κ. Inserting these
ansatz into the integral equation (25) and the normalisa-
tion condition (26), we obtain∫ 1

−1

dx Φ1(x) ln |x− x0| = −πC1, (30)∫ 1

−1

dx Φ1(x) = 1. (31)

The integral equation (30) for Φ1(x) is known as Carle-
man’s equation and its analytical solution is known ex-
plicitly [45]. Using also the normalisation condition, we
obtain the final expression for C1 and Φ1:

C1 =
ln 2

π
, Φ1(x) =

1

π
√

1− x2
. (32)

2. Boundary layer near the extremities of the reactive patch

We now note that Φ1(x) is formally infinite at x =
±1, i.e. near the boundary of the reactive patch. This
means that our expansion (29) is not valid near these
points, suggesting a behavior similar to those obtained
for boundary layer problems. Since the reaction length
[17] is 1/κ in our units, we expect processes happening
at such scales. Therefore, we assume the behavior

Φs(x) = καψ((1− |x|)κ), (1− |x|)� 1, (33)

with ψ a scaling function. The exponent α will be
set such that the behavior of Φ in the boundary layer
matches with that far from the boundary layer. Namely,
the compatibility of the above ansatz with Eq. (32) im-
poses the choice

α = −1/2, ψ(X) ∼
X→∞

1

π
√

2X
. (34)

Hence, the structure of the solution in the limit κ → ∞
is

Φs(x) =

{
κ−1Φ1(x) + ... (1− |x|)� 1/κ

κ−1/2ψ((1− |x|)κ) + ... (1− |x|)� 1

(35)

and the condition (34) ensures that these two expressions
give the same result in their common validity regime
κ−1 � 1 − |x| � 1. A key point here is that the
mean return time, starting from the boundary of the re-
active region scales as 1/κ1/2 and is thus infinitely larger
than the mean return time starting from the center of
the target, which scales as 1/κ. This suggests to set



6

C∞ = C1 + C1/2/
√
κ+ ... in the limit of large reactivity

(even though the constant C1/2 will turn out to vanish).
Let us now find the set of equations satisfied by

ψ. First, we consider the normalisation condition (26),
which we write under the form∫ 1

−1

dx

[
Φs(x)− Φ1(x)

κ

]
= 0. (36)

Here we remark that the integrand in the above integral
is maximal near x = ±1. Let us define an intermediate
length scale ` such that

1/κ� `� 1. (37)

We will keep this notation in the whole paper. We write
Eq. (36) by separating the integral into two regions: when
(1 − |x|) > ` then we approximate Φs(x) by the first
line of Eq. (35) and if (1 − |x|) < ` we use the ex-
pressions on the second line of Eq. (35) for Φs and we
approximate by its behavior near x = ±1, which reads
Φ1 ' 1/[π

√
2(1− |x|)]. This leads to

0 =

∫ −1+`

−1

dx

[
ψ((1− |x|)κ)√

κ
− 1

κπ
√

2(1− |x|)

]

+

∫ 1

1−`
dx

[
ψ((1− |x|)κ)√

κ
− 1

κπ
√

2(1− |x|)

]
.

Setting X = (1− |x|)κ, and using `κ� 1, we obtain∫ ∞
0

dX

[
ψ(X)− 1

π
√

2X

]
= 0. (38)

In order to find the equation satisfied by ψ it is useful
to write the difference between the general equation (25)
and the equation satisfied by Φ1, to find

Φs(x0) = C∞ − C1

+
κ

π

∫ 1

−1

dx

[
Φs(x)− Φ1(x)

κ

]
ln |x− x0|. (39)

This leads to

Φs(x0) = C∞ − C1

+
κ

π

∫ −1+`

−1

dx

[
ψ((1− |x|)κ)√

κ
− Φ1(x)

κ

]
ln |x− x0|

+
κ

π

∫ 1

1−`
dx

[
ψ((1− |x|)κ)√

κ
− Φ1(x)

κ

]
ln |x− x0|. (40)

For x0 = 1−X0/κ, if we set X = (1− |x|)κ, this yields

ψ(X0) = C1/2 +

∫ `κ

0

dX

π

[
ψ(X)− 1

π
√

2X

]
ln
|X −X0|

κ

+
1

π

∫ `κ

0

dX

[
ψ(X)− 1

π
√

2X

]
ln

∣∣∣∣2− X +X0

κ

∣∣∣∣ . (41)

Now, in the limit κ → ∞, noting that `κ → ∞ [by
definition of `, see Eq. (37)] and using the previously
found condition (38) we obtain

ψ(X0) = C1/2

+

∫ ∞
0

dX

[
ψ(X)− 1

π
√

2X

]
ln |X −X0|

π
. (42)

This is a Wiener-Hopf integral equation for the unknown
function ψ(X). We solve it in the next section.

3. Solution of the Wiener-Hopf equation (42)

We solve the Wiener-Hopf integral equation with Car-
leman’s method, as described in Ref. [45]. We note that
a similar equation has appeared in viscous flow theory
[46–48] but the differences between our equations and
the equation studied in these references justify the fact
to solve it here in detail. First, let us introduce the follow-
ing notations. We denote f+(X) all functions (depending
on the real variable X) that vanish for all X < 0, and
f−(X) all functions that vanish for X > 0. For any func-
tion f(X) one can write f(X) = f+(X) + f−(X), with
f+(X) = f(X)θ(X) and f−(X) = f(X)θ(−X), where θ
is the Heaviside step function. We introduce the complex
Fourier transform and its inverse:

f̂(z) =

∫ ∞
−∞

dXf(X)e−izX , (43)

f(X) =
1

2π

∫ ∞
−∞

duf̂(u)e+iuX (44)

where z represents a complex number and u a real num-

ber. We denote f̂+(z) the Fourier transform of the func-

tion f+(X), and f̂−(z) the Fourier transform of f−(z).

Typically, Fourier transforms of the form f̂+(z) are de-
fined in the lower complex half-plane Im(z) ≤ 0, Fourier

transforms of the form f̂−(z) are defined in the upper
complex half-plane Im(z) ≥ 0 (as long as f±(x) does not
diverge exponentially at x → ±∞). Now, we can define
ψ+(X) ≡ ψ(X)θ(X), and we introduce

K(X) =
1

π
ln |X|, χ+(X) =

1

π
√

2X
θ(X). (45)

The integral equation (42) can be generalized for negative
X0 by writing

ψ+(X0) =∫ ∞
0

dX [ψ+(X)− χ+(X)]K(X −X0) + y−(X0), (46)

where the only remarkable property of y−(X0) is that
it vanishes for positive X0. Note that we have assumed
that C1/2 = 0, this will be justified at the end of the
calculation by the fact that the obtained solution satisfies
the normalization condition (38) for this value of C1/2.
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Taking the Fourier transform of the above equation, we
obtain

ψ̂+(u) = [ψ̂+(u)− χ̂+(u)]K̂(u) + ŷ−(u). (47)

Calculating the Fourier transforms leads to

ψ̂+(u)

(
1 +

1

|u|

)
= −1− i sign(u)

2
√
π|u|3/2

+ ŷ−(u), (48)

where sign(u) = θ(u) − θ(−u) is the sign function. This
equation can be considerably simplified by introducing
an auxilliary function S−(X) defined by

S−(X) = θ(−X)

√
2 |X|
π

, Ŝ−(u) =
1− i sign(u)

2
√
π |u|3/2

, (49)

so that the Wiener-Hopf equation can be written as

ψ̂+(u)

(
1 +

1

|u|

)
= −Ŝ−(u) + ŷ−(u) = f̂−(u), (50)

where f̂−(u) is the Fourier transform of another unknown
function f−(X), whose only remarkable property is to
vanish for positive X. This kind of equations is known
as a homogeneous Wiener-Hopf equation, the method to
solve it consists in obtaining a factorization of the form

ψ̂+(u)ĝ+(u) = ĝ−(u). To this end, we write the Wiener-
Hopf equation under the form

ψ̂+(u)eŴ (u) = f̂−(u), (51)

with

Ŵ (u) = ln[1 + 1/|u|], (52)

and we seek a factorization Ŵ (u) = Ŵ+(u) + Ŵ−(u).
This can be done by calculating its inverse Fourier trans-
form:

W (X) =
cos(X)[2 Si(|X|)− π] + π

2π |X|
− Ci(|X|) sin(X)

πX
(53)

where Ci and Si are the integral cosine and integral sine
functions

Ci(X) = −
∫ ∞
X

dt
cos(t)

t
, Si(X) =

∫ X

0

dt
sin(t)

t
. (54)

A factorization may thus be obtained by setting W (x) =
W+(x) + W−(x), i.e W+(x) = W (x)θ(x) and W−(x) =
W (x)θ(−x). Now, we write the equation (51) as

ψ̂+(u)eŴ+(u) = f̂−(u)e−Ŵ−(u). (55)

We are now in the favorable case: the terms on left-hand-
side are analytic functions in the upper complex plane,
those on the right are analytic in the lower complex plane
except for one pole at z = 0, and these terms are equal on

the real axis. According to the theorem of analytic con-
tinuation, combined with the Cauchy theorem, we con-
clude that both terms are equal to a constant plus a 1/z
term on the whole complex plane [45]. We thus have

ψ̂+(u)eŴ+(u) = a0 +
a1

u
, (56)

where the constants a0, a1 will be found by requiring
that ψ(X) is a solution to our problem. Since Ŵ+(z)
is defined on the lower complex plane, we may con-
sider the above equations on the lower imaginary axis
u = −is, in which case the above equality can be written
in terms of Laplace transforms, with the usual notation

f̃+(s) =
∫∞

0
dte−stf+(t) = f̂+(−is):

ψ̃+(s) =

(
a0 +

i a1

s

)
e−W̃

+(s). (57)

The Laplace transform W̃+(s) can be identified by cal-
culating its derivative, i.e. the Laplace transform of
−xW (x), and then by integrating over s; this leads to

W̃+(s) =
1

4
ln

1 + s2

s2
+m(s), (58)

with

m(s) = −
∫ s

0

dw lnw

π(1 + w2)
. (59)

We know that the behavior of ψ for large arguments is
given by the matching condition Eq. (34), which trans-
lates to the small-s behavior:

ψ̃+(s) ∼
s→0

1√
2πs

. (60)

Inserting Eq. (58) into (57) and taking the small-s limit,
we see that the above behavior is obtained for ia1 =
1/
√

2π. Next, the value of a0 is found by requiring that

ψ(0) is finite, so that ψ̃(s) vanishes in the limit s → ∞;
this leads to a0 = 0. Hence, the final expression for the
function ψ is given in the Laplace domain by

ψ̃+(s) =
1√

2πs(1 + s2)1/4
e−m(s). (61)

Finally, we must check that the normalization condi-
tion (38) holds, this is readily done by noting that

ψ̃(s) − 1/
√

2πs = O(
√
s ln s) vanishes for small s. This

justifies our hypothesis C1/2 = 0. Unfortunately, the
Laplace inversion cannot be performed so that we know
only ψ(X) in closed form, however we can easily derive
the asymptotic behavior of ψ(X) for small and large ar-

guments. The study of the asymptotic behavior of ψ̃(s)
for large s leads readily to the initial value of ψ(X):

ψ(0) = lim
s→∞

sψ̃(s) =
1√
2π
, (62)
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this justifies the previously announced result (1). The
large X behavior can be computed by noting that the
Laplace transform of Xψ(X) is dψ̃/ds and by expanding
this one for small s, with the result:

ψ(X) '
X→∞

1√
2Xπ

+
ln(4X) + γe − 1

π2(2X)3/2
+ ... (63)

with γe the Euler-Mascheroni constant. A formula for
ψ(X) can be obtained by considering the inverse Laplace

transform of ψ̃(s) with the Mellin’s inverse formula, by
using a contour that follows the negative real axis (above
and below), such Laplace inversion is obtained in Ap-
pendix 4 of Ref. [48]:

ψ(X) =
1

π

∫ ∞
0

dp
e−pX+m(p)

√
2πp(1 + p2)3/4

. (64)

In summary, here we have obtained an analytic expres-
sion in Laplace space for the scaling function ψ(X) which
characterizes the behavior of the mean first passage time
near the extremities of the reactive patch in two dimen-
sions. The validity of our approach is checked on Figure 3
by comparing with exact numerical results obtained from
the general form of the solution.

FIG. 3. Behavior of the mean first reaction time near the
extremities of the reactive patch. Symbols: exact general so-
lution obtained numerically in Appendix A in 2D (upper sym-
bols) and 3D (lower symbols). We also represent the values
of ψ and ψ3d obtained from Eqs. (64) and (78).

4. Next-to-leading order expansion

Up to now, the constant C∞, which characterizes the
behavior of the mean reaction time when the initial posi-
tion is far from the target, has been obtained at leading
order only in the large reactivity limit, with the same re-
sult as in the case of a perfectly reactive patch. Here we
show how to obtain the first non-trivial correction for C∞

for large reactivity, with the result that C∞(κ) is not an-
alytic in κ. First, we note that when 1/κ� 1− |x| � 1,
Eqs. (63) and (35) indicate that

Φs(x) ' 1

κπ
√

2(1− |x|)
+

ln[4(1− |x|)κ] + γe − 1

κ2π2[2(1− |x|)]3/2
+ ...

(65)

This suggests that, outside the boundary layer, the next-
to-leading order behavior of Φs reads:

Φs(x) =
Φ1

κ
+

Φ∗2 lnκ+ Φ2

κ2
+ ..., (66)

because this expression can be matched with (65) by im-
posing that

Φ∗2(x) ' 1

π2[2(1− |x|)]3/2
, (x→ ±1), (67)

Φ2(x) ' ln[4(1− |x|)] + γe − 1

π2[2(1− |x|)]3/2
, (x→ ±1). (68)

These expansions also lead us to assume that, for large
reactivity the constant C∞ behaves as

C∞ = C1 +
C2 + C∗2 lnκ

κ
+ ... (κ→∞) (69)

The equation for Φ2 and Φ∗2 can be identified as fol-
lows. We consider again the intermediate length scale `
satisfying (37), and we start from the integral equation
(39), which we write as∫ 1−`

−1+`

dx

[
Φ∗2(x) lnκ+ Φ2(x)

κ

]
ln |x− x0| =

− πC2 + C∗2 lnκ

κ
+
πφ1(x0)

κ
+B(x0) +B(−x0), (70)

where B contains all the terms which appear due to the
fact that the integral over Φ2 in the above equation is
evaluated over a truncated interval ]−1+`; 1+`[ instead
of ]− 1; 1[, so that

B =

∫ `κ

0

dX√
κ

(
1

π
√

2X
− ψ(X)

)
ln

(
1− x0 −

X

κ

)
.

(71)

To proceed further, we consider (70) as an integral
equation for Φ2 + lnκΦ∗2 over the truncated interval
] − 1 + `; 1 + `[. Its solution is analytically known and
we identify the constants C2 and C∗2 by requiring that
the normalisation condition is satisfied at this order of κ.
This procedure requires to evaluate B in the limit `→ 0
without assuming that ` � 1 − |x0|, and it turns out
to be relatively tedious. The calculation is described in
Appendix C 1, and leads to the explicit results

C∗2 =
1

π2
, C2 =

1 + γe + ln 8

π2
. (72)

These values of C2 and C∗2 are in excellent agreement
with the exact solution for Φs obtained numerically, as
shown in Fig. 4(a).
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FIG. 4. Comparison of the values of C∞ obtained numerically
(symbols, see Appendix A for details), with the analytical
predictions in Eqs. (72) and (81) (black lines), for the two-
dimensional (a) and three-dimensional (b) domains.

C. 3D case

We now adapt the approach to the 3D case. It turns
out that the solution admits the same scaling behaviors
than in 2D:

Φs(r) =

{
Φ1(r)
κ +

Φ∗
2(r) lnκ+Φ2(r)

κ2 (1− r)� 1/κ,
1√
κ
ψ3d((1− r)κ) (1− r)� 1,

(73)

where the first line is the expansion of Φs(r) in powers
of κ at fixed r, and the second line the expansion of Φ in
powers of κ at fixed X = (1 − r)

√
κ. At leading order,

the integral equation for Φ1 reads

0 = C1 −
∫ 1

0

dr
2r

π(r + r0)
K

(
2
√
rr0

r + r0

)
Φ1(r), (74)

2π

∫ 1

0

dr r Φ1(r) = 1. (75)

The solution of the above integral equation (where
r Φ1(r) is considered to be the unknown function) is
known [45] and this leads to the solution

Φ1(r) =
1

2π
√

1− r2
, C1 =

1

4
. (76)

We thus note that

Φ1(r → 1) ∼ 1

2π
√

2(1− r)
. (77)

In the boundary layer near r = 1, we set r = 1 − X/κ,
r0 = 1 − X0/κ, and Φs(r) = 1/

√
κψ(X). With these

scalings we can expand the integral equation (27) with
the result that ψ3d satisfies exactly the same equation
than in 2D, the only difference is that it has to match with
ψ3d(X) ∼ 1/(2π

√
2X) for large X [due to Eq. (77)] and

there is thus a factor of 2 that arises when we compare
to the 2D case:

ψ3d(X) =
1

2
ψ(X). (78)

This relation is checked on Fig. 3. Let us now identify the
next order terms in 3D. Inserting the ansatz (73) into the
integral equation (27) and expanding at second order, we
obtain∫ 1−`

0

dr r

r + r0
K

(
2
√
rr0

r + r0

)
[Φ2(r) + Φ∗2(r) lnκ] =

−πΦ1

2
+
π

2
[C∗2 lnκ+ C2] +B (79)

where the term B compensates the fact that the above
integrals are evaluated over the truncated interval [0; 1−
`[, so that:

B(r0, `) = −
√
κ

∫ 1

1−`

dr r

r + r0
K

(
2
√
rr0

r + r0

)
×

[
ψ3d((1− r)κ)− 1

2π
√

2(1− r)κ

]
. (80)

As in the 2D situation, we consider (79) as an integral
equation for which the solution is analytically known;
and we then chose C2 and C∗2 so that the normalisation
condition for Φs holds at all orders of κ. The final result
is

C∗2 =
1

4π
, C2 =

γe + 1 + ln(2)

4π
, (81)

and it agrees perfectly with numerical solutions, as shown
in Fig. 4(b).

IV. THE LIMIT OF SMALL REACTIVITY

Let us now consider the limit κ → 0. At leading or-
der, the mean reaction time is homogeneous. We seek a
solution under the form

Φs(x) =
1

κ

∑
n≥0

fn(x)κn, C∞ =
1

κ

∑
n≥0

cnκ
n. (82)

At leading order, we obtain

f0 = c0 = 1/|Sr|. (83)

where Sr is the length (in 2D) or the area (in 3D) of the
reactive patch. Furthermore, next-orders can be found
iteratively by using

fn(r) = cn −
1

D

∫
Sr

dS(r′)fn−1(r′)GN (r|r′) (84)

with the condition for n ≥ 1:∫
Sr

dSfn = 0. (85)

For d = 2, the explicit computations can be done for
the first orders, and we find

c0 = 1/2; c1 =
3− ln 4

2π
, c2 =

2

9
− 7

3π2
. (86)
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In the 3D situation, the leading order is simply

f0 = c0 = 1/π; (87)

and the recurrence relation is

fn(x) = cn −
2

π

∫ 1

0

dyfn−1(y)
y

x+ y
K

(
2
√
xy

x+ y

)
. (88)

Unfortunately, it seems very difficult to calculate these
integrals, and even at first order the coefficient c1 can be
calculated only numerically:

c1 =
4

π2

∫ 1

0

dx

∫ 1

0

dy′
xy

x+ y
K

(
2
√
xy

x+ y

)
' 0.27. (89)

V. COMPARISON WITH THE CONSTANT
FLUX APPROXIMATION

The constant flux approximation (CFA) [20] has been
used in many recent studies [37, 39, 40] on imperfect re-
activity in confinement, and here we consider how this
approximation compares to the exact results in our for-
malism. First, we need to adapt this approximation to
our situation of large volume limit. In the CFA, one re-
places the Robin condition (14) by inhomogeneous Neu-
mann conditions:

D∂zΦ =

{
0 (z = 0, r > a)

−Q (z = 0, r < a)
, (90)

where the flux Q is assumed to be constant on the reac-
tive patch and will be determined self-consistently with
a closure relation. A natural choice of closure relation is
to impose that Robin condition is satisfied on average,
hence

Q = κ

∫
Sr

dS Φs, (91)

but we also have the normalization condition (13), so
that

Q = 1. (92)

Now, inserting (90) into (23) leads directly to a solution
for Φ within CFA:

Φ(r0) = C∞ +
Q

D

∫
Sr

dS(rs)GN (rs|r0). (93)

Integrating over S and using (92) and (91), we obtain the
CFA value of C∞:

Ccfa
∞ =

1

κSr

(
1− κ

D

∫
Sr

dS(r)

∫
Sr

dS(r0)GN (r|r0)

)
(94)

Comparing with the results of Sec. IV, we see that in
the CFA, C∞ is exactly the same as the next-to-leading
order expansion of C∞ in the limit of low reactivity, i.e.,

Ccfa
∞ =

c0
κ

+ c1 (95)

It may be therefore surprising that CFA works for C∞
even for rather large values of the reactivity (Fig. 5), but
this comes from the fact that the value of c1 turns out to
be extremely close to the exact value of C∞(κ =∞) (the
difference is of the order of a few percents). This might
be the reason why the CFA approach can be implemented
to yield accurate results in other contexts. However, the
value of the mean first passage time near the extremity of
the reactive patch is not well captured by this approxima-
tion, since it is obvious in Eq. (93) that it does not scale
as 1/

√
κ for large κ, contrary to what we have found.
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FIG. 5. Values of C∞ in 2D (a) and 3D (b), as found from
the exact numerical solution compared to the exact large and
small reactivity asymptotics. Note that the constant flux ap-
proximation (CFA) is exactly equivalent to the first order ex-
pansion in the limit of low reactivity. Here we use the units
so that D = 1, a = 1.

VI. CONCLUSION

In this paper we have considered the imperfect nar-
row escape problem for diffusive particles in confinement.
We have established a general formalism which provides
the mean reaction time in the large volume limit for any
value of the reactivity parameter. We have obtained ex-
plicit results in d = 2 and d = 3 in the respective limits
of low and large reactivity parameter. Our most surpris-
ing result is the scaling of the mean reaction time when
the initial position is at the extremity of the imperfect
patch; this mean return time scales as κ−1/2 and is thus
much larger than the naively expected scaling 1/κ. In-
terestingly, we have shown that this anomalous scaling
is closely related to the divergence of the electric field
near corners and edges of conducting objects [41], which
is also responsible for the existence of coffee rings [42] or
the crispiness of the extremities of cooked potatoes [49].
We have explicitly identified the prefactor of this scaling
law by solving a Wiener-Hopf equation. We have also
identified a non-analytic behavior for the capacitances of
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the imperfect patches as a function of the reactivity. We
note that we have restricted ourselves to the case of cir-
cular patches, but we believe that for the more general
patches with a smooth boundary the asymptotic scaling
laws should remain unchanged. Finally, we have made
a link between the results obtained within the Constant
Flux Approximation (CFA) and the low reactivity limit.
It turns out that the CFA gives very accurate predic-
tions of the mean reaction time when the initial position
is far from the target, but fails to predict the correct
behavior of the mean return times; when the initial po-
sition is on the reactive patch. In the future, one could
adapt our formalism to multiple targets, for example to
generalize the classical calculation [12] of the absorption
time by a sphere covered by reactive patches to imper-
fect patches. Our results provide a general framework to
quantify the mean reaction times for the imperfect nar-
row escape problem.
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Appendix A: Exact general form of the solution Φ(r)

1. Imperfect narrow escape problem in 2D

Here we describe a way to obtain the general solution
of the problem formed by Eqs. (12)-(14). It consists in
writing the equations in a set of orthogonal coordinates
and using the standard method of separation of variables.
We first describe this approach in the 2D case, for which
we use the elliptic coordinates µ, ν defined as

x = a ch(µ) cos(ν), y = a sh(µ) sin(ν). (A1)

We calculate the scale factors hi = |∂ir| with i ∈ {µ, ν}:

hµ = hν = a

√
ch2(µ)− cos2 ν. (A2)

The Laplace equation satisfied by Φ and the reflecting
boundary conditions outside the reactive patch are writ-
ten in this coordinate system as

∂2
νΦ + ∂2

µΦ = 0, ∂νΦ|ν=0 = ∂νΦ|ν=π/2 = 0. (A3)

The general solution for these equations can be written
by using the method of separation of variables, which
leads to

Φ = Bµ+

∞∑
n=0

φn e
−2nµ cos(2nν). (A4)

Furthermore, the normalization condition (13) can also
be written D

∫
dS∂nΦ = 1 for any surface surrounding

the target. Far from the target, this means that ∂rΦ =
1/(πrD). Noting that µ ' ln(2r/a) for large r, we thus
find

B = 1/(πD). (A5)

We also note that the quantity C∞ is given, in this mode
decomposition, by

C∞ =
ln 2

πD
+ Φ0. (A6)

Finally, the Robin condition at the target surface reads

D∂nΦ + κΦ =

(
−D
hµ
∂µΦ + κΦ

)
µ=0

= 0, (A7)

so that

D∂µΦ|µ=0 = κ a sin ν Φ|µ=0. (A8)

Using this condition and the form of the general solution
(A4), we find that the coefficients φn are solution of the
infinite linear system

πmφm +
κa

D

∞∑
n=0

Amnφn = δm,0, (A9)

which is satisfied for all positive integers m, with

Anm =

∫ π

0

dν sin ν cos(2mν) cos(2nν)

=
2[1− 4(m2 + n2)]

16(m4 + n4) + 1− 8(m2 + n2)− 32m2n2
. (A10)

In practice, this linear system (A9) can be solved nu-
merically by taking into account only a finite number of
modes N , and checking that the obtained quantities do
not depend on N for large N . Note also that C∞ can be
directly calculated by using Eq. (A6).

2. 3D case

This approach can be adapted to the 3D case, for which
we use orthogonal coordinates defined as

x = a
√

(1 + α2)(1− β2) cosϕ, (A11)

y = a
√

(1 + α2)(1− β2) sinϕ, (A12)

z = aαβ, (A13)

where ϕ is the azimuthal angle. Note that α > 0 and
β ∈ [0; 1] are related to the standard oblate spheroidal
coordinates (µ, ν, ϕ) by α = sinh(µ) and β = sin(ν).
Inversion formulas read

α =

√√√√( ra)2 − 1 +

√
1 +

(
r
a

)4
+ 2

(
r
a

)2
cos(2θ)

2
, (A14)

β =

√√√√1−
(
r
a

)2
+

√
1 +

(
r
a

)4
+ 2

(
r
a

)2
cos(2θ)

2
, (A15)
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with (r, θ, ϕ) the usual spherical coordinates. It is use-
ful to calculate the scale factors hi = |∂r/∂i|, with
i = {α, β, ϕ},

hα = a

(
α2 + β2

1 + α2

)1/2

, hβ = a

(
α2 + β2

1− β2

)1/2

,

hϕ = a
[
(1 + α2)(1− β2)

]1/2
. (A16)

For axisymmetric functions, the Laplacian reads in this
orthogonal coordinates

∇2Φ =
1

hαhβhϕ

(
∂

∂α

hβhϕ
hα

∂Φ

∂α
+

∂

∂β

hαhϕ
hβ

∂Φ

∂β
,

)
,

(A17)

so that Φ satisfies the equation

∂

∂α
(1 + α2)

∂Φ

∂α
+

∂

∂β
(1− β2)

∂Φ

∂β
= 0. (A18)

We impose Neumann conditions for β = 0 and β = 1,
at which ∂βΦ = 0. With these conditions, the general
solution can be found by the method of separation of
variables, which leads to

Φ(α, β) = Φ∞ +

∞∑
q=0

aq gq(α) P2q(β), (A19)

where P2q are even Legendre polynomials (satisfying
both Neumann conditions at β = 0 and β = 1), and

gq(α) =
1

i
Q2q(iα)− π

2
P2q(iα), (A20)

where i2 = −1 and Q2q are Legendre functions of the
second kind. Let us give here additional details on the
function gq. To see that gq is real it is useful to write Q2q

as [50]

Q2q(x) =
P2q(x)

2
ln

1 + x

1− x
−W2q−1(x), (A21)

where W is the polynomial

W2q−1(x) =

q∑
m=1

4q − (1 + 4(m− 1))

(2m− 1)(2q −m+ 1)
P2q−(2m−1)(x).

(A22)

For purely imaginary arguments x = iα, we have

Q2q(iα) = iP2q(iα) arctan(x)−W2q−1(iα), (A23)

and we thus see that

gq(α) = P2q(iα) arctan(α)− W2q−1(iα)

i
− π

2
P2q(iα).

(A24)

Using the parity of P and W , it becomes clear that gq is
real. Furthermore it can be checked that it decreases to
zero at infinity (and g0 ∼ 1/α for large α).

Now, the equation satisfied by the coefficients aq is
identified by using the Robin condition. In these co-
ordinates, the partially absorbing disk corresponds to
α = 0, and the Robin conditions can be deduced from
∂nΦ = −

(
h−1
α ∂αΦ

)
α=0

so that the boundary conditions
read

(D∂αΦ− aβκΦ)α=0 = 0. (A25)

Inserting the general solution (A19) into the above
boundary condition, multiplying by P2k(β) and integrat-
ing, we obtain the linear system:

∞∑
q=0

aqg
′
q(0)

∫ 1

0

dβP2q(β)P2k(β) = κΦ∞

∫ 1

0

dββP2k(β)

+ κ

∞∑
q=0

aqgq(0)

∫ 1

0

dββP2q(β)P2k(β), (A26)

for all positive integers k. Finally, we calculate the sur-
face element at α = 0, dSα = hϕhβdϕdβ so that the
normalization condition reads

2πκa2

∫ 1

0

Φ(0, β)βdβ = 1, (A27)

which leads to the equation

κa2πΦ∞ + 2πκa2
∞∑
q=0

aqgq(0)

∫ 1

0

dββP2q(β) = 1.

(A28)

A numerical solution for Φ∞ can thus be found by solving
the linear system (A26) for the coefficients aq (completed
by the above normalisation condition). Note also that
C∞ = Φ∞.

Appendix B: Identification of the integral equation
(27) in 3D

Here we briefly show how to obtain the integral equa-
tion (27). Using Eq. (20) for d = 3, we see that Eq. (24)
writes

Φ(r0) = C∞ −
κ

D

∫ a

0

drK(r, r0)Φ(r), (B1)

with

K(r, r0) =
1

2π

∫ 2π

0

r dθ√
r2 + r2

0 − 2rr0 cos θ
. (B2)
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The quantity K(r, r0) can be simplified as follows:

K(r, r0) =
1

π

∫ π

0

r dθ√
r2 + r2

0 − 2rr0 cos θ

=
2r

π

∫ π/2

0

du√
r2 + r2

0 − 2rr0 cos(2u)

=
2r

π

∫ π/2

0

du√
r2 + r2

0 − 2rr0[2 cos2 u− 1]

=
2r

π(r + r0)

∫ π/2

0

du√
1− 4rr0

(r+r0)2 cos2 u

=
2r

π(r + r0)
K

(
2
√
rr0

r + r0

)
, (B3)

where u = θ/2 and in the last line we have recognized the
definition of the elliptic function K. Inserting the above
result into Eq. (B1) finally leads to Eq. (27).

Appendix C: Calculation details for the
identification of C2 and C∗2

1. 2D situation

Here we describe the details of calculations leading to
the identification of the constants C2 and C∗2 in the 2D
situation. Let us first evaluate the term B in Eq. (71):

B ' − 1√
κ

∫ `κ

0

dX

(
ψ(X)− 1

π
√

2X

)
ln(1− x0)

−
∫ `κ

0

dX√
κ

(
ψ(X)− 1

π
√

2X

)
ln

1− x0 −X/κ
1− x0

. (C1)

Here we have only assumed that one can use the leading
order of the scaling form for the solution Φ for arguments
lower than `. Now, to evaluate the first line we use the
normalisation condition (38), and to evaluate the terms
on the second line, we change variable X = uκ`:

B ' 1√
κ

∫ ∞
`κ

dX

(
ψ(X)− 1

π
√

2X

)
ln(1− x0)

−
√
κ`

∫ 1

0

du

(
ψ(κu`)− 1

π
√

2κu`

)
ln

1− x0 − u`
1− x0

.

(C2)

Using Eq. (63), we can write B under the form

B ' f∗2 (x0) lnκ+ f2(x0)

κ
, (C3)

with

f∗2 (x0) =
ln(1− x0)√
`
√

2π2
−
∫ 1

0

du `

π2(2u`)
3
2

ln
1− x0 − u`

1− x0
,

(C4)

f2(x0) =
ln(4`) + γe + 1√

2`π2
ln(1− x0)

− `
∫ 1

0

du
ln(4u`) + γe − 1

π2(2u`)3/2
ln

1− x0 − u`
1− x0

. (C5)

Let us precise a few properties of f∗2 (similar properties
hold for f2). In the limit `→ 0 at fixed x0, we see that

f∗2 (x0) ∼
`→0

ln(1− x0)√
`
√

2π2
(C6)

Near the extremity of the patch, we set x0 = 1 − v` to
determine the behavior of f∗2 . In the limit `→ 0 at fixed
v = (1− x0)/`, we obtain

f∗2 (x0 = 1− v`) ∼
`→0

ln(v`)√
`
√

2π2
−
∫ 1

0

du `

π2(2u`)
3
2

ln
v − u
v

(C7)

Collecting the terms O(lnκ/κ) in the integral equation
(70) leads to∫ 1−`

−1+`

dx Φ∗2(x) ln |x− x0| = F ∗2 (x0), (C8)

F ∗2 (x0) = −πC∗2 + f∗2 (x0) + f∗2 (−x0). (C9)

We consider this equation as an integral equation over the
interval [−1+`; 1−`], for which the solution is analytically
known [45]:

Φ∗2(x) =
1

π2
√
b2 − x2

[∫ b

−b
dt

√
b2 − t2∂tF ∗2 (t)

t− x

+
1

ln[b/2]

∫ b

−b
dt

F ∗2 (t)√
b2 − t2

]
, (C10)

where we have set b = 1 − `. As a consequence, the
integral of Φ∗2 over the truncated interval ]− b; b[ reads

I∗2 (`) =

∫ b

−b
dx Φ∗2(x) =

1

π ln[b/2]

∫ b

−b

dx F ∗2 (x)√
b2 − x2

. (C11)

When ` → 0, the behavior of I∗2 (`) is obtained by in-
serting the small ` limit of f∗2 (x0) at fixed x0 given by
Eq. (C6) into Eq. (C9) and inserting the result into the
above equation, leading to

I∗2 (`) '
`→0

(−1)

π ln 2

∫ 1

−1

dt ln
(
1− t2

)
√

2π2
√
`
√

1− t2
=

√
2

π2
√
`
, (C12)

this result is consistent with the fact that the behavior
of Φ∗2 near x = ±1 is given by (67). Now, the fact that
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the normalisation condition (26) holds at all powers of κ
implies that

lim
`→0

[
I∗2 (`)−

√
2

π2
√
`

]
= 0. (C13)

We thus evaluate

∆I∗2 (`) = I∗2 (`)−
√

2

π2
√
`

' (−1)

π ln 2

∫ 1

−1

dt

[
F ∗2 (t)θ(b− |t|)√

b2 − t2
−

ln
(
1− t2

)
π2
√

2`(1− t2)

]
.

(C14)

The contributions of f∗2 (t) in this integral are negligible
except for x0 at the vicinity of 1. Thus, we set t =
1 − v` to evaluate the above integral, and the integral
can be evaluated by integrating v over [0,∞] (except for
the term C∗2 which is evaluated without this change of
variable). Using (C7) yields

∆I∗2 (`) ' (−1)

π ln 2

[∫ 1

−1

dt
−πC∗2√
1− t2

+
2

π2
√

2

∫ ∞
0

dv ln(2v`)

(
θ(v − 1)√
2(v − 1)

− 1√
2v

)

−
∫ ∞

1

dv

∫ 1

0

du
2

π2(2u)3/2
√

2(v − 1)
ln
v − u
v

.

]
(C15)

All the integrals appearing in the above equations can be
evaluated. Imposing ∆I∗2 (`) = 0 then leads to

C∗2 = 1/π2. (C16)

To identify C2 we proceed in the same way. The inte-
gral equation is∫ 1−`

−1+`

dx Φ2(x) ln |x− x0| = F2(x), (C17)

F2(x) = −πC2 + πφ1 + f2(x0) + f2(−x0), (C18)

so that

I2(`) =

∫ b

−b
dx Φ2(x) =

1

π ln(b/2)

∫ b

−b

dt F2(t)√
b2 − t2

. (C19)

As before we need to evaluate the behavior of F2(x, `) for
small `

F2(x) ∼
`→0

ln(4`) + γ + 1√
2`π2

ln(1− x2
0) =

F 0
2 (x)√
`
. (C20)

At leading order for small ` we obtain

I2(`) ∼
`→0

1

π ln(1/2)

∫ 1

−1

dt
F 0

2 (t)√
`
√

1− t2
=

I0
2√
`
. (C21)

The next-to-leading order is

I2 −
I0
2√
`
' (−1)

π ln 2

∫ 1

−1

dt

[
F2(t)θ(b− |t|)√

b2 − t2
− F 0

2 (t)√
`(1− t2)

]
(C22)

Again, we evaluate it by setting t = 1−v` and taking the
small ` limit of the obtained integrand at fixed v, leading
to

I2(`)− I0
2 (`) ' (−1)

π ln 2

{∫ b

−b
dx
−πC2 + Φ1(x)√

b2 − x2

+ 2

∫ ∞
0

dv
ln(4`) + γ + 1√

2π2
ln(2v`)

[
θ(v − 1)√
2(v − 1)

− 1√
2v

]

− 2

∫ ∞
1

dv

∫ ∞
0

du
ln(4u`) + γe − 1

π2(2u)3/2
√

2(v − 1)
ln
v − u
v

}
(C23)

To evaluate the term involving Φ1 we introduce a variable
ε so that `� ε� 1 and we calculate∫ b

−b
dx

Φ1(x)√
b2 − x2

=

∫ b

−b

dx

π
√

1− x2
√
b2 − x2

'
∫ 1−ε

−1+ε

dx

π(1− x2)
+

∫ ε/`

1

2` dv

2π
√
v(v − 1

' ln(8/`)

π
, (C24)

where the last equality follows from the evaluation of the
integrals with ` � ε � 1. Finally, evaluating all terms
in Eq. (C23) and requiring that the I2(`)− I0

2 (`)→ 0 for
small `, we obtain

C2 =
1 + γe + ln 8

π2
, (C25)

as announced in the main text.

2. Second-order calculation in the limit of large
reactivity in 3D

We evaluate the term B in Eq. (80) by writing

B(r0, `) '
√
κ
K
(

2
√
r0

1+r0

)
(1 + r0)

∫ ∞
`κ

dX

[
ψ(X)− 1

2π
√

2X

]
− `
∫ 1

0

du√
κ(1 + r0)

[
ψ(u`κ)− 1

2π
√

2u`κ

]
×

[
K

(
2
√

(1− u`)r0

1− u`+ r0

)
−K

(
2
√
r0

1 + r0

)]
. (C26)
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Hence

B(r0, `) =
K
(

2
√
r0

1+r0

)
(1 + r0)

1 + γe + ln(4`κ)

2
√

2`π2

− `
∫ 1

0

du
[−1 + γe + ln(4u`κ)]

2π2(2u`)3/2(1 + r0)

×

[
K

(
2
√

(1− u`)r0

1− u`+ r0

)
−K

(
2
√
r0

1 + r0

)]
. (C27)

Note that here, for conciseness we will treat lnκ as being
of order 1 in powers of κ, the result will be exactly the
same as in the case where one separates the lnκ terms
and the O(1) terms.

In the small ` limit at fixed r0 we obtain

B(r0, `) ∼
`→0

K
(

2
√
r0

1+r0

)
1 + r0

1 + γe + ln(4`κ)

2
√

2`π2
=
B0(r0)√

`
,

(C28)

whereas if we set r0 = 1− `v, in the limit `→ 0 at fixed
v we obtain

B(1− v`, `) ∼
`→0

1

8

1 + γe + ln(4`κ)√
2`π2

ln
82

(v`)2

−
∫ 1

0

du
[−1 + γe + ln(4`κu)]

4π2(2u)3/2
ln

v

v − u
, (C29)

where we have used K(1 − y) ' 1
2 ln(8/y) for small y.

Let us write the integral equation (79) under the form∫ 1−`

0

dr r Φ̃2(r)

r + r0
K

(
2
√
rr0

r + r0

)
=
π[C̃2 − Φ1]

2
+B

(C30)

with Φ̃2 = Φ2(r) + Φ∗2(r) lnκ, C̃2 = C∗2 lnκ+ C2. Let us
define

I2(r, `) =

∫ 1−`

0

dr r Φ̃2(r). (C31)

Using the analytically known solution [45] of the integral
equation (C30), we obtain

I2(`) =
4

π2

∫ 1−`

0

ds
s
(
π
2 (C2 − Φ1) +B(s, `)

)√
(1− `)2 − s2

. (C32)

When `→ 0 we obtain at leading order

I2(r, `) ∼
`→0

4

π2
√
`

∫ 1

0

ds
s√

1− s2
B0(s, `) (C33)

and this integral diverges for ` → 0, as it should due to
the known behavior for Φ̃2(r) when r approaches 1. At
next-to-leading order, we evaluate the terms involving B
by setting s = 1− v` and take the small ` limit at fixed
v, so that we can use Eq. (C29):

I2(`)− 4

π2
√
`

∫ 1

0

ds sB0

√
1− s2

' 4

π2

{∫ 1

0

ds s√
1− s2

π

2
C2

−
∫ ∞

1

dv

∫ 1

0

du
[−1 + γe + ln(4`κu)]

4π2(2u)3/2
√

2(v − 1)
ln

v

v − u

+

∫ ∞
0

dv
1 + γe + ln(4`κ)

4
√

2π2
ln

8

v`

(
θ(v − 1)√
2(v − 1)

− 1√
2v

)

+

∫ 1−`

0

ds
sπΦ1(s)

2
√

(1− `)2 − s2

}
. (C34)

To evaluate the term containing Φ1, defined in Eq. (76)
we can use again a trick where we use a variable ε with
`� ε� 1:

∫ 1−`

0

dr r Φ1(r)√
(1− `)2 − r2

=

∫ 1−ε

0

dr
rΦ1(r)√
1− r2

+

∫ ε/`

1

dv `

4π
√
v(v − 1

=
ln(2/`)

4π
. (C35)

Finally, all the integrals in (C34) can be evaluated, re-
quiring that it vanishes for small ` leads to

C̃2 =
γe + 1 + ln(2κ)

4π
, (C36)

which is exactly Eq. (81).

[1] S. Redner, A guide to First- Passage Processes (Cam-
bridge University Press, Cambridge, England, 2001).

[2] S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and
J. Klafter, Nature 450, 77 (2007).

[3] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603
(2017).

[4] D. S. Grebenkov, Phys. Rev. Lett. 117, 260201 (2016).

[5] O. Bénichou, D. Grebenkov, P. Levitz, C. Loverdo, and
R. Voituriez, Phys. Rev. Lett. 105, 150606 (2010).

[6] G. Vaccario, C. Antoine, and J. Talbot, Phys. Rev. Lett.
115, 240601 (2015).

[7] R. Metzler, S. Redner, and G. Oshanin, First-passage
phenomena and their applications (World Scientific,
2014).



16

[8] Z. Schuss, A. Singer, and D. Holcman, Proc. Natl. Acad.
Sci. U. S. A. 104, 16098 (2007).

[9] J. Newby and J. Allard, Phys. Rev. Lett. 116, 128101
(2016).

[10] S. Rice, Diffusion-Limited Reactions (Elsevier, 1985).
[11] O. G. Berg and P. H. von Hippel, Annu. Rev. Biophys.

Biophys. Chem. 14, 131 (1985).
[12] H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).
[13] D. Shoup and A. Szabo, Biophys. J. 40, 33 (1982).
[14] H.-X. Zhou and R. Zwanzig, J. Chem. Phys. 94, 6147

(1991).
[15] J. Reingruber and D. Holcman, Phys. Rev. Lett. 103,

148102 (2009).
[16] O. Bénichou, M. Moreau, and G. Oshanin, Phys. Rev. E

61, 3388 (2000).
[17] D. S. Grebenkov, Chemical Kinetics: Beyond the Text-

book pp. 191–219 (2019).
[18] F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425

(1949).
[19] S. D. Traytak and W. S. Price, J. Chem. Phys. 127,

184508 (2007).
[20] D. Shoup, G. Lipari, and A. Szabo, Biophys. J. 36, 697

(1981).
[21] A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys.

72, 4350 (1980).
[22] S. A. Isaacson, A. J. Mauro, and J. Newby, Phys. Rev.

E 94, 042414 (2016).
[23] S. A. Isaacson and J. Newby, Phys. Rev. E 88, 012820

(2013).
[24] A. E. Lindsay, A. J. Bernoff, and M. J. Ward, Multiscale

Model. & Simul. 15, 74 (2017).
[25] D. S. Grebenkov, J. Stat. Mech. 2022, 083205 (2022).
[26] D. S. Grebenkov and A. T. Skvortsov, Phys. Rev. E 105,

054107 (2022).
[27] A. Chaigneau and D. S. Grebenkov, Phys. Rev. E 105,

054146 (2022).
[28] D. S. Grebenkov, R. Metzler, and G. Oshanin, Commun.

Chem. 1, 96 (2018).
[29] P. C. Bressloff, Phys. Rev. E 105, 034141 (2022).

[30] A. Lindsay, T. Kolokolnikov, and J. Tzou, Phys. Rev. E
91, 032111 (2015).
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