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ON THE MOSER-TRUDINGER INEQUALITY FOR SURFACES

SAMUEL BRONSTEIN

Abstract. This paper is devoted to the Moser-Trudinger inequality on smooth riemannian
surfaces. We establish that the constants involved can be chosen to depend on only 3
parameters, which are the systole, isoperimetric constant and curvature of the surface. We
have two analogous statements, considering respectively infinite-volume surfaces and closed
surfaces. As an application, we show that there are sequences of coverings of a hyperbolic
closed surface which admit a uniform Moser-Trudinger inequality.
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1. Introduction

In this paper we consider (Σ, σ) a Riemannian surface, and we look at the famous Sobolev
embeddings W 1,2(Σ) →֒ Lp(Σ) for any p ≥ 2.

When Σ is of infinite volume, we prove the following version of the celebrated Moser-
Trudinger inequality:

Theorem 1.1. Let (Σ, σ) be an infinite volume complete surface. Assume that the curvature
of Σ is upper bounded by K. Assume that the systole δ and the Cheeger isoperimetric constant
h are both nonzero. Then there is a constant C depending only on (δ, h,K) such that, for
any u ∈ W 1,2(Σ):

(1.1)

∫

Σ

|∇u|2dσ ≤ 1 ⇒
∫

Σ

exp
(

4πu2
)

− 1dσ ≤ C(δ, h,K)

We refer to section 2 for precise definitions of systole and isoperimetric constant for non-
compact surfaces.

For compact surfaces, this statement cannot be true because of the existence of nonzero
harmonic maps. The standard way to deal with this problem is to add the assumption that
our maps have zero average, restricting effectively to the orthogonal of harmonic maps in
W 1,2.

In this setting, we prove the following inequality:

Date: 2023.
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2 SAMUEL BRONSTEIN

Theorem 1.2. Let a > 0 and K ∈ R. There is a constant C(a, δ, h,K) such that, for any
closed surface (Σ, σ) with systole δ, Cheeger constant h, curvature upper bounded by K and
volume bigger than a, for any u ∈ W 1,2(Σ) satisfying:

(1.2)

∫

Σ

udσ = 0,

∫

Σ

|∇u|2dσ ≤ 1

Then:

(1.3)

∫

Σ

exp(4πu2)− 1 dσ ≤ C(a, δ, h,K)

When the considered surface is the sphere S2 with its round metric, our theorem is exactly
the Moser-Trudinger inequality, first proved by Trudinger [Tru67] and then generalized by
Moser to the higher-dimensional spheres [Mos71].

When considering the hyperbolic plane H
2 which satisfies the condition of the abovemen-

tioned theorem, we get back a result of Mancini and Sandeep [MS10].
The constant 4π is the biggest one for which the statement is true, statement proven by

Li [Li01] for any compact Riemannian surface.
We insist that the main novelty is the dependency of the constant C involved in the

parameters, and particularly that it is roughly independent of the volume of the surface.
There are other ways to prove the Trudinger-Moser inequality for compact surfaces, by a
concentration argument, as Li did [Li01]. We would expect other more recent methods to
work to, for instance the fractional Sobolev inequalities have recently been used to prove an
analogous inequality in the case of the n-dimensional sphere , see Xiong [Xio18].

The same kind of dependency is also true for the constants involved in the Sobolev embed-
dings, see Ilias’s work [Ili83]. See also Faget [Fag06], for a generalization of the exponential
decay of Sobolev’s constants in higher dimensional manifolds.

This reinforces the feeling that Moser-Trudinger is a nice way of understanding the as-
ymptotic behavior of the embeddings W 1,2(Σ) →֒ Lp(Σ).

Generally, we have no idea of the sharp constant C involved in the theorem. This question
was asked in a paper of Dolbeault-Esteban–Jankowiak [DEJ14]. Our paper gives a partial
answer as it claims that the constant won’t explode if we control the right parameters, but
we think the exhibition of the sharp constant should involve more complicated techniques.

Our proof mainly relies on a symmetrisation argument, which naturally involves the
isoperimetric inequality. That’s why we preferred to write the dependency in terms of the
isoperimetric constant rather than the spectral gap, even if they are closely linked by the
Cheeger and Buser inequalities [Che70, Bus82].

Trudinger-Moser inequality has had tremendous consequences regarding the prescribed
curvature problem on S

2. Famously, Moser used it to solve the problem of prescribed
curvature on the projective plane [Mos73]. Mancini–Sandeep [MS10] use their version of
Moser-Trudinger for the prescribed curvature problemn on subsets of R2.

Our focus here is rather on hyperbolic surfaces of high genus. A corollary of our theorem
is the possibility of taking high degree covers of a fixed hyperbolic surface keeping a uniform
sobolev embedding

Corollary 1.3. Let Σ be a closed hyperbolic surface. There are sequence (Σn) of Riemannian
covers of Σ of degree n and C(Σ) > 0 such that, for any n ≥ 1, u ∈ W 1,2(Σn) satisfying

(1.4)

∫

Σn

u = 0,

∫

Σn

|∇u|2 ≤ 1
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then

(1.5)

∫

Σn

e4πu
2 − 1 ≤ C(Σ)

Indeed, thanks to Magee–Naud–Puder [MNP22] we know that for any ε > 0, with prob-
ability going to one when the index of the covering increases, a random cover of X has
relative spectral gap bigger than 3

16
− ε. This means that there are sequences of coverings

of a closed surface with spectral gap uniformly lower bounded, hence for such a sequence
(Xn) the Cheeger constant is lower bounded. The systole and volume are bigger than the
systole and volume of X , and the curvature is −1, hence the constant in Moser-Trudinger is
uniform.

The author is very thankful to Nicolas Tholozan and Paul Laurain for their time and
discussion on these topics.

2. Notations and isoperimetric comparison

Throughout this section (Σ, σ) will be a Riemannian surface. Recall the definitions of
systole and Cheeger constant:

Definition 2.1 (Systole). The systole of (Σ, σ) is the length of the shortest noncontractible
closed curve in Σ.

Definition 2.2 (Cheeger constant). Denote l the length measure associated to σ. The
Cheeger constant of (Σ, σ) is:

(2.1) h := inf
A⊂Σ, 2Vol(A)<Vol(M)

l(∂A)

Vol(A)

If Vol(Σ) = ∞, we require A to be compact.

The Cheeger constant is heavily linked with the spectral gap of the surface.

Definition 2.3. For a closed surface, the spectral gap Λ of (Σ, σ) is the smallest nonzero
eigenvalue of −∆.

It is a standard fact that the spectrum of the Laplacian on a compact surface is discrete,
hence the spectral gap of a closed surface is always strictly positive. Remark that there is a
way to generalize the spectral gap for asymptotically negatively curved surfaces, using the
resolvent of the laplacian. See for instance Borthwick [Bor07] for the spectral gap of infinite
area hyperbolic surfaces. On the hyperbolic plane, the spectral gap will be 1

4
, which is a

reformulation of Hardy’s inequality. The spectral gap and Cheeger’s isoperimetric constant
are closely linkedn thanks to two relations. Recall the first one, proved by Cheeger in [Che70]:

Theorem 2.4 (Cheeger). Let Σ be a complete surface. Denote h and Λ its Cheeger constant
and spectral gap. Then

(2.2) 4Λ ≥ h2 .

Remark that Cheeger states it for closed surfaces, but it has since been extended for
complete noncompact surfaces, see [BPP+93]. Buser [Bus82] , theorem 7.1., showed that for
surfaces with curvature bounded below, a converse holds:
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Theorem 2.5 (Buser). There is a universal constant C, such that: Let (Σ, σ) be a complete
Riemannian surface with curvature bounded below by −δ2, δ ≥ 0. Denote h and Λ its Cheeger
constant and spectral gap. Then

(2.3) Λ ≤ C(δh + h2)

We will need a stronger insight on the isoperimetric behavior of a surface, hence we
introduce the isoperimetric profile, as considered by Grimaldi–Nardulli–Pansu [GNP09]:

Definition 2.6 (Isoperimetric profile). Let (Σ, σ) be a Riemannian surface. The isoperi-
metric profile is the following map:

(2.4) ∀t > 0, ϕ(t) = inf
A⊂Σ,Vol(A)=t

l(∂A)

Remark that this notation differs from the isoperimetric profile for revolution manifolds
considered by Gallot in [Gal88], but it is easy to go from one definition to another.

Lemma 2.7. Let Σ be a complete surface with nonzero systole δ and curvature bounded
above by K. Denote ϕ its isoperimetric profile. Denote V0 the following:

(2.5) V0 =
δ2

2π +
√
4π2 −Kδ2

Consider t0 = min{V0,
Vol(Σ)

2
} if K ≤ 0 and t0 = min{V0,

Vol(Σ)
2

, 4π
1+K

} if K > 0 Then for
t ≤ t0, we have:

(2.6) ϕ(t) ≥
√

t(4π −Kt)

Proof. Assume first V0 ≤ Vol(Σ)
2

Let A ⊂ Σ be a domain of area t ≤ V0. V0 was chosen so
that:

(2.7)
√

V0(4π −KV0) ≤ δ

Hence the wanted inequality is obviously verified if l(∂A) ≥ δ.
Otherwise, if l(∂A) ≤ δ, because of completeness one can assume that A is a disjoint union

of disks. But for a disk, as the curvature is lower than K, the length of its boundary is bigger
than the length of a disk of same area in constant curvature K model space. Hence, we get
the inequality desired.

�

We will compare the isoperimetric profile of a surface with the behavior of a radial metric
on the disk.

Lemma 2.8. Consider ε > 0, h > 0 and K ∈ R. Let g be defined as the following map:

(2.8) ∀t > 0, g(t) :=







√

t(4π −Kt) if t ≤ ε

g(ε) if ε < t ≤ g(ε)
h

h · t if t >
g(ε)
h

Then there exists a C1 map f : R+ → R+ such that the disk endowed with radial metric
dr2 + f ′(r)2dθ2 satisfies:

(1) The perimeter of a centered disk of radius A is g(A)
(2) there is a constant C(g) > 0 such that the metric gD = dr2 + f ′(r)2dθ2 is uniformly

conformal to a disk with constant negative curvature.
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Figure 2.1. graph of g for (K, h, ε) = (−1, 1.6, 0.2)

Proof. The assumption (1) is verified if and only if f satisfies the functional equation:

(2.9) 2πf ′(r) = g(2πf(r)) ∀r > 0

This equation can be explicitly solved on (0, ε) with:

(2.10) f(r) =











−2
K

sinh(
√
−Kr
2

) if K < 0
r2

2
if K = 0

2
K
sin(

√
Kr
2

) if K > 0

On (ε,∞) there is a nondecreasing solution on R, which has at least linear growth, as g is
lower bounded. The solution is defined on all of R because g is sublinear. Actually, we have
the following explicit description of f :

∀ε < t ≤ g(ε)

h
, f(t) = f(ε) + (t− ε)

g(ε)

2π
(2.11)

∀t > g(ε)

h
, f(t) = f(

g(ε)

h
) exp

(

h(t− g(ε)

h
)
)

(2.12)

As for t > g(ε)
h
, we have:

(2.13)
f ′(t)

sinh(ht)
= 2hf(

g(ε)

h
)e−g(ε) 1

1− e−2ht

And f ′(t)
sinh(ht)

has a nonzero limit when t → 0. We deduce that there is a constants C(K, ε, h)

so that

(2.14)
1

C(K, ε, h)
≤ f ′(t)

sinh(ht)
≤ C(K, ε, h)

so f ′ is uniformly comparable to sinh(hr), which means that our disk is uniformly qua-
siconformal to the complete disk with constant sectional curvature −h. As this disk is
quasiconformal to the hyperbolic plane, we get the statement (2). We point out that the
quasiconformal factor depends only on the map g, so in the parameters (K, ε, h). �
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3. The Moser-Trudinger inequality for infinite-volume surfaces

It is known that a Moser-Trudinger type inequality can’t be true for all noncompact
surfaces, as it implies the existence of a Poincaré inequality. We will show here that for a
class of surfaces which at infinity, look like they are negatively curved, a Moser-Trudinger
inequality is true. We will also show that the relevant geometric data are the systole and
Cheeger constant. Throughout this section (Σ, σ) will be a Riemannian surface, noncompact.
We will show that the following geometric assumptions are enough to get a Moser-Trudinger
inequality:

Theorem 3.1. Let (Σ, σ) be an infinite volume complete surface. Assume that the curvature
of Σ is upper bounded by K. Assume that the systole δ and the Cheeger isoperimetric constant
h are both nonzero. Then there is a constant C depending only on δ, h,K such that, for any
u ∈ W 1,2(Σ):

(3.1)

∫

Σ

|∇u|2dσ ≤ 1 ⇒
∫

Σ

exp
(

4πu2
)

− 1dσ ≤ C(δ, h,K)

Note that the Moser-Trudinger with exponent 4π was already shown by Mancini–Sandeep
[MS10] in the case of disks dominated by the hyperbolic metric. Our proof relies on a
radial rearrangement adapted to the surface Σ, the same used by Ilias [Ili83] to estimate
the constants involved in the Sobolev embeddings. The following formulas are well-known
measure-theoretic tools:

Lemma 3.2. Let u be a positive C2 Morse function. Assume it is W 1,2(Σ). Denote ν the
length measure associated to σ. Consider the functions l(t) and A(t):

A(t) := σ{u ≥ t}(3.2)

l(t) := ν{u = t}(3.3)

Then, for any measurable function f : R → R :
∫

Σ

f(u) =

∫

R

f(t)A(t)dt(3.4)

∫

Σ

|∇u|2 ≥
∫

R

l2(t)

A′(t)
dt(3.5)

Proof. The first term is a standard formula in differential geometry, it is proven via a change
of variables. For the second inequality, we use the following formula for the derivative of A:

(3.6) A′(t) =

∫

{u=t}

dν

|∇u|
Now the co-area formula yields (see [Kes06], theorem 2.2.2)

(3.7)

∫

Σ

|∇u|2 =
∫

R

(

∫

{u=s}
|∇u|dν

)

ds

And finally, applying Cauchy-Schwarz:

(3.8)

∫

{u=s}
|∇u|dν

∫

{u=s}

dν

|∇u| ≥ l2(s)

which finishes the proof. �
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Theorem 3.3. Let (Σ, σ) be an infinite volume complete surface, with nonzero systole,
Cheeger constant and upper bounded curvature δ, h,K. There is an nondecreasing func-
tion f depending only on (δ, h,K), a disk uniformly conformal to the complete hyperbolic
plane, with radial metric dr2 + f ′(r)2dθ2. Moreover, the radial rearrangement mapping on
that disk:

(3.9)

{

W 1,2(Σ) → W 1,2(D)
u 7→ u∗

defined so that u∗ is nonincreasing, radial, and:

(3.10) A(t) = |{u∗ ≥ t}| ∀t ∈ R

satisfies:
∫

Σ

f(u)dσ =

∫

D

f(u∗)(3.11)

∫

Σ

|∇u|2 ≥
∫

D

|∇u∗|2(3.12)

Proof. Denote ϕ the isoperimetric profile of Σ, σ By lemma 2.7, there is V0(K, δ) > 0 such
that, on (0, V0) the isoperimetric profile satisfies:

(3.13) ϕ(t) ≥
√

t(4π −Kt)

Consider the map g defined in lemma 2.8 with ε = V0. Then we claim:

(3.14) ∀t ∈ R, ϕ(t) ≥ g(t)

Indeed, for small values it is the lemmma 2.7, for big values it is the definition of the Cheeger
constant and in between it comes from the fact that g(V0) ≤ δ.

Hence define f by the lemma 2.8. For u C2, Morse, nonnegative and W 1,2 on Σ define u∗

its radial rearrangement on D, dr2 + f ′(r)2dθ2. By construction, it is clear that

(3.15)

∫

Σ

f(u) =

∫

D

f(u∗)

for any measurable f . Also, denote l and l∗ the length of level set functions:

l(t) = ν{u = t}|(3.16)

l∗(t) = |{u∗ = t}(3.17)

Because g ≤ ϕ everywhere, it is clear that l ≥ l∗. Thanks to lemma 3.2, we deduce

(3.18)

∫

Σ

|∇u|2 ≥
∫

D

|∇u∗|2

�

Proof of theorem 3.1. Consider Σ such a surface. Consider u ∈ W 1,2(Σ). First we will prove
the inequality for Morse surfaces, then by density it will be true on W 1,2(Σ).

As the functional e4πx
2
is even and the absolute-value is 1-lipschitz, up to replacing u by

|u|, we can assume that u is nonnegative and

(3.19)

∫

Σ

|∇u|2 ≤ 1 .
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Consider (D, dr2+f ′(r)2dθ2) the disk defined in theorem 3.3 and u∗ the radial rearrangement.
By construction,

∫

D

exp
(

4π(u∗)2
)

− 1 =

∫

Σ

exp
(

4πu2
)

− 1(3.20)

∫

D

|∇u∗|2 ≤ 1(3.21)

As
∫

D
|∇u∗|2 is a conformal invariant, consider C the conformal distance between dr2 +

f ′(r)2dθ2 and the metric of the Poincaré disk. Naturally, with C being the conformal distor-
tion, we control:

(3.22)

∫ ∞

0

(exp
(

4π(u∗)2
)

− 1)f ′(r)dr ≤ C

∫ ∞

0

(exp
(

4π(u∗)2
)

− 1) sinh(r)dr

Now, cf [MS10], this is upperbounded by some bound depending only on h. Finally, as C

depends only on (δ, h,K) we get a bound depending on those parameters. �

We finish our discussion about infinite volume surfaces with 3 examples of noncompact
surfaces which do not satisfy the Moser-Trudinger inequality, showing that none of the 3
assumptions could have been dropped.

Theorem 3.4. Let Σ be a (noncompact) surface with Cheeger constant 0, and lower bounded
curvature. Then the Moser-Trudinger inequality is false.

Proof. Thanks to the work of Buser [Bus82], we know that such a surface has no spectral
gap, hence it cannot satisfy a Moser-Trudinger inequality. �

Remark 3.1. There are examples of surfaces from Buser [Bus79] of surfaces with Cheeger
constant arbitrarily small with regard to the spectral gap, but these examples involve small
systoles and very negative curvature. It is not known to the author if with those examples
one could show a noncompact surface satisfying the Moser-Trudinger inequality, but with
Cheeger constant zero.

Theorem 3.5. Let Σ, σ be a (noncompact) surface with curvature κ satisfying:

(3.23) sup κ = ∞

Then the Moser-Trudinger inequality is false.

Proof. The main tool for this is to show that the constant of Moser-Trudinger explodes in
high positive curvature. Fix M > 0 Let Ω be a small disk on which κ ≥ M Consider CS the
Moser-Trudinger constant for the sphere. Thanks to works of Chang and Yang, there is a
bubbling sequence un of functions on S

2, weakly converging towards a Dirac distribution, so
that:

∫

S2

|∇un|2 ≤ 1(3.24)

∫

S2

exp
(

4πu2
n)− 1 → CS(3.25)
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Because of the weak convergence, one can assume that Suppun is in small neighborhood of
a point. Hence for any ε > 0 we easily get a function v supported in Ω satisfying:

∫

Σ

|∇v|2 ≤ 1(3.26)

∫

Σ

exp(4πv2)− 1 ≥ MCS − ε(3.27)

So the Moser-Trudinger inequality is false. �

When the systole goes to zero, there are plenty known examples where the inequality is
false.

Theorem 3.6. Let Σ be the hyperbolic cusp: R× S
1 equipped with the metric dt2 + e2tdθ2.

Then it does not satisfy the Moser-Trudinger inequality.

Proof. Fix b ∈ R, and consider the function

(3.28) f(t, θ) = (et − eb)1t≤b

One can make the following computations:

|∇f |22 =
2π

3
e3b(3.29)

|f |22 =
2π

3
e3b(3.30)

|f |44 =
2π

5
e5b(3.31)

hence we see that, when b → −∞

(3.32)
|f |44
|∇f |42

→ +∞

which contradicts the Moser-Trudinger inequality. �

4. A Moser-Trudinger inequality for closed surfaces

In this section, we need to adapt our proof with more subtlety in order to get the same
theorem for closed surface. We point out that Li [Li01] already proved that all compact
surfaces satisfy the Moser-Trudinger inequality with exponent 4π, however his proof does
not show the dependency of the upper bound in the systole, curvature and Cheeger constant.

Theorem 4.1. Let Σ, σ be a closed surface with nonzero systole δ, Cheeger constant h and
upper bounded curvature K. Then there is a constant C(δ, h,K,Vol(Σ)) such that, for any
u ∈ W 1,2(Σ) with zero average and satisfying:

(4.1)

∫

Σ

|∇u|2dσ ≤ 1

Then

(4.2)

∫

Σ

exp
(

4πu2
)

− 1 dσ ≤ C(δ, h,K) .

The constant C can be chosen to be nonincreasing in Vol(Σ).
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Remark 4.1. In the case of hyperbolic surfaces, an important feature is that the bound is
actually independent of the volume, as long as the systole and spectral gap are controlled.

In the case of tori, it actually depends on the volume, as big volume flat tori must have
small Cheeger constant.

When dealing with zero average function, we cannot assume, of course, that they are
nonnegative. Hence we must be more careful when considering radial rearrangmeents:

Theorem 4.2. Let (Σ, σ) be a closed surface. Debite δ, h,K its systole, Cheeger constant

and supremum of curvature. Then there is a disk of radius R = Vol(Σ)
2

, with radial metric
dr2 + f ′(r)2dθ2, so that for any u Morse function on Σ one can define u− and u+ its lower
and upper radial rearrangements satisfying:

(1) u+ is nonincreasing radial on D.
(2) u− is nondecreasing radial on D

(3)

∀t such that σ(u ≥ t) <
Vol(Σ)

2
, σ(u ≥ t) = |{u+ ≥ t}|(4.3)

∀t such that σ(u ≤ t) <
Vol(Σ)

2
, σ(u ≤ t) = |{u− ≤ t}|(4.4)

(4) For any measurable f ,
∫

Σ

f(u)dσ =

∫

D

f(u−) + f(u+)(4.5)

∫

Σ

|∇u| − 22 ≥ |∇u+|22 + |∇u−|22(4.6)

Proof. Denote ϕ the isoperimetric profile of Σ. Thanks to lemma 2.7, there is V0 > 0 so
that, on (0, V0):

(4.7) ϕ(t) ≥
√

t(4π −Kt)

Also, on (0, Vol(Σ)
2

, by definition of the Cheeger constant:

(4.8) ϕ(t) ≥ h · t
Consider the map g defined in lemma 2.8 with ε = V0. We check

(4.9) ∀t ≤ Vol(Σ)

2
, ϕ(t) ≥ g(t)

Hence define f by the lemma 2.8, and consider u+ the nonincreasing radial rearrangement
of the part of u above its median m. In the same way, define m−u− to be the nonincreasing
radial rearrangement of the part of m− u above u. Thanks to the formulas 3.2, we deduce
easily, for any measurable f :

(4.10)

∫

Σ

f(u) =

∫

D

f(u+) + f(u−)

And because g is lower than the isoperimetric profile on (0, Vol(Σ)
2

), we deduce:

(4.11)

∫

Σ

|∇u|2 ≥ |∇u+|22 + |∇u−|22
�
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As a direct consequence, one can mimic the proof of the noncompact case and get:

Corollary 4.3. Let (Σ, σ) be a compact surface. Denote δ, h and K its systole, Cheeger
constant and supremum of curvature. There is a constant C depending only on δ, h,K such
that, for any u ∈ W 1,2(Σ), satisfying:

∫

Σ

|∇u|2 ≤ 1(4.12)

σ(u ≥ 0) = σ(u ≤ 0)(4.13)

we have

(4.14)

∫

Σ

exp
(

4πu2
)

− 1 ≤ C

Proof. Consider u, and its radial rearrangements u+,u− defined by theorem 4.2. As the disk
is conformal to a disk of curvature −h with conformal bound depending only on r0, h,K,
one can assume D is a disk with constant curvature −h. We can then extend by zero the
maps u+ −m and m − u− to get functions in W 1,2 on the space of constant curvature −h.
Then , by [MS10], we have C depending on δ, h,K such that:

∫

D

exp
(

4π(u+ −m)2
)

− 1 ≤ C(4.15)

∫

D

exp
(

4π(u− −m)2
)

− 1 ≤ C(4.16)

The properties of the radial rearrangements are then enough to get the desired result:

(4.17)

∫

Σ

exp
(

4π(u−m)2
)

− 1 ≤ C

�

In order to get the same statement for zero average functions, we will need two technical
lemmas.

Lemma 4.4. Let (Σ, σ) be a finite volume surface. Denote Λ its spectral gap. Let u ∈
W 1,2(Σ). Denote u its average and m its median. Then

(4.18) |m− u| ≤
√

2Λ

Vol(Σ)
|∇u|2

Proof. Recall the Markov inequality, for ε > 0:

(4.19) σ({|u− u| ≥ ε}) ≤ ε−2|u− u|22 ≤ ε−2Λ|∇u|22
We apply it to

(4.20) ε2 =
2Λ|∇u|22
Vol(Σ)

in order to get

(4.21) σ({|u− u| ≥ ε}) ≤ Vol(Σ)

2
.

By definition of the median, necessarily

(4.22) |u−m| ≤ ε
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as asserted. �

Lemma 4.5. Let D be a disk of area A, and spectral gap Λ. Let m > 0. Let v be a radial
nondecreasing map satisfying:

v(∂D) = m(4.23)
∫

D

v ≤ −mA .(4.24)

Then

(4.25) |∇v|22 ≥ 4Λm2A

Proof. First, we use Cauchy-Schwarz for the estimate:

(4.26) A2m2 ≤ A|v|22
We deduce that

(4.27) 4A2m2 ≤ |v −m|22 .
Hence, by definition of the spectral gap:

(4.28) |∇v|22 ≥ 4ΛA2m2

as asserted. �

Proof of theorem 4.1. In order to get the result for zero average functions, we have to be
more careful. Let Σ be a compact surface, and consider u a Morse function on it satisfying:

∫

Σ

u = 0(4.29)

∫

Σ

|∇u|2 ≤ 1(4.30)

Up to replacing u by −u, we can assume its median satisfies:

(4.31) m > 0

Consider its radial rearrangements u−,u+ on the disk D, defined by theorem 4.2. As the disk
is uniformly conformal to a hyperbolic disk, it has a spectral gap Λ(δ, h,K) As u is of zero
average, u− satisfies the assumptions of lemma 4.5, and we have:

(4.32) |∇u−|22 ≥ 4Λm2A

where A denotes the area of our disk. Of course, this implies

(4.33) |∇u+|22 ≤ 1− 4Λm2A

We can now apply the Moser-Trudinger inequality to 1√
1−m2A

(u+ −m) to get

(4.34)

∫

D

exp
( 4π

1− 4Λm2A
(u+ −m)2

)

− 1 ≤ C(δ, h,K)

We compute

(u−m)2

1− 4Λm2A
− u2 =

4Λm2A

1− 4Λm2A

[

u2 − 2u

4ΛmA
+

1

4ΛA

]

(4.35)

≥ − 1

4ΛA
(4.36)
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and we deduce that

(4.37)

∫

D

exp
(

4πu2
+

)

− 1 ≤ e
1

4ΛAC + 4ΛA(e
1

4ΛA − 1)

Byy construction,

(4.38) 2A = Vol(Σ)

Hence we get a bound C ′ depending on (δ, h,K) only so that:

(4.39)

∫

D

exp
(

4πu2
+

)

− 1 ≤ C ′ exp
( 1

2ΛVol(Σ)

)

+ 2ΛVol(Σ)
(

exp
1

2ΛVol(Σ)
− 1

)

Finally, we check that

(4.40) u2
− ≤ (u− −m)2 +m2

And by lemma 4.4,

(4.41) m ≤
√

2Λ

Vol(Σ)
.

Hence we can bound
∫

D

exp
(

4πu2
−
)

− 1 ≤ C(δ, h,K)em
2

+
Vol(Σ)

2
(em

2 − 1)(4.42)

≤ C(δ, h,K)e
2Λ

Vol(Σ) +
Vol(Σ)

2
(e

2Λ
Vol(Σ) − 1)(4.43)

All in all, we get nonnegative constants C ′′, a, b depending on δ, h,K so that:

(4.44)

∫

D

exp
(

4πu2
)

− 1 ≤ C ′′(exp
a

Vol(Σ)
) + Vol(Σ)(exp

b

Vol(Σ)
− 1)

The map t 7→ t(exp b
t
−1) is nonincreasing on R+−{0}, hence we get an upper bound which

is nonincreasing in Vol(Σ), as asserted. �

We can see that these dependencies are actually sharp for the case of hyperbolic closed
surfaces:

Proposition 4.6. Let εn → 0 and let (Xn) be a family of hyperbolic closed surfaces with
systole εn. Then there is a family of functions fn ∈ W 1,2(Xn) satisfying:

(4.45)

∫

Xn

fn = 0,

∫

Xn

|∇fn|2 ≤ 1

And

(4.46)

∫

Xn

|fn|4 → +∞

Proof. Fix R0 > 0. Thanks to the collar lemma (see [Bus10], theorem 4.1.1), if the systole
goes to zero, for ε small enough Xn contains an isometric collar (−R0, R0)× S

1 with metric
dt2 + ε2nch(t)

2dθ2. Consider the map:

(4.47) gn(t, θ) = 1(−R0,R0)(cosh(t)− cosh(R0)



14 SAMUEL BRONSTEIN

It belongs to W 1,2(Xn), and satisfies:
∫

Xn

|∇gn|2 =
2

3
εn cosh(R0)(4.48)

∫

Xn

gn = 2εn(
− sinh(2R0)

4
+

R0

2
)(4.49)

∫

Xn

|gn|2 = 2εn(
sinh(R0)

3

3
+ sinh(R0)−R0 cosh(R0))(4.50)

A thorough computation gives, when εn → 0 and R0 too, with εn negligible with regard to
R0:

(4.51)

∫

Xn

|gn −
1

Vol(Σ)

∫

Xn

f |4 ∼ 16εnR
9
0

315

All in all, fix R0 = ε
1
10 small enough and you get, as n → +∞:

(4.52)
|gn − gn|44
|∇gn|42

∼ 4

35
ε−

1
10 → +∞

as asserted. �

In particular, if we consider a family with lower bounded volume and systole, and uniformly
bounded curvature and Cheeger constant, we get a Moser-Trudinger bound independent of
the surface considered in the family.

Corollary 4.7. Let X be a closed hyperbolic surface, and ε > 0 Consider X the collection
of Riemannian covers of X with Cheeger constant bigger than ε. Then there is a constant
C(ε) such that, for any Y ∈ X , for any u ∈ W 1,2(Y ) satisfying:

(4.53)

∫

Y

u = 0

∫

Y

|∇u|2 ≤ 1

we have

(4.54)

∫

Y

(e4πu
2 − 1) ≤ C(ε)

Remark 4.2. Now depending on ε this family has different characteristics: For ε > h1(X),
this family is empty. The result of [MNP22] combined with Buser’s control tells us that for
ε close enough to 0, the family is infinite, and even ”big”, in the sense that the probability
that a random cover of degree d doesn’t belong to X goes to zero as d is large.

It is not known to the author if a random tower of covers of X has a nonzero probability
to belong to some X (ε), for ε > 0.
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supérieure, volume 15, pages 213–230, 1982.
[Bus10] Peter Buser. Geometry and spectra of compact Riemann surfaces. Springer Science & Business

Media, 2010.
[Che70] J Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in Analysis, pages

195–199, 1970.
[DEJ14] Jean Dolbeault, Maria J Esteban, and Gaspard Jankowiak. Onofri inequalities and rigidity results.

arXiv preprint arXiv:1404.7338, 2014.
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