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Abstract19

Monitoring the abundance and characteristics of microplastics in estuarine waters is crucial for
understanding the fate of microplastics at the land-sea continuum, and for developing policies and
legislation to mitigate associated risks. However, if protocols to monitor microplastic pollution
in ocean waters or beach sediments are well established, they may not be adequate for estuarine
environments, due to the complex 3D hydrodynamics. In this note, we review and discuss sampling
methods and strategies in relation to the main environmental forcing, estuarine hydrodynamics, and
their spatio-temporal scales of variability. We propose recommendations about when, where and
how to sample microplastics to capture the most representative picture of microplastic pollution.
This note opens discussions on the urgent need for standardized methods and protocols to routinely
monitor microplastics in estuaries which should, at the same time, be easily adaptable to the
different systems to ensure consistency and comparability of data across different studies.
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1. Introduction21

Estuaries form the connection between marine and fluvial waters. They are highly productive22

ecosystems that provide important environmental, social and economic services (Barbier et al.,23

2011). Estuaries are, however, highly susceptible to both natural and human disturbances. Like24

other aquatic systems around the world, estuaries are vulnerable to plastic pollution (Browne25

et al., 2010). In particular, the abundance and risks associated with microplastic particles and26

fibres (MPs), defined as plastics lower than 5 mm (Frias and Nash, 2019), are of high concern.27

Their similar dimension to sediments and planktonic organisms make them easily ingestible by28

the aquatic biota. The ingestion of MPs can be responsible for gut abrasion and blockage, as29

well as intoxication by sorbed contaminants or toxic additives used in the compounding of plastics30

(Andrady, 2011; Kazour et al., 2020). Living organisms may also develop on the MP surface in the31

form of biofilms (Amaral-Zettler et al., 2020). MPs may thus act as dispersal vectors of pathogens32

in moving estuarine waters (Forero-López et al., 2022).33

Estuaries are critical areas for plastic pollution due to their interface nature between the ocean34

and land. They are convergence areas of marine-based plastic pollution (Kuczenski et al., 2022),35

land-based plastic pollution from rivers (Lebreton et al., 2017), and also intrinsic estuarine-based36

plastic pollution from industries, cities, fishing, and port activities (Napper et al., 2022). In a37

similar way that estuaries are sinks for sediments, they can represent a temporary or permanent38

sink for MPs (Fok and Cheung, 2015; Nel et al., 2020; Simon-Sánchez et al., 2019). Estuarine39

hydrodynamic processes can form convergence zones of MPs or Estuarine MP Maxima (EMPM)40

within the estuary (Díez-Minguito et al., 2020; Bermúdez et al., 2021). Even after being trapped41

during long periods of time, MPs can still be flushed from estuaries by extreme events at time scales42

from annual to pluriannual (Tramoy et al., 2020). The high ecological values of estuaries together43

with their double role as an ocean source and a sink have motivated numerous research questions44

and attracted the recent attention of the interdisciplinary plastic research community (Gallagher45

et al., 2016; Gray et al., 2018; Hitchcock and Mitrovic, 2019; Sadri and Thompson, 2014; Zhao46

et al., 2014).47

In situ observations of microplastic concentrations in the abiotic compartment is a key approach48

to address emergent research questions on plastic pollution at the land-sea continuum, e.g.: (1) the49

sources and generation of MPs; (2) the pathways by which MPs reach estuarine, coastal and ocean50

waters; (3) the abundance, distribution and fate of MPs through the continuum ecosystems; (4) the51

transport mechanisms driving spatio-temporal variations and promoting the flushing of MPs to the52

ocean; (5) MPs ageing, weathering and biofouling; and (6) ecosystems exposition and risks, among53

others. Numerous protocols have been developed to study MP contamination in ocean surface54

waters or beaches (Besley et al., 2017; Hanke et al., 2013; Masura et al., 2015; Miller et al., 2017,55

2021). However, these protocols or strategies may not be suitable to evaluate MP contamination in56

estuaries and transitional waters. Most of these protocols are based on the assumption that MPs57

are floating on the surface or have been deposited on the bed depending on their density. The58

complex three-dimensional hydrodynamics in estuaries can make this assumption, and therefore59

these protocols, inappropriate. Table 1 compares sampling strategies previously implemented in60

the water matrix of different estuaries around the world, highlighting that most of them focused on61

surface water.62

The specific hydrodynamics and properties of estuarine waters play a crucial role in the distri-63
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bution, transport and trapping of MPs (Malli et al., 2022; Jalón-Rojas et al.). Estuarine waters64

are characterised by a changing density due to varying salinity and temperature that will largely65

impact the buoyancy of MPs (Defontaine et al., 2020). Estuarine waters are also rich in sediment66

and living organisms (blooms) that may favour MP flocculation. Andersen et al. (2021) suggested67

that the estuarine residence times of some MPs are long enough for sediment adhesion and possibly68

biofouling to occur. Flocculation and biofouling can modify the dynamical behaviour of particles69

(Andersen et al., 2021; Jalón-Rojas et al., 2022) and even induce the sinking of initially buoyant70

MPs (Kaiser et al., 2017; Laursen et al., 2022). The variety of forcing influencing estuarine hy-71

drodynamics at different time scales, such as wind, tide, river discharge, and waves, also largely72

affects MP transport. However, only a few studies in the literature specify the tidal phase, current73

velocities, or water properties (e.g. salinity, turbidity) at the time of sampling (e.g. Defontaine74

et al. (2020); Gasperi and Cachot (2021), see Table 1). Compared to river or ocean transport, the75

three-dimensional estuarine circulation greatly increases the complexity of the dynamical behaviour76

of MPs and vertical transport plays a key role. Due to this complexity and the youth of this research77

field, the contamination, distribution and fluxes of MPs in estuaries are largely unknown.78

In this manuscript, we sustain that to keep gaining knowledge on MP pollution in estuaries,79

monitoring protocols should be linked to estuarine hydrodynamics and their typical spatio-temporal80

scales. We also identify the lack of consistent and standardised methods and protocols for these81

systems (Table 1) as a limitation to inter-compare different systems and keep gaining understand-82

ing. The present work provides technical recommendations and suggestions for monitoring MPs83

in estuarine waters, focusing on sampling strategies; i.e. digestion, density separation, extraction,84

counting and chemical characterisation techniques being out of the scope of this note. Here, we85

present some of the most used techniques with their advantages and disadvantages depending on86

the type of estuary to be studied. In light of this, this note aims to answer the following questions87

: (i) when to monitor MPs in estuaries, (ii) where to monitor MPs in estuaries, (iii) and how to88

monitor MPs in estuaries. Good practices when sampling MPs are also discussed.89

2. When to monitor MP in estuaries?90

Two elements can affect the spatio-temporal variability of MPs in an estuary: flow patterns91

and MP sources. The environmental forcing (e.g., tides, river discharge, wind, waves) affecting92

the flow and the underlying physical processes driving the transport of suspended particulate mat-93

ter (e.g., density stratification, exchange flow, tidal mixing, stokes drift, tidal pumping; Fig. 1)94

are well-known from decades of research in estuarine physics and sediment transport (Winterw-95

erp and Van Kesteren, 2004; Scully and Friedrichs, 2007; Jay, 2010; Geyer and MacCready, 2014;96

Burchard et al., 2018). MP inputs from various sources (fluvial, marine and local) introduce ad-97

ditional temporal variability in MP abundance and distribution. This variability may depend on98

the environmental forcing (e.g. river and surface runoff inputs), or on human activities schedule99

(e.g. boat-based sources, sewage output). Advanced knowledge of the local hydrodynamics and the100

potential sources is therefore required to determine when to collect MPs.101

Various key time scales should be considered when planning samplings in estuaries, namely102

tidal, fortnightly and seasonal time scales. The particular importance of a given time scale is103

strongly related to the dominant forcing of the estuarine dynamics and is, therefore, site-specific104

(Jay, 2010; Jalón-Rojas et al., 2017). In estuaries dominated by tides, MP concentration can vary105
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significantly between ebb and flood tides (Oo et al., 2021). This difference can be related to various106

processes such as tidal asymmetry (the flood or ebb dominance of currents). For example, in a107

flood-dominated estuary, sinking MPs could have a higher rate of resuspension and mixing during108

flood tides. Microplastic concentration may also vary over the tidal cycle in stratified and salt-wadge109

estuaries where tidal motion is weaker. This can be due to variations in currents and salinity driven110

by tidal variations in vertical mixing and the along-channel density gradient. Defontaine et al.111

(2020) show that the transport of MPs in suspension may be contained by the pycnocline due to112

the turbulence damping induced by density stratification, whereas periods of intense mixing led to113

homogeneous concentration along the water column. However, fewer studies sampled microplastics114

at different tidal phases (Tab. 1). Given the importance of the tidal time scale, we recommend115

sampling always at the same tidal phases to allow the inter-comparison of samples and, as far as116

possible, sampling at different key tidal phases (e.g. flood, ebb, high water, low water).117

Estuarine physical processes may change from spring to neap tides or from equatorial to tropical118

tides (Defontaine et al., 2022; Valle-Levinson and Schettini, 2016). Microplastic concentration may119

therefore vary at the fortnightly time scale (Stead et al., 2020), analogously to suspended sediment120

concentrations (Jalón-Rojas et al., 2015). In addition, estuaries can be subject to the seasonal121

variability of forcing (e.g. river flow, wind) that may impact the stratification, residual currents,122

and therefore MP transport trends. In particular, the estuarine residual circulation (which includes123

several processes such as density-driven circulation, wind-driven circulation, internal asymmetry,124

non-linear tidal motion and the Stokes drift) can be subject to seasonal changes related to the125

annual river flow cycle and the precipitation/evaporation balance (Jay, 2010). To take into account126

all these variability time scales, it is highly recommended to monitor during full tidal cycles, under127

contrasting tidal ranges and river flow conditions.128

Other forcing and processes such as wind gusts, sea breeze, harbour seiches and waves may129

also play critical roles in MP dispersion at different time scales. Browne et al. (2010) show that a130

prevailing wind direction can be responsible for MP accumulation at downwind sites of the Tamar131

estuary. Sánchez-Hernández et al. (2021) also showed that MP abundance was higher during periods132

of strong winds. In addition, wind and waves may also trigger vertical mixing of plastic debris133

(Kukulka et al., 2012).134

In summary, contrasting conditions of prevailing forcing (e.g. low/high river flow, spring/neap135

tides, wind/unwind conditions, heavy swell/calm sea conditions) should be considered when plan-136

ning monitoring campaigns. Table 2 summarizes key recommendations about when sampling mi-137

croplastics depending on the main forcing and hydrodynamic processes of a given site. The post-138

processing of MP samples is expensive in terms of time and human resources, which can inevitably139

affect the final choice of the monitoring periods. When all the representative time scales of vari-140

ability are not considered, results should be analysed keeping in mind that MP concentrations are141

only representative of the selected conditions.142

The discussion of MP concentrations at the different key time scales should also consider the143

variability of MP inputs from sources (Tab.2). Sources such as urban storm-water runoff or wastew-144

ater effluents may have a variable discharge depending on the weather forecast (rainfall) or the peak145

period of city occupation (e.g. tourism). Significant links between rainfall and MP concentration146

have been found in the literature as it drains the land-based MP pollution through rivers to estu-147

aries (Lima et al., 2015; Hitchcock, 2020). The wet season could therefore represent a period of a148
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strong abundance of MPs. However, the dry season may represent a period of denser population149

and thus an increase of MP inputs from surrounding cities and shores. Collection during the wet150

and dry seasons is therefore relevant to investigate potential seasonal differences in contamination.151

In addition, wastewater effluent contamination may also vary between weekends and weekdays, and152

between flood and ebb tides (e.g. WWTP discharge during ebb tide to favour flushing). Samplings153

only on weekdays should be envisaged (Miller et al., 2021).154

3. Where to monitor MP in estuaries?155

As in many environmental pollution studies, the number of sampling sites and their location is of156

the foremost importance to ensure a truly representative study by probabilistic sampling. However,157

as explained above for the sampling frequency, the particularly expensive cost and time-consuming158

laboratory analyses that follow MP collection may be a strong limitation. Compared to lakes, rivers159

or the ocean, MP distribution in estuaries can strongly vary spatially in the three dimensions over160

small spatial and temporal scales (Malli et al., 2022; Jalón-Rojas et al.). A compromise should be161

found between spatial statistical coverage and time/financial costs. The site selection should then be162

restricted to a few sites as representative of the whole estuary as possible. Table2 also summarizes163

key recommendations on sampling locations depending on the major forcing and hydrodynamic164

processes.165

Intratidal and subtidal circulation may vary along the longitudinal and lateral axes as well as166

water properties affecting the dispersion of suspended particles such as MPs (Lam et al., 2020).167

Different locations along and across the estuarine channel should thus be considered (Tab.2). Even if168

the choice of the locations should be based on the specific characteristics of the study site, a general169

recommendation is to sample at different sites along the longitudinal density gradient, as physical170

processes driving the transport of MPs and MP buoyancy vary over this gradient (Malli et al.,171

2022; Jalón-Rojas et al.) (Fig. 1). For instance, density-driven circulation is a physical process172

directly related to the density gradient. In estuaries characterized by decreasing salinity from the173

ocean toward the upper estuary, light MPs might be transported as wash load to the ocean by a174

surface seaward flow, while dense MPs might be transported as bed load by a landward flow near175

the bottom (Defontaine et al., 2020). Wind stress can also promote a two-layer circulation (Li and176

Li, 2011). Recent studies based on numerical and idealized models have suggested that estuarine177

circulation may form hotspots of microplastics, also called Estuarine MicroPlastic Maxima (EMPM)178

(Díez-Minguito et al., 2020; Bermúdez et al., 2021). In estuaries or estuarine regions dominated179

by tides, tidal pumping can also generate longitudinal circulation and MP trapping (Stead et al.,180

2020). In flood-dominated estuaries, the tidal wave may become increasingly asymmetric (higher181

flood than ebb currents) along the estuarine channel depending on the competition between friction182

and channel convergence. Non-buoyant MPs may be only resuspended and transported landward183

during floods if the bed shear stress during ebbs does not exceed the critical shear stress. This184

net landward transport of MPs may also form EMPM (Jalón-Rojas et al.). Readers can refer to185

Burchard et al. (2018) for a whole explanation of estuarine trapping mechanisms. Longitudinal186

gradients and hotspots of MPs can therefore be key estuarine features and should be considered187

when planning monitoring campaigns.188

The specific location of EMPMs may be difficult to predict as it may depend on the physical189

properties of the particles. In other words, different EMPM may happen for different types of190
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MPs (Jalón-Rojas et al.), but more research is needed to understand this phenomenon. In some191

estuaries, EMPM might correspond to estuarine turbidity maximum (Díez-Minguito et al., 2020).192

These potential zones of accumulation should be considered in the conception of field campaigns193

and during the data analysis. In particular, when using filtering processes, the huge quantity of194

sediments or living organisms contained in estuarine waters may lead to the clogging of filters or195

nets (Hanke et al., 2013). If such areas should not be avoided during sampling, the choice of larger196

mesh sizes for filtration may be an option. It must be noted that cleaning nets or sieves during197

field campaigns is very challenging.198

Estuary cross-sections are generally composed of a navigation channel and shoals, where the199

hydrodynamics may largely vary and induce differential advection of suspended matter (McSweeney200

et al., 2016). Banks with vegetation can be sinks of MPs (Carmen et al., 2021; Stead et al., 2020). A201

particular phenomenon of great importance for the accumulation and transport of MPs is estuarine202

fronts (Largier, 1993). Fronts are related to strong convergence currents at surface waters that203

form visible lines of foam and debris, promoting lateral gradients of MP concentration (Wang et al.,204

2022). To adequately account for the lateral variation of contamination, sampling locations should205

also be spread across the channel, at least two points to compare channel and shoals or the regions206

inside and outside the front (Tab.2). It should be noted that trawling nets can be difficult to207

operate in the front and can become rapidly clogged due to the high litter abundance (Green et al.,208

2018). On the other hand, locations with morphological specificity (e.g. sills) or with distinctive209

hydrodynamic features (e.g. bends) should be avoided unless studied on purpose, as they may210

introduce site-specific phenomena (Tab.2).211

All the physical processes mentioned above are characterized by strong three-dimensional com-212

ponents. Vertical transport became particularly important in shallow waters. For instance, vertical213

mixing is a key process in transferring suspended particulate matter from the bottom to the surface214

and for keeping small particles in suspension (Shamskhany and Karimpour, 2022). Surface sam-215

pling is certainly not representative of MP contamination, underestimating MP fluxes by avoiding216

suspended MPs inside the water column (Defontaine et al., 2020; Gasperi and Cachot, 2021). For217

example, Defontaine et al. (2020) have shown that vertical density stratification affected MP abun-218

dance and size distribution through the water column of the Adour estuary: MP concentration and219

size distribution was different (similar) in surface and bottom waters during stratification (well-220

mixed) periods. We recommend sampling three depths in the water column to compare surface,221

mid-column and bottom contamination, especially in highly-stratified estuaries, or at least two222

depths when time and human resources are limited (Tab.2).223

Local sources (e.g., sewage networks, industrial outflows, rainwater networks or marinas) should224

be also considered when planning sampling locations. Recent studies have shown that MP pollution225

is largely correlated to the proximity to urban areas (Lebreton et al., 2017; Rodrigues et al., 2019;226

Yonkos et al., 2014). Unless otherwise desired, the sampling locations should be placed away227

from such local sources to be as representative of the whole estuary pollution as possible (Tab.2).228

However, the analysis of pollution pathways is particularly important for management and policy229

regulations, as well as for developing numerical studies. In this sense, it is particularly interesting230

to sample MP source outflows to estimate discharged loads to the estuary (Bailey et al., 2021).231
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Table 2: Recommendations about when and where to sample MP depending on the main characteristics and hydro-
dynamic processes of an estuarine system

Estuarine characteristics Hydrodynamic processes When Where

Tides

tidal pumping,
tidal straining,
tidal mixing,
Stokes drift

ebb/flood/slacks
(semi-diurne, diurne),
neap/spring

along the tidal intrusion,
surface/mid depth/bottom

Stratification

two-layer flow,
gravitational circulation,
stratification-induced
turbulence damping

ebb/flood,
spring/neap,
wet/dry season

along the salinity intrusion,
surface/mid depth/bottom

River
tide-river interaction,
convergence area

wet/dry season
fluvial area,
convergence areas,
surface/mid depth/bottom

Fronts
shear fronts,
tidal intrusion fronts

ebb and/or flood
inside/outside front,
surface

Wind
wind mixing,
wind driven-circulation

wind/unwind conditions
banks in the downwind direction,
surface/subsurface

Waves
wave mixing,
resuspension

swell/calm conditions
mouth of the estuary,
banks at the entrance,
surface/subsurface/bottom

Morphology
lateral circulation,
differential advection

ebb/flood
thalweg/shoals,
away from sills, bends ...

MP sources -

ebb/flood,
weekdays/weekends,
tourist season
wet/dry season

MP sources (WWTPs,
sewage outflows,
mouth/head of the estuary,
industrial outflows ...),
away from the sources

4. How to monitor MP in estuaries?232

The choice of the sampling method is not trivial when sampling MPs as it generally defines the233

lower MP size within the sample. If a consensus has been reached regarding the larger size limit234

of MPs to be 5 mm, it is not the case with the lower size limit. Some studies have defined a lower235

size limit of 1 µm, and plastic particles being smaller as nanoplastics (Thompson et al., 2009; Frias236

and Nash, 2019). However, the smaller size limit is defined operationally by the size of the finer237

mesh, sieve or filter pore used during sampling. Table 1 compares sampling methods employed in238

previous studies. These methods are diverse and imply different lowest-size limits. For example239

trawling nets classically only capture MPs greater than 300 µm (lowest mesh size), while the lowest240

size of MP collected with a pumping system or bottle sampling depends on the sieve size or filter241

pore, which can go down to 1 µm. Sampling techniques may be responsible for some sorting in242

MP collection. In particular, fibres are complex to collect due to the thin and elongated shape that243

allows them to pass through nets and sieves. Therefore, the different available sampling methods244

should be carefully evaluated during the study design. The two crucial characteristics to consider245

are the volume of analysed water and the finest mesh size, sieve or filter pore used. The possibility of246

sampling at different depths to capture the intrinsic vertical variability of estuaries, and during short247

periods to capture tidal variability, can also be important criteria to select a sampling method in248

estuaries. In this section, the advantages and disadvantages of the most commonly used techniques249
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are presented.250

Trawling nets. As classical protocols for sampling MPs were based on the hypothesis that251

most MPs are floating at surface waters, the most commonly used techniques are trawling nets such252

as plankton, neuston or manta nets (Gallagher et al., 2016; McEachern et al., 2019; Simon-Sánchez253

et al., 2019; Yonkos et al., 2014). Such nets are generally equipped with a rectangular opening and254

two floats to sample large volume in surface waters. On the other hand, bongo nets may be equipped255

with round openings and depressor weights to allow collection inside the water column. However,256

the sampling depth is hard to target precisely with a depressor weight. The volume of filtered257

water is estimated thanks to a flowmeter that is fixed on the opening frame (Hanke et al., 2013;258

Prata et al., 2019). Large volumes of water can be easily sampled ensuring solid statistical data259

and reducing the impact of background contamination. Paired bongo nets present the advantage to260

allow sampling duplicates. Trawling net seems to be the most common technique used in estuaries261

(Tab. 1), which permits comparison between sites.262

The mesh size of the net is one of the most restrictive elements of trawling nets. A standard mesh263

of 300 µm is generally mounted on such systems that impede finer MPs to be collected, leading to264

an underestimation of the contamination (Green et al., 2018; Lindeque et al., 2020). However, some265

suppliers offer finer mesh sizes that may be considered. In the Seine River, a comparison between266

a plankton net equipped with an 80 µm mesh and a manta net equipped with a classical 330 µm267

mesh revealed that concentration may be largely underestimated (several orders of magnitude) with268

the larger mesh size (330 µm), even though a greater diversity of shape and types may be captured269

(Dris et al., 2015). Nevertheless, trawling nets with fine meshes are more susceptible to clogging,270

leading to a reduced volume of filtered water and to the collection of MPs finer than the mesh size271

(Dris et al., 2018). To avoid such drawbacks, it is recommended to deploy fine mesh trawling in272

relatively clear waters, which is not usual in (turbid) estuaries.273

Trawling nets are towed at the rear of the vessel and have the benefit to be easy to deploy in274

coastal areas. However, they may be not appropriate for narrow channels or very busy shipping275

lanes. Such techniques may even be forbidden in some parts of the estuary to not disturb harbour276

activities and navigation. It is highly recommended to contact local authorities before deploying277

such equipment in estuaries. The European Commission recommends deploying trawling net out of278

the wake zone due to turbulence leading to unrepresentative sampling (Hanke et al., 2013). Michida279

et al. (2019) study recommends conducting trawling surveys in conditions where wave heights are280

under 0.5 meters as trawling nets can be relatively difficult to manipulate in rougher conditions.281

Pumping system. Pumping systems generally consist in a high-capacity pump that pours282

waters through a set of sieves (Defontaine et al., 2020; Xu et al., 2018; Zhao et al., 2015). In some283

cases, water samples are collected in jars to be filtered at the laboratory. This method presents284

different advantages. First, it allows us to precisely choose the finest MP size to be collected (e.g.285

70 µm, 50 µm or 5 µm) as a function of the finest mesh size or filter pore. Second, this system286

can easily collect MPs at different depths in the water column. A pressure sensor and a depressor287

weight need to be fixed to the pump inlet to ensure a vertical fall and precisely estimate the depth288

of measurement. Third, this method is relatively easy to set up on the field and duplicates can289

readily be collected with a second pumping system working in parallel.290

Nevertheless, the use of such technologies may introduce some contamination by the plastic com-291

ponents of the pumping system and can trigger the fragmentation of MPs due to shear stress during292
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pumping (Enfrin et al., 2020; Skalska et al., 2020). Another major drawback is that, depending on293

the pump capacity, the operation may take hours to collect some cubic meters of water (Defontaine294

et al., 2020). During such a long operation, the estuarine hydrodynamics may have changed and295

may not be representative of specific conditions. A compromise has to be found between a large296

volume of water to gain statistically reliable data and a short operating time representative of one297

hydrodynamic state.298

Bottle sampling. Grab sampling is a commonly used technique to estimate suspended sed-299

iment concentration. It holds some advantages. For instance, it is simple to operate and allows300

us to collect all types of MPs, including those difficult to capture with other techniques such as301

fibres. Several studies have shown that fibres are more efficiently collected with bottle sampling302

than with nets (Rebelein et al., 2021). The subsequent filtration at the laboratory with fine pore303

filters can capture small MPs (down to 1µm). Contamination is also lower compared to nylon net304

and pumping system (Prata et al., 2019). Nevertheless, laboratory analyses are longer than with305

other methods as no pre-sieving is realised in the field. The major drawback of this method is306

the very small volume of water that is analysed, which leads to the need for replicates and thus307

additional laboratory costs. Dubaish and Liebezeit (2013) have shown that replicates from bottle308

samples displayed larger heterogeneity, especially for films and fragments. Although fragments and309

films may be underestimated by grab sampling, the concentrations of fibres may yield between 3 and310

4 orders of magnitude greater than those estimated by common zooplankton net methods (Green311

et al., 2018). Therefore, bulk sampling may be envisaged to study fibres, but it is less recommended312

when all types of MPs are investigated.313

Automatic samplers, continuous plankton recorder and continuous-flow centrifuges.314

Recently, new technologies have been developed to investigate microplastic pollution in a more315

automatic way. Automatic rosette water samplers or even ROV have been used for MP sampling316

in ocean waters (La Daana et al., 2018; Dai et al., 2018; Choy et al., 2019). However, such massive317

equipment required a lift arm and is not adapted for shallow estuarine waters. Continuous flow318

centrifuges are able to separate particles denser than ambient waters from less dense particles and,319

when coupled with a filtration system, may be used for sampling MPs (Hildebrandt et al., 2019).320

However, it lasts several hours to process 100 L of water, so it may not be adapted to estuarine321

dynamics time scales. In-situ filtration devices consisting of a high-capacity pump associated with322

a filtration device (e.g. in-line steel filters, mesh bag) have shown promising results in sampling323

MPs (Li et al., 2020; Liu et al., 2019; Karlsson et al., 2020; Harrold et al., 2022). They can be324

equipped with a flowmeter and pressure sensor. However, such systems do not sample the surface325

microlayer, where light MPs may accumulate, to keep the pump inlet underwater during sampling326

(Karlsson et al., 2020). To our knowledge, there are no field studies in the literature using such327

new technologies in estuarine waters. However, it could be interesting to compare them with the328

most commonly used methods.329
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Figure 1: Key processes in regards to microplastic sampling strategies in estuaries

5. Best practice330

When sampling microplastics, some good practices need to be applied to avoid sample contami-331

nation. It is important to ensure that samples are not affected by background contamination in the332

field or laboratory. Laboratory utensils should be made of glass or metal as far as possible, e.g. MPs333

should be stored in glass jars and petri-slides, and metallic sieves are preferred. They should be334

properly rinsed with pure water and covered with aluminium foil to avoid airborne contamination335

prior to any contact with the sample (Green et al., 2018). Synthetic clothing should be avoided336

when researchers recover and manipulate samples; cotton clothes should be favoured (Hanke et al.,337

2013).338

When using trawling nets, they should be carefully rinsed between tows to reduce background339

contamination. Nets should be rinsed from the outside of the net and never through the net340

opening (Hanke et al., 2013). In order to investigate the potential background contamination,341

blank analyses should be carried out. It is recommended that laboratory analyses are carried out342

by a unique analyst to limit the analyst bias in the results (Green et al., 2018). During recovering343

and manipulation of samples on the field, the materials should be placed upwind to avoid additional344

contamination by the analyst. Trawling nets should be positioned by the side of the ship instead345

of at the rear when possible to avoid MP contamination from the ship and vertical mixing by wake346

and bow waves.347

Replicates are standard practice to measure variability in sample collection and analysis. When348

small volumes of water are considered during sampling (e.g. grab sampling), replicate samples may349

be necessary to avoid heterogeneity in samples. Miller et al. (2021) recommend duplicating every350

ten samples or more if the study focuses on microfibers.351

12



Another good but uncommon practice is to collect a wide range of physical parameters simul-352

taneously to MP samples. MP abundance and distribution alone are very difficult to interpret and353

compare which may lead to biased conclusions. We highly recommend collecting additional data354

such as water levels, current intensity, water properties (e.g. salinity, turbidity, organic content)355

and weather forecast (e.g. rainfall, wind, waves).356

6. Research priorities357

Measuring the abundance and distribution of MPs in estuaries and identifying their sources is the358

primary step in gaining understanding of their dynamics and fate, evaluating environmental risks,359

and establishing future mitigation measures and management strategies. Nevertheless, as discussed360

in this work, sampling MPs in estuarine waters is not trivial. No established protocols have been361

developed so far to harmonise sampling methods in the water compartment. Given that different362

sampling methods and strategies can lead to concentration differences by orders of magnitude363

(Green et al., 2018), there is a critical need to establish standardized sampling protocols that ensure364

consistency and the inter-comparison of systems. However, it is also important for the protocols365

to be flexible, as estuaries are complex environments with a wide range of physical, chemical, and366

biological characteristics. Protocols should therefore take into account all the particularities of367

a specific estuarine environment (complex 3D hydrodynamics, ETM, variety of MP sources ..).368

Nevertheless, some elements may be harmonized such as the lower size limit of the collected MPs369

(e.g. mesh size, filter pores) and the minimum volume of sampled water. Although an optimal370

technique is highly dependent of the study site and the specific objectives, manual or automated371

high-capacity pumping system associated with any kind of filtering system presents a large number372

of advantages: easily available for deployment at different depths in complex areas (e.g. navigation,373

shoals with vegetation), collection of large volumes of water (statistically reliable data) in relative374

short period of time (representative of one hydrodynamic state). The monitoring protocol should375

cover the main time scales of variability (tidal cycles, spring/neap tidal cycles, contrasting conditions376

of river flow or wind) and the estuarine regions characterised by different hydrodynamic regimes.377

While these time scales and representative sampling locations strongly depend on the dominant378

forcing and may vary among systems, the hydro-meteorological conditions under which MPs have379

been collected should be clearly stated in the papers (tidal phase, current velocity, wind, waves,380

salinity etc...). Even if this study focuses on microplastic pollution, similar considerations should381

be taken into account for sampling other kinds of pollutants in estuarine environments.382

Unlike classical sediment concentration analyses, MP concentration analyses have substantial383

financial and time costs that may not be neglected in the field campaign design. A relevant per-384

spective is to test new methods of automatic sampling of MPs, reducing financial and time costs385

during laboratory analyses and field sampling.386
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