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Abstract

The control of multiple magnetic microrobots is of particular interest for therapeutic applications. Yet the controllability
of such a system is not straightforward since, on most of such systems designs, there is only a single control input per
axis. The paper addresses the controllability and control synthesis for several magnetic microrobots navigating in blood
vessels. First, controllability requires the microrobots to magnetically interact in order to achieve trajectory tracking along an
admissible reference trajectory, whether swimming at low or high Reynolds. Then the resulting nonlinear system is shown to
be diffeomorphic to different nonlinear canonical forms depending on the choice of the microrobots, so that the stabilization of
the system along any admissible reference trajectory can be achieved using a backstepping controller synthesis, yet sometimes
at the price of a zero dynamics stability analysis. Simulation results illustrate the efficiency of the proposed approach.

Key words: controllability; underactuated multi-agent system; nonlinear control synthesis; medical microrobotics.

1 Introduction

The control of untethered microrobots using the vascu-
lar network is receiving a growing interest since they
can perform minimally invasive and targeted surgery or
diagnosis, whilst accessing to remote places with less-
ened side effects. Deportedmagnetic actuation is appeal-
ing since it avoids an embedded energy source, result-
ing in an improved miniaturization and payload ratio.
Different propulsion designs have been studied: elastic
flagellated Lagomarsino et al. (2003); Evans and Lauga
(2010), helical tailed Dreyfus et al. (2005); Zhang et al.
(2010), or bead pulled robots Abbott et al. (2009); Math-
ieu et al. (2006). This emerging field has at first mainly
focused on feasibility Nelson et al. (2010), then on con-
trollability Giraldi and Pomet (2017) and control and ob-
servation Fruchard et al. (2014) issues for a single robot.
However some applications, such as drug targeting or
brachytherapy, require that enough payload is released
in the vicinity of a tumor. On the other hand, avoiding
arterial embolization hazards induces limitations on the
microrobot size, and so on the available payload, hence
the interest in controlling multiple robots.

Literature abounds with micro multi-agent strategies,
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yet there is an obstruction in the present case: the mi-
crorobots are often controlled using a single control
input, either using electrostatic setups Donald et al.
(2008), electromagnetic setups Floyd et al. (2009);
Frutiger et al. (2010); Servant et al. (2015), or Magnetic
Resonance Imaging (MRI) devices Martel and Moham-
madi (2010) actuators. Consequently, multiple magnetic
robots modeling results in a nonlinear underactuated
system. Vartholomeos et al. (2012) parameterized the
input as a sequence of pulses with different widths that
exploited the induced motion difference to control inde-
pendently different robots. However, this work aimed at
a position open-loop control and therefore suffered from
a lack of robustness. Floyd et al. (2011); Diller et al.
(2012) proposed to exploit the natural frequency differ-
ences between some robots to actuate one or part of the
considered magnetic microrobots with a point to point
control objective. In Salehizadeh and Diller (2017) the
authors took advantage of a rotating magnetic field to
control the distance and orientation of two agents oper-
ating in close vicinity through the modulation of their
attractive-repulsive interaction. Eqtami et al. (2014)
addressed more formally the control of two microrobots
using model predictive control to perform a fixed point
stabilization. To exhibit a solution, they assumed the
existence of a solution to the initial optimal control ob-
jective, i.e. that the system is locally controllable from
the initial point, but did not focused on controllability
issues. The controllability of two non inertial micro-
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robots has already been studied in Salehizadeh and
Diller (2017, 2021), yet only considering their relative
position controllability; a full state controllability anal-
ysis has been provided in Fruchard et al. (2020) using
the linear test, yet only a sufficient condition is given.

The present paper addresses the control of magnetic in-
teracting microrobots facing the pulsatile blood flow in
order to stabilize their full state along a reference tra-
jectory, using the same single control input. The paper
contribution is twofold: i) conditions under which these
systems are controllable are investigated, which is –to
our knowledge– the first full state commandability result
for such an underactuated multi-agent microrobotic sys-
tem, and ii) Lyapunov stabilizing control laws are syn-
thesized exploiting transformations to nonlinear canon-
ical forms, depending on the system design and param-
eters. Finally, simulations results illustrate the stability
of the proposed controller, for an inertial 2-microrobot
system and for a non inertial 5-microrobot system.
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Fig. 1. Forces exerting on a magnetic microrobot (Rk) and

its closest neighbours (Rk−1), (Rk+1): the drag force ~Fdk ,

the magnetic motive force ~Fmk
, and ~Fk the net magnetic

force interaction acting on robot (Rk). A single control input
u = ∇Bx ∈ R is used to control all the microrobots in a
frame F(0,~i).

2 Modeling

Spherical microrobots (Rk) navigating in a blood vessel

are localized by their positions pk in the frame F(0,~i),
see Figure 1. Each microrobot is affected by the drag
force, the motive magnetic force and the magnetic in-
teraction between the robots, detailed hereinafter. The
magnetic field is supposed stationary, like in MRI de-
vices.

2.1 Forces

In the blood, a moving spherical microrobot (Rk) of ra-
dius rk experiences a drag force that opposes its motion.
Even if the proposed approach can be extended mutatis
mutandis to nonlinear drag force or to non-Newtonian
blood modeling, as e.g. in Arcese et al. (2012, 2013), it

is here assumed –for sake of simplicity– that the drag
force is linear:

~Fdk = −mkdk(ṗk − vf (t))~ı, dk =
9η

2βkρkr2k
(1)

where βk is a dimensionless ratio related to the par-
tial vessel occlusion by the robot Haberman and Sayre
(1958), and ṗk − vf (t) denotes the relative velocity be-
tween the robot (Rk) and the fluid. η, ρk andmk denote
respectively the blood viscosity, the microrobot (Rk)
density and mass.

A robot of magnetization ~Mk and ferromagnetic ratio
τmk

exposed to a magnetic field gradient input u = ∇Bx
is pulled by a magnetic force Arcese et al. (2012):

~Fmk
= mkaku~ı, ak = τmk

Mk/ρk. (2)

Let µ0 and ~Mk = 4
3πτmk

r3k
~Mk denote the vacuum per-

meability and the (Rk) microrobot magnetic moment,
and ~rk,i = (pi − pk)~ı. The magnetic interaction force
~Fk exerted by other microrobots on (Rk) is given by

Vartholomeos andMavroidis (2012). Since ~B = B0~ı, and
since this force is short ranged, we consider only a two-
closest neighbours interaction, so:

~Fk = mk

(

jk−1

‖~rk−1,k‖4 − ik
‖~rk,k+1‖4

)

~ı

ik = 3µ0MkMk+1

2πmk

~rk+1,k·~ı
‖~rk,k+1‖

, jk = ikmk

mk+1
, ikjk ≥ 0.

(3)

2.2 Two Inertial Microrobots

Let xT =
(

p1 p2 ṗ1 ṗ2

)

∈ X denote the state vector

where X is any connected subset of either X+ = {x ∈
R

4 : x1 − x2 > 0} or X− = {x ∈ R
4 : x1 − x2 < 0}

depending on the relative initial positions x1 and x2.
Applying the Newton’s second law using (1), (2) and (3)
yields:

(Sx)



























ẋ1 = x3

ẋ2 = x4

ẋ3 = −d1(x3 − vf )−
i1

(x1−x2)4
+ a1u

ẋ4 = −d2(x4 − vf ) +
j1

(x1−x2)4
+ a2u

(4)

Along any C1 admissible reference trajectory (xr, ur)

with xTr (t) =
(

x1r x2r ẋ1r ẋ2r

)

(t) satisfying (4), there

exists a C2 distance function d1,2(t) ∈ D ⊂ R \ {0}:
d1,2(t) = x1r(t)−x2r(t). Let x̃ = x−xr denote an error
state, the resulting error dynamics is an affine nonlinear

2



control system with drift:

(Si2)







































˙̃x = f(x̃) + gũ
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(5a)

(5b)

with ũ = u−ur(t), X̃ a connected subset of either X̃+ =

{x̃ ∈ R
4 : x̃1 − x̃2 + d1,2(t) > 0} or X̃− = {x̃ ∈ R

4 :
x̃1 − x̃2 + d1,2(t) < 0}, and the nonlinear function:

δ1 : x̃ 7→
1

(x̃1 − x̃2 + d1,2(t))4
−

1

d41,2(t)
. (6)

2.3 A Finite Number m of Non Inertial Microrobots

In a Stokes flow, Re ≪ 1 so inertial effects can be ne-
glected Purcell (1977); Tikhonov (1952). Rewriting (5)
for m non inertial microrobots leads to the following er-
ror system:

(Snim )























































˙̃x = f(x̃) + gũ
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(7a)

(7b)

where x̃ =
(

p1 − x1r . . . pk − xkr . . . pm − xmr

)T

∈

X̃m ⊂ R
m is the state vector composed of the position

errors of the m robots (Rk), and:

δk : x̃ 7→
1

(x̃k − x̃k+1 + dk,k+1(t))4
−

1

d4k,k+1(t)
(8)

with dk,k+1(t) the (Rk) to (Rk+1) reference distance,

ǫk = ik
dk
, εk = jk

dk+1
so that ǫkεk ≥ 0 and αk = ak

dk
. Sys-

tem Snim is defined on any connected subset X̃m of X̃−
m =

{x̃ ∈ R
m : x̃1 < x̃2 − d1,2 < . . . < x̃m −

∑m−1
i=1 di,i+1}

or X̃+
m = {x̃ ∈ R

m : x̃1 > x̃2 − d1,2 > . . . > x̃m −
∑m−1
i=1 di,i+1}. Since the magnetic interaction is a short

range force, one considers that microrobot (Rk) interacts
only with its two closest neighbours (Rk−1) and (Rk+1).

3 Problem statement

In system Sx, the positions p = (p1 p2) and velocities
v = (ṗ1 ṗ2) belong to a 2D space, whereas the control
input u is scalar; underactuation degree is even higher
for system Snim . Thence we face an underactuated mi-
crorobotic system with drift whose full state control-
lability has not yet been addressed in the literature,
even though partial controllability has been addressed
in Salehizadeh and Diller (2017, 2021).
Another consequence of the underactuation is that all
reference trajectories are not feasible by the micro-
robotic system. Admissible reference trajectories thus
have to be defined to solve the trajectory planning issue,
e. g. using differential flatness whenever the system is
flat or the procedure detailed in Fruchard et al. (2020).
Finally, how to synthesize a control law that stabilizes
the state x̃ along any admissible reference trajectory?
One can rely either on linear or on nonlinear approaches.
Yet, even with a single microrobot, works based on lin-
ear controllers, e.g. Tamaz et al. (2008); Mehrtash and
Khamesee (2011); Choi et al. (2010), report instabilities
and important oscillations for PID or LQR controllers
can not deal properly with nonlinear perturbated sys-
tems. Besides, in the case of a multi-agent system, the
nonlinear terms δk(x̃) in (5)-(7) depend on the inverse
fourth power of the (Rk) to (Rk+1) distances. Lineariz-
ing these terms (6)-(8) around a given trajectory will
lead to severe errors even for small position errors, so
this additional nonlinearity will further penalize robust-
ness and stability weaknesses of control laws based on
the linearized system. Amongst nonlinear approaches,
differential flatness is widely used, yet Sx is not gener-
ically linearizable by a dynamic feedback, so this ap-
proach can not apply to the generic case, as it is proven
in section 4.4. Another idea is to apply a state feedback
with a time-varying gain K(t) obtained by solving a
differential Riccati equation; however solving the latter
analytically is hardly possible. As in Olfati-Saber and
Megretski (2001), a promising approach is to find how
to map the system to normal feedback forms in order to
propose backstepping controllers.

4 Main Results

The twofold contribution addresses first a controllabil-
ity analysis for both the inertial microrobotic system Si2
and the non inertial system Snim , and then a control syn-
thesis to Lyapunov stabilize these systems along any ad-
missible reference trajectory.

4.1 System controllability

Proposition 1 System Si2 is strongly accessible and
small-time controllable around x̃ = 0 if and only if both
following conditions are satisfied:

C1 Magnetic interaction exists: (i1, j1) 6= (0, 0).
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C2 The microrobots parameters (a1, a2, d1, d2, i1, j1)
and the planned distance d1,2(t) satisfy:

4(a2−a1)
2(a1j1+a2i1)

a1a2d51,2(t)
6= (d2 − d1)(d1a2 − d2a1). (9)

Remark 1 Condition C1 clearly requires –contrary to
most previous studies– that the microrobots operate in
close vicinity. Otherwise, there is no magnetic interac-
tion, i.e. i1 = j1 = 0, leading to a noncontrollable linear
system. In such a case, the system is simply stabilizable
on a line depending on the initial condition x̃(0). More
precisely, both velocities are controllable as well as a lin-
ear combination of the microrobots positions: the system
position is stabilized on a line λx̃1 + µx̃2 = 0 instead of
the origin x̃ = 0, with λ, µ depending on x̃(0), i.e. even
point stabilization can not be achieved.

Remark 2 The microrobots must have different designs
as a consequence of conditionC2 since (9) is not satisfied
if the microrobots are identical (d1 = d2 and a1 = a2),
whatever d1,2(t). The resulting system is then not strongly
accessible and consequently not controllable. If the two
robots share the same magnetic sensitivity a, yet have
different drag coefficients di, conditionC2 is fulfilled and
the system is controllable for all d1,2(t) ∈ D ⊂ R \ {0}.

When swimming at very low Reynolds Re≪ 1, the con-
trollability result for an m non inertial microrobots un-
deractuated system is given in the following proposition.

Proposition 2 Consider (m− 1) identical microrobots
(Rk), so ǫk = εk = ǫ and αk = α, ∀k ≤ m − 1. Then
system Snim is small-time controllable around x̃ = 0 if and
only if ǫi, εi 6= 0 and the last m-th robot (Rm) satisfies
αm 6= α.

Remark 3 In the case ofm = 3 non inertial microrobots
with no common parameter, the strong accessibility Lie
rank condition dim∆C0

(x̃) = 3 is fulfilled if and only if

̟δ
(1)
1 δ

(1)
2

(

δ
(1)
1 γ1(γ1ε1 + γ2(ε1 + ǫ1))

−δ
(1)
2 γ2(γ2ǫ2 + γ1(ε2 + ǫ2))

)

6= 0
(10)

where γk = αk − αk+1, ̟ = ǫ1ε2α2 + ε1ǫ2α1 + ǫ1ǫ2α3

and δ
(1)
k (x̃) = ∂δk

∂x̃k
(x̃). Considering one non magnetic

microrobot (ǫi = εi = 0 for a given i) hinders the system
controllability so for an m = 3 non inertial microrobotic
system,C1 is unchanged, whileC2 is replaced by (10). Of
course, it is possible to satisfy (10) thanks to an appropri-
ate choice of the distances dk; nonetheless, in the generic
case considering m different microrobots, condition (10)

last factor is a degree (m−1) polynomial in δ
(1)
k (x̃) whose

solving is not straightforward. That is the reason why
Proposition 2 focuses on a simpler design consistent with
standardized microrobots contruction processes.

Remark 4 If the drag force is nonlinear e. g. because of
non-Newtonian effects, the proposed approach can still be
used considering a first order Taylor expansion approxi-
mation of the drag force, i. e. linearization along the ref-
erence trajectory. Since the partially linearized system is
controllable, then the nonlinear system is locally control-
lable.

4.2 Proof of Proposition 1

If C1 is not satisfied, nonlinear terms are removed from
(5) so ˙̃x = Ax̃+Bũ, and controllability is checked using
the Kalman rank condition. Let Γ = (B AB . . . A3B).
Then rank(Γ) = 3 < 4, so system Si2 is not fully con-
trollable: only three modes are controllable and one is
not. In closed-loop, the system poles can be placed at 0,
λ1, λ2, λ3, so the system is simply stable and ˙̃x = Aclx̃,
with e.g. distinct eigenvalues. Acl is thus diagonalizable:
there exists T = (tij) such that the diagonal matrix
D = T−1AclT first entry is null. Since Acl first two lines
are (02 I2) , then t31 = t41 = 0. Besides, since T is in-
vertible, it follows that t211+t

2
21 6= 0. Let z = T−1x̃, then

ż = Dz. As a result, it is clear that ∀t ≥ 0 z1(t) = z1(0)
and limt→∞(z2 z3 z4)(t) = (0 0 0). Since x̃ = Tz, it is
straightforward that limt→∞ x̃(t) = (t11 t21 0 0) z1(0).

The strong accessibility algebra C0 is the smallest alge-
bra that contains the control vector fields and such that
[f,C0] ⊂ C0, with [· , · ] denoting the Lie bracket oper-
ator. Let ∆C0

(x̃) = span{X(x̃) : X ∈ C0}, the strong
accessibility Lie rank condition dim∆C0

(x̃) = n = 4 is a
controllability necessary condition Nijmeijer and van der
Schaft (1990). Let ∆a = a1−a2 and ∆d = d1−d2, com-
puting the successive brackets using the adjoint notation
yields

ad1fg =















a1

a2

−d1a1

−d2a2















, ad2fg =















−d1a1

−d2a2

d21a1 + i1δ
(1)
1 ∆a

d22a2 − j1δ
(1)
1 ∆a















(11)

ad3fg =















d21a1 + i1δ
(1)
1 ∆a

d22a2 − j1δ
(1)
1 ∆a

i1δ
(1)
1 (a2(d1 + d2)− 2d1a1)− d31a1

j1δ
(1)
1 (a1(d1 + d2)− 2d2a2)− d32a2















[

ad1fg, ad
2
fg

]

=
(

0 0 i1 −j1

)T

δ
(2)
1 ∆2

a

[

ad1fg, ad
3
fg

]

=















−i1∆a

j1∆a

i1(2d1a1 − (d1 + d2)a2)

j1(2d2a2 − (d1 + d2)a1)















δ
(2)
1 ∆a

(12)
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with δ
(i)
1 = ∂iδ1

∂x̃i
1

. First, using (5b) and succes-

sive brackets (11)-(12) and higher length brakets,

span{g,
[

ad1fg, ad
2
fg

]

, ad1fg,
[

ad1fg, ad
3
fg

]

, . . .} is not

full rank only for ∆a = 0. Besides, span{adifg}i∈N

has a rank loss only if condition C2 is violated. So
dimL(f, g) < 4 when both distributions are singular,
i. e. when ∆a = ∆d = 0, and the system is thus not
accessible at 0, and consequently not controllable when
the microrobots are identical.

Now, whenC2 is fulfilled, since dim span{adifg}i∈N = 4,
then the system is strongly accessible at 0. However,
strong accessibility does not imply controllability for a
drift system since bad brackets can be an obstruction
to controllability if they are not neutralized (spanned)
by good brackets of smaller length. Bad brackets are
iterated Lie brackets containing an odd number nf of
f and an even number ng of g, like f, ad2gf, [ad

1
fg, ad

2
fg]

and so on. The length of an iterated Lie bracket X is
computed as LX = θnf + ng for some θ ∈ [0, 1]. In
the present case, f(0) = 0 and ad2gf = 0, so these bad

brackets are neutralized. The bad bracket [ad1fg, ad
2
fg] of

length Lb = 3θ+2 is neutralized by lower good brackets
(the adifg of lengthLg = iθ+1 < Lb) as long as condition

C2 is fulfilled since in such a case dim span{adifg}i∈N =
4. Longer bad brackets are also neutralized since these
lower length good brackets adifg already span the full
space.

The only case still to be clarified is controllability when
C2 is violated. In Kawski (1987) Kawski gives a new nec-
essary condition for controllability: if [ad1fg, ad

2
fg] is not

spanned by g, ad1fg, . . . , [ad
k
f , ad

3
gf ] for k ∈ N, then the

system is not small-time local controllable. It is not diffi-
cult to show using (5b) that ad2gf = 0 so [adkf , ad

3
gf ] = 0

for all k. Yet dim span{adifg}i∈N = 3 when condition

C2 is violated, so [ad1fg, ad
2
fg] /∈ span{adifg}i∈N. Con-

sequently the system is small-time local controllable if
and only if both conditions C1 and C2 are fulfilled.

4.3 Proof of Proposition 2

First note that when αm = α, adifg = 0 for i ≥ 1: the

only non null brackets in the Lie algebra L(f, g) are f
and g so its dimension is only 2 < m and hence the
system is not controllable from any point. Lengthy yet
simple induction shows that computing successively the
Lie brackets hi(x̃) = adifg(x̃) for i ≤ m − 1 using the

vector fields (7), the following properties hold for i ≥ 1:

P1: hij(x̃) = 0, ∀j ≤ m− i− 1;

P2: him(x̃) = − εm−1

ǫm−1

∑m−1
j=1 hij(x̃) for any x̃ provided

that m ≤ 3 and at x̃ = 0 for any m;

P3: him−i(x̃) = (−1)i+1ǫm−1ǫ
i−1(α−αm)

i
∏

k=1

δ
(1)
m−k(x̃).

The dimension of the resulting strong accessibility alge-
bra is thusm as long as detC = det ad0fg, . . . , ad

m−1
f g 6=

0. Using properties P1-P2 and adding to the last row of
C the sum of all other rows weighted by εm−1

ǫm−1
yields:

detC =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α 0 . . . hm−1
1

...
... ⋆

α 0 h2m−2 ⋆

α h1m−1 ⋆ ⋆

s 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(13)

with s = αm + (m − 1)α εm−1

ǫm−1
. Using the Laplace ex-

pansion along the last row, it follows that detC =

(−1)m+1+
(m−1)(m+2)

2 s
∏m−1
i=1 him−i so property P3 yields

detC =
(

ǫm−1αm + εm−1(m− 1)α
)

(αm − α)m−1

ǫ
(m−1)(m+2)

2 ǫm−2
m−1

m−1
∏

i=1

δ
(1)
i

i
.

(14)

Since ǫm−1εm−1 ≥ 0 and the δ
(1)
i (x̃), i ≤ m− 1, do not

cancel on X̃m, controllability thus requires a non null
magnetic interaction, and also requires that αm 6= α.

4.4 Lyapunov stabilizing controller

The proposed approach consists in two parts: first diffeo-
morphims mapping systems Si2 and Snim to normal forms
Si are exhibited depending on the parametric values, so
the control synthesis for these normal forms then pro-
vides a Lyapunov stabilizing controller for the original
systems Si2 and Snim full state in any case. In the sequel,
A denotes a matrix in prime form, F and G are vector
fields whose only last component is not null, and Lifh
denotes the i-th Lie derivative of h along f .

Lemma 1 Let cases A, B and C denote the parametric
sets (a1 6= a2, d1 = d2), (a1 = a2, d1 6= d2) and (a1 6= a2
and d1 6= d2) of S

i
2, respectively. Let j ∈ {A,B,C}, i = 4

for cases A and B, i = 3 for case C and























hA = hC : x̃ 7→ a2x̃1 − a1x̃2

hB : x̃ 7→ d1x̃1 − d2x̃2 + x̃3 − x̃4

zk = φjk(x̃) = Lk−1
f hj(x̃), k ≤ i

ξ = φC4 (x̃) = x̃1 − x̃2

(15a)

(15b)

(15c)

(15d)

On X̃ , under controllability conditions of Proposition 1,
the diffeomorphims φA and φB map (5) to a pure feedback
form S1 : ż = Az + F (z) + G(z)ũ in cases A and B,
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with i = 4. In the generic case C, the diffeomorphism φC

defined for i = 3 maps (5) to

(S2)

{

ż = Az + F (z, ξ) +Gũ

ξ̇ = fξ(z, ξ)
(16)

Besides, S2 is a minimum phase system with respect to
the origin (z, ξ) = 0 provided that

a1 − a2
d2 − d1

(a2i1 + a1j1) > 0. (17)

The Lemma proof is given in Appendix A.

Remark 5 In the particular cases A and B of Lemma 1,
the system is differentially flat with a flat output y = h(x̃)
in (15a) and (15b). However, the system is not gener-
ically flat since it requires that the distributions ∆0 =
span{g} and ∆i+1(x̃) = span{∆i, [f,∆i]}(x̃) are involu-
tive, i.e. stable by Lie bracketing. Using the vector fields
given by (5b) and their brackets (11)-(12), it is not dif-
ficult to show that ∆2(x̃) is involutive only in cases A or
B. It is possible to propose a control law synthesis –and
even a trajectory planning– using differential flatness in
either case, yet we would rather present a control synthe-
sis encompassing all possible cases, i.e. A, B or C.

Lemma 2 Provided that the controllability condition of

Proposition 2 is satisfied, let δ
(i)
k (x̃) = ∂iδk

∂x̃i
k

(x̃) and















h(x̃) = −[(m− 2)εm−1α+ ǫm−1αm]x̃1

+αεm−1

∑m−1
i=2 x̃i + αǫm−1x̃m

zi+1 = Lifh(x̃), i = 0, . . . ,m− 1,

(18)

then system Snim is mapped to a pure feedback form S1:
ż = Az + F (z) +G(z)ũ with A in prime form and F,G
whose only non null entry is the last one with

Gm(z) = ǫm−2ǫm−1[(m− 1)εm−1α+ ǫm−1αm]

(α− αm)
m−1
∏

i=1

δ
(1)
i 6= 0, ∀x̃ ∈ X̃m.

(19)

The proof of this Lemma is deferred to Appendix B.

Proposition 3 Let
(

xr(t), ur(t)
)

denote any admissible

C1 trajectory and the associated reference control input
for Si2 or S

ni
m . Provided that assumptions of Propositions

1 and 2 are fulfilled for systems Si2 and Snim , respectively,
the control law u = κi(z, ξ) given by

κi(z, ξ) = ur(t)−G−1
i (z)

(

Fi(z, ξ) +
i

∑

j=1

cji+1zj

)

(20)

ensures the semiglobal exponential stability of the origin
for any initial bounded state x̃(0) ∈ X̃0 where cji are
constants recursively defined for gains kj > 0 by:

{

cii = 1, c1i+1 = kic
1
i + c1i−1, c

i
i+1 =

∑i
j=1 kj

cji+1 = kic
j
i + cj−1

i + cji−1, j ∈ [2, i− 1]
(21)

with a connected set X̃0 ⊂ X̃ and i = 4 for system Si2
in cases A and B, i = 3 for system Si2 in case C, and

X̃0 ⊂ X̃m and i = m for system Snim , respectively.

4.5 Proof of Proposition 3

For system Si2, the backstepping procedure is iterated
from step 1 to step i = 4 on system S1 in cases A and B,
and up to i = 3 and using the minimum phase property
proven in Lemma 1 for system S2 in case C. For system
Snim , the procedure is iterated up to step i = m.

1. Differentiating a first candidate Lyapunov function
V1 = 1

2z
2
1 leads to V̇1 = z1z2. Set z̄1 = z1 and

z̄2 = z2 + k1z1 =
∑2
r=1 c

r
2zr with k1 > 0 results in

V̇1 = −k1z̄
2
1 + z̄1z̄2, with c

1
2 = k1, c

2
2 = 1 from (21).

The last term is counterbalanced at next step.
2. Let V2 = V1 +

1
2 z̄

2
2 denote a second candidate Lya-

punov function. From z̄2 definition and using the
normal form of systems ż = Az + F (z) +G(z)ũ, it

follows that ż2 = z3+k1z2 so V̇2 = −k1z̄
2
1+ z̄2(z1+

k1z2+ z3). Let k2 > 0 and set z̄3 =
∑3
r=1 c

r
3zr with

cr3 given by (21), then we obtain

V̇2 = −k1z̄
2
1 − k2z̄

2
2 + z̄2z̄3 (22)

j. At step j ≤ i− 1, define Vj = Vj−1 +
1
2 z̄

2
j , where

z̄j =

j
∑

r=1

crjzr (23)

with crj given by (21). From steps 1 to j−1 we have

V̇j−1 = −

j−1
∑

r=1

kr z̄
2
r + z̄j−1z̄j . (24)

Since, using (21), ς = z̄j−1 + ˙̄zj + kj z̄j simplifies as

ς = (c1j−1 + kjc
1
j )z1 +

j−1
∑

r=2
(crj−1 + kjc

r
j + cr−1

j )zr

+(kjc
j
j + cj−1

j )zj + cjjzj+1 = z̄j+1,

(25)
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then, (23), (24) and (25) yields

V̇j = −
j
∑

r=1
kr z̄

2
r + z̄j(z̄j−1 + ˙̄zj + kj z̄j)

= −
j
∑

r=1
kr z̄

2
r + z̄j z̄j+1.

i. At final step i, we have to discriminate between
systems Snim and Si2 in special cases A and B on the
one hand, and Si2 in the generic case C on the other
hand.

In the former case, żi = Fi(z) + Gi(z)ũ with
i ∈ {4,m} for system Si2 in special cases A and
B, and for system Snim , respectively. Since ˙̄zi =
∑i−1
r=1 c

r
i zr+1 +Fi(z) +Gi(z)ũ, differentiating Vi =

Vi−1 +
1
2 z̄

2
i leads to:

V̇i = −
i−1
∑

r=1
kr z̄

2
r + z̄i(z̄i−1 +

i−1
∑

r=1
cri zr+1

+Fi(z) +Gi(z)ũ).

(26)

Using (23) for both j = i−1 and j = i in (26) yields

V̇i = −
i−1
∑

r=1
kr z̄

2
r + z̄i

(

c1i−1z1 +
i−1
∑

r=1
(cri−1

−cr−1
i )zr + ci−1

i zi + Fi(z) +Gi(z)ũ
)

.
(27)

Then, since Gi given by either (A.3), (A.5) or (19)

is a never vanishing function on X̃0, using (20) in

(27) and (21) again thus results in: V̇i =
∑i
r=1 kr z̄

2
r .

Hence we obtain the exponential stability of z̄
from V̇i being negative definite. Since z and z̄ are
linearly related, and since (15)-(18) define diffeo-
morphisms, it follows that z = 0 and hence x̃ = 0
are exponentially stable.

In the latter case, i = 3 and the error system is
diffeomorphic to S3. Thus, we have ż3 = F3(z, ξ) +

G3ũ, so that z̄3 =
∑3
r=1 c

r
3zr dynamics are ˙̄z3 =

c13z2+c
2
3z3+F3(z, ξ)+G3ũ and differentiating V3 =

V2 +
1
2 z̄

2
3 with V̇2 given by (22) leads to

V̇3 = z̄3(z̄2 +
2

∑

r=1

cr3zr+1 + F3 +G3ũ)−
2

∑

r=1

kr z̄
2
r .

Note that G3 given by (A.6) is a non null constant,

so choosing the control law ũ = −G−1
3

(
∑3
r=1 c

r
4zr+

F3(z, ξ)
)

with some positive gain k3 using (21) thus
ensures:

V̇3(z) = −k1z
2
1 − k2z̄

2
2 − k3z̄

2
3 . (28)

In this generic case C for system Si2, i.e. when
d1 6= d2 and a1 6= a2, the system state is (z, ξ).

We have proved that the function V̇3(z̄) is negative
semi-definite, hence the manifold Z = {(z, ξ) ∈
R

3 × R : z = 0} is exponentially stable. Along
this set, the system evolves on the zero dynamics
ξ̇ = fξ(0, ξ). We have shown in Lemma 1 that the
only zero dynamics stable equilibrium point was
ξ∗a = 0. Using (15d), it results in the asymptotic
stability of Sx̃ around zero.

5 Simulation results

Table 1
Inertial Microrobots Parameters
Parameter [unit] Symbol Case A Case B Case C

Robots radius [10−6m] r1 200 200 200
r2 200 80 100

Ferromagnetic ratio τ1 0.85 0.85 0.85
τ2 0.025 0.15 0.1

Wall effect ratio β1 0.724 0.724 0.724
β2 0.724 0.888 0.860

Control parameter a1 212.72 212.72 212.72
[A.m2.s−2] a2 6.25 212.72 25.02

Drag parameter d1 158.2 158.2 158.2
[s−1] d2 158.2 4569.7 532.7

Interaction parameter i1 1.84 0.706 0.920
[10−10m5.s−2] j1 1.84 62.5 7.55

Table 2
Physiological values in an ovarian artery
Parameter [unit] Symbol Value

Blood viscosity [Pa.s] η 7 10−3

Vessel radius [m] R 1.5 10−3

Mean blood velocity [m.s−1] a0 −70 10−3

Amplitude of the blood pulse [m.s−1] a1 9 10−3

Pulse [rad.s−1] ω 2π
Phase of the blood pulse [rad] φ 0

The effectiveness of the proposed approach is illustrated
first on an inertial two-agent microrobotic system Si2,
considering the three different classes of designs A, B
and C. The two inertial microrobots (R1) and (R2) pa-
rameters are given in Table 1. Then a non inertial mi-
crorobotic system control is considered, for 5 non iner-
tial robots (Rk), whose parameters are given in Table 3
for Re≪ 1. Magnetic material is the same for all robots
withM = 1.72 106A.m−1. Parameters are such that the
inertial and non inertial systems Si2 and Sni5 are control-
lable according to Propositions 1 and 2, respectively.

The pulsatile blood velocity is modeled using the Wom-
ersley model Womersley (1955) which results in a trun-
cated Fourier series approximation. To be consistent
with the vessel radius and simplify the study but with-
out loss of generality, a first-order truncated Fourier
series is considered

vf (t) = a0 + a1 cos (ωt+ φ) (29)
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Table 3
Non Inertial Microrobots Parameters, k ≤ 4, j ≤ 3

Parameter [unit] Symbol Value

Robots radius [m] (rk, r5) (2.5, 5) 10−6

Ferromagnetic ratio (τk, τ5) (0.1, 0.85)
Wall effect ratio (βk, β5) (0.86, 0.724)
Control parameter (αk, α5) (0.041, 1.176) 10−3

[A.m2.s−1]
Interaction parameters (ǫj , εj) −(2.78, 2.78)10−22

[m5.s−1] (ǫ4, ε4) −(1.89, 79.46)10−20

Table 4
Physiological values in an eye arteriole
Parameter [unit] Symbol Value

Blood viscosity [Pa.s] η 5 10−3

Vessel radius [m] R 35 10−6

Mean blood velocity [m.s−1] a0 −2 10−3

Amplitude of the blood pulse [m.s−1] a1 0.1 10−3

Pulse [rad.s−1] ω 2π
Phase of the blood pulse [rad] φ 0

with a negative mean value so that the microrobots have
to swim against the flow. The physiological datas are
given in Tables 2 and 4 for a small artery and an arteriole.

5.1 Inertial Microrobots Si2

In the following simulations, the Reynolds number lies in
the range [0; 2.5] so inertial effects can not be neglected.
The microrobot (R1) is the same in the three simula-
tions, whilst the parameters of the second microrobot
are modified in each simulation (see Table 1) so as to
illustrate the two special cases A and B, and lastly the
generic case C. Initial condition is given by

x0 =
(

0.005 −0.0025 0 0
)T

∈ X+. (30)

The admissible reference trajectories are computed us-
ing Fruchard et al. (2020) for the same given desired dis-
tance d1,2. With parameters from Table 1, initial condi-
tions on xr(t) are given in Table 5.

Table 5
Inertial Microrobots: Planning & Control Parameters
Parameter Symbol Case A Case B Case C

Control gains k1 40 10 300
k2 5 850 5
k3 20 400 1
k4 5 10 −

Reference
distance [m]

d1,2 2 10−3 2 10−3 2 10−3

Reference
state

xr0









0
−0.002

0
0

















0
−0.002
0.014
0.014

















0
−0.002

0
0









5.1.1 First simulation Case A

In this configuration, the microrobots have the same ra-
dius and density, and are consequently equally affected
by the drag force since d1 = d2. However, the first one
has a high ferromagnetic ratio contrary to the second
one which is mainly composed of a therapeutic load.
Figure 2a illustrates the convergence of both positions
and velocities of the two microrobots to their references
after a 2 s long transient phase. During this phase, the
control effort is high to bring the system along the admis-
sible reference. The (R1) to (R2) distance, initially set to
7.5 mm, quickly reduces to 1.4 mm before stabilizing at
the desired distance d1,2. The nonlinear magnetic inter-
action term δ1(x̃) depends on that distance and severely
impacts the system dynamics. To overcome themagnetic
interaction which increases as the robots get closer down
to 1.4 mm, the control input depicted on Figure 2c has
an overshot during the first 0.1 s though not reaching
saturation. The system error depicted on Figure 2b is
then stabilized to zero. The control input is depicted in
Figure 2c: saturation is not reached and the input tends
to 0.114 T.m−1. To follow the same trajectory, had the
first microrobot been alone, it would have required only
a fifth of the control effort (around 0.025 T.m−1); but
if the second microrobot had been alone, the control in-
put would have reached 0.835 T.m−1, i.e. far beyond the
actuator limitations, because of its very poor ferromag-
netic ratio. The present simulation thus illustrates the
interest in using the first robot to tow the second one
by taking advantage of the interaction magnetic force to
relax the control effort.

5.1.2 Second simulation Case B

In the special case B, the microrobots share the same
magnetic sensitivity a to the control input but have not
the same drag coefficient since the second microrobot is
far smaller than the first one.
The control input reaches both the upper and lower sat-
urations for t ≤ 0.04 s, as can be noticed on Figure 2f.
Saturation events do not impact severely the tracking
and the control effort is far smaller than in case A over
this period. However, contrary to the previous simula-
tion, the robots distance does not go below 1.6 mm so
the interaction force remains small, what explains why
the control effort in case B is smaller than in case A con-
sidering the first 0.2 s, despite the initial saturations.
After a 1 s long transient phase, Figure 2e shows that
the error is stabilized to zero.

5.1.3 Third simulation Case C

This simulation illustrates the generic situation where
the microrobots have no common parameter d nor a.
Table 1 shows that microrobot (R2) is chosen so as to
satisfy condition (17) of Lemma 1, e.g. having less mag-
netic material and a higher drag parameter than the first
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Fig. 2. From top to bottom: simulations for two inertial microrobots Si
2 in cases A, B and C, and simulation for 5 non inertial

microrobots Sni
5 . (a), (d), (g): Microrobots (R1) and (R2) positions (x1, x2) and velocities (x3, x4) are depicted in black, blue,

green and red solid lines, their reference trajectories are depicted in dashed lines; (j): Microrobots positions (solid lines) and
reference trajectories (dotted lines) for robots (R1), (R2), (R3), (R4) and (R5) are depicted in black, blue, green, cyan and
red lines, respectively. (b), (e), (h): State of the error system Si

2; (k): State of the error system Sni
5 . (c), (f), (i), (l): the single

control input of the systems with saturations ±0.4 T.m−1 depicted in red dash-dotted lines.
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robot, so that the error system is a minimum phase sys-
tem with respect to the origin.
The simulation is quite similar to the previous one, ex-
cept that the saturation occurs only at t = 0 s (see Fig-
ure 2i). The control input stabilizes the setZ = {(z, ξ) ∈
R

3 × R : z = 0} within 3 seconds and the internal state
ξ = x̃1 − x̃2 is stabilized due to the minimum phase
property. The distance between the two microrobots is
given by ξ + d1,2. Since ξ is not directly controlled, this
distance grows quickly to 20 mm thus inducing a far re-
duced magnetic interaction between the robots, before it
converges to the desired d1,2 = 2 mm value, as depicted
in Figure 2g.

5.2 Non Inertial Microrobots Sni5

Table 6
Non Inertial Microrobots: Planning & Control Parameters

Parameter Symbol Value

Control gains k
(

5 6 15 19 4
)T

Reference dis-
tances [m]

di,i+1 −
(

50 42 38 101.6
)T

10−6

Reference
state [m]

xr0 −
(

231.6 130 92 50 0
)T

10−6

In arterioles, the radius and the relative velocity of the
microrobots in the blood are smaller (see Table 4, re-
sulting in a Reynolds number Re ≈ 2 10−3 ≪ 1 for
the biggest microrobot (R5) and twice smaller for (Rk),
k ≤ 4. The microrobots inertia can be neglected and
the 5-agent system is well modeled by a non inertial
system Sni5 . We consider a 5-agent system where the
leader (R5) is highly magnetized as can be noticed in
Table 3. Thus, thanks to the attractive magnetic inter-
action, (R5) tows the four smaller and mainly payload
filled identical microrobots (Rk), k ≤ 4, along a pre-
planned trajectory computed using reference distances
dk,k+1 and initial state xr0 given in Table 6. The con-
trol input is computed using Lemma 2 and Proposition
3 with gains of Table 6. The system state x0 is initial-
ized at (xr0 − 25.10−6) m ∈ X−

m .
Since the initial error is important and because of the un-
deractuation constraints on the system, the microrobots
have to manoeuver to reach the planned trajectory as
depicted in Figure 2j. During the transient phase, Fig-
ure 2k shows that the (R5) position error x̃5 peaks up
to nearly 4 µm despite a stricly decreasing Lyapunov
function. Indeed, the choice of a small gain k5 makes it
possible to use mainly the leader as a degree of freedom
to manoeuver the followers: (R5) is highly attractive for
(R4) so this attraction dominates the system dynam-
ics. Besides, since (R5) contains more magnetic mate-
rial, it is more sensitive to the magnetic actuation than
other robots and the strategy is here to stabilize x̃5 after
all other states have converged. During the first 0.2 s,
(R4) is highly attracted by (R5), so error x̃4 decreases,
which in turn attracts (R3) along the reference trajec-
tory. Then, due to the increasing distance between (R5)

and (R4), the resulting magnetic interaction on (R4) be-
comes negative til 0.4 s, so (R4) is attracted by (R3)
whilst the control input changes sign to bring back (R5)
closer to the other robots. Figure 2l illustrates the con-
trol input: on the very beginning, u < 0 which may seem
counter-intuitive since x̃k < 0, yet since (R5) is the more
reactive robot it reduces the distance between (R5) and
(R4) while not affecting too much other robots, thus in-
ducing a strong attraction on (R4) to recover the planned
trajectory. The next manoeuver is clearly visible during
the interval [0.2; 0.4] swhen u sign changes to bring back
(R5) after peaking. After 1 s, there is no more manoeu-
ver and the tracking convergence looks like the track-
ing of a fully actuated system. Finally, u converges to
ur ≈ 0.1Tm−1 where the control input mainly compen-
sates for the pulsatile blood flow. It is worth mentioning
that controlling a single microrobot of type (Rk), k ≤ 4,
along the same trajectory would have required a 300 big-
ger control effort (more than 29Tm−1) than used here
to control five microrobots simultaneously.

6 Discussion and conclusion

The present paper has presented a controllability anal-
ysis and a novel approach to synthesize control laws
aiming at Lyapunov stabilizing the trajectory of mag-
netic microrobots navigating in a blood vessel using
the same single control input. To this end, a sufficient
and necessary controllability condition is given for this
nonlinear underactuated system with drift, which was
lacking in the existing literature. In particular, micro-
robots have to both operate in close vicinity and be
designed carefully. A unified Lyapunov stabilizing con-
trol law has then been proposed, with concerns about
the possible configurations of the microrobotic system.
This control synthesis relies on a two steps method: the
system is first proven to be diffeomorphic to different
nonlinear canonical forms, and a backstepping synthe-
sis coupled with a zero dynamics stability analysis is
proposed. Simulations have highlighted the interest in
using the magnetic interaction so that one of the micro-
robots can pull or push the other ones, thus reducing
the control efforts required to propel the latter.

Further perspectives, which are currently under investi-
gation, are threefold. First, since therapeutic goals may
require that the system has to follow a non admissible
trajectory, it would be interesting to analyze under what
conditions –at least practical– stabilization can be en-
sured. Another key point for the control of multiple mag-
netic microrobots, which has not yet been addressed in
the nonlinear case except in Sun et al. (2019), is the syn-
thesis of observers in order to propose stabilizing output
feedbacks. Lastly, biophysical systems are unlikely to be
free from parametric and modeling errors. For instance,
in the present paper, the blood velocity is supposed
known whilst it is likely that this information is hardly
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accessible to measurement, thus implying errors in its
amplitude, number of harmonics, or frequency. Ongoing
work is thus led to ensure stability despite these uncer-
tainties, an issue that we have already addressed for a
single microrobot using either adaptive approach Arcese
et al. (2013) or state estimation in Sadelli et al. (2017).
Our recently developed low-power high gain observer for
fluid mechanics application Ahmed et al. (2020) is also
promising for estimation of the blood flow despite an un-
known blood pulse and inherent possible observability
defects.
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A Proof of Lemma 1

Under conditions C1 and C2, it has been shown from
(5b), (11)-(12) that dim spani=0..3{ad

i
fg}(0) = 4. Now

let us seek for a function h whose differential is a basis
of the annihilator of ∆ = spani=0..2{ad

i
fg}(x̃):

dh
(

g adfg ad
2
fg

)

(x̃) = 0. (A.1)

If such a function can be exhibited, then choosing zi+1 =
Lifh(x̃) maps Si2 to the pure feedback form S1. Let hi =
∂h
∂x̃i

(x̃), (A.1) first equation leads to:

a1h3 + a2h4 = 0, (A.2)

that is h(x̃1, x̃2, a2x̃3−a1x̃4). Solving the last two equa-
tions of (A.1) will depend on the system parameters.

1 If d1 = d2, i. e. in case A, using (A.2), the second
equation of (A.1) gives a1h1 + a2h2 = 0, and us-
ing (A.2) in the third equation of (A.1) leads to
h3 = 0. One then deduces that h depends only
on (a2x̃1 − a1x̃2). Besides, the choice (15a) yields
∣

∣

∣

∂z
∂x̃

∣

∣

∣ = −(a1 − a2)
2(a2i1 + a1j1)δ

(1)
1

2
(x̃) 6= 0 since

δ
(1)
1 is a non-vanishing function on any compact.
(15a)-(15c) thus defines a diffeomorphism mapping
Si2 on S1. Note that, in this particular case, the sys-
tem controllability is ensured only if a1 6= a2 so as
to satisfy condition C1. A straightforward differen-
tiation yields:

F4(z) = −d1z4 −
(

(d1(x̃4 − x̃3)− (i1 + j1)δ1)δ
(1)
1

+ (x̃3 − x̃4)
2δ

(2)
1

)

(a2i1 + a1j1)

G4(z) = −(a2i1 + a1j1)(a1 − a2)δ
(1)
1 .

(A.3)

2 If d1 6= d2, using (A.2), (A.1) second equation yields
a1h1 + a2h2 − a1(d1 − d2)h3 = 0 which, combined
with (A.2) in (A.1) last equation gives:

(

− a1d1 + a1(d1 + d2) + γ
δ
(1)
1 (x̃)

a2

)

h1

= −
(

− a2d2 + a2(d1 + d2) + γ
δ(

(1)
1 x̃)

a1

)

h2
(A.4)

with γ = (a1−a2)(a2i1+a1j1)
(d1−d2)

. Now let solve the par-

tial differential equations inherited from (A.4):

∂h
∂x̃1

= a2d1 + γ
δ
(1)
1 (x̃)

a1
, ∂h
∂x̃2

= −a1d2 − γ
δ
(1)
1 (x̃)

a2
.

It is not difficult to show, e.g. by a proof by contra-
diction, that dh is an exact differential form if and
only if a1 = a2 = a since it leads to γ = 0. So, for
case B, one infers that h is given by (15b). Let ι =

i1+j1, since
∣

∣

∣

∂z
∂x̃

∣

∣

∣
= −(d2−d1)

2(i1+j1)
3δ

(1)
1

3
(x̃) 6=

0, the diffeomorphism (15b)-(15c) maps Si2 to the
feedback normal form S1 with:

F4(z) = −ι[d21x̃3 − d22x̃4 −(d1i1 + d2j1)δ1]δ
(1)
1

+ ι(x̃3−x̃4)
(

3(d2x̃4 − d1x̃3 − ιδ1)δ
(2)
1

(x̃3−x̃4)
2δ

(3)
1 + ιδ

(1)
1

2)

G4(z) = −ιa(d2 − d1)δ
(1)
1 .

(A.5)

3 In the generic case C, d1 6= d2 and a1 6= a2. In
the light of the foregoing analysis, there exists no
transformation mapping Si2 into the pure feedback
form. However, the choice of h as in (15a) yields by
differentiation to S2 with:

F3(z, ξ) = d21a1x̃3 − d22a2x̃4 + νδ1

−(a2i1 + a1j1)(x̃3 − x̃4)δ
(1)
1

G3 = a1a2(d2 − d1)

fξ(z, ξ) = (a1d2−a2d1)z2+∆a(z3+(a2i1+a1j1)δ(ξ))
a1a2(d2−d1)

(A.6)

where ∆a = a1 − a2 and ν = d1a2i1 + d2a1j1.

Since
∣

∣

∣

∂z,ξ
∂x̃

∣

∣

∣ = a1a2(a1 − a2)(d2 − d1) 6= 0 from

(15d), then (15a) and (15c)-(15d) define a global
diffeomorphism.

Now let us study the zero dynamics of the system
S2, i.e. ξ̇ = fξ(0, ξ). From (15a)-(15d), it is clear
that:







z1 = a2x̃1 − a1x̃2, z2 = a2x̃3 − a1x̃3

z3 = −d1a2x̃3 + d2a1x̃4 − (a2i1 + a1j1)δ1(x̃).
(A.7)

Recall that δ1 : ξ 7→ 1
(ξ+d1,2(t))4

− 1
d41,2(t)

and set
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z = 0, it follows from (A.6)-(A.7) that:

fξ(0, ξ) =
(a1 − a2)(a2i1 + a1j1)

a1a2(d2 − d1)

(

1
(ξ+d1,2)4

− 1
d41,2

)

.

The equilibrium points of the zero dynamics are
thus given by ξ∗a = 0 and ξ∗b = −2d1,2. Linearizing
the last equation of S2 along z = 0, ξ = ξ∗ gives:

ξ̇ = −
4(a1 − a2)(a2i1 + a1j1)

a1a2(ξ∗ + d1,2(t))5(d2 − d1)
ξ, (A.8)

so that the equilibrium points ξ∗a and ξ
∗
b are respec-

tively asymptotically stable and unstable provided
that (17) is satisfied. So S2 is a minimum phase sys-
tem with respect to the equilibrium point (z, ξ) = 0
under the aforementioned condition.

B Proof of Lemma 2

If the assumptions of Proposition 2 are fulfilled, sys-
tem Snim is small-time controllable. As in the previous
proof, to simplify the control synthesis, a diffeomorphism
mapping system Snim to a pure feedback form is sought.
Searching for a function h whose differential is a basis
of ∆ = spani=0..m−2{ad

i
fg} annihilator leads to (m− 1)

relationships using the first (m−1) columns of (13). Let
hi denote the partial differential of h with respect to x̃i.
Due to the triangular form of the adifg(x̃), one proceeds
recursively as follows:

• Using the second relationship dh adfg(x̃) = 0
that involves only hm−1 and hm, since (α −

αm)δ
(1)
m−1(x̃) 6= 0 on X̃m, one gets a first integral

w1(x̃) = x̃m−1 +
ǫm−1

εm−1
x̃m. So h is invariant on the

foliation w1 being constant.
• Let hw1

= ∂h
∂w1

. Since dh ad2fg(x̃) = 0 involves only

hm−2 and hw1
, and δ

(1)
m−2(x̃) 6= 0 on X̃m, another

first integral is given by w2(x̃) = x̃m−2 + w1 so
h(x̃1, . . . , x̃m−3, w2).

• At step i < m, i-th equation dh adifg(x̃) = 0 de-

pends only on hm+1−i and hwi−2
where wj(x̃) =

x̃m−j + wj−1, ∀j ≤ i− 2. Hence one deduces from

δ
(1)
m+1−i(x̃) 6= 0 that h(x̃1, . . . , x̃m−i, wi−2).

• Lastly, using the first relationship dh ad0fg(x̃) = 0

and the fact that δ
(1)
1 (x̃) never cancels on X̃m, it

follows that h depends only on wm−1(x̃) = −
(

(m−

2)αεm−1 + αmǫm−1

)

x̃1 + αεm−1wm−2.

Consequently, defining h and z as in (18) results in a
pure feedback system S1 with Fm = Lmf h(x̃). The map-
ping ψ : x̃ → z is characterized by a jacobian matrix
whose determinant is computed adding all columns in
the second one, then factorizing on line 2 ≤ j ≤ m−1 by

ǫj−1((m−1)εm−1α+ǫm−1αm) and performing a Laplace
expansion along the second column to get a lower trian-
gular matrix. The Jacobian is then easily computed as:

∣

∣

∣

∂ψ(x̃)
∂x̃

∣

∣

∣
= (−1)m(αm − α)̺m

m−1
∏

i=1

δ
(1)
i

m−i
,

̺m =
(

(m− 1)εm−1α+ ǫm−1αm
)m−1

ǫ
(m+1)(m−2)

2 ǫ2m−1.

By controllability assumption in Proposition 2, ̺m 6= 0,

and since the partial derivatives δ
(1)
i do not cancel on X̃m,

ψ is a diffeomorphism. For the same reasons, it follows
that Gm, obtained by induction as (19), is non null on

X̃m, and hence can be inverted.
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