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Abstract

This article focuses on the class of linear systems coupled with a nonlinearity satisfying a sector bound or a monotonic
condition. First, we present a set of sufficient conditions based on Linear Matrix Inequalities (LMIs) to establish if
such a system defines a contraction. Then, we propose a contractive state-feedback control law designed via the use of
LMIs which may include nonlinear terms. Furthermore, the design is extended to the case in which an integral action is
included in order to achieve constant output regulation. Following a similar approach, the design of contractive observers
for the aforementioned class of systems is also considered. Finally, based on previous conditions, we establish a new
nonlinear separation principle in which the feedback and the observer gains may be designed independently. Throughout
the paper, we illustrate our results by means of practical examples.

Keywords: Contraction, incremental stability, nonlinear systems, LMIs, sector bound, monotonic, integral action,
observers, separation principle.

1. Introduction

In many control applications, it is of primary importance
to guarantee some convergence properties of any two tra-
jectories. This is the case, for instance, of observers design
[1–3], synchronization problems [4–7], or output regulation
[8–10]. Such a property has been defined and characterized
in the literature in several different manners: incremental
stability [3, 11–16], convergence [9, 17] or quadratic stabil-
ity [18].

In this work, we consider the notion of incremental sta-
bility, also usually referred as contraction [19]. The prob-
lem of designing a control feedback achieving incremental
stability for the closed loop is not new in literature. We can
divide the existing techniques in three classes. The first
group considers design tools that are specific for a particu-
lar class of systems. Among them, we recall, for instance, a
backstepping control design proposed in [20] for systems in
strict feedback form, a piece-wise approximated controller
for Lur’e systems [21] and a forwarding control design in [8]
for systems in feed-forward form. Controllers within this
first class, usually provide sufficient tractable conditions to
achieve closed-loop incremental stability properties. How-
ever, they can be applied only to specific classes of systems.
The second class of controllers is the one that considers dif-
ferent notions than the one of incremental stability, such as

?This work was supported in part by the ANR Labex CIMI
(grant ANR-11-LABX- 0040) within the French State Programme
“Investissement d’Avenir” and ANR project HANDY, number ANR-
18-CE40-0010.

control designs achieving convergence [9, 17] or quadratic
stability [18]. These notions are similar but different to the
one of incremental stability, see [17]. Therefore the exist-
ing designs may be applied to have incremental properties,
but each case has to be carefully addressed. The last class
of control designs makes use of optimization-based tools
to compute the solution, see e.g. the control contraction
metric approach in [22]. These designs are applicable to
more general classes of systems, with the drawback that
they usually require the solution to an on-line optimiza-
tion problem. Recently, this disadvantage has been han-
dled by means of Neural Network-based tools, see [23]. If
this allows to reduce the quantity of on-line computations
needed, it usually reflects in a loss of stability guarantees
that an analytic solution may provide.

In this paper, we focus on the design of feedback laws for
the class of nonlinear systems that can be described by a
combination of linear dynamics with a nonlinear term sat-
isfying a sector bound or monotonic condition. In other
words, the results presented in this work belong to the
first group of solutions considered above. This class of
systems is of relevant practical interest since several real-
life engineering systems can be modeled in a such way,
see [24–28] and references therein. Differently from the
Lyapunov based approaches in [11, 12] or the logarith-
mic norm approach in [14, 16], in order to establish the
desired contractivity properties we follow the framework
based on metric analysis [13, 29]. In particular, following
[3, 13], we look for the existence of a Riemannian met-
ric for which the distance between different trajectories of
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the closed loop system is monotonically decreasing in for-
ward time. By supposing that such a Riemannian metric
is Euclidean, sufficient conditions based on linear matrix
inequalities (LMIs) are then derived. This allows to obtain
easy-to-check and easy-to-compute conditions that apply
to a class of systems whose state-space model description
is frequent in many practical cases.

With respect to the existing literature, we provide the
following results. First, we present sufficient conditions
based on LMIs to state if an autonomous system defines a
contraction and a state-feedback control design achieving
incremental stability for the closed loop. This first set of
results sums up our preliminary work [4]. Then, we ap-
ply the proposed conditions to the design of a contractive
integral action law, that is able to achieve global output
regulation in presence of constant perturbations and ref-
erences, see, e.g., [8, 10]. We then focus on the problem
of contractive observer design. To this end, we first show
how to design a contractive observer following the struc-
ture proposed in [2]. The gains of the observer are obtained
via some LMI conditions. Finally, we establish a nonlinear
separation principle. Under some mild conditions, if both
contractive state-feedback and observer gains are designed,
we can derive an output-feedback law by simply replac-
ing the state with its estimate. Such an output-feedback
law guarantees the origin to be globally exponentially sta-
ble. It is important to emphasize that the design of the
feedback and of the observer can be made independently
and doesn’t need to satisfy any time-scale separation, con-
trarily to most of results in nonlinear systems (see, e.g.,
[30–32]).

The paper is structured as follows. Section 2 provides
some sufficient conditions in terms of LMIs to ensure that
the flow of an autonomous system defines a contraction.
In Section 3, such LMI conditions are employed to design
a state-feedback control law ensuring contractivity of the
closed-loop system dynamics. In Section 4, we apply such
conditions to design a contractive integral action. Sec-
tion 5 is devoted to design of contractive observers. The
design of output feedback control laws and a new nonlinear
separation principle are presented in Section 6. Conclu-
sions are drawn in Section 7. Examples are presented at
end of each section in order to illustrate the main results
of the paper and the feasibility of the presented LMIs.

Notation. The identity matrix is denoted by I. For
any matrix A, A> denotes its transpose matrix and, for
square matrices, He{A} := A + A>. For symmetric posi-
tive matrices, ? denotes the symmetric component of the
matrix. Given two square matrices A,B, we indicate with
blkdiag{A,B} the block-diagonal matrix which hasA and
B in the main diagonal and 0 everywhere else. Given a ma-
trix Ω ∈ Rn×m, we denote with Ωij the scalar element in
row i and column j of Ω. We write that a matrix P sat-
isfies P > 0 (≥ 0) if P is symmetric and strictly positive
definite (semi-positive definite).

2. Sufficient conditions for contraction

Consider the following nonlinear continuous-time sys-
tem:

ẋ = Ax+Gϕ(ζ) , ζ = Hx (1)

where x and ζ are vectors in Rnx and Rnζ , respectively,
the function ϕ : Rnζ → Rnϕ is C1, and A, G and H
are constant matrices of appropriate dimensions. Given
x0 ∈ Rnx , we denote X(x0, t) the solution to (1) initialized
from x0 evaluated at time t where t is taken on the time
domain of existence of the solution.

Assuming some sector bound condition on ϕ, it is pos-
sible to give some sufficient conditions ensuring global1

asymptotic (or exponential) stability of the origin for all
the nonlinear mappings which satisfy the same sector
bound condition. See, for instance, [21, 26]. One may
however be interested in another different (and stronger)
property that the one of asymptotic stability of an equi-
librium point. In particular, in many contexts it is inter-
esting to study the contractivity properties of system (1),
according to the following definition.

Definition 1. System (1) is incrementally exponentially
stable (or exponentially contractive) if there exist positive
real numbers k, λ > 0 such that for all (x1, x2) ∈ R2nx , the
following holds

|X(x1, t)−X(x2, t)| ≤ k exp(−λt) |x1 − x2| ,

for all t ≥ 0 in the time domain of existence of solutions.

The characterization of contraction properties for au-
tonomous systems has been studied thoroughly, for ex-
ample, in [11]. All these studies are based on the notion
of contracting flows, which has been widely studied in the
literature [12, 13, 29]. These flows generate trajectories
for which an appropriately defined distance is monotoni-
cally decreasing forward in time. As shown for instance
in [3], the dynamical system (1) defines a uniform expo-
nential contraction if there exists a C1 matrix function
P : Rnx → Rnx×nx , taking symmetric positive definite
values, such that2

LfP(x) < −νI, pI ≤ P(x) ≤ pI, ∀x ∈ Rnx , (2)

for some positive real numbers ν, p, p and where we in-
dicated, with a compact notation, f(x) = Ax + Gϕ(Hx).
When the system is autonomous, sufficiently smooth and

1Local characterizations can be given in the case in which the
sector bound condition holds only locally. In this paper we will
consider only the global case.

2Given a C1 matrix function P : Rnx 7→ Rnx×nx , and a C1

vector field f : Rnx → Rnx , LfP denotes the Lie derivative
in the direction of f of the quadratic form P, i.e. LfP(x) =

limh→0
(I+h ∂f

∂x
(x))>P(x+hf(x,t))(I+h ∂f

∂x
(x))−P(x)

h
, with coordinates

(LfP(x))i,j =
∑
k

[
2Pik

∂fk
∂xj

(x) +
∂Pij
∂xk

(x)fk(x)
]
.
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globally Lipschitz, it is shown in [3, 33] that conditions
(2) are also necessary. Note however that equation (2) is
a first order partial differential equation (PDE) in P, and
an explicit solution may be difficult to compute, especially
for high-dimensional systems with significant nonlineari-
ties. In the particular case in which the function P is
constant, i.e. P(x) = P = P> > 0 for all x ∈ Rnx , the
former equation, applied to system (1), reads as

He

(
P

[
A+M

∂ϕ

∂ζ
(ζ)H

])
≤ −νI, (3)

for all ζ ∈ Rnζ . We recognize in this case the contractivity
condition given in [13]. However, even in this particu-
lar context of constant metric P = P , we still need to
solve an infinite dimensional equation (which is linear in
P but has to be solved for all ζ in Rnζ ). By restricting the
class of nonlinearities under consideration, one can how-
ever exhibit tractable conditions for contraction. This is
the purpose of this paper. In particular, we will restrict
to the case in which the metric P is a symmetric positive
constant matrix P = P> > 0 and we will consider the
class of systems (1) with ϕ satisfying a sector bound or a
monotonic condition. These constraints reduce the set of
solutions, but, as it will be shown, allow for the use of LMI-
tools to provide sufficient easy-to-compute conditions. In
light of this, we recall the following result.

Theorem 1. If there exists a symmetric positive definite
matrix P ∈ Rnx×nx such that (3) is satisfied for all ζ ∈
Rnζ , then system (1) is exponentially contractive.

A proof of Theorem 1 can be found for instance in [13].
In the next section we introduce the sector bound and
monotonic conditions characterizing the nonlinearity ϕ.

2.1. Sector bound condition
We define now the notion of incremental sector bound

condition (see also [5]).

Assumption 1 (Incremental Sector Bound). The
function ϕ : Rnζ → Rnϕ satisfies

He

{
∂ϕ

∂ζ
(ζ)>S

[
∂ϕ

∂ζ
(ζ) + Ω

]}
≤ 0 , ∀ζ ∈ Rnζ , (4)

for some matrix Ω ∈ Rnϕ×nζ and a symmetric positive
definite matrix S ∈ Rnϕ×nϕ .

Note that Assumption 1 implies that ϕ is a globally
Lipschitz function. By using Assumption 1, the following
sufficient condition for contraction for system (1) can be
stated.

Proposition 1. Consider system (1) and suppose that ϕ
satisfies Assumption 1. If there exist a symmetric positive
definite matrix P ∈ Rnx×nx and a positive real number η
such that the following inequality holds[

A>P + PA+ ηI PG−H>Ω>S
? −2S

]
≤ 0 , (5)

then system (1) is exponentially contractive.

Proof. Let us define

L := He

{
P

[
A+G

∂ϕ

∂ζ
(ζ)H

]}
(6)

for all ζ ∈ Rnζ . In view of Assumption 1, it yields, by
pre-multiplying (resp. post-multiplying) inequality (4) by
H> (resp. H):

L ≤ L−H> ∂ϕ
∂ζ

(ζ)>S

[
∂ϕ

∂ζ
(ζ) + Ω

]
H

−H>
[
∂ϕ

∂ζ
(ζ) + Ω

]>
S
∂ϕ

∂ζ
(ζ)H. (7)

By defining

Q =

[
A>P + PA+ ηI PG−H>Ω>S

? −2S

]
,

and using the definition of L, inequality (7) gives

L ≤ −ηI +

[
I

∂ϕ
∂ζ (ζ)H

]>
Q
[

I
∂ϕ
∂ζ (ζ)H

]
.

Hence, if relation (5) is satisfied, Q ≤ 0 and one can con-
clude from previous inequality L ≤ −ηI. In other words,
relation (3) holds and then, according to Theorem 1, sys-
tem (1) is a contraction. This concludes the proof. 2

2.2. Monotonic nonlinearities

Instead of using the previous incremental sector bound
condition, one may assume that ϕ is monotonic. More
precisely, we consider the case in which nϕ = nζ (see also
[34, Equation (1)]) and we state the following.

Assumption 2 (Monotonic). The function ϕ : Rnϕ →
Rnϕ satisfies

∂ϕ

∂ζ
(ζ) =

∂ϕ>

∂ζ
(ζ), 0 ≤ He

{
∂ϕ

∂ζ
(ζ)

}
≤ Γ (8)

for all ζ ∈ Rnϕ , where Γ ∈ Rnϕ×nϕ is a symmetric positive
definite matrix.

Under the previous assumption, the following sufficient
condition for contraction can be provided.

Proposition 2. Consider system (1) and assume that ϕ
satisfies Assumption 2. If there exist a symmetric positive
definite matrix P ∈ Rn×n and a positive real number η > 0
such that[

A>P + PA+ ηI PG+H>

? −4Γ−1

]
≤ 0 . (9)

then system (1) is exponentially contractive.
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Proof. The function L defined in (6) can be rewritten as:

L := PA+A>P + w>
∂ϕ

∂ζ
(ζ)v + v>

∂ϕ

∂ζ
(ζ)>w,

with the notation v = H and w = G>P . The latter gives

L = He{PA} − 1

4
(v − w)>He

{
∂ϕ

∂ζ
(ζ)

}
(v − w)

+
1

4
(v + w)>He

{
∂ϕ

∂ζ
(ζ)

}
(v + w) .

With Assumption 2, this implies

L ≤ −ηI + He{PA}+ ηI +
1

4
(v + w)>Γ(v + w) . (10)

If relation (9) holds then, by using the Schur’s complement
of the matrix in the left-hand term of (9), we get

PA+A>P + ηI +
1

4
(H> + PG)Γ(H +G>P ) ≤ 0 ,

corresponding to the right-hand term of (10). In other
words, we obtain L ≤ −ηI. Then, one can conclude that
if relation (9) holds then system (1) is exponentially con-
tractive in view of Theorem 1. 2

Remark 1. In the particular case in which nϕ = nζ = 1
(in other words, ϕ is a mapping from R to R), Assump-
tions 1 and 2 are equivalent. Moreover, when nϕ = nζ ,
inequality (9) is recovered from inequality (5) by selecting
S = 2Γ−1 and Ω = Ω> = −Γ

2 . In other words, Assump-
tion 1 implies Assumption 2. For larger dimensions, the
two assumptions are generically different.

An interesting aspect of the approach developed from
Assumption 2 is that the condition (8) can be relaxed as

0 ≤ ∂ϕ

∂ζ
(ζ) +

∂ϕ

∂ζ
(ζ)> , ∀ζ ∈ Rnζ . (11)

In this case, no globally Lipschitz assumption is imposed
on the mapping ϕ. In this case, the matrix inequality (9)
reads [

A>P + PA+ ηI PG+H>

? 0

]
≤ 0 . (12)

This implies that P = P> > 0 has to satisfy the following
constraints

A>P + PA+ ηI < 0 , H> = −PG .

Hence, no restriction on the slope of the nonlinearity has
to be imposed provided that a part of the LMI is replaced
by an equality constraint.

Remark 2. All the results given in this section still hold
when ϕ is an explicit function of time ϕ(ζ, t) (see [4]).

3. Making a system contractive with a state-
feedback

The framework proposed in Section 2 can be applied
for the design of a contractive control law for controlled
systems. Consider the following nonlinear continuous-time
system:

ẋ = Ax+Gϕ(Hx) +Bu (13)

where u is a control input in Rnu and as in system (1),
the state x is in Rnx , ϕ : Rnζ → Rnϕ and A,G,B,H are
constant matrices of appropriate dimensions. We are now
interested in designing a feedback law α : Rnx 7→ Rnu
such that the system (13) in closed loop with u = α(x) is
an exponential contraction. In our framework, we restrict
ourselves to a specific feedback of the form

α(x) = Kx+Nϕ(Hx) (14)

leading to the following closed-loop system dynamics

ẋ = (A+BK)x+ (G+BN)ϕ(Hx) . (15)

Based on the condition (3), we look for gains K ∈ Rnu×nx
and N ∈ Rnu×nϕ and a constant metric P = P> > 0
satisfying

He

{
P

[
A+BK + (G+BN)

∂ϕ

∂ζ
(ζ)H

]}
≤ −ηI (16)

for all ζ ∈ Rnζ , and for some η > 0. Under condition (16)
we can therefore establish the exponential contractivity
properties of the closed-loop system in light of Theorem 1.
Based on Assumptions 1 and 2, we propose, in the next
sections, two different sets of constructive conditions.

3.1. Sector bounded condition

Let us consider Assumption 1. The following result pro-
vides a solution to the problem of designing a contractive
law.

Lemma 1. Assume that ϕ satisfies Assumption 1. If
there exist a symmetric positive definite matrix W ∈
Rnx×nx , two matrices Z ∈ Rnu×nx , N ∈ Rnu×nϕ and a
positive real number ν such that the following LMI holds

He


 AW +BZ 0 0
G> +N>B> − SΩHW −S 0

W 0 −ν2 I

 ≤ 0,

(17)
then the closed-loop system (13)-(14) is exponentially con-
tractive with K = ZW−1 and such a N .

Proof. By applying the Schur complement to relation
(17), and by pre- and post-multiplying the resulting one
by blkdiag{P, I} where P = W−1 and K = ZW−1, we
obtain[
He{P (A+BK)}+ ν−1I P (G+BN)−H>Ω>S

? −2S

]
≤ 0.

4



By denoting ν−1 = η, one retrieves relation (5) of Propo-
sition 1. Hence, by applying Theorem 1 to the closed-loop
system (15), we conclude that system (15) is contractive.

2

3.2. Monotonic nonlinear mapping

The following result provides a design of the feedback
law (14) for nonlinearities satisfying Assumption 2 with
nϕ = nζ .

Lemma 2. Assume that ϕ satisfies Assumption 2. If
there exist a symmetric positive definite matrix W ∈
Rnx×nx , two matrices Z ∈ Rnu×nx , N ∈ Rnu×nϕ and a
positive real number ν such that the following LMI holds

He


 AW +BZ 0 0
HW + (G+BN)> −2Γ−1 0

W 0 −ν2 I

 ≤ 0,

(18)
then the closed-loop system (13)-(14) is exponentially con-
tractive with K = ZW−1 and such a N .

Proof. By applying the Schur complement to relation
(18), and by pre- and post-multiplying the resulting one
by blkdiag{P, I} with P = W−1 and K = ZW−1, we
obtain[
He{P (A+BK)}+ ν−1I P (G+BN) +H>

? −4Γ−1

]
≤ 0 .

By denoting ν−1 = η, one retrieves relation (9) of Proposi-
tion 2. Theorem 1 implies that system (15) is contractive.

2

Similarly to the considerations at the end of Section 2, if
the function ϕ satisfies the inequality (11), the LMI condi-
tion (18) is transformed into an equality constraint of the
form [

He{AW +BZ} W
? −νI

]
≤ 0 , W > 0 , (19)

WH> = −(G+BN) . (20)

Finally, note that, as in Section 2, the same conditions hold
for time-varying functions ϕ. Furthermore, similar results
can be obtained in a semi-global setting by restricting the
analysis to desired bounded compact sets.

3.3. An example: the surge system

Consider the surge subsystem of an axial compressor
(see for instance [35, Eq. 2]), with system dynamics de-
scribed by {

ẋ1 = −x2 − 3
2x

2
1 − 1

2x
3
1

ẋ2 = x1 − u,
(21)

with x = (x1, x2) ∈ R2. Following [2], we can rewrite this
system as {

ẋ1 = −x2 + `x1 − ϕ`(x1)
ẋ2 = v

, (22)

where

ϕ`(ζ) = `ζ +
3

2
ζ2 +

1

2
ζ3 (23)

and where ` ∈ R is a free parameter, u = x1 − v and v is
an additional input. It is shown in [2] that ϕ` satisfies the
sector condition ϕ`(ζ)ζ ≥ 0 if ` ≥ 9

8 . If ` ≥ 6, it yields

∂ϕ`
∂ζ

(ζ) = `+ 3ζ +
3

2
ζ2 ≥ `− 6 . (24)

Hence, equation (11) is satisfied and we may try to apply
the former approach. In particular, for all ` ≥ 6, there
exist K in R1×2 and N in R, such that the feedback law

v = Kx+Nϕ`(x1) , (25)

makes the system (22) exponentially contractive. Note
that it can be shown that the conditions (19)-(20) are al-
ways feasible. Indeed, the system (21) is in the form (13)
with

A =

[
` −1
0 0

]
, B =

[
0
1

]
, G =

[
−1
0

]
, H =

[
1 0

]
. (26)

Then, letting

W =

[
w11 w12

w12 w22

]
, Z =

[
z1 z2

]
,

the equation (20) is solved with w11 = 1 and w12 =
−N . Now, select w12 = −N , and w22 sufficiently large
(w22−N2 > 0) such that W is positive definite. Then, by
ignoring the term ν and selecting w11 = 1, inequality (19)
becomes

He{AW +BZ} = He

{[
`+N −N`− w22

z1 z2

]}
. (27)

Since N < −` < 0, this matrix can be always made nega-
tive definite provided z2 is taken sufficiently negative. For

example, one can choose z1 = w22 and z2 ≤ − `2N2

4|l+N | . Ap-

plying Lemma 2, the result follows. The introduction of
the nonlinearity explicitly appearing in the controller in
this case plays an important role. Note indeed that in
case N = 0, there is no solution, as in such a case, the
top-left term of (27) reduces to 2` and therefore is always
positive definite.

4. Contraction and integral action

A very important application of contraction theory is
in output regulation problems, see for instance [8–10] and

5



references therein. Consider in particular the following
nonlinear dynamical system

ż = Azz +Gzϕ(Hzz) +Bzu+ δ

e = Czz +Dzϕ(Hzz)− r
(28)

where z ∈ Rnz is the state, u ∈ Rnu is the control input,
e ∈ Rne is the regulated output, δ ∈ Rnz is a constant
perturbation and r ∈ Rne is a constant reference. The
objective of this section is to design a feedback control law
able to solve a classical output regulation problem, that is
to asymptotically regulate the output e to zero, see, e.g.
[8].

Similarly to [8–10], we follow the classical linear
paradigm of extending the system with an integral action
processing the regulation error e and looking for a feed-
back controller stabilizing the extended system. In the
case in which the external reference r and perturbation δ
are allowed to have any amplitude, a sufficient condition
to address the output regulation objective is to design a
globally exponentially contractive feedback (uniform in the
signals r, δ), see [8]. Following such a strategy and rely-
ing on the conditions given in Section 3, we look for a
dynamical regulator of the form

ξ̇ = Czz +Dzϕ(Hzz)− r,
u = Kzz +Kξξ +Kϕϕ(Hzz),

(29)

with ξ ∈ Rne , and we look for matrices Kz, Kξ and Kϕ

such that the closed-loop system (28)-(29) is an exponen-
tial contraction with respect to a constant metric. Indeed,
if such a condition is satisfied, it is possible to show that
the closed-loop system admits a unique equilibrium point
toward which all the trajectories converge and in which
(thanks to the integral action) the regulated error is zero,
for each initial condition (z0, ξ0) ∈ Rnz+ne and for each
(δ, r) ∈ Rnz+ne , see [8, Theorem 1] or [10].

To this end, we rely on the results developed in Sec-
tion 3. In particular, rewriting the extended closed-loop
system (28)-(29) in the form (15) with x = (z, ξ) ∈ Rnz+ne

and

A =

[
Az 0
Cz 0

]
, B =

[
Bz
0

]
, G =

[
Gz
Dz

]
,

H =
[
Hz 0

]
, K =

[
Kz Kξ

]
, N = Kϕ,

we can state the following results for the design of the gains
Kx,Kξ,Kϕ, according to the particular assumption on the
nonlinearity ϕ at hand. In particular, Corollary 1, respec-
tively Corollary 2, applies for sector bounded nonlineari-
ties, respectively monotonic, and is directly derived from
Lemma 1, respectively from Lemma 2. Proofs are omitted
for compactness and can be easily derived by combining
Theorem 1 with [8, Theorem 1].

Corollary 1. Assume that ϕ satisfies Assumption 1. If
there exist six matrices W1 = W>1 > 0,W3 = W>3 > 0,

W2, Z1, Z2 and N of appropriate dimensions and a scalar
ν > 0 such that the following LMI

He


AW +BZ 0 0

Υ −Λ 0
W 0 −ν2 I

 ≤ 0 (30)

holds with Λ = S,

Υ =
[
(Gz +BzN)> − SΩHzW1 D>z − SΩHzW2

]
and

Z =
[
Z1 Z2

]
, W =

[
W1 W2

W>2 W3

]
> 0, (31)

then the closed-loop system (28), (29) with K =[
Kz Kξ

]
=
[
Z1 Z2

]
W−1 and Kϕ = N is exponentially

contractive and the regulated output e is exponentially con-
verging to zero for any (r, δ) ∈ Rne+nz .

Corollary 2. Assume that ϕ satisfies Assumption 2. If
there exist six matrices W1 = W>1 > 0,W3 = W>3 > 0,
W2, Z1, Z2 and N of appropriate dimensions and a scalar
ν > 0 such that the LMIs (30), with Λ = 2Γ−1,

Υ =
[
HzW1 + (Gz +BzN)> D>z +HzW2

]
and (31) hold. Then the closed-loop system (28), (29) with
K =

[
Kz Kξ

]
=
[
Z1 Z2

]
W−1 and Kϕ = N is expo-

nentially contractive and the regulated output e is exponen-
tially converging to zero for any (r, δ) ∈ Rne+nz .

4.1. An example: the mechanical ventilation system

Consider the example of a mechanical ventilation sys-
tem presented in [27, 36] and whose system dynamics is
modeled as (28) with

A =

−2ωn −ω2
n 0

1 0 0
0 bpω

2
n` −bpcp`+ ap

, B =

1
0
0

, M =

 0
0
bp

,
H =

[
0 −ω2

n +cp
]
, C =

[
0 −dp`w2

n cp(`dp + 1)
]
,

D = −dp, ϕ(ζ) = sign(ζ)
a−
√
a2+2ρ|ζ|
ρ + `ζ,

where ζ ∈ R, ap, bp, cp, dp, ωn, a, ρ are constant plant pa-
rameters (see [27] for a physical interpretation) and ` ∈ R
is a free parameter. Note that ϕ is C1 and if ` > 1

a with
a > 0, Assumption 2 is satisfied with Γ = − 2

a+2`. We then
apply Corollary 2 with wn = 188.4, ap = 37.45 · 10−3, bp =
31.65 · 10−3, cp = dp = 3.165 · 10−3, a = 4.865 · 10−3, ρ =
1.6 · 10−6 and ` = 10−3. The LMIs are feasible, and the
controller (29) with

Kz =
[
−4.76 · 103 −4.37 · 107 505.32

]
,

Kξ = 153.18 , Kϕ = −7.56 · 106 ,

makes the closed-loop system exponentially contractive in
the whole state space. Therefore, for any (δ, r) the closed-
loop trajectories exponentially converge to an equilibrium
point where the tracking error is zero.
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5. Contractive observer design

In this section, we consider the case in which the dynam-
ical system (13) is complemented with a measured output
and reads

ẋ = Ax+Bu+Gϕ(Hx), y = Cx, (32)

where x ∈ Rnx is the system state, u ∈ Rnu is the control
input, y ∈ Rny the measured output and A,B,G,H,C are
matrices of appropriate dimensions. Contraction proper-
ties have been deeply investigated for the design of ob-
servers. See, e.g., the recent survey [1] and more in par-
ticular [3, 37]. In our context, following [25], we consider
an observer of the form

˙̂x = Ax̂+Bu+ L(y − Cx̂) +Gϕ(ζ̂),

ζ̂ = Hx̂− E(y − Cx̂) ,
(33)

where E,L are matrices in Rnζ×ny and Rnx×ny respec-
tively. In particular, differently from many other stan-
dard design (such as Luenberger observers, Kalman like
observers, high-gain observers and so on), the observer
(33) is characterized by the presence of a correction term
inside the nonlinear term. A sufficient condition to guar-
antee the convergence of the observer, namely, that the
observer trajectories X̂(x̂, t) converge to the plant’s tra-
jectory X(x, t), is to select the matrices E and L so that
to ensure that the observer defines a uniform (with respect
to y) contraction. For systems of the form (32) with an
observer selected as (33), this is achieved for instance if
there exists a positive definite matrix Q in Rnx×nx such
that

He

{
Q

[
A− LC +G

∂ϕ

∂ζ
(ζ)(H − EC)

]}
≤ −νI (34)

for all ζ, for some strictly positive real number ν > 0.
Indeed, under the condition (34), it is easy to show3 the
existence of positive real numbers (k, λ) such that for all
(x, x̂) in R2nx ,∣∣∣X(x, t)− X̂(x̂, x, t)

∣∣∣ ≤ k exp(−λt) |x− x̂| ,

for all t ≥ 0 in the time domain of existence of solutions.
Similar to the results presented in the former sections,

it is possible to give sufficient conditions in the form of
LMI in order to obtain constructive conditions for the de-
sign of L and E. For instance, based on the sector bound
condition in Assumption 1, we obtain the following result.

Corollary 3. Assume that ϕ satisfies Assumption 1. If
there exist a symmetric positive definite matrix Q ∈
Rnx×nx , two matrices R and E of appropriate dimensions
and a positive real number q such that

He

{[
QA−RC + q

2I 0
G>Q− SΩ(H − EC) −S

]}
< 0, (35)

3This can be done, for instance, by applying Theorem 1 to the
error-coordinates dynamics e := x− x̂.

then (33) is an exponentially contractive observer with L =
Q−1R and E.

Based on monotonic nonlinearities, the same result has
been obtained in [25]. In particular, under Assumption 2,
system (33) is an exponential observer for system (32) if
there exists a solution to the following LMI

He

{[
QA−RC + q

2I 0
H − EC +G>Q −2Γ−1

]}
< 0, (36)

with L = Q−1R. In the following we specialize such a
result for a nonlinearity satisfying (11).

Corollary 4. Assume that ϕ satisfies Assumption 2. If
there exist a symmetric positive definite matrix Q ∈
Rnx×nx , two matrices R and E of appropriate dimensions
and a positive real number q such that

He
{
QA−RC + q

2I
}
≤ 0 , (H − EC)> = −QG. (37)

then (33) is an exponentially contractive observer for sys-
tem (32) with L = Q−1R and E.

Proofs are omitted for compactness.

5.1. An example: the surge system

Consider again the surge subsystem studied in Sec-
tion 3.3. Recall that the nonlinearity satisfies relation (11).
The output matrix C is given as C = [c1, c2]. Depending
on the values of c1 and c2 different cases can be considered.
In the following, we consider the case in which c1 = 0 and
c2 = 1. It can be shown that for all ` ≥ 6, there exists
(L1, L2, E) in R3 such that the system{

˙̂x1 = −x̂2 + `x̂1 − ϕ`(x̂1 + E(y − x̂2)) + L1(y − x̂2)
˙̂x2 = x̂1 − u+ L2(y − x̂2)

with ϕ` defined in (23) is an exponentially contractive ob-
server. As shown in (24), the function ϕ` satisfies inequal-
ity (11) if ` ≥ 6. Moreover, the system (21) is in the form of
(32) with matrices A,B,G,H as in (26) and C =

[
0 1

]
.

Let

Q =

[
q11 q12

q12 q22

]
, R =

[
R1

R2

]
.

Then, the equality constraint in (37) reads q11 = 1 and
q12 = −E. To satisfy Q > 0 one has to satisfy q22−E2 > 0.
From inequality (37), one also obtain

He{QA−RC} = He

{[
`− E −1−R1

−E`+ q22 E −R2

]}
,

which can be made definite negative selecting

R1 = −E`+ q22 − 1, E − ` > 0, R2 − E > 0.

Hence, (37) is satisfied for sufficiently small q.
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6. A nonlinear separation principle

One of the motivations of observer design is surely the
design of output feedback control laws. In this section, we
establish a separation principle by showing that a globally
stabilizing output feedback law can be obtained by first
designing a contractive state-feedback law, and then re-
placing the state by an estimate provided by a contractive
observer. In contrast with most of nonlinear separation
principle, with the proposed conditions one may recover
standard results of linear systems in which the design of
gains of the state-feedback law and the observer output in-
jection are independent. As a matter of fact, most of the
existing results about the separation principle for nonlin-
ear systems, rely on time-separation scale conditions, see,
e.g. [30, 31, 38]. In other words, the typical nonlinear ap-
proach consists in first designing a state-feedback law, and
then replacing the state by an estimate which converges
to the true state trajectory sufficiently fast. Such a goal
is typically achieved by means of high-gain observers [30–
32, 38]. This need of time-separation scale however leads
to well-known drawbacks due to the employment of such
a class of observers, such as the peaking phenomenon and
the poor sensitivity to measurement noise properties [39].
In our case, such a time-separation scale condition is not
anymore needed thanks to the contractivity properties. As
a result, the observer’s convergence may be tuned indepen-
dently of the feedback design. For instance, the observer
dynamics can be selected slower than the convergence of
the state-feedback law, so that to improve the overall per-
formances in the presence of measurement noise. We re-
cover in this sense, the standard linear separation principle
result.

6.1. Main result

In order to state the main result of this section, consider
system (32) coupled with an output feedback control law
of the form

u = Kx̂+Nϕ(Hx̂) (38)

in which the estimate x̂ is provided by an observer of the
form (33). For space reasons, in this section we consider
only the case of functions ϕ satisfying the monotonic con-
dition in Assumption 2, but similar results can be extended
to the case of sector bound conditions of Assumption 1.
Now, following the framework in [38] based on the notion
of input-to-state stability (ISS), we recall that two different
paths may be followed for the design of an output feedback
law:

Direct approach. An ISS property is imposed on mea-
surement error in the state feedback law to cope with
the mismatch between x and x̂.

Indirect approach. An ISS property is imposed to cope
with the observer correction term.

In our context, both cases may be pursued under an extra
assumption, as shown in the following.

Theorem 2. Consider the system (32) and suppose As-
sumption 2 holds. Consider the feedback output law given
by the observer (33) and control law (38). Suppose that
the LMIs (18) and (36) are feasible for some matrices
Q,R,E,W,Z,N of appropriate dimensions and any pos-
itive scalar ν, q > 0. Assume moreover that one of the
following properties hold:

• the nonlinear term in the feedback (38) is zero (N = 0);

• the injection term inside the nonlinearity in (33) is zero
(E = 0).

Then, the origin of the closed-loop system (32), (33),
(38) is globally exponentially stable with K = ZW−1,
L = Q−1R, and N = 0 or E = 0.

Proof. Direct approach (N = 0): With the change
of coordinates x̂ 7→ e := x − x̂, the closed-loop dynamics
(x, e) reads

ẋ = (A+BK)x−BKe+Gϕ(Hx)

ė = (A− LC)e+G[ϕ(Hx)− ϕ(Hx− (H + EC)e)].

Now, consider the Lyapunov function V (x) = x>Px where
P = W−1 with W defined as solution to Lemma 2. We
have that

V̇ ≤ 2x>P

[
A+BK +G

∫ 1

0

∂ϕ

∂ζ
(sζ)dsH

]
x

+ 2x>PBKe

≤ −2ν|x|2 + 2x>PBKe

where the last inequality comes from Lemma 2. Therefore,
the x-dynamics is ISS with respect to the input e. Since
(36) holds, limt→∞ e(t) = 0 (see [2]). Hence the closed loop
can be seen as a cascade of a system having an equilibrium
which is globally asymptotically stable and an ISS system.
Hence, (x, e) = (0, 0) is globally asymptotically stable for
the closed loop system.

Indirect approach (E = 0): With the change of co-
ordinates x 7→ e := x− x̂, the closed-loop dynamics (x̂, e)
reads

˙̂x = (A+BK)x̂+ (BN +G)ϕ(Hx̂) + LCe

ė = (A− LC)e+Gϕ(x̂+ e)−Gϕ(x̂)

Consider the Lyapunov function V (x̂) = x̂>Px̂ where P =
W−1 with W defined as solution to Lemma 2. We have
that

V̇ ≤ 2x̂>P

[
A+BK + (BN +G)

∫ 1

0

∂ϕ

∂s
(sHx̂)ds H

]
x̂

+ 2x̂>PLCe

≤ −ν|x̂|2 + 2x̂>PLCe.

Again, we have obtained a cascade of a contractive system
and an ISS system. Therefore, the origin of the closed loop
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is globally exponentially stable. 2

Remark 3. In the general case in which E 6= 0 and
N 6= 0 no stability results can be stated a priori. How-
ever, under additional assumptions, one might still be able
to claim stability of the closed loop by addressing the prob-
lem through a small-gain analysis. In this case, the designs
of the feedback and the observer cannot be made disjointed
and typically a time-scale separation between these dynam-
ics is needed.

Remark 4. The output feedback law (33), (38) doesn’t
ensure in general any contractivity property for the closed-
loop system (32), (33), (38). As a consequence, if one aims
at obtaining a contractive output feedback law, a more gen-
eral dynamic output feedback of the form

u = K1xc +K2y +
∑m
j=1Njϕ(HJjxc + Ejy),

ẋc = Acxc +
∑m
j=1Mjϕ(HJjxc + Ejy)

(39)
needs to be considered. By rewriting the closed-loop system
in the form (1), LMI conditions similar to those derived in
Section 2 can be established in order to show contractivity
of the closed-loop system in the sense of Theorem 1.

6.2. Example: a link manipulator

Consider the example of a flexible link manipulator pre-
sented in [28] with system (13) defined by matrices

A =


0 1 0 0

− k

Im
, −Cvf

Im

k

Im
0

0 0 0 1
k

Il
0 − k

Il
− bmgh

Im
0

, B =


0
kT
Im
0
0

,

G> =

[
0 0 0

mgh

Im

]
, H =

[
0 0 1 0

]
,

and nonlinearity ϕ satisfying Assumption 2 with Γ =
2(b − 1) where b > 1 is a free parameter. The sys-
tem is coupled with a linear output C =

[
1 0 0 0

]
.

For such a system with plant parameters selected as k =
1.8, Im = 3.7; Il = 9.3, Cvf = 4.6, kT = 8,m = 2.1, g =
9.81, h = 1 and b = 1.1, the assumptions of Theorem 2
hold with a zero nonlinear injection term E = 0 and
the system is output-feedback stabilizable by means of
the dynamical controller (33), (38) with gains selected as
K =

[
−43.2 −5.4 203.8 −599.9

]
, N = 16.9 and

L =
[
−9.4 −87.1 −858.7 −1177.5

]
, and with posi-

tive scalars ν = 2 and q = 1. In this case, the convergence
of the observer is slower than the guaranteed convergence
of the state-feedback law (differently from most of output
feedback results for nonlinear systems).

7. Conclusion

In this paper we have introduced some LMI sufficient
conditions to analyze the contraction properties of nonlin-
ear systems composed of a linear part to which is added
an incremental sector bounded or monotonic nonlinear-
ity. These sufficient conditions can be translated when
dealing with state-feedback, integral action based con-
trollers, observers and observed-based output-feedback de-
signs. Throughout the paper, some practical examples are
presented as illustrations. The proposed results pave the
way for future studies. In particular, it could be inter-
esting to address the design of general dynamical output
feedback controllers, for example as defined in (39) ensur-
ing contractivity properties of the overall closed-loop dy-
namics. Furthermore, it should be interesting to consider
other kinds of nonlinearity ϕ, in particular, those affecting
the input u of the system.
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