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Abstract. Non-self-embedding grammars are a restriction of context-
free grammars which does not allow to describe recursive structures and,
hence, which characterizes only the class of regular languages. A double
exponential gap in size between non-self-embedding grammars and de-
terministic finite automata is known. The same size gap is also known
from constant height pushdown automata and 1-limited automata to
equivalent deterministic finite automata. Constant height pushdown au-
tomata and 1-limited automata are compared with non-self-embedding
grammars. It is proved that non-self-embedding grammars and constant
height pushdown automata are polynomially related in size. However,
they can be exponentially larger than 1-limited automata.

1 Introduction

It is well-known that the extra capability of context-free grammars with
respect to regular ones is that of describing recursive structures as, for in-
stance, nested parentheses, arithmetic expressions, typical programming
language constructs. In terms of recognizing devices, this capability is im-
plemented in the pushdown store, which is used to extend finite automata
in order to make the resulting model, namely pushdown automata, equiv-
alent to context-free grammars.

To emphasize this capability, in one of his pioneering papers, Chomsky
investigated the self-embedding property [4]: a context-free grammar is
self-embedding if it contains a useful variable A which, in some sentential
form, is able to reproduce itself surrounded by two nonempty strings α
and β, in symbols A ?

=⇒ αAβ. Roughly speaking, this means that the



variable A is “truly” recursive. He proved that, among all context-free
grammars, only self-embedding ones can generate nonregular languages.
Hence, non-self-embedding grammars are no more powerful than finite
automata.

The relationships between the description sizes of non-self-embedding
grammars and equivalent finite automata have been investigated in [1]
and [13]. In the worst case, the size of a deterministic automaton equiva-
lent to a given non-self-embedding grammar is doubly exponential in the
size of the grammar. The gap reduces to a simple exponential in the case
of nondeterministic automata.

Other formal models characterizing the class of regular languages and
exhibiting gaps of the same order with respect to deterministic and nonde-
terministic automata have been investigated in the literature. Two of them
are constant height pushdown automata and 1-limited automata. The aim
of this paper is to study the size relationships between non-self-embedding
grammars and these models.

Constant height pushdown automata are standard nondeterministic
pushdown automata where the amount of available pushdown store is
fixed. Hence, the number of their possible configurations is finite. This im-
plies that they are no more powerful than finite automata. The exponential
and double exponential gaps from constant height pushdown automata
to nondeterministic and deterministic automata have been proved in [5].
Furthermore, in [2] the authors showed the interesting result that also
the gap from nondeterministic and deterministic constant height push-
down automata is double exponential. We can observe that both non-
self-embedding grammars and constant height pushdown automata are
restrictions of the corresponding general models, where true recursions
are not possible. In the first part of the paper we compare these two
models by proving that they are polynomially related in size.

In the second part of the paper, we turn our attention to the size rela-
tionships between 1-limited automata and non-self-embedding grammars.
For each integer d > 0, a d-limited automaton is a one-tape nondetermin-
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stic Turing machine which is allowed to rewrite the content of each tape
cell only in the first d visits. These models have been introduced by Hib-
bard in 1967, who proved that for each d ≥ 2 they characterize context-
free languages [6]. Furthermore, as shown in [16, Thm. 12.1], 1-limited
automata are equivalent to finite automata. This equivalence has been
investigated from the descriptional complexity point of view in [11], by
proving exponential and double exponential gaps from 1-limited automata
to nondeterministic and deterministic finite automata, respectively. Our
main result is a construction transforming each non-self-embedding gram-
mar into an equivalent 1-limited automaton of polynomial size. For the
converse transformation, we show that an exponential size is necessary.
Indeed, we prove a stronger result by exhibiting, for each n > 0, a lan-
guage Ln accepted by a two-way automaton with O(n) states, which re-
quires exponentially many states to be accepted even by an unresticted
pushdown automaton. From the cost of the conversion of 1-limited au-
tomata into equivalent nondeterministic automata, it turns out that for
the conversion of 1-limited automata into non-self-embedding grammars
an exponential size is also sufficient.

Figure 1 summarizes the main results discussed in the paper.

nse h-pda 1-la

2nfa2dfa

poly [Thm 4]poly [Thm 2]

poly [Thm 3] exp [Cor 3]

exp [Thm 5] exp [11]

?
[Sakoda-Sipser problem]

Fig. 1. Some bounds discussed in the paper. Dotted arrows denote trivial relationships,
while the dashed arrow indicates the famous question by Sakoda and Sipser.
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2 Preliminaries

Given a set S, we denote by #S its cardinality, and by 2S the family of all
its subsets. We assume the reader familiar with notions from formal lan-
guages and automata theory, in particular with the fundamental variants
of finite automata (1dfas, 1nfas, 2dfas, 2nfas, for short, where 1 and 2

mean one-way and two-way, respectively, and d and n mean deterministic
and nondeterministic, respectively). For further details see, e.g., [7]. The
empty word is denoted by ε. Given a word u ∈ Σ∗, we denote by |u| its
length. For every h ≥ 0, Σh denotes the set of words of length h over
the alphabet Σ, while Σ+ denotes the set of all nonempty words over Σ.
For two-way devices operating on a tape (e.g., 2nfa), we use the special
symbols B and C not belonging to the input alphabet, respectively called
the left and the right endmarkers, that surround the input word.

Context-free Grammars

Given a context-free grammar (cfg, for short) G = 〈V,Σ, P, S〉, we denote
by L (G) the language generated by G. The relations ⇒ and ?

=⇒ are
defined in the usual way. The production graph of G is a directed graph
which has V as vertex set and contains an edge from A to B if and only
if there is a production A → αBβ in P , for A,B ∈ V and some α, β ∈
(V ∪Σ)∗.

Definition 1 (nse grammars). Let G = 〈V,Σ, P, S〉 be a context-free
grammar. A variable A ∈ V is said to be self-embedded when there are
two strings α, β ∈ (V ∪Σ)+ such that A ?

=⇒ αAβ. The grammar G is self-
embedding if it contains at least one self-embedded variable, otherwise G
is non-self-embedding (nse, for short).

Chomsky proved that nse grammars generate only regular languages,
i.e., they are no more powerful than finite automata [3,4]. As shown in [1],
given a grammar G it is possible to decide in polynomial time whether or
not it is nse.
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Pushdown automata

A pushdown automaton (pda) is usually obtained from a nondeterministic
finite automaton by adding a pushdown store, containing symbols from a
pushdown alphabet Γ . Following [5,2], we consider pdas in the following
form, where the transitions manipulating the pushdown store are clearly
distinguished from those reading the input tape. Furthermore, we consider
a restriction of the model in which the capacity of the pushdown store is
bounded by some constant h ∈ N.

Definition 2 (Pushdown automata of constant height). A push-
down automaton of height h (h-pda) is a tuple A = 〈Q,Σ, Γ, δ, q0, F, h〉
where Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states, Σ is the input alphabet, Γ is the pushdown alphabet, h ∈ N
is the pushdown height bound, and δ ⊆ Q × ({ε} ∪ Σ ∪ {−,+}Γ ) is the
transition relation with the following meaning:

(i) (p, ε, q) ∈ δ: A can reach the state q from the state p without using the
input tape nor the pushdown store (these transitions are also called ε-
moves);

(ii) (p, a, q) ∈ δ: A can reach the state q from the state p by reading the
symbol a from the input but without using the pushdown store;

(iii) (p,−X, q) ∈ δ: if the symbol on the top of the pushdown store is X,
A can reach the state q from the state p by popping the symbol X, not
using the input tape;

(iv) (p,+X, q) ∈ δ: if the number of symbols contained in the pushdown
store is less than h, A can reach the state q from the state p by pushing
the symbol X on top of the pushdown store, without using the input
tape.

The model accepts an input word w ∈ Σ∗, if, starting from the initial
state q0 with an empty pushdown store, it can eventually reach an ac-
cepting state qf ∈ F , after having read all the input symbols.

Without the restriction on the pushdown height, the model is equiv-
alent to classical pushdown automata, while preserving comparable size
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(namely, translations both ways have at most polynomial costs, see [2]).
By contrast, 0-pdas are exactly nfas, since they can never push symbols.

1-limited automata

One-limited automata (1-las, for short) extend 2-way finite automata by
providing the ability to overwrite each tape cell at its first visit by the
head. This extension does not increase the expressiveness of the model.
However, they can be significantly smaller than equivalent finite automata.
For instance, the size gaps from 1-las to nfas and dfas are exponential
and double exponential, respectively [11], while 2nfas can be exponen-
tially larger than deterministic 1-las even in the unary case [12].

Definition 3 (1-limited automata). A 1-limited automaton is a tu-
ple A = 〈Q,Σ, Γ, δ, q0, F 〉, where Q,Σ, q0, F are defined as for 2nfas,
Γ is a finite working alphabet such that Σ ⊂ Γ , and δ : Q × ΓBC →
2Q×ΓBC×{−1,+1} is the transition function, where ΓBC denotes the set Γ ∪
{B,C} with B,C /∈ Γ the left and the right endmarkers.

In one move, according to δ and to the current state, A reads a symbol
from the tape, changes its state, replaces the symbol just read by a new
symbol, and moves its head to one position backward or forward. How-
ever, replacing symbols is subject to some restrictions, which, essentially,
allow to modify the content of a cell during the first visits only. Formally,
symbols from Σ shall be replaced by symbols from Γ \Σ, while symbols
from ΓBC \Σ are never overwritten. In particular, at any time, both spe-
cial symbols B and C occur exactly once on the tape and exactly at the
respective left and right boundaries. Acceptance for 1-las can be defined
in several ways, for instance we can say that a 1-la A accepts an input
word if, starting from the left endmarker in the initial state, the compu-
tation eventually reaches the right endmarker in an accepting state. The
language accepted by A is denoted by L (A).
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Size of models

For each model under consideration, we evaluate its size as the total num-
ber of symbols used to define it. Hence, as a measure for the size of a
grammar G = 〈V,Σ, P, S〉, we consider the total number of symbols used
to specify it, defined as Symb(G) =

∑
(A→α)∈P (2 + |α|) (cf. [8]). The size

of an h-pda A = 〈Q,Σ, Γ, δ, q0, F, h〉 is given by some polynomial in #Q,
#Γ and h. Finally, the size of a 1-la A = 〈Q,Σ, Γ, δ, q0, F 〉 is given by a
polynomial in #Q and #Γ .

3 nse grammars versus h-pdas

In this section we prove that nse grammars and h-pdas are polynomially
related in size.

3.1 From nse grammars to h-pdas

In [1], the authors showed that nse grammars admit a particular form
based on a decomposition into finitely many simpler grammars, that will
be now recalled.

First of all, we remind the reader that a grammar is said right-linear
(resp. left-linear), if each production is either of the form A→ wB (resp.
A → Bw), or of the form A → w, for some A,B ∈ V and w ∈ Σ∗. It is
well known that right- or left-linear grammars generate exactly the class
of regular languages.

Given two cfgsG1 = 〈V1, Σ1, P1, S1〉 andG2 = 〈V2, Σ2, P2, S2〉 with V1∩
V2 = ∅, the ⊕-composition of G1 and G2 is the grammar G1 ⊕G2 =

〈V,Σ, P, S〉, where V = V1 ∪ V2, Σ = (Σ1 \ V2) ∪Σ2, P = P1 ∪ P2,
and S = S1. Intuitively, the grammar G1 ⊕ G2 generates all the strings
which can be obtained by replacing in any string w ∈ L (G1) each sym-
bol A ∈ Σ1∩V2 with a string in the language L

(
G2|A

)
derived in G2 from

the variable A (notice that the definition of G1 ⊕G2 does not depend on
the start symbol S2 of G2). The ⊕-composition is associative, and pre-
serves the property of being non-self-embedding [1]. The decomposition
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presented in the following result was obtained in [1, Theorem 2], while its
size is discussed in [13].

Theorem 1. For each nse grammar G there exist g grammars G1, G2, . . . , Gg

such that G = G1 ⊕G2 ⊕ · · · ⊕Gg, where each Gi is either left- or right-
linear. Furthermore the sum of sizes of Gi’s is linear in the size of G.

Studying the relationships between nse grammars and pdas, in [1]
the authors claimed that from any nse grammar in canonical normal
form (namely with productions A → aγ or A → γ, A ∈ V , a ∈ Σ

and γ ∈ V ∗), by applying a standard transformation, it is possible to
obtain an equivalent constant height pda. Unfortunately, the argument
fails when the grammar contains left recursive derivations, i.e., derivations
of the form A

+
=⇒ Aγ. For them, the resulting pda has computations with

arbitrarily high pushdown stores. This problem can be fixed by replacing
each left-linear grammar corresponding to a scc of the production graph
of the given nse grammar by one equivalent right-linear grammar, as
shown in the following lemma:

Lemma 1. Each nse grammar can be converted into an equivalent nse

grammar of polynomial size which can be expressed as a composition of
right-linear grammars.

Proof. First of all, we observe that from each left-linear grammar G =

〈V,Σ, P, S〉 we can obtain an equivalent right-linear grammar G′ = 〈V ∪
{S′}, Σ, P ′, S′〉 whose size is linear in the size of G, with one more vari-
able S′ /∈ V and the following productions:

– B → w, for each S → Bw in P ,
– B → wA, for each A→ Bw in P (including S → Bw),
– S′ → wA, for each A→ w in P .

We point out that if we apply the above transformation to the gram-
mar G|Ŝ = 〈V,Σ, P, Ŝ〉 obtained by changing the initial symbol of G
into Ŝ ∈ V , then the set of productions of the resulting grammar could
be different from P ′.
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Now suppose to have an nse grammar G, where G = G1⊕G2⊕· · ·⊕Gg
and each Gi is left-linear or right-linear. The idea is to define an equiva-
lent grammar G′ by keeping each right-linear Gi, and by replacing each
left-linear Gi by an equivalent right-linear grammar. However, when doing
grammar composition, we could use derivations of Gi that begin from vari-
ables of Vi different than the start symbol Si. For this reason, we replace
each left-linear Gi by a family of right-linear grammars G′iA, with A ∈ Vi,
where G′iA is equivalent to the grammar Gi|A = 〈Vi, Σi, Pi, A〉. It can be
verified that the size of the resulting grammar G′ is at most quadratic in
the size of G. ut

Theorem 2. Let G = 〈V,Σ, P, S〉 be an nse grammar such that G =

G1⊕G2⊕ · · · ⊕Gg, where each Gi is right-linear. Then there is an equiv-
alent pda of polynomial size such that the height of the pushdown store is
bounded by a polynomial in g.

Proof. First of all, as in the construction presented in [1], we show that,
for i = 1, . . . , g, if a variable A ∈ Vi derives a string xα by a leftmost
derivation, i.e., A ?

=⇒
lm

xα, where x is the longest prefix of xα consisting
only of terminal symbols, then the length of α is linear in g − i. More
precisely, we claim that |α| ≤ K(g − i) + 1, where K is the maximum
length of production right-hand sides. We are going to prove this claim
by induction on g − i.

For g − i = 0, the only possible derivations from a variable A ∈ Vg

have the forms A ?
=⇒ x and A ?

=⇒ xB, with x ∈ Σ∗ and B ∈ Vg. Then
the claim immediately follows.

For g − i > 0, the claim is trivial in case α = ε. Otherwise, suppose
that the first production used in the derivation under consideration is A→
X1X2 · · ·Xs, i.e.,

A =⇒ X1X2 · · ·Xs
?

=⇒
lm

α1α2 · · ·αs = xα

where Xk ∈ Σ ∪
⋃g
j=i Vj and Xk

?
=⇒
lm

αk, k = 1, . . . , s. Let `, 1 ≤ ` ≤ s,
be the smallest index such that α` contains at least one variable. Hence,
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we can write x = x′x′′ where x′ = α1α2 · · ·α`−1, x′′α′ = α`, αk = Xk

for k = `+ 1, . . . , s, and α = α′X`+1 · · ·Xs.

If X` ∈ Vj , with j > i, then, by induction hypothesis, |α′| ≤ K(g −
j) + 1. Hence |α| ≤ K(g − j) + 1 + s − ` < K(g − i) + 1 due to the fact
that s− ` < K.

Since Gi is right-linear, the case X` ∈ Vi could occur only when ` =
s, thus implying that X1X2 · · ·Xs−1 is a terminal string. The deriva-
tion under consideration can be decomposed as A ?

=⇒
lm

y1A1
?

=⇒
lm

y1x1α,
where A1 ∈ Vi. Now, we can repeat the previous proof on the subderiva-
tion A1

?
=⇒
lm

x1α, either reaching the previous case and, hence, proving
that |α| ≤ K(g − i) + 1, or returning to this case with a further sub-
derivation A2

?
=⇒
lm

x2α. This argument can be iterated. At each step, a
subderivation of the derivation at the previous step is considered. So, in a
finite number of steps we will reach the previous case obtaining the desired
conclusion.

From the grammar G we can apply a standard construction to obtain
a pda M which simulates a leftmost derivation of G by replacing any
variable A occurring on the top of the pushdown, by the right-hand side
of a production A → α, and by popping off the pushdown any terminal
symbol occurring on the top and matching the next input symbol (for
details see, e.g., [7]). After consuming an input prefix y, the pushdown
store ofM can contain any string zα such that S ?

=⇒
lm

yzα, yz is the longest
prefix of yzα consisting only of terminal symbols, and z is a suitable factor
of the string which was most recently pushed on the pushdown. Since |z| ≤
K and, according to the first part of the proof |α| ≤ K(g − 1) + 1, we
conclude that the pushdown height is bounded by Kg + 1. Hence, M is
a constant height pda. Finally, M can be converted in the form given in
Definition 2, by keeping its size polynomial. ut
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3.2 From h-pdas to nse grammars

Let A be an h-pda. We first show that, modulo acceptance of the empty
word, with only a polynomial increase in the size we can transform it in
a special form.

Lemma 2. For each h-pda A = 〈Q,Σ, Γ, δ, q0, F, h〉 there exists an h-

pda A′ = 〈Q′, Σ, Γ ′, δ′, q−, {q+}, h〉 and a mapping h̃ : Γ ′ → {1, . . . , h}
such that:

– L (A′) = L (A) \ {ε};
– A′ has polynomial size with respect to A;
– every nontrivial computation path of A′ starting and ending with the

same pushdown content and never popping off symbols under this level,
consumes one input letter, i.e., during such a computation, at least one
transition from Q×Σ ×Q is performed;

– A′ accepts with empty pushdown;
– each symbol X ∈ Γ ′ can appear on the pushdown only at height h̃(X).

Proof. First, we create two new states q− and q+, intuitively the new ini-
tial and unique final states, respectively, and we add transitions (q−, ε, q0)
and (p, ε, q+) for each p ∈ F . Furthermore, in order to empty the push-
down store at the end of the accepting computations, we add the transi-
tion (q+,−X, q+) for each X ∈ Γ ′. We denote by Q? the set Q∪{q−, q+}.

Second, by extending Q? to Q?×{0, . . . , h}, we can suppose that each
state stores the current height of the pushdown as second component.
After this change, we set (q−, 0) as initial state and (q+, 0) as unique
final state (as a consequence, acceptance is necessarily made with empty
pushdown). We then set Γ ′ = Γ×{1, . . . , h} and we modify the transitions
in such a way that a symbol (γ, i) ∈ Γ ′ can be pushed only from a state
in Q × {i− 1}, i.e., only at pushdown height i. The mapping h̃ is then
defined on Γ ′ as the projection over the second component.

Now, for each state (p, i) ∈ Q? ×{0, . . . , h}, we define the set E(p,i) of
states (q, i) which are accessible from (p, i) by using only transitions in

(Q? × {i, . . . , h}) × ({ε} ∪ {−+}Γ ) × (Q? × {i, . . . , h}).
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The restriction to states from Q?×{i, . . . , h} ensures that the considered
computation paths can never pop off symbols under their initial level,
while the restriction on the set of actions forbid any reading of the in-
put. We first replace such computations by a single ε-move. This can be
achieved as follows:

– we create a transition ((p, i), ε, (q, i)) for each (q, i) ∈ E(p,i);
– we add a new state component storing an element in {push, pop, read}

that saves the last operation performed during the computation (with
the natural meaning, ε-moves being not considered as operations) and
we forbid transitions of the form (p,−X, q) whenever the last opera-
tion is push. (For simplicity, the newly-introduced component will not
appear in the end of the proof.)

After such transformation, the only computations that starts and ends
with same pushdown content and without popping off symbols under
the corresponding level, are necessarily sequences of ε-moves. Hence, each
set E(p,i), which is kept unchanged by the above transformation, is now
equal to {(q, i) | (p, i) ∗̀ (q, i) using only ε-moves}.

We finally proceed to the elimination of ε-moves, using classical tech-
niques. First, we consider the set E(q−,0) of states that are accessible
from the initial configuration through a sequence of ε-moves. For each
state (p, 0) ∈ E(q−,0) and each transition ((p, 0), ψ, (r, i)) with ψ 6= ε,
we create a transition ((q−, 0), ψ, (r, i)). We then remove every ε-moves
from q−, i.e., every transition of the form ((q−, 0), ε, (p, 0)). As a con-
sequence, the empty word cannot be accepted by the resulting h-pda.
However, since every computation of A accepting a nonempty word should
perform a transition of the form ((p, 0), ψ, (r, i)) with ψ 6= ε at some point,
our transformation preserves acceptance of nonempty words.

Lastly, the remaining ε-moves are eliminated as follows. For each tran-
sition of the form (p, ψ, q) with ψ 6= ε and each r ∈ E′q, we create the
transition (p, ψ, r). We finally remove all remaining ε-moves.

The complete construction has polynomial cost and the resulting h-
pda A′ accepts an input word if and only if the word is nonempty and
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was accepted by the original h-pda A. Acceptance is furthermore done by
empty pushdown, indeed the only final state (q+, 0) stores the information
that the current pushdown height is 0. Moreover, the projection h̃ over
the pushdown alphabet Γ ′, associates to each pushdown symbol, the only
height index to which it may appear in the pushdown store. ut

Let A = 〈Q,Σ, Γ, δ, q−, {q+}, h〉 be an h-pda in the form of Lemma 2.
In particular, A does not accept the empty word. We define a gram-
mar G = 〈V,Σ, P, S〉, where V consists of an initial symbol S and of
triples of the form [qAp] and 〈qAp〉, for q, p ∈ Q, A ∈ Γ . The set P
consists of the following productions:

(i) 〈pAq〉 → a, for (p, a, q) ∈ δ

(ii) 〈pAq〉 → [p′Xq′], for (p,+X, p′), (q′,−X, q) ∈ δ, i.e., push and pop of
a same symbol X

(iii) [pAq]→ 〈pAr〉[rAq], for p, q, r ∈ Q, A ∈ Γ

(iv) [pAq]→ 〈pAq〉, for p, q ∈ Q, A ∈ Γ

(v) S → [q−⊥q+], where ⊥ /∈ Γ is a new symbol denoting the “missed top”
in the empty pushdown store.

The above definition is derived from the classical construction of cfgs
from pdas, introducing two types of triples in order to obtain an nse

grammar. (A simpler construction, as that in [14], would produce a self-
embedding grammar.) More precisely, we can prove the following:

Lemma 3. For each x ∈ Σ+, p, q ∈ Q, A ∈ Γ , [pAq] ?
=⇒ x if and only if

there exists a computation path C of A verifying the following conditions:

(1) C starts in the state p and ends in the state q, in both these configura-
tions the symbol at the top of the pushdown is A;

(2) along C the pushdown is never popped off under its level at the begin-
ning of C;

(3) the input factor consumed along C is x.
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Furthermore, 〈pAq〉 ?
=⇒ x if and only if besides the above conditions (1)

and (3), the following condition (stronger than (2)) is satisfied:

(2 ′) in all configurations of the computation path C others than the first
and the last one, the pushdown is higher than in the first and in the
last configuration of C.

Proof. First of all, we are going to prove that for all x, p, q, A as in the
statement of the lemma, [pAq] ?

=⇒ x implies (1), (2), and (3), while 〈pAq〉 ?
=⇒

x implies (1), (2′), and (3). We proceed by induction on the length k ≥ 1

of the derivation [pAq]
k

=⇒ x or 〈pAq〉 k
=⇒ x.

For k = 1, there are no derivations [pAq]
1

=⇒ x, while 〈pAq〉 1
=⇒ x

implies that x is a terminal symbol and (p, x, q) ∈ δ (the production is of
the form (i)), from which (1), (2′), and (3) trivially follow.

Suppose now k > 1. The first production applied in a derivation [pAq]
k

=⇒
x is either of the form (iii) or of the form (iv). In the first case we
have [pAq] =⇒ 〈pAr〉[rAq] k−1

=⇒ x, 〈pAr〉 k′
=⇒ x′, [rAq]

k′′
=⇒ x′′, for

some r ∈ Q, 1 ≤ k′, k′′ < k, k′+k′′ = k−1, x′, x′′ ∈ Σ+ such that x′x′′ = x.
Using the induction hypothesis, we can find two computations path C′

and C′′, from state p to r and from state r to q, respectively, with A at
the top of the pushdown at the beginning and at the end, such that the
pushdown is never popped under its level at the beginning of these paths,
and consuming the factors x′ and x′′, respectively. By concatenating these
two paths, we find the path C satisfying in (1), (2), and (3).

If [pAq] =⇒ 〈pAq〉 k−1=⇒ x (i.e., the first production applied is of the
form (iv)), (1), (2), and (3) follow from the induction hypothesis applied
to the derivation 〈pAq〉 k−1=⇒ x.

We now consider a derivation 〈pAq〉 k
=⇒ x, with k > 1. The first

step can only be of the form (ii), namely 〈pAq〉 =⇒ [p′Xq′]
k−1
=⇒ x. From

the induction hypothesis, there is a computation path C′ from state p′ to
state q′ which starts and ends with X at the top of the pushdown, never
popping off the pushdown under the initial level, and consuming x from
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the input tape. From a configuration with state p and A at the top of the
pushdown, A can start a computation path which pushes X, simulates C′,
and finally pops X off the pushdown. While simulating C′ the pushdown
always contains the symbol X over A. Hence, it is higher than in the first
and in the last configuration of C. This proves (1), (2′), and (3).

To prove the converse implications, we proceed by induction on the
length k of the computation path C satisfying conditions (1), (2), (3), and,
possibly, the further condition (2′).

If k = 1 then C should consist only of one move, which consumes the
input symbol x = a and does not modify the pushdown store. According
to the definition of G, the only possible derivations corresponding to such
path are 〈pAq〉 =⇒ x and [pAq] =⇒ 〈pAq〉 =⇒ x.

For k > 1 we consider two cases. First we suppose that C satisfies (1),
(2), (3), but does not satisfy (2′). We decompose C in two shorter paths C′

and C′′ that are delimited by the first configuration which is reached in C
with the same pushdown height as at the beginning and at the end of C.
These two paths satisfy (1), (2), (3). Furthermore, C′ satisfies also (2′). By
the induction hypothesis, we get that 〈pAr〉 ?

=⇒ x′, [rAq] ?
=⇒ x′′, where r

is the state reached at the end of C′ and x′x′′ = x. Using production (iv)
we obtain the derivation [pAq] =⇒ 〈pAr〉[rAq] ?

=⇒ x′x′′ = x.
If C satisfies (1), (2′), and (3), then it should start in state p with a

push of a symbol X moving in a state p′, ends after a pop of the same
symbol X from a state q′ to state q, where the symbol X is never popped
off the pushdown in between. The path C′, consisting of k − 2 moves, ob-
tained by removing from C the first and the last move, consumes the same
input string x which is consumed by C. From the induction hypothesis, we
obtain that [p′Xq′] ?

=⇒ x and, considering (ii), 〈pAq〉 =⇒ [p′Xq′]
?

=⇒ x.

Furthermore, by (iv), we also obtain [pAq]
?

=⇒ x. ut

From Lemma 3, considering production (v), we can easily conclude
that the grammar G so defined is equivalent to the given pda A.

Lemma 4. The above defined grammar G is non-self-embedding.
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Proof. From productions (ii), we observe that h̃(A′) > h̃(A) for any pos-
sible variable 〈p′A′q′〉 or [p′A′q′] that can appear in a sentential form from
a variable 〈pAq〉. Hence, each variable 〈pAq〉 is not self-embedded.

Now, we consider any variable of the form [pAq]. We observe that in
each derivation [pAq]

+
=⇒ α[pAq]β, α, β ∈ (V ∪Σ)∗, the occurence of [pAq]

on the right-hand side can be obtained only if, each time the rightmost
variable is rewritten, productions of the form (iii) are used. Hence, the
string β must be empty. This allows us to conclude that each [pAq] is not
self-embedded. ut

By combining the previous results, we obtain:

Theorem 3. For each h-pda there exists an equivalent nse grammar of
polynomial size.

Proof. From Lemmas 2 to 4, from an h-pda A we can obtain an nse

grammar G of polynomial size generating L (A) \ {ε}. In case ε ∈ L (A),
in order to make G equivalent to A we add the production S → ε. ut

As a consequence of Theorems 2 and 3, we obtain that each nse gram-
mar can be transformed into an equivalent one in a particular form, by
paying a polynomial size increase.

Corollary 1. Each nse grammar is equivalent to a grammar in Chomsky
normal form of polynomial size, in which, for each production X → Y Z, Y
is greater than X according to the order induced by the production graph.

Proof. By Theorem 2, from each nse grammar G we can obtain an equiv-
alent h-pda A of polynomial size which, according to Theorem 3, can
be transformed into an equivalent nse grammar G′ as defined above. As
observed in the proof of Lemma 4, if X +

=⇒ αXβ in G′, then β should
be empty. This implies that for each production X → Y Z, Y is greater
than X according to the order induced by the production graph. Further-
more, it is routine to prove that the unit productions can be eliminated
yielding a grammar G′′ of the desired form. ut
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4 nse Grammars versus 1-las

In this section, we compare the sizes of nse grammars and of h-pdas with
the size of equivalent limited automata. We prove that for each nse gram-
mar there exists an equivalent 1-la of polynomial size. As a consequence,
the simulation of constant height pdas by a 1-la is polynomial in size.

Concerning the converse transformation, we prove that 1-las can be
more succinct than nse grammars and constant height pdas. Actually,
we prove a stronger result showing the existence of a family (Ln)n>0 of
languages such that each Ln is accepted by a 2dfa with O(n) states, while
each Chomsky normal form grammar or pda accepting Ln would require
an exponential size in n.

4.1 From nse grammars to 1-las

We start from an nse grammar G = 〈V,Σ, P, S〉 in the form given by
Corollary 1. Thus, there exists a constant c ≤ #V , such that every deriva-
tion tree of G has the following properties:

– Each internal node is either saturated (i.e., it has exactly two children)
and its children are labeled by some variables, or it has a unique child
which is labeled by a terminal symbol.

– Along every path, the number of left turns (i.e., the number of nodes
which are left-child of some node) is bounded by c.

These properties allow us to compress the representation of a derivation
tree generating a word w of length m into a word u of length m over the
alphabet Γ = Σ×V ×{0, . . . , c}. The compression is non-injective, thus u
may encode different derivation trees. However, each of these derivation
trees should generate the same word w, which is the projection of u overΣ.
We now describe the compression, which is illustrated in Figure 2. Given
a derivation tree T of G, we inductively index its internal nodes according
to the following rules:

– the root of T , labeled by the start symbol S, has index 0;
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– the left-child of a node with index i, has index i+ 1;

– the right-child of a node with index i, has index i.

In other words, the index of an internal node indicates the number of left
turns along the path from the root to it. By assumption on G, this number
is bounded by c.

S, 0

A, 1

C, 2

b

(b, C, 2)

B, 1

C, 2

b

(b, C, 2)

A, 1

a

(a,A, 1)

S, 0

B, 1

C, 2

b

(b, C, 2)

A, 1

a

(a,B, 1)

C, 0

b

(b, S, 0)µ(T ) =

w =

Fig. 2. An example of derivation tree

For a leaf ` of the tree labeled by a terminal symbol a ∈ Σ, we de-
fine σ` = (a,X, i) ∈ Γ where (X, i) is the indexed label of the lowest
ancestor of ` (namely, with minimal i) which is not a right-child of any
node (such nodes have square shape in Figure 2). The compression of the
derivation tree T is defined as the word µ(T ) = σ`1 · · ·σ`m where `1, . . . , `m
are the leaves of T taken from left to right.

We now show how to check that a word u ∈ Γ+ is the compression
of some derivation tree. To this end, we highlight the recursive structure
of compressions. We first define the three natural projections over Γ : for a
symbol σ = (a,X, i) ∈ Γ , we set letter(σ) = a, var(σ) = X and index(σ) = i.
We fix the convention index(B) = index(C) = −1. For i = 0, . . . , c, we
define Γ>i, the restriction of Γ to symbols of index greater than i, i.e.,
Γ>i = {σ ∈ Γ | index(σ) > i}.
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A word u ∈ Γ+ is a valid compression of level i, 0 ≤ i ≤ c, if, on the
one hand, u = w · (a,X, i) for some w ∈ Γ ∗>i, a ∈ Σ and X ∈ V , and, on
the other hand, one of the following two cases holds:

1. w = ε and X → a belongs to P ;
2. there exist Y, Z ∈ V , b ∈ Σ, and v, w′ ∈ Γ ∗ such that:

(a) X → Y Z belongs to P ;
(b) w = v(b, Y, i+ 1)w′(a,X, i)

(c) v(b, Y, i+ 1) is a valid compression of level i+ 1;
(d) w′(a, Z, i) is a valid compression of level i.

In particular, valid compressions of level c are exactly the single-letter
word (a,X, c) such that X → a ∈ P . Observe that in Case 2, Item 2c
implies v ∈ Γ ∗>i+1 and therefore, Y and b are read from the leftmost
symbol of index i + 1 of u. Hence, in order to reconstruct the tree, only
the variables “Z’s” should be guessed (these variables correspond indeed
to nodes that are right-child of some node, represented with circle shape
on Figure 2, which are therefore not represented in the compression of the
tree). By construction, we have:

Lemma 5. A word u ∈ Γ+ is a valid compression of level 0 if and only
if u = µ(T ) for some derivation tree T of G. Furthermore, T generates a
word w ∈ Σ+ which equals the projection of u over Σ∗.

Proof. We simply observe that Items 1 and 2a check that the recovered
tree is consistent with the productions of G, and that Items 2c and 2d are
recursive calls on the left and right subtrees, respectively. Conversely, a
correct derivation tree can be recovered from its (valid) compression. ut

In every compression µ(T ) of some derivation tree T , and for every
level index i, a valid compression of level i is a factor delimited to the
left, by a symbol of index less than i (not included in the factor), and
to the right, by the symbol of index i corresponding to its root node
(included in the factor). This allows a reading head to locally detect the
boundaries of such a factor of an input. This also implies, that the index
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of a symbol preceding a symbol of index i, is always less than or equal
to i+ 1. For instance, the compression illustrated in Figure 2 admits two
valid compressions of level 1, namely the factors (b, C, 2)(b, C, 2)(a,A, 1)

and (b, C, 2)(a,B, 1) which correspond to the subtree rooted in the square-
shape nodes (A, 1) and (B, 1), respectively.

We now show how a 2nfa can check whether a word u ∈ Γ+ is a valid
compression. Basically, the device implements the above-given inductive
definition of valid compressions, with the difference that it test each sub-
tree of level from c downto 0 instead of performing recursive calls. This
allows to store only one guessed variable Z at each time. We describe
the behavior of such a 2nfa A through a collection of subroutines, the
top-level of which is the procedure CheckTree. In each subroutine, σ de-
notes the symbol currently scanned by the head, which is automatically
updated at each head move.

Procedure CheckTree
/* start with the head on the left endmarker */

1 CheckZeroes

2 for i← c downto 0 do
3 move the head to the right until reaching the next symbol with index i
4 while index(σ) = i do
5 CheckSubtree(i)

6 move the head to the right until reaching the next symbol with
index i

7 move the head to the left until reaching the left endmarker
8 Accept

As initial phase, the subroutine CheckZeroes checks that the input
word belongs to Γ ∗>0 · (a, S, 0) for some letter a ∈ Σ. Then, A checks
the validity of each compressions of each level from c downto 0 (for loop
from line 2 to 7). This verification uses the procedure CheckSubtree (call
line 5).
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Procedure CheckZeroes
9 move the head to the right until reaching the right endmarker

10 move the head to the left
11 if var(σ) 6= S or index(σ) 6= 0 then Reject

12 while σ 6= B do
13 move the head to the left
14 if index(σ) = 0 then Reject

This latter subroutine is the direct implementation of the inductive
definition of valid compressions, where the recursive call to incremented
level (Item 2c) are omitted (the validity of these sub-compressions have
already been checked by previous call to the procedure CheckSubtree).
It uses the subroutine SelectNext which finds the leftmost symbol of
index i + 1 in the factor under consideration, if any, or checks whether
the factor has length 1 (if not, the computation rejects, line 19), thus
checking Item 2b (or, partially, Item 1). Items 1 and 2a correspond to

Procedure SelectNext(i)
15 move the head to the right
16 if index(σ) = i− 1 then return
17 else
18 while index(σ) > i do move the head to the right
19 if index(σ) 6= i then Reject

lines 28 and 25, respectively, while C contains the variable Z (line 26)
which is initially set to X (line 20), thus allowing to verify Item 2d (while
loop lines 23 to 27).

To summarize, we obtained the following result.

Lemma 6. The language of valid compressions is recognized by a 2nfa

which uses O(#V 2) states.

Proof. The construction of such a 2nfa A has been described above. We
now estimate its size. The only memory used in the procedure CheckTree,
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Procedure CheckSubtree(i)
/* start with the head scanning a symbol of index i */

20 C ← var(σ)

21 repeat move the head to the left until index(σ) ≤ i
22 SelectNext(i+ 1)

23 while index(σ) 6= i do
24 guess Z
25 if C → Y Z 6∈ P , where Y = var(σ) then Reject

26 C ← Z

27 SelectNext(i+ 1)

28 if C → a 6∈ P , where a = letter(σ) then Reject

is an index i ∈ {0, . . . , c}, to which both the subroutines SelectNext

and CheckSubtree have read-only access. The subroutines CheckZeroes
and SelectNext use no additional memory. The procedure CheckSubtree
stores one variable, namely C, which ranges over V . Hence, the number
of states of A is linear in c × #V . Since c ≤ #V , the number of states
of A is in O(#V 2). ut

We are now ready to state our main result.

Theorem 4. For every nse grammar G, there exist a 1-state letter-to-
letter nondeterministic transducer T and a 2nfa A of polynomial size,
such that a word w is generated by G if and only if A accepts an image u
of w by T . As a consequence, G can be transformed into an equivalent 1-
la of polynomial size.

Proof. From an nse grammar, we obtain an nse grammar G over Σ of
polynomial size in the form given by Corollary 1. The transducer T re-
places each letter a ∈ Σ by a symbol (a,X, i) for some variable X of G
and some index i ≤ #V . Finally, we build A, using Lemma 6, which rec-
ognize an output of T , if and only if its pre-image were generated by G,
by Lemma 5. ut

The following result directly follows from Theorems 3 and 4.
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Corollary 2. Each h-pda can be transformed into an equivalent 1-la of
polynomial size.

4.2 From 2dfas to pdas: An Exponential Gap

In this section, we exhibit an infinite family (Ln)n≥0 of languages over
the alphabet {0, 1}, such that each Ln is recognized by a 1-la with linear
size in n, but requires an exponential size in order to be recognized by an
h-pda. We actually prove a stronger result, since each Ln is recognized by
a 2dfa of linear size, while any grammar in Chomsky normal form gener-
ating Ln requires an exponential number of variables. As a consequence,
every pda recognizing Ln requires an exponential size.

The proof of this lower bound is obtained by using the interchange
lemma [15, Lemma 4.5.1]:

Lemma 7. Given a context-free language L, there exists a constant c > 0,
such that for every integer N ≥ 2, every subset R ⊆ L ∩ ΣN of strings
of length N , and every integer m with 2 ≤ m ≤ N , there exists a sub-
set Z ⊆ R with Z = {z1, z2, . . . , zk} such that k ≥ #R

c(N+1)2
, and there

exist decompositions zi = wixiyi, with 1 ≤ i ≤ k, such that the following
conditions are satisfied:

1. |w1| = |w2| = · · · = |wk|;
2. |y1| = |y2| = · · · = |yk|;
3. m

2 < |x1| = |x2| = · · · = |xk| ≤ m;
4. wixjyi ∈ L for all i, j with 1 ≤ i, j ≤ k.

Furthermore, c can be taken as the number of variables of any context-free
grammar in Chomsky normal form generating L.

We are now ready to prove the announced exponential gap. For a
positive integer n, let Ln be the language of the powers of any string of
length n over {0, 1}, i.e., Ln =

{
uk | u ∈ {0, 1}n, k ≥ 0

}
.

Theorem 5. For each n > 0, the following holds:

– Ln is accepted by a 2dfa of size O(n);
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– Each context-free grammar G in Chomsky normal form needs expo-
nentially many variables in n to generate Ln;

– The size of any pda accepting Ln is at least exponential in n.

Proof. A 2dfa A with O(n) states can accept Ln as follows. First A
traverses the whole input tape, in order to verify that the input length
is a multiple of n. Then A, by moving the head back and forth, verifies
that all two symbols at distance n are equal. It is not difficult to observe
that A can be implemented using O(n) states.

To prove that each context-free grammar generating Ln requires an
exponential number of variables, we observe that given u, u′ ∈ {0, 1}n,
if we decompose the strings z = uuu and z′ = u′u′u′ ∈ Ln as z =

wxy and z′ = w′x′y′, with |w| = |w′|, |y| = |y′|, n < |x| = |x′| ≤ 2n,
then |wy| ≥ n, thus implying that u = ulur where ul is a prefix of w
and ur is a suffix of y. If u 6= u′ then x 6= x′ and the string wx′y cannot
belong to Ln. Applying Lemma 7, with N = 3n, R =

{
u3 | u ∈ {0, 1}n

}
and m = 2n, from the previous argument it follows that the resulting
set Z cannot contain more than one string. Hence, we conclude that each
context-free grammar in Chomsky normal form generating Gn should have
at least 2n

(3n+1)2
variables.

Finally, since each pda can be converted into an equivalent context-
free grammar in Chomsky normal form with a polynomial number of
variables (e.g., [14, Theorem 8]) we conclude that the size of any pda

accepting Ln is at least exponential in n. ut

Corollary 3. The size cost of the conversion of 1-las into nse grammars
and h-pdas is exponential.

Proof. The lower bound derives from Theorem 5. For the upper bound,
in [11] it was proved that each 1-la can be transformed into an nfa of
exponential size from which, by a standard construction, we can obtain a
regular (and, so, nse) grammar, without increasing the size. ut

In [2], the question of the cost of the conversion of deterministic h-pdas
into nfas was raised. To this regard, we observe that the language (a2

n
)∗
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is accepted by a deterministic h-pda (see, e.g., [10]) but, by a standard
pumping argument, it requires at least 2n states to be accepted by nfas.
Actually, as a consequence of state lower bound presented in [9, Theo-
rem 9], 2n states are also necessary to accept it on each 2nfa. Consid-
ering Theorem 5, we can conclude that both simulations from two-way
automata to h-pdas and from h-pdas to two-way automata cost at least
exponential.
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