
HAL Id: hal-04093745
https://hal.science/hal-04093745v1

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Converting nondeterministic two-way automata into
small deterministic linear-time machines

Bruno Guillon, Giovanni Pighizzini, Luca Prigioniero, Daniel Průša

To cite this version:
Bruno Guillon, Giovanni Pighizzini, Luca Prigioniero, Daniel Průša. Converting nondeterministic two-
way automata into small deterministic linear-time machines. Information and Computation, 2022, 289
(Part A), pp.104938. �10.1016/j.ic.2022.104938�. �hal-04093745�

https://hal.science/hal-04093745v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Converting Nondeterministic Two-Way Automata into

Small Deterministic Linear-Time Machines?

Bruno Guillona, Giovanni Pighizzinib,1,∗, Luca Prigionierob, Daniel Pr·²ac,2

aLIMOS, Université Clermont-Auvergne, France
bDipartimento di Informatica, Università degli Studi di Milano, Italy
cFaculty of Electrical Engineering, Czech Technical University, Prague

Abstract

In 1978 Sakoda and Sipser raised the question of the cost, in terms of size

of representations, of the transformation of two-way and one-way nondeter-

ministic automata into equivalent two-way deterministic automata. Despite

all the attempts, the question has been answered only for particular cases

(e.g., restrictions of the class of simulated automata or of the class of simulat-

ing automata). However the problem remains open in the general case, the

best upper bound currently known being exponential. We present a new ap-

proach in which unrestricted nondeterministic �nite automata are simulated

by deterministic models extending two-way deterministic �nite automata,

paying only a polynomial increase of size. Indeed, we study the costs of the

conversions of nondeterministic �nite automata into some variants of one-

?This work contains, in an extended form, some material and results which were pre-
viously presented in a preliminary form in conference papers [1] and [2].

∗Corresponding author
Email addresses: bruno.guillon@uca.fr (Bruno Guillon),

pighizzini@di.unimi.it (Giovanni Pighizzini), prigioniero@di.unimi.it (Luca
Prigioniero), prusapa1@cmp.felk.cvut.cz (Daniel Pr·²a)

1Partially supported by Gruppo Nazionale per il Calcolo Scienti�co (GNCS-INdAM).
2Supported by the Czech Science Foundation, grant 19-21198S.

Preprint submitted to Elsevier January 27, 2022

tape deterministic Turing machines working in linear time; namely Hennie

machines, weight-reducing Turing machines, and weight-reducing Hennie ma-

chines. All these variants are known to share the same computational power:

they characterize the class of regular languages.

Keywords: one-tape Turing machines, two-way automata, descriptional

complexity, Sakoda-Sipser conjecture

1. Introduction

One-way deterministic �nite automata (1dfas) are the canonical accep-

tor for the class of regular languages. If one allows nondeterministic tran-

sitions (1nfas) or/and movements of the head in both directions on the

input tape, so obtaining two-way deterministic and nondeterministic �nite

automata (2dfas/2nfas), the computational power does not increase [3, 4].

Other extensions of �nite automata have been proved to capture the same

class of languages, such as constant-height pushdown automata [5, 6], straight-

line programs [5], 1-limited automata [7, 8, 9], or, as will be of interest for

this work, linear-time one-tape Turing machines [1, 2, 10, 11].3

A natural question concerning models that share the same computational

power is the comparison of the sizes of their descriptions. In particular, the

cost of the elimination of nondeterminism is a standard problem. For in-

stance, it is a classical result that an exponential increase in size is su�cient

and, in the worst case, necessary for the conversion of 1nfas to 1dfas [3].

3Actually, the model considered by Hennie was deterministic. Several extensions of

this result, including that to the nondeterministic case and greater time lower bounds for

nonregular language recognition, have been stated in the literature [12, 13, 14, 15, 16].

2

However, already for two-way automata, the famous Sakoda and Sipser ques-

tion concerning the size blowups from 1nfas or 2nfas to 2dfas is a much

more intricate problem. For both conversions, Sakoda and Sipser conjec-

tured that the costs are exponential [17]. The question has been solved in

some special cases that can be grouped in three classes: by considering re-

strictions on the simulating machines (e.g., sweeping [18], oblivious [19], few

reversals 2dfas [20]), by considering restrictions on languages (e.g., unary

case [21]), by considering restrictions on the simulated machines (e.g., outer-

nondeterministic automata [22, 23]). However, in spite of all attempts, in

the general case the question remains open (for further references see [24]).

Here, we consider a di�erent approach: in order to obtain a polynomial sim-

ulation, we enlarge the family of simulating machines. To this end, we study

size blowups for the conversion of 1nfas and 2nfas into several variants of

linear-time one-tape deterministic Turing machines, which all characterize

regular languages. These variants and their properties have been investi-

gated in [2, 11]. We now give a short description of them (see Figure 1).

As proven by Hennie, linear-time one-tape deterministic Turing machines

recognize regular languages only [10]. However, it cannot be decided whether

or not a one-tape Turing machine actually works in linear time [1, 11]. This

negative result remains true in the restricted case of end-marked machines,

namely one-tape deterministic Turing machines that do not have any extra

space, besides the tape portion which initially contains the input. End-

marked machines working in linear time will be called deterministic Hennie

machines. To overcome the above-mentioned �negative� results, a syntactical

3

recursively enumerable (type 0)

regular (type 3)
context-sensitive (type 1)

dete
rminist

ic cont
ext-s

ensit
ive

weight-reducing dHms (wrdHms)

deterministic Hennie machines (dHms) halting wrdTms

end-marked dTms linear-time dTms weight-reducing dTms (wrdTms)

one-tape deterministic Turing machines (dTms)

Figure 1: Variants of one-tape deterministic Turing machines and their expressive power

confronted with the Chomsky hierarchy. In particular, end-marked dTms are known as

deterministic linear bounded automata in the literature, and recognize the so-called deter-

ministic context-sensitive languages, a subclass of context-sensitive languages, see [25]. It

is still unknown if such inclusion is strict.

restriction on deterministic one-tape Turing machines, called weight-reducing

machines, has been considered [1, 11]. This restriction enforces computations

to either be in�nite or halt within a linear number of steps in the input length.

In contrast to Hennie machines, this model bene�ts from nice properties. In

particular, it can be decided whether a one-tape Turing machine is weight-

reducing, and whether a weight-reducing Turing machine is halting (and

hence works in linear time). Furthermore, haltingness of the model can al-

ways be obtained by paying only a polynomial size increase. However, in this

model, space is not limited to the portion of the tape that contains the input

at the beginning of the computation; namely the device is not end-marked.

By considering end-marked linear-time machines satisfying the syntactical

restriction of weight-reducing machines, we obtain weight-reducing Hennie

machines.

4

Our main result is that each 2nfa A can be simulated by a one-tape

deterministic Turing machine that works in linear time (with respect to the

input length) and which has polynomial size with respect to the size of A.

We point out that the resulting machine can use extra space, besides the tape

segment which initially contains the input. Next, the machine is halting and

weight-reducing, thus implying a linear execution time. Hence, nondetermin-

ism can be eliminated with at most a polynomial size increase, obtaining a

linear execution time in the input length, and provided the ability to rewrite

tape cells and to use some extra space.

We then investigate what happens when the latter capability is removed,

namely if the machine does not have any further tape storage, i.e., it is a

Hennie machine. We prove that even under this restriction it is still possible

to obtain a machine of polynomial size, that is each 2nfa can be transformed

into an equivalent Hennie machine of polynomial size. However, the machine

resulting from our construction is not weight reducing, unless we require

that it agrees with the given 2nfa only on su�ciently long inputs. We

do not have this problem in the unary case, namely for a one-letter input

alphabet, where we prove that each unary 2nfa can be simulated by a weight-

reducing Hennie machine of polynomial size. Similar results are obtained for

the transformation of 1nfas into variants of one-tape deterministic machines.

The paper is organized as follows. In Section 2 we present some funda-

mental notions and de�nitions, included those related to the computational

models we are interested in, and we state some basic properties. In Section 3

we present our main simulation result: each n-state 2nfa can be transformed

into an equivalent halting weight-reducing machine of size polynomial in n.

5

In Section 4 we discuss how the simulation changes if the resulting machine

is required to be a Hennie machine. Finally, in Section 5 we revise the results

of Sections 3 and 4 under the assumption that the simulated automata are

one-way instead of being two-way.

2. Preliminaries

In this section we recall some basic de�nitions and notation. We also

describe the main computational models considered in the paper and we give

some preliminary results.

We assume the reader familiar with notions from formal languages and

automata theory (see, e.g., [26]). Given a set S, its cardinality is denoted

by #S and the family of all its subsets 2S. Given an alphabet Σ, the length

of a string w ∈ Σ∗ is denoted by |w|, the i-th symbol of w is denoted by wi,

i = 1, . . . , |w|, and the empty string is ε.

Finite automata are computational devices equipped with a �nite con-

trol and a �nite read-only tape which is scanned by an input head. A

one-way nondeterministic �nite automaton (1nfa) is de�ned as a quintu-

ple A = 〈Q,Σ, δ, q0, F 〉, where Q is a �nite set of states , Σ is a �nite in-

put alphabet , q0 ∈ Q is the initial state, F ⊆ Q is a set of �nal states ,

and δ : Q×Σ→ 2Q is a nondeterministic transition function. At each step,

according to its current state p and the symbol σ scanned by the head, A

enters one nondeterministically-chosen state from δ(p, σ) and moves the in-

put head rightward to the next symbol. The machine accepts the input if

there exists some computation starting from the initial state q0 with the

head on the leftmost input symbol and ending in a �nal state q ∈ F after

6

having read the whole input. A 1nfa A is said to be deterministic (1dfa),

whenever #δ(q, σ) ≤ 1, for any q ∈ Q and σ ∈ Σ.

Providing 1nfas (resp., 1dfas) with the ability of moving the head back

and forth, we obtain two-way nondeterministic (resp., deterministic) �nite

automata (2nfas , resp., 2dfas). They are de�ned by extending the transi-

tion function so that a left (−1) or right (+1) head direction is indicated in

each instruction. Furthermore, to prevent the head to fall out the input, the

device is end-marked , in the following sense. Two special symbols B and C

not belonging to Σ, called the left and the right endmarker , respectively,

surround each input word, and enforce the computation to stay between

them (except at the end of computation when accepting, as described be-

low). More precisely, on input w the tape contains BwC, the left endmarker

being at position 0 and the right endmarker being at position |w| + 1. We

let ΣB,C denote the set Σ ∪ {B,C}. Formally, the transition function of a

two-way automaton is δ : Q × ΣB,C → 2Q×{−1,+1} such that, for each tran-

sition (q, d) ∈ δ(p, σ), if σ = B then d = +1, and if σ = C then d = −1

or q ∈ F . In this way, the head cannot go past the endmarkers, except at the

end of the computation to accept. The machine accepts the input if there

exists a computation starting from the initial state q0 with the head on the

0-th tape cell (i.e., scanning the left endmarker) and ending in a �nal state

q ∈ F after passing the right endmarker.

The other main computational model we consider is the deterministic

one-tape Turing machine (dTm). Such a machine is a tuple 〈Q,Σ,Γ, δ, q0, F 〉

where Q is the set of states , Σ is the input alphabet , Γ is the tape alphabet

including both Σ and the special blank symbol , denoted by 6 b, that cannot be

7

written by the machine, q0 ∈ Q is the initial state, F ⊆ Q is the set of �nal

states , and δ : Q×Γ→ Q× (Γ \ {6 b})×{−1,+1} is the partial deterministic

transition function. In one step, depending on its current state p and on

the symbol σ read by the head, a dTm changes its state to q, overwrites

the corresponding tape cell with τ and moves the head one cell to the left

when d = −1 or to the right when d = −1, if δ(p, σ) = (q, τ, d). Since δ is

partial, it may happen that no transition can be applied. In this case, we say

that the machine halts . At the beginning of computation the input string w

resides on a segment of a bi-in�nite tape, called the initial segment , and the

remaining in�nity of cells contain the blank symbol. The computation on

input w starts in the initial state with the head scanning the leftmost non-

blank symbol. The input is accepted if the machine eventually halts in a �nal

state.

Let A = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. A con�guration of A is given by

the current state, the tape contents, and the position of the head. If the

head is scanning a non-blank symbol, we describe it by zqu where zu ∈ Γ∗

is the �nite non-blank contents of the tape, u 6= ε, and the head is scanning

the �rst symbol of u. Otherwise, we describe it by q6 bz or zq according to

whether the head is scanning the �rst blank symbol to the left or to the right

of the non-blank tape contents z, respectively. If, from a con�guration zqu

the device may enter a con�guration z′q′u′ in one step, we say that z′q′u′

is a successor of zqu, denoted by zqu ` z′q′u′. A halting con�guration is a

con�guration that has no successor. The re�exive and transitive closure of `

is denoted by ∗̀. On an input string w ∈ Σ∗, the initial con�guration is q0w.

An accepting con�guration is a halting con�guration zqfu such that qf is a

8

�nal state of the machine. A computation is a (possibly in�nite) sequence of

successive con�gurations. It is accepting if it is �nite, its �rst con�guration

is initial, and its last con�guration is accepting. Therefore, the language

accepted by a machine A is the set

{w ∈ Σ∗ | q0w ∗̀ zqfu, where qf ∈ F and zqfu is halting}.

We say that two machines T and H agree on some language L if every string

in L is accepted by T if and only if it is accepted by H.

The notions of con�gurations, successors, computations, and halting con-

�gurations naturally transfer to one-way and two-way �nite automata.

In the paper we consider the following restrictions of dTms.

End-marked machines. We say that a dTm is end-marked if at the begin-

ning of the computation the input string is surrounded by two special

symbols belonging to Γ, B and C respectively, called the left and the

right endmarkers, which can never be overwritten, and that prevent

the head to fall out the tape portion that initially contains the input.

Formally, for each transition δ(p, σ) = (q, τ, d), σ = B (resp., σ = C)

implies τ = σ and d = +1 (resp., d = −1). This is the determin-

istic restriction of the well-known linear-bounded automata [27]. For

end-marked machines, the initial con�guration on input w is q0BwC.

Weight-reducing Turing machines. A dTm is weight-reducing (wrdTm),

if there exists a partial order < on Γ such that each rewriting is de-

creasing, i.e., δ(p, σ) = (q, τ, d) implies τ < σ. By this condition,

in a wrdTm the number of visits to each tape cell is bounded by a

9

constant. However, one wrdTm could have non-halting computations

which, hence, necessarily visit in�nitely many tape cells.

Linear-time Turing machines. A dTm is said to be linear-time if over

each input w, its computation halts within O(|w|) steps.

Halting weight-reducing machines. These machines are wrdTm that work

in linear time, and hence are necessarily halting.

Hennie machines. A Hennie machine (dHm) is a linear-time dTm which

is, in addition, end-marked.

Weight-reducing Hennie machines. By combining previous conditions,

weight-reducing Hennie machines (wrdHm) are de�ned as particular

dHm for which there exists an order < over Γ \ {B,C} such that

δ(p, σ) = (q, τ, d) implies τ < σ unless σ ∈ {B,C}. Observe that

each end-marked wrdTm can execute a number of steps that is at most

linear in the length of the input. Hence, end-marked wrdTm are nec-

essarily weight-reducing Hennie machines.

The size of a machine is given by the total number of symbols used to

write down its description. Therefore, the size of a one-tape Turing machine

is bounded by a polynomial in the number of states and of tape symbols;

namely, it is Θ(#Q · #Γ · log(#Q · #Γ)). In the case of nondeterministic

(resp., deterministic) �nite automata, since no writing to the tape is allowed

and hence the work alphabet is not provided, the size is linear in the number

of instructions and states, which is bounded by a function quadratic (resp.,

subquadratic) in the number of states and linear in the number of input

symbols; namely, it is Θ(#Σ ·#Q2) (resp., Θ(#Σ ·#Q · log(#Q))).

10

We now state two preliminary results that will be used in the subsequent

sections for building weight-reducing Turing machines and weight-reducing

Hennie machines, respectively.

It is known that a dTm works in linear time only if there exists a con-

stant k such that in no computation the head visits each tape cell more than k

times [10, Proof of Theorem 3]. The following lemma states that, given a

dTm that visits each tape cell at most k times, a weight-reducing Turing ma-

chine can be obtained, augmenting linearly the work alphabet only. Indeed,

we can enforce the machine to store on each tape cell the number of further

visits the head is allowed to perform on the cell. As this number decreases,

the overwriting is decreasing. Using k copies of each tape symbol is enough

to implement this. Therefore, in order to de�ne a wrdTm, it is su�cient to

de�ne a dTm and to provide a constant k bounding the number of visits to

each tape cell.

Lemma 1 ([11]). Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm such that, for any

input, T performs at most k computation steps on each tape cell. Then there

is a wrdTm A equivalent to T with the same set of states Q as T and tape

alphabet of size O(k ·#Γ). Furthermore, on each input A uses the same space

as T . Hence, if T is linear time or end-marked then so is A.

Weight-reducing Turing machines extend weight-reducing Hennie ma-

chines by allowing the use of some extra space besides the portion that ini-

tially contains the input. Indeed, the former model can use a bi-in�nite tape

while the latter is end-marked. However, it has been shown that every �nite

computation of a wrTm uses an amount of this extra space which is bounded

by a constant in the input length [11]. We do not know whether the use of

11

this extra space can be avoided in general, while keeping the weight-reducing

property and bounding the size increase by a polynomial. Nevertheless, this

can be achieved when the inputs are long enough.

Lemma 2. Let T be a weight-reducing Turing machine which uses at most C

initially-blank cells in every halting computation. Then there exists a weight-

reducing Hennie machine H of size polynomial in the size of T that agrees

with T on every input of length at least C.

Proof. The idea of the proof is the same as the folklore simulation of Turing

machines working on a bi-in�nite tape by Turing machines working on a semi-

in�nite tape. Indeed, we fold the portion of the tape occurring to the left of

the initial segment onto the complementary portion of the tape, thus creating

a second track. Similarly, we can fold the portion of the tape occurring to

the right of the initial segment onto the complementary portion of the tape.

Next, as T uses at most C initially-blank cells in total, and providing the

input has length at least C, we observe that the additional tracks do not

overlap hence only one additional track is su�cient for the simulation. On

shorter inputs, the simulation could fail giving an outcome di�erent from

those of T . Doing so, we obtain a dHm H that uses twice the number of

states of T (two copies of each state of T for indicating which track should

be read), and the work alphabet ΓH = Γ ∪ Γ2 where Γ is the work alphabet

of T . In particular, the size of H is polynomial in the size of T . Finally, we

can extend the order <T on Γ witnessing that T is weight-reducing, to an

order <H on ΓH witnessing that H is weight-reducing. �

12

3. Simulating Two-way Automata by Weight-reducing Machines

This section is devoted to present our main simulation: we show that

every 2nfaA = 〈Q,Σ, δ, q0, F 〉 can be transformed into an equivalent wrdTm

of size polynomial in the size of A. Let n = #Q. Our construction is based

on the classical simulation of 2nfas by 1dfas, inspired from Shepherdson's

construction [4]. The main idea is to perform forward moves, while updating

a table of size n2 that describes parts of computations which may occur to

the left of the current position. In parallel, an adaptation of the classical

powerset construction for converting 1nfas into 1dfas is done, in such a

way that the set of states that are accessible from the initial con�guration

when visiting for the �rst time the current head position is updated at each

move. In the simulation by 1dfas, the table and the set are stored on the

�nite state control. In our simulation by wrdTms they will be written, under

a suitable encoding, in O(n2) many tape cells.

To describe computation paths that occur on some restricted part of the

tape, we de�ne partial con�gurations , by relaxing the de�nition of con�gura-

tions, as strings xqy where q is a state and xy ∈ {B, ε} · Σ∗ · {C, ε} is a factor

of the tape content. The successor relation ` on con�gurations extends onto

partial con�gurations. In particular, zpX ∗̀ zXq with |X| = 1 means that

there exists a computation path

� starting from the rightmost position of zX (with the head scanning the

symbol X) in state p,

� ending while entering the cell to the right of this position in state q,

and

13

� which visits only cells from the part of the tape containing zX in the

meantime.

By storing in a set τzX the pairs of states (p, q) such that such a computa-

tion path exists, we save the possible behaviors of A when moving leftward

from the cell c immediately to the right of zX. Indeed, in order to reach

an accepting con�guration after moving leftward from c, the device should

eventually return to c, because acceptance is made after passing the right

endmarker. We are going to give the formal de�nition of the set τzX for a

pre�x zX of the tape content, together with the de�nition of the set γzX of

states that are reachable from the initial con�guration, when visiting for the

�rst time the position to the right of the part containing zX. Formally, for

a pre�x zX ∈ {B} · Σ∗ · {ε,C} of the tape contents with |X| = 1 we have:

τzX = {(p, q) ∈ Q×Q | zpX ∗̀ zXq }, and

γzX = {r ∈ Q | q0zX ∗̀ zXr }.

Observe that a word w ∈ Σ∗ is accepted by A if and only if F ∩ γBwC 6= ∅.

In order to simulate A on input w, it is thus su�cient to incrementally

compute γz for each pre�x z of BwC. To do so, we will keep the table τz

updated as well. Indeed, given γz, τz and a symbol σ, it is possible to

compute γzσ and τzσ. This is achieved by observing that (see Figure 2):

1. (p, q) ∈ τzσ if and only if there exists a sequence r0, s0, r1, s1, . . . , r` ∈ Q,

with ` ≥ 0, satisfying:

� r0 = p,

� (q,+1) ∈ δ(r`, σ), and

14

B X σ

z

r0s0

r1s1

r` q

··
·

Figure 2: A computation path from p = r0 to q giving (p, q) ∈ τzσ. For each i, (si, ri+1) ∈

τz and (si,−1) ∈ δ(ri, σ), while (q,+1) ∈ δ(r`, σ).

� (si,−1) ∈ δ(ri, σ) and (si, ri+1) ∈ τz, for i = 0, . . . , `− 1.

2. q ∈ γzσ if and only if there exists p ∈ γz such that (p, q) ∈ τzσ.

We represent a pair (γz, τz) as a word uv in {0, 1}∗ with |u| = n and |v| = n2.

Each bit of u (resp., v) indicates the membership of some state p (resp., some

pair (p, q) of states) to the set γz (resp., τz) through an implicitly �xed bijec-

tion from Q to {1, . . . , n} (resp., from Q2 to {1, . . . , n2}). For each input sym-

bol σ, there exists a halting dHm Tσ which computes (γzσ, τzσ) from (γz, τz)

in the following sense. On input uv ∈ {0, 1}n+n
2

encoding (γz, τz), Tσ ends

the computation with the tape containing the encoding u′v′ ∈ {0, 1}n+n
2

of (γzσ, τzσ). Notice that this computation does not depend on the entire z,

which, indeed, is not given to Tσ, but only on the information about z stored

in γz and τz which are given in the input.

Lemma 3. For each σ ∈ Σ∪{C}, there exists a halting dHm Tσ with O(n6)

states and O(1) tape symbols that on input (γz, τz) halts with the tape con-

taining (γzσ, τzσ) after O(n5) visits to each cell. The input and the output

are represented on the tape as strings in {0, 1}n+n
2

.

15

Proof. Fix σ, and let uv be the input string encoding the pair of tables (γz, τz),

of size n and n2 respectively. In order to update them, Tσ uses a second track

on the tape, on which it will progressively build the updated tables. At the

end of the computation, namely when the updated tables have been deter-

mined and written down the second track, the device performs a projection

of the tape on its second track, in order to produce the correct output, and

halts.

We �x the work alphabet Γ = {0, 1} ∪ {0, 1}2. The �simple� symbols

from {0, 1} are used only for the input and the output of Tσ. From now on,

we suppose that the tape contains only symbols from the 2-track alphabet

part, i.e., the right side of the union. Moreover, since the length of the

input is �xed and it is n+ n2, we can suppose that Tσ keeps updated a state

component of size n+ n2 which always stores the position of its head on the

tape. This allows it to navigate over the tables.

We divide the tape into two parts: a pre�x u of length n (thus covering

the factor u which encodes γz on its �rst track) and a su�x v of length n2

(thus covering the factor v which encodes τz on its �rst track). As previously

explained, the updated table γzσ can easily be obtained once the updated

table τzσ has been computed. Hence, we �rst show how to write the table τzσ

on the second track of v. This is achieved using the space n available on

the second track of u as temporary memory, to which we refer as temporary

table.

As observed above (see Figure 2), a computation path on the segment

containing zσ starting from the rightmost position of the segment and ex-

iting the segment to the right at its last step, i.e., a computation of the

16

form zpσ ∗̀ zσq, can be decomposed into an alternation of computation

paths on the segment containing z (described by the table τz) and of back-

ward computation steps on σ connecting these paths, followed by a last

forward computation step on σ that exits the segment. For each state p, in

order to decide which pairs (p, q) belong to τzσ, the machine Tσ �rst com-

putes the set Zp of states that are reachable at the rightmost position of the

segment containing zσ, from the state p at the same position, by visiting

only cells from the segment, i.e.,

Zp = {r | zpσ ∗̀ zrσ}.

Thus, a pair (p, q) belongs to τzσ if and only if for some r ∈ Zp, we have

(q,+1) ∈ δ(r, σ). For a �xed p, Tσ can incrementally construct Zp on the

temporary table as follows. Initially, all the cells from the table are unmarked

(i.e., contain 0) except the one corresponding to state p which contains 1.

The update process behaves as follows: for each state r corresponding to a

marked cell, each state s such that (s,−1) ∈ δ(r, σ), and each state r′ such

that (s, r′) ∈ τz, the machine marks the cell corresponding to r′ with 1 in the

temporary table. Since Zp has size bounded by n, after at most n passes, the

temporary table is not modi�ed any longer and contains exactly an encoding

of Zp.

So done, computing the set Zp uses only a polynomial number of states

in n. This is however not su�cient to get a weight-reducing machine of

polynomial size. To this end, using Lemma 1, we should indeed prove that

the number of visits to each cell is bounded by some polynomial in n. To

update Zp, three nested loops on states, namely on r, s, and r′, are used.

Once such a triple is �xed, the machine navigates on the tape in order to check

17

that r is currently marked in the temporary table, and (s, r′) ∈ τz (notice

that the condition (s,−1) ∈ δ(r, σ) is veri�ed in constant time, since σ is

�xed). These two conditions require reading the corresponding cells in the

temporary table (on u) and in the table τz (on v), respectively. This can

be performed by visiting each tape cell at most twice. Marking the cell

corresponding to r′ also implies scanning the tape part u twice. As the

operation is repeated for each triple, we obtain that the number of visits to

each cell in a pass for updating Zp is O(n3). Since the number of passes is

at most n, the total number of visits to each cell is O(n4). Moreover, this

operation can be implemented by using O(n3) states because we just need

to remember the values of r, s, and r′, but not the number of the pass: it is

su�cient to use a bit to remember if during the last pass at least one state

has been added to Zp. This is because if no states are added during a pass,

then no states will be added when executing further iterations.

Once Zp has been computed, for each state r corresponding to a marked

cell in the temporary table, and each state q such that (q,+1) ∈ δ(r, σ), the

dHm adds the pair (p, q) to the table τzσ represented on the second track

of v. This requires visiting each tape cell O(n) times and can be performed

using only a quadratic number of states in n.

Hence, the total number of states used to add pairs (p, q) to the table τzσ,

for a �xed state p, is O(n3), without taking into account the state component

which stores the head position, while the number of visits to each tape cell

is O(n4).

By repeating this for each state p, we manage to update the table from τz

to τzσ. This multiplies the number of states and the number of visits to each

18

tape cell by a linear factor in n. Finally, we can update the table γz. As ob-

served before, it is su�cient to consider whether (p, q) ∈ τzσ for some p ∈ γz
for each state q. This last step requires only a quadratic number of states and

a linear number of visits to each cell. Combining the above-described sub-

routines, and taking into account that the state component which stores the

head position has size O(n2), we obtain a dHm with O(n6) states and O(1)

tape symbols, whose number of visits to each tape cell is in O(n5). �

We are now ready to state our main simulation.

Theorem 1. Every n-state 2nfa can be transformed into an equivalent halt-

ing wrdTm with O(n6) states and O(1) tape symbols.

Proof. Let A = 〈Q,Σ, δ, q0, F 〉 be a 2nfa. We build a deterministic Turing

machine that mimics the simulation of A by a 1dfa: after reading any

pre�x z of an input w, the machine stores the tables γBz and τBz and checks

the existence of a �nal state in γBwC. The tables are stored on a suitable

tape track and updated each time a further input symbol is read, using the

method presented in Lemma 3. This can be achieved by switching between

two tape tracks at each update of the tables. However, as the number of

updates is linear in the length of the input, storing and updating the tables

on a �xed part of length n + n2 of the tape would lead to a non-weight-

reducing Turing machine. To handle this issue, for each pre�x z of w, we

store the tables γBz and τBz on the n+n2 cells that precede the last position

of z. (Remember that, in a wrdTm, some initially-blank cells to the left of

the initial segment are available.) Thus, at each update of the tables made

according to Lemma 3, the tables are shifted one cell to the right. Hence,

19

since a �xed cell may occur in n+n2 successive stored tables, the number of

visits to each cell is in O(n7), and the number of states is in O(n6). We thus

obtain a halting weight-reducing Turing machine equivalent to A whose size

is polynomial in the size of A by Lemma 1. Furthermore, the machine uses

only n+ n2 initially-blank cells that are all to the left of the initial segment.

�

4. Simulating Two-way Automata by Hennie Machines

In Section 3 we provided a polynomial-size conversion from 2nfas to

wrdTms. The resulting machines use additional tape cells, besides the initial

segment. In this section we study how to make such a simulation when the

use of such extra space is not allowed; namely when we want to obtain a

deterministic Hennie machine. We show that a polynomial conversion still

exists, but we are not able to guarantee that the resulting machine is weight

reducing. Actually this issue is related to �short� inputs, namely to strings

of length less than n2, where n is the number of states of the given 2nfa.

For such inputs we do not have enough tape space to perform the simulation

in Theorem 1. We will deal with them by using a di�erent technique.

Let us start by considering acceptance of �long� inputs.

Theorem 2. For each n-state 2nfa A, there exists a wrdHm H with O(n6)

states and O(1) tape symbols that agrees with A on strings of length at

least n2.

Proof. The technique used in the proof of Theorem 1 can be exploited, with

slight modi�cations. Indeed, when recovering the tables corresponding to

20

the �short� pre�xes z's of the tape content, the wrdTm machine resulting

from the above construction uses up to n+ n2 initially-blank cells to the left

of the initial segment, that are not any longer available with a wrdHm. By

folding n of these cells on an additional track, as in the proof of Lemma 2,

we can reduce this space amount to n2 cells by a polynomial size increasing.

Hence, applying Lemma 2, we can obtain a wrdHm which agrees with the

original machine on inputs of length at least n2. �

In the case of unary 2nfas, namely working on a single-letter input al-

phabet, the number of short inputs that are not handled by Theorem 2 is n2.

They can be managed in a read-only preliminary phase that uses O(n2)

states.

Theorem 3. Every n-state unary 2nfa is equivalent to a wrdHm with O(n6)

states and O(1) tape symbols.

Proof. We simulate a given unary 2nfa A as follows. Let X be the �nite set

{i < n2 | i = |w| for some w ∈ L}. First, the head of our simulating wrdHm

is moved to the right to test whether the input is shorter than n2, using a

counter from 0 to n2− 1. In this case, the machine accepts if and only if the

counter value belongs to X. Otherwise, the head is moved back to the left

endmarker and the simulation from Theorem 2 is performed. With respect

to the wrdTm obtained from Theorem 2, our device uses O(n2) additional

states and O(1) extra tape symbols. Hence, our construction yields a wrdHm

equivalent to A of size polynomial in n. �

In the nonunary case, since the number of short strings is exponential

in n, we cannot apply the same technique as in Theorem 3. However, we

21

are able to obtain a polynomial-size Hennie machine (not necessarily weight

reducing) using a di�erent technique, which is based on the analysis of the

computation graph of the simulated 2nfa.

Theorem 4. Each n-state 2nfa is equivalent to a dHm with O(n9 log n)

states and O(n6) tape symbols.

Proof. LetA = 〈Q,Σ, δ, q0, F 〉 be a 2nfa, with #Q = n. Without loss of gen-

erality we suppose F = {qf}. Let w ∈ Σ∗ be an input word, with m = |w|.

We distinguish three cases, depending on m. Observe that the simulat-

ing dHm H can decide the case by performing a reading traversal of the

input using a polynomial number of states.

If m ≥ n2, then H simulates A as in Theorem 2.

If m ≤ log n, then H simulates a 1dfa with a polynomial number of

states in n (and in the number of input symbols, which is assumed to be a

�xed constant), which agrees with A on all strings of length at most log n.

Finally, if log n < m < n2, then H checks whether there is an accepting

computation of A on w by analyzing the computation graph G = 〈V,E〉 of A

on w, de�ned as follows. The set of vertices of G is V = Q×{0, . . . ,m+ 1}∪

{(qf ,m+ 2)}, where the pair (q, i) ∈ V corresponds to the con�guration on

input w in which A is in the state q while scanning the i-th symbol of the

input tape. The edges in E represent single moves, i.e., there exists an edge

from (q, i) to (p, j) if and only if (p, j − i) ∈ δ(q, w̃i), where w̃ = BwC.

The simulating Hennie machine H should check the existence of a com-

putation of A starting from the initial state q0 with the head on the left

endmarker (i.e., at position 0) and ending in the unique �nal state qf after

passing the right endmarker (i.e., at position m + 2). This is equivalent to

22

Function reachable(p, i, q, j, T): boolean

Checks the existence of a path from (p, i) to (q, j) of length less than

or equal to T in the graph of the con�gurations of a given 2nfa on

input w = w1 · · ·wm
1 if (p, i) = (q, j) then return true

2 if T = 0 then return false

3 if T = 1 then

4 if (q, j − i) ∈ δ(p, w̃i) then return true

5 else

6 foreach r, ` ∈ Q× {0, . . . ,m+ 1} do

7 if reachable(p, i, r, `, bT/2c) then

8 if reachable(r, `, q, j, dT/2e) then return true

9 return false

checking the existence of a path from the node (q0, 0) to the node (qf ,m+ 2)

in G. Let K = n(m + 2) + 1 be the number of nodes in G. If such a path

exists, then there should exist one of length at most K. Hence, checking the

existence of an accepting computation reduces to checking the existence of a

path of length at most K in G. The recursive function reachable is used to

perform this checking by calling reachable(q0, 0, qf ,m+ 2, K).

Let us describe how a call of reachable(p, i, q, j, T) works. The function

has to check if there exists a computation from (p, i) to (q, j) of length at

most T . This is done by using a divide-and-conquer technique as in the

famous proof of Savitch's Theorem [28]. If (p, i) = (q, j), i.e., there is a path

of length 0 from (p, i) to (q, j), then the function returns true independently

23

of T (Line 1). Otherwise, if T = 0 but (p, i) 6= (q, j), then the function

returns false (Line 2), while, if T = 1, the function returns true if there is a

suitable edge in G (Line 4). In order to verify that, H saves (q, i) and (p, j)

in its internal state and then, if the distance between i and j is 1, it moves

its head to position i, reads the symbol w̃i, and checks (q, j − i) ∈ δ(p, w̃i).

Notice that this read-only process uses only a number of states polynomial

in n.

In the recursive case, for checking if there exists a path in the graph

from (p, i) to (q, j) of length at most T > 1, H veri�es whether there exists a

node (r, `) ∈ Q×{0, . . . ,m+ 1} such that there is a path from (p, i) to (r, `)

of length at most
⌊
T
2

⌋
and a path from (r, `) to (q, j) of length at most

⌈
T
2

⌉
(Lines 6 to 8). This is done by trying all possible nodes (r, `) until �nding one

satisfying these conditions. If it does not exist, then the procedure returns

false (Line 9).

Recursive calls to the function reachable can be naturally saved on a

pushdown store. More precisely, at the beginning of the simulation the store

is empty. When a call to reachable(p, i, q, j, T) is performed, the activation

record, consisting of the parameters p, i, q, j, and T , is pushed on the top

of the pushdown. Similarly, when reachable returns, the activation record

of the last call is popped o�. The function reachable uses seven variables,

�ve of them being arguments saved on the pushdown store, and two being

the local variables r and `. As these two local variables are arguments of

inner recursive calls, their values can be recovered when popping o� the inner

activation record (after the corresponding call has returned). Hence, the state

components saving r and ` are freed at each recursive call. Therefore, all the

24

checks performed by reachable can be done with a number of states that

is polynomial in n, and using the pushdown alphabet (Q× {0, . . . , n2})2 ×

{0, . . . , K} of size polynomial in n. We can observe that, at the beginning

of the computation, we could call reachable(q0, 0, qf ,m+2, 2dlogKe) instead

of reachable(q0, 0, qf ,m+ 2, K). In this way, in each recursive call the last

argument is a power of 2. This allows to reduce the number of di�erent values

that the last argument can get to dlogKe + 1. Actually, it is not necessary

to explicitly write down this argument: it can be computed and saved in

the �nite control, at the beginning of each call of reachable, by counting

the number of active recursive calls (i.e., the height of the stack of recursion

calls).

Finally, notice that the maximum recursion depth is dlogKe = O(log n).

The stack of recursion calls can be stored in a separate track on log n tape

cells, by using standard space compression techniques, which only induce a

polynomial-size increase of the work alphabet. Since the input length m is

larger than log n, the simulating Hennie machine H has enough space in its

initial segment. The number of visits to each cell is super-polynomial in n,

and hence the machine is not weight-reducing. However, because the input

lengths are bounded by n2, the number of visits to each cell is bounded by a

number which only depends on n.

Considering also how the machine works on inputs of length at least n2,

this allows us to conclude that the working time of the whole machine H is

linear in the input length. �

It is natural to ask if Theorem 4 can be improved in order to obtain

from a given 2nfa A an equivalent wrdHm of polynomial size. In the light

25

of Theorem 2, to do that it will be enough to obtain a wrdHm of polynomial

size which agrees with the 2nfa on �short� inputs. With this respect, we

point out that the problem of Sakoda and Sipser seems to be hard even when

restricted to strings of length polynomial in the number of states of A [29].

5. The One-Way Case

In this section we restrict our attention to one-way automata simulations.

A natural question is to ask if in the case of 1nfas results stronger than those

presented in Section 4 can be achieved. A simulation of 1nfas by wrdHms

was studied in [1, Theorem 11], claiming that each n-state 1nfa A has an

equivalent wrdHm H of size polynomial in n. Unfortunately, the presented

proof is incorrect as it casts the problem of A acceptance as the problem

of reachability in an undirected computation graph. Existence of a path

connecting the initial and an accepting con�guration in such a graph does

not guarantee the existence of an accepting computation of A since the path

can include �back� edges.

By revising [1, Theorem 11], we prove two weakened variants of this result.

In the �rst one, the simulation holds only for su�ciently long inputs. The

improvement with respect to Theorem 2 is that, in this case, short inputs

are the strings of length less than n rather than n2. In the second variant,

we show that each 1nfa can be simulated by a deterministic Hennie machine

which, however, is not weight-reducing.

Let us start by presenting the weight-reducing simulation for �long� in-

puts.

26

Theorem 5. For each n-state 1nfa A, there exists a wrdHm H with O(n3)

states and O(1) tape symbols which agrees with A on strings of length at

least n.

Proof. In order to obtain H, we build a dTm T equivalent to A with the

following properties:

(P1) the size of T is bounded by a polynomial in the size of A;

(P2) the number of visits to each cell in any computation is bounded by a

polynomial in n;

(P3) only n tape cells beside the initial segment are used, in any computa-

tion.

Then, using (P2) and Lemma 1, T can be turned into an equivalent wrdTm

preserving (P1) and (P3). Finally, using (P3) and Lemma 2, the resulting

wrdTm is converted to the wanted wrdHm H whose size is polynomial in the

size of A.

We build T by adapting the classical powerset construction for converting

1nfas into 1dfas. In this standard construction, the simulating 1dfa scans

the input word, while keeping updated, at each step, the subset of states

that can be reached by A from the initial con�guration while reading input

symbols. Our construction uses this technique but, instead of storing the

subset in the �nite control of the simulating machine, T stores the successive

subsets on the tape, exploiting the writing capability of wrdTms in order to

avoid an exponential size blowup.

Let A = 〈Q,Σ, δ, q0, F 〉 with Q = {q0, q1, . . . , qn−1}. Following the no-

tation of Section 3, for any input pre�x z, we consider the set γz ⊆ Q of

states that are reachable from the initial con�guration after having read z.

27

In particular, γε is the singleton {q0} and an input w is accepted by A if

and only if γw ∩ F is nonempty. In order to store any subset γz of Q on

the tape, we represent it as a word u ∈ {0, 1}n, in which ui is 1 if and only

if qi ∈ γz. Ranging over input pre�xes, T iteratively computes γzσ from γz,

where σ ∈ Σ is the (|z| + 1)-th input symbol. To avoid erasing γz when

writing down γzσ, T uses two distinct tape tracks: γz is read from the �rst

track and γzσ is written on the second one (shifted by one cell to the right

with respect to γz). The role of the two tracks is inverted after each such

update.

At the beginning of the computation, T writes γε on the n cells preceding

the initial segment (on one track, suppose the �rst one for ease of exposition).

During the simulation, when T reaches a position for the �rst time, the n

tape cells preceding that position will contain the encoding of γz (on the �rst

track) where z is the input pre�x read so far. From such a point, T is able

to compute γzσ, working on the tape portion of length n + 1 that contains

both γz and the current position containing σ, and to which we refer as the

current working segment. Indeed, for each qi ∈ Q, we have qi ∈ γzσ if and

only if qi ∈ δ(qj, σ) for some qj ∈ γz. Since T can test for each qi, qj ∈ Q

whether, on the one hand, qj belongs to γz (by visiting the j-th cell of the

current working segment which stores the j-th bit of γz on the �rst track),

and, on the other hand, qi ∈ δ(qj, σ) (by inspecting the transition table of A),

it can write γzσ on the tape. More precisely, when the two conditions above

are satis�ed, T writes 1 on the (i+ 1)-th cell of the current working segment

(on the second track), for storing the i-th bit of γzσ. Notice that γzσ is shifted

one cell to the right with respect to γz, so that its last bit is written on the

28

rightmost cell of the current working segment (which initially contains σ).

Furthermore, during the update procedure, each cell of the current working

segment is visited O(n) times. Finally, when reaching the �rst cell to the

right of the initial segment (containing the blank symbol), T accepts if and

only if γw contains a �nal state. By slightly modifying the above update

procedure, we may assume that this information has been prepared in the

�nite control. Indeed, when computing γzσ, the dTm T can store in a state

component whether γzσ intersects F .

The described approach implies the use of n extra tape cells to the left

of the initial segment, on which T has initially written γε. No extra space

is necessary, and thus (P3) is satis�ed. Moreover, the simulating machine

uses O(1) tape symbols, and O(#Σ · n3) states for simultaneously storing

the variables σ, qi, qj, and the head position relative to the current working

segment. This implies (P1). Next, each tape cell is used for storing at most n

successive subsets of states. Hence, its total number of visits is in O(n2),

yielding (P2). �

By Theorem 4, every n-state 2nfa can be transformed into an equiva-

lent dHm of size polynomial in n. So, using the same result, we can also

transform 1nfas. For this particular case, we now present a more direct

simulation which uses a technique similar to that of proof of Theorem 4.

Let A = 〈Q,Σ, δ, q0, F 〉 be an n-state 1nfa. At the cost of one extra state,

we suppose F = {qf}. Let w ∈ Σ∗ be an input to A. Distinguish two cases

by m = |w|.

If m ≤ n, the machine H checks whether there is an accepting compu-

tation of A on w by calling reachableOneWay(q0, 0, qf ,m), a slightly modi-

29

�ed version of the function reachable presented in the proof of Theorem 4,

adapted to deal with 1nfas.

Function reachableOneWay(p, i, q, j): boolean

Checks the existence of a path from (p, i) to (q, j) of length j−i in the

graph of the con�gurations of a given 1nfa on input w = w1 · · ·wm
10 if (p, i) = (q, j) then return true

11 if j − i = 1 and q ∈ δ(p, wj) then return true

12 if j − i > 1 then

13 foreach r ∈ Q do

14 if reachableOneWay(p, i, r, b(i+ j)/2c) then

15 if reachableOneWay(r, d(i+ j)/2e, q, j) then return true

16 return false

The recursion depth is O(logm). At each level of the recursion, the

function needs to store states p, q, r and indices i, j. This can be done in a

tape cell if O(n5) work symbols are provided for this purpose. The function

runs in nO(logm) time.

If m > n, the Hennie machine H executes the computation described in

the proof of Theorem 5.

In conclusion, the constructed machine H has the number of states and

tape symbols polynomial in n, and hence it is of size polynomial in n. Note

that the number of transitions performed by H over any tape �eld is nO(logn).

30

6. Conclusion

Sakoda and Sipser raised the question of the cost of the elimination of

nondeterminism from �nite automata exploiting the possibility of moving the

head in both directions. Though they conjectured that this cost is exponen-

tial, we proved that a determinization of polynomial-size cost is possible for

some simulating machines that are deterministic and have some extra capa-

bilities than 2dfas. The extensions of 2dfas we considered are some special

cases of one-tape Turing machines which are not more powerful than 2dfas,

namely they recognize the class of regular languages.

In Theorem 4 we showed such a polynomial determinization using Hen-

nie machines. However, this result is not fully satisfying because of known

drawbacks of dHms: on the one hand, it is not decidable whether a Turing

machine is actually a Hennie machine; on the other hand, no recursive func-

tion bounds the size blowup of the conversion of dHms into 1dfas. These

drawbacks are avoided when moving to weight-reducing devices [11].

We do not know if the simulations of Theorem 4 can be changed in such

a way that the resulting dHm is always weight-reducing while keeping the

size cost polynomial, and we leave it as an open problem. However, we solve

this question in some particular cases. Indeed, when equivalence is required

only over long enough inputs, or when the input alphabet is unary, polyno-

mial size determinizations using wrdHms are possible (Theorems 2, 3 and 5).

Moreover, our main result states that it is always possible to eliminate nonde-

terminism from �nite automata by using weight-reducing linear-time Turing

machines as long as they are not required to be end-marked (Theorem 1),

namely when the simulating machine is allowed to use extra tape beside the

31

part that initially contains the input.

References

[1] D. Pr·²a, Weight-reducing Hennie machines and their descriptional com-

plexity, in: A. Dediu, C. Martín-Vide, J. L. Sierra-Rodríguez, B. Truthe

(Eds.), Language and Automata Theory and Applications - 8th Inter-

national Conference, LATA 2014, Madrid, Spain, March 10-14, 2014.

Proceedings, Vol. 8370 of Lecture Notes in Computer Science, Springer,

2014, pp. 553�564.

[2] B. Guillon, G. Pighizzini, L. Prigioniero, D. Pr·²a, Two-way automata

and one-tape machines - read only versus linear time, in: M. Hoshi,

S. Seki (Eds.), Developments in Language Theory - 22nd International

Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceed-

ings, Vol. 11088 of Lecture Notes in Computer Science, Springer, 2018,

pp. 366�378.

[3] M. O. Rabin, D. S. Scott, Finite automata and their decision problems,

IBM Journal of Research and Development 3 (2) (1959) 114�125.

[4] J. C. Shepherdson, The Reduction of Two-Way Automata to One-Way

Automata, IBM Journal of Research and Development 3 (2) (1959) 198�

200.

[5] V. Ge�ert, C. Mereghetti, B. Palano, More concise representation of

regular languages by automata and regular expressions, Inf. Comput.

208 (4) (2010) 385�394.

32

[6] B. Guillon, G. Pighizzini, L. Prigioniero, Non-self-embedding gram-

mars, constant-height pushdown automata, and limited automata, Int.

J. Found. Comput. Sci. 31 (8) (2020) 1133�1157.

[7] K. W. Wagner, G. Wechsung, Computational Complexity, D. Reidel

Publishing Company, Dordrecht, 1986.

[8] G. Pighizzini, A. Pisoni, Limited Automata and Regular Languages,

IJFCS 25 (07) (2014) 897�916.

[9] G. Pighizzini, L. Prigioniero, Limited automata and unary languages,

Inf. Comput. 266 (2019) 60�74.

[10] F. C. Hennie, One-tape, o�-line Turing machine computations, Infor-

mation and Control 8 (6) (1965) 553�578.

[11] B. Guillon, G. Pighizzini, L. Prigioniero, D. Pr·²a, Weight-reducing

Turing machines, CoRR abs/2103.05486 (2021). arXiv:2103.05486.

[12] B. A. Trakhtenbrot, Turing machine computations with logarithmic de-

lay, (in Russian), Algebra I Logica 3 (1964) 33�48.

[13] J. Hartmanis, Computational complexity of one-tape Turing machine

computations, J. ACM 15 (2) (1968) 325�339.

[14] P. Michel, An NP-complete language accepted in linear time by a one-

tape Turing machine, Theor. Comput. Sci. 85 (1) (1991) 205�212.

[15] G. Pighizzini, Nondeterministic one-tape o�-line Turing machines, Jour-

nal of Automata, Languages and Combinatorics 14 (1) (2009) 107�124.

33

http://arxiv.org/abs/2103.05486

[16] K. Tadaki, T. Yamakami, J. C. H. Lin, Theory of one-tape linear-time

Turing machines, Theor. Comput. Sci. 411 (1) (2010) 22�43.

[17] W. J. Sakoda, M. Sipser, Nondeterminism and the size of two way �-

nite automata, in: R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P.

Friedman, A. V. Aho (Eds.), Proceedings of the 10th Annual ACM Sym-

posium on Theory of Computing, May 1-3, 1978, San Diego, California,

USA, ACM, 1978, pp. 275�286.

[18] M. Sipser, Lower Bounds on the Size of Sweeping Automata, J. Comput.

Syst. Sci. 21 (2) (1980) 195�202.

[19] J. Hromkovic, G. Schnitger, Nondeterminism versus determinism for

two-way �nite automata: Generalizations of Sipser's separation, in:

J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.), Au-

tomata, Languages and Programming, 30th International Colloquium,

ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Pro-

ceedings, Vol. 2719 of Lecture Notes in Computer Science, Springer,

2003, pp. 439�451.

[20] C. A. Kapoutsis, Nondeterminism is essential in small two-way �nite

automata with few reversals, Inf. Comput. 222 (2013) 208�227.

[21] V. Ge�ert, C. Mereghetti, G. Pighizzini, Converting two-way nondeter-

ministic unary automata into simpler automata, Theor. Comput. Sci.

295 (1�3) (2003) 189 � 203.

[22] V. Ge�ert, B. Guillon, G. Pighizzini, Two-way automata making choices

only at the endmarkers, Inf. Comput. 239 (2014) 71�86.

34

[23] C. A. Kapoutsis, G. Pighizzini, Two-way automata characterizations of

L/poly versus NL, Theory Comput. Syst. 56 (4) (2015) 662�685.

[24] G. Pighizzini, Two-way �nite automata: Old and recent results, Fun-

dam. Inform. 126 (2-3) (2013) 225�246.

[25] D. A. Walters, Deterministic context-sensitive languages: Part II, Inf.

Control. 17 (1) (1970) 41�61.

[26] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-

guages and Computation, Addison-Wesley, 1979.

[27] S. Kuroda, Classes of languages and linear-bounded automata, Informa-

tion and Control 7 (2) (1964) 207�223.

[28] W. J. Savitch, Relationships between nondeterministic and determinis-

tic tape complexities, Journal of Computer and System Sciences 4 (2)

(1970) 177 � 192.

[29] C. A. Kapoutsis, Two-way automata versus logarithmic space, Theory

Comput. Syst. 55 (2) (2014) 421�447.

35

	Introduction
	Preliminaries
	Simulating Two-way Automata by Weight-reducing Machines
	Simulating Two-way Automata by Hennie Machines
	The One-Way Case
	Conclusion

