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Abstract

Deterministic pushdown transducers are studied with respect to their ability to
compute reversible transductions, that is, to transform inputs into outputs in a
reversible way. This means that the transducers are also backward deterministic
and thus are able to uniquely step the computation back and forth. The families
of transductions computed are classified with regard to four types of length-
preserving transductions as well as to the property of working reversibly. It
turns out that accurate to one case separating witness transductions can be
provided. For the remaining case it is possible to establish the equivalence
of both families by proving that stationary moves can always be removed in
length-preserving reversible pushdown transductions.

Keywords: Pushdown transducers, reversible computations, computational
capacity, transduction hierarchies.

1. Introduction

Reversible computational models have earned much attention recently, where
one incentive for the study of computational devices performing logically re-
versible computations is probably the question posed by Landauer of whether
logical irreversibility is an unavoidable feature of useful computers. Landauer
has demonstrated the physical and philosophical importance of this question
by showing that whenever a physical computer throws away information about
its previous state it must generate a corresponding amount of entropy that re-
sults in heat dissipation (see [2] for further details and references). As one of
the first models Turing machines have been investigated towards their ability
to work reversibly in the work of Lecerf [3] and Bennett [2], where it is shown
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that for every Turing machine an equivalent reversible Turing machine can be
constructed. At the other end of the Chomsky hierarchy, Angluin introduced re-
versible computations in deterministic finite automata (DFA) and showed that
reversible DFAs are weaker than DFAs in general [4]. Moreover, it is known
that the general model and the reversible one coincide if the input head is
two-way [5]. An algebraic characterization of languages accepted by reversible
multiple-entry DFAs is obtained in [6]. Recent results on reversible regular lan-
guages are given in [7, 8, 9], where different aspects concerning the descriptional
complexity and the minimality of reversible (one-way) DFAs are studied. For
deterministic pushdown automata, it has been shown that the reversible variant
is weaker than the general one [10].

Computational models are not only interesting from the viewpoint of ac-
cepting some input, but also from the more applied perspective of transforming
some input into some output. For example, a parser for a programming lan-
guage should not only return the information whether or not the input word
can be parsed, but also the parse tree in the positive case. Transductions that
are computed by different variants of transducers are studied in detail in the
book of Berstel [11]. Deterministic and nondeterministic pushdown transducers
are investigated in [12], where also characterizations of pushdown transduc-
tions as well as applications to the parsing of context-free languages are given.
More recently, iterated finite state transducers have been introduced and stud-
ied in [13, 14], transducing variants of stack automata have been considered
in [15], two-way transducers with auxiliary memory structures have been inves-
tigated in [16] with respect to their decidable problems, and the parallel model of
cellular automata has been studied in [17] towards its transducing capabilities.

Reversibility in transducing devices has been investigated recently in [18,
19] for deterministic finite state transducers (DFSTs). In the former paper,
reversible variants of (two-way) DFSTs are introduced where the reversibility of
the transition function depends on the input only. Based on this definition the
authors present constructions for the composition and uniformization of two-
way DFSTs. In the latter paper, reversible DFSTs are defined whose transition
function depends on the input and the output, since reversibility here is meant
to preserve information both on the input and the output side. Hence, reversible
DFSTs may be considered as reversible Turing machines (see, for example, [20,
2]) with a one-way input tape and a one-way output tape. The main results
of [19] concern reversible DFSTs with length-preserving transductions where it
is differentiated between different modes that basically differ by the fact whether
or not input and output head have to move synchronously.

In this paper, we complement the investigation of reversible models by in-
troducing reversible deterministic pushdown transducers for which we study
length-preserving transductions in Mealy mode, strong mode, weak mode, and
bounded delay mode. The definition of the model and of the different modes,
which basically differ in possible distances between the input and output head,
are given in Section 2. In Section 3, we study the computational capacity in
detail and we can draw a complete picture. It can be shown by a detailed
construction that the Mealy mode and the strong mode coincide. However, this
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holds in the reversible case only and is no longer true for possibly irreversible de-
terministic pushdown transducers. Apart from this equivalence for all remaining
inclusions we present suitable witness transductions that show their properness
both in the reversible and the general case. Finally, reversible transductions
can be separated from general transductions in every of the four modes. More-
over, we can prove incomparability results in all cases where inclusion cannot
be obtained.

2. Preliminaries

We denote the non-negative integers {0, 1, 2, . . .} by N. Let Σ∗ denote the set
of all words over the finite alphabet Σ, and Σ≤k denote its restriction to words
of length at most k, for any k ≥ 0. The empty word is denoted by λ. The
length of a word w is denoted by |w| and its reversal is denoted by wR. For the
number of occurrences of a symbol a in w we use the notation |w|a. Inclusions
are denoted by ⊆. For convenience, we use Sx to denote S ∪ {x}, where S is a
set and x is an element not belonging to S.

Next, we define reversible pushdown transducers that are basically deter-
ministic finite state transducers which are equipped with a pushdown store. We
define this model as usual with two tapes, namely, an output tape and an in-
put tape whose inscription is the input word followed by an endmarker. In the
forward computation the pushdown transducer decides its operation depending
on the current state, the current input symbol, and the symbol on top of the
pushdown store. It may perform a right or a stationary move on the input tape,
may push onto or pop from the pushdown, and may rewrite the current tape
square on the output tape which implies a right move of the output head. The
output tape is initially filled with blank symbols.

Formally, we define a deterministic pushdown transducer (DPDT) as a sys-
tem M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉, where Q is the set of internal states, Σ
is the set of input symbols not containing the endmarker C, Γ is the set of
pushdown symbols not containing the bottom-of-pushdown symbol ⊥, ∆ is the
set of output symbols not containing the blank symbol  , q0 ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, and

δ : Q× ΣC × Γ⊥ → Q× ({pop, top} ∪ { push(x) | x ∈ Γ })×∆ × {0, 1}

is the partial transition function. An image (q, op, d,m) is indicating that
the DPDT has to enter the state q while performing an action op on the push-
down store (which can be either a pop, a top (that is, do nothing) or a push

action), append the symbol d to the output tape if d 6=  (otherwise, the output
head stays in position and no output symbol is written) and move the input-
head forward if m = 1 (keep it in current position if m = 0). Such an image is
determined deterministically from a pre-image (p, a, g) which indicates that the
automaton is currently in state p, reading the input symbol a (which may be
the endmarker C) with the symbol g on the top of the pushdown (g = ⊥ if the
pushdown store is empty).
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It is understood that the head of the input tape never moves beyond the end-
marker (that is, a head move m cannot be equal to 1 if the scanned symbol a
is C) and that, in any configuration, the bottom-of-pushdown symbol appears
exactly once at the bottom of the pushdown store (that is, the pushdown ac-
tion op is different from pop if the top of the pushdown g is ⊥).

A configuration of a DPDT M is a quintuple (u, p, v, γ, β), where u ∈ Σ∗

is the already read part of the input to the left of the input head, p ∈ Q is
the current state, v ∈ Σ∗C is the still remaining part of the input, γ ∈ Γ∗⊥
is the current content of the pushdown store, the leftmost symbol being the
top symbol, and β ∈ ∆∗ is the already written part of the output. The initial
configuration for input w is set to (λ, q0, wC,⊥, λ). During the course of its
computation, M runs through a sequence of configurations. One step from a
configuration to its successor configuration, denoted by `, is defined as follows.

Let (u, p, av, gγ, β) be a configuration for p ∈ Q, u ∈ Σ∗, av ∈ Σ∗C with
|a| = 1, gγ ∈ Γ∗⊥ with |g| = 1, and β ∈ ∆∗. Then we define:

(u, p, av, gγ, β) ` (ua, q, v, γ′γ, βd) if δ(p, a, g) = (q, op, d, 1);

(u, p, av, gγ, β) ` (ua, q, v, γ′γ, β) if δ(p, a, g) = (q, op,  , 1);

(u, p, av, gγ, β) ` (u, q, av, γ′γ, βd) if δ(p, a, g) = (q, op, d, 0);

(u, p, av, gγ, β) ` (u, q, av, γ′γ, β) if δ(p, a, g) = (q, op,  , 0);

where d ∈ ∆ and γ′ is equal to λ, g or xg respectively if op is equal to pop,
top, or push(x) for some x ∈ Γ. The reflexive transitive closure of ` is denoted
by `∗. A step is said to be stationary if neither the input head is moved nor
an output symbol is emitted. A corresponding transition of δ is a stationary
transition.

A DPDT halts if the transition function is undefined for the current con-
figuration. The output written by a DPDT M on input w ∈ Σ∗ is denoted by
M(w) ∈ ∆∗ and is defined as M(w) = β, if (λ, q0, wC,⊥, λ) `∗ (w, q,C, γ, β)
with γ ∈ Γ∗⊥, q ∈ F , and M halts. Otherwise, M(w) is undefined. Now, the
transduction defined by M is the set

T (M) = { (w,M(w)) | w ∈ Σ∗ and M(w) is defined } .

We remark that M may also be considered as a partial function mapping some
w ∈ Σ∗ to v ∈ ∆∗. If we build the projection on the first components of T (M),
denoted by L(M), then the transducer degenerates to a deterministic language
acceptor. In general, the family of all transductions performed by some device
of type X is denoted by T (X).

Now, we turn to reversible DPDTs. Basically, reversibility is meant with
respect to the possibility of stepping the computation back and forth. So, the
machines have also to be backward deterministic. That is, any configuration
must have at most one predecessor which, in addition, is computable by a device
of the same type. In particular, the machines reread the symbols which they
have read in a preceding forward computation step. So, for reverse computation
steps the input and output heads are either moved to the left or stay stationary.
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Figuratively, one can imagine that in a forward step, first the current symbols
are read and then the heads are moved, whereas in a backward step first the
heads are moved and then the symbols are read.

A DPDT is reversible (REV-DPDT) if for any two distinct transitions

δ(p, a, g) = (q, op, d,m) and δ(p′, a′, g′) = (q′, op′, d′,m′)

if q = q′, then the following conditions are satisfied:

1. m = m′ and (d =  ⇐⇒ d′ =  );

2. depending on the pushdown operations op and op′:
(a) if op = pop or op′ = pop, then (a, d) 6= (a′, d′);
(b) if op = op′ = push(x) for some x ∈ Γ, then (a, d) = (a′, d′) im-

plies p = p′;
(c) otherwise, (a, d, h) 6= (a′, d′, h′) where h = g if op = top and h = x

if op = push(x) for some x ∈ Γ (respectively h′ = g′ if op′ = top

and h′ = x′ if op′ = push(x′) for some x′ ∈ Γ).

Condition 1 means that transitions reaching the same state have to move both
heads in the same way. Condition 2 ensures that for any configuration the
predecessor configuration can uniquely be determined from the state (which
then implies the head movements), the input symbol read and the output sym-
bol written, if at least one transition pops from the pushdown (Condition 2a).
The same is ensured if both transitions push the same symbol while the input
symbol read and the output symbol written are the same (Condition 2b). In
this case, the predecessor states are identical and the only difference between
the transitions might be the symbols g and g′ on the top of the stack in the
pre-image configuration. Finally, the predecessor configuration can uniquely
be determined from the state, the input symbol read, the output symbol writ-
ten, and the symbol on top of the stack (in the image configuration), otherwise
(Condition 2c).

A consequence of the definition of reversibility is that any configuration of
a REV-DPDT has at most one predecessor configuration. In [10] reversible
pushdown automata are considered that are required to be reversible only on
reachable configurations that appear in any computation that starts from an
initial configuration. This gives a wider class of automata. However, to justify
the notion of reversibility, in [21] it has been shown that it makes a difference
for machines, that is, there are machines that are reversible on reachable but
not on all configurations, but it does not make a difference for languages which
notion is chosen. So, from the perspective of languages and language classes it
is safe to stick with either notion of reversibility.

In this paper, we start the investigation of reversible DPDTs and limit our-
selves to DPDTs that are length-preserving, that is, transducers M such that
|w| = |M(w)| for each input w where M(w) is defined. It will turn out that
even length-preserving transductions are sufficient for our separations. We dif-
ferentiate between the following notions. We call a DPDT a Mealy pushdown
transducer (M-DPDT) if in every step but possibly a last stationary one on the
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endmarker an input symbol is read, an output symbol is written, and both heads
proceed one position to the right. We call a DPDT strongly length-preserving
(s-DPDT) if both heads are moved synchronously, that is, either both move
rightward or both stay stationary. A DPDT is said to be of bounded delay
(bd-DPDT) if in any configuration (u, p, vC, γ, β) that evolves from some initial
configuration (λ, q0, uvC,⊥, λ) the difference

∣∣ |u| − |β| ∣∣ is bounded by some
fixed constant. Finally, unrestricted (length-preserving) DPDTs are said to be
weakly length-preserving (w-DPDT).

In order to clarify the definitions we present an example.

Example 1. The injective and length-preserving transduction

τ =
{

(an#bm#c`#an, an#b2`#cm−`#an ) | m,n ≥ 1 and 0 ≤ ` < m
}

can be computed by some REV-w-DPDT

M = 〈{q0, q1, q2, q3, q4, q5, qf} , {a, b, c, #} , {a, b} , {a, b, c, #} ,C,⊥,  , δ, q0, {qf}〉

where the transition function δ is as follows (see Figure 1):

δ(q0, a,⊥) = (q0, push(a), a, 1),
δ(q0, a, a) = (q0, push(a), a, 1),
δ(q0, #, a) = (q1, top,  , 1),
δ(q1, b, a) = (q1, push(b),  , 1),
δ(q1, b, b) = (q1, push(b),  , 1),
δ(q1, #, b) = (q2, top, #, 1),
δ(q2, c, b) = (q3, top, b, 0),

δ(q2, #, b) = (q4, top, #, 0),
δ(q3, c, b) = (q2, pop, b, 1),
δ(q4, #, b) = (q4, pop, c, 0),
δ(q4, #, a) = (q5, top, #, 1),
δ(q5, a, a) = (q5, pop, a, 1),
δ(q5,C,⊥) = (qf , top,  , 0).

q0

q1 q2

q3

q4

q5 qf

a, | a,→
push(a)

#, a |  ,→
top

b, |  ,→
push(b) #, b | #,→

top

c, b | b,↓
top

c, b | b,→
pop

#, b | #,→
top

#, b | c,↓
pop

#, a | #,→
top

a, a | a,→
pop C,⊥ |  ,↓

top

Figure 1: A REV-w-DPDT realizing the transduction τ (Example 1). Edges corresponding to
transitions δ(p, a, g) = (q, op, d,m) are labeled a, g | d,m, where the symbol stands for “any
pushdown symbol”, ↓ stands for m = 0, and → stands for m = 1. The pushdown operation
op is indicated in the second line of a label (technically speaking, an edge using the symbol
represents several transitions: one with the empty pushdown symbol ⊥, the other ones with
the symbols from Γ).
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The reversibility of M is easily verified by inspecting the transition function
and checking the conditions of the definition. In addition, the transduction τ
is clearly injective. We note that the projection of τ to the first component is
accepted by some reversible pushdown automaton. �

3. Computational Capacity

We turn to consider the computational capacity of reversible DPDTs. In partic-
ular, whenever two types of devices have different language acceptance power,
then trivial transductions applied to a language from their symmetric difference
would be a witness for separating also the power of the transducers. However,
in the following we consider transductions of languages that are accepted by
both types of devices in question. In this way, we are in fact separating the
capabilities of computing transductions.

3.1. The Role Played by Stationary Transitions

We start with a normalization result stating that stationary moves can be
eliminated in every length-preserving reversible DPDT. To this end, the follow-
ing lemma is used.

Lemma 2 Every length-preserving reversible DPDT can be converted into an
equivalent length-preserving reversible DPDT of the same type that never per-
forms more than m consecutive steps without moving its input head or emitting
an output symbol in any halting computation, where m ≥ 0 is a constant.

Proof. Let M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 be a length-preserving reversible
DPDT. We show how M can be converted into an equivalent length-preserving
reversible DPDT M ′ = 〈Q,Σ,Γ,∆,C,⊥,  , δ′, q0, F 〉 of the same type having
the required property. To this end, the transition function δ is modified with
respect to stationary transitions as follows.

(1) Two consecutive top-transitions are merged into one. That is, every
pair of the form δ(p, a, g) = (q, top,  , 0) and δ(q, a, g) = (r, top,  , 0) is replaced
by δ′(p, a, g) = (r, top,  , 0). Since M is deterministic every application of the
first transition is followed by an application of the second transition, and since
M is reversible every application of the second transition is preceded by an
application of the first transition. In fact, the conditions for being reversible
are satisfied. This can be seen as follows: Let δ′(p′, a′, g′) = (r, op, d′,m′) be
another transition that yields state r. Then m′ = 0 and d′ =  since M is
reversible. Moreover, if op = pop, then (a,  ) 6= (a′,  ) since M is reversible.
Otherwise, we have (a,  , g) 6= (a′,  , h′), where h′ equals g′ or x, respectively
if op = top or op = push(x) for some x. This implies that the transitions
δ′(p, a, g) = (r, top,  , 0) and δ′(p′, a′, g′) = (r, op, d′,m′) satisfy the condition
for reversibility. So, the construction step preserves reversibility and yields an
equivalent automaton.

(2) A push-transition and a following top-transition are merged into one
push-transition. That is, every pair of the form δ(p, a, g) = (q, push(x),  , 0)
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and δ(q, a, x) = (r, top,  , 0) is replaced by δ′(p, a, g) = (r, push(x),  , 0). As be-
fore, the construction step clearly yields an equivalent automaton and preserves
reversibility. Namely, let δ′(p′, a′, g′) = (r, op, d′,m′) be another transition that
yields state r. Then m′ = 0 and d′ =  since M is reversible. Moreover, if
op = push(x) then (a,  , x) 6= (a′,  , x) since M is reversible. So, a 6= a′ and,
trivially, (a,  ) = (a′,  ) implies p = p′. If op = pop then (a,  ) 6= (a′,  ) since M
is reversible. Thus, a 6= a′. If op = top then (a,  , x) 6= (a′,  , g′) since M is re-
versible. Similarly, if op = push(y) then (a,  , x) 6= (a′,  , y). So, in any case for
op the transitions δ′(p, a, g) = (r, push(x),  , 0) and δ′(p′, a′, g′) = (r, op, d′,m′)
satisfy the condition for reversibility.

(3) A push-transition and a following pop-transition are merged into one
top-transition. That is, every pair of the form δ(p, a, g) = (q, push(x),  , 0)
and δ(q, a, x) = (r, pop,  , 0) is replaced by δ′(p, a, g) = (r, top,  , 0). To see
that the new transition preserves reversibility we assume that there is another
transition δ′(p′, a′, g′) = (r, op, d′,m′). As before, we conclude m′ = 0 and
d′ =  since M is reversible. Moreover, since δ(q, a, x) is a pop-transition, we
know (a,  ) 6= (a′,  ) since M is reversible. Thus, a 6= a′, and the transitions
δ′(p, a, g) = (r, top,  , 0) and δ′(p′, a′, g′) = (r, op, d′,m′) satisfy the condition
for reversibility.

Next, the three steps are repeated until no more merging is possible, which
concludes the construction of M ′.

It remains to be shown that there is a constant m ≥ 0 such that the
REV-DPDT M ′ never performs more than m consecutive steps without moving
its input head or emitting an output symbol in any halting computation.

Due to the construction, any sequence of consecutive stationary transitions
in any computation of M ′ possibly starts with a sequence of pop- and top-moves,
where no two top-moves appear consecutively. Then several push-moves may
follow. After a push-move there is never a pop- or top-move.

Assume that there is a computation on some input such that at the begin-
ning of a sequence of stationary transitions on some input symbol a ∈ ΣC at
least |Q| · |Γ|+ 1 consecutive pop- or top-moves are performed. If these steps
appear before any non-stationary transition, M ′ starts each computation with
an infinite loop on input aΣ∗C or C and, thus, does not halt.

Next, assume that at least |Q| · |Γ| + 1 consecutive pop- or top-
moves appear after some non-stationary transition and define the mapping
ρ : Σ∗ ×Q× Σ∗C× Γ∗⊥×∆∗ → Q× Γ⊥ that maps a configuration to its state
and the topmost pushdown symbol. Then there is a (partial) computation
ck−1 ` ck `∗ ck+i `∗ ck+i+j−1 ` ck+i+j , where the transition from ck−1 to ck
reads some input and moves the input head and all the other transitions are sta-
tionary. Moreover, we have ρ(ck+i) = ρ(ck+i+j), for some minimal 0 ≤ i, 1 ≤ j
such that i+ j ≤ |Q| · |Γ|+ 1. Then, for i = 0, the transition leading from ck−1
to ck yields the same state as the transition leading from ck+j−1 to ck+j . How-
ever, the former moves the input head while the latter does not. So, the com-
putation is not reversible.

For i ≥ 1 we know that ρ(ck+i−1) and ρ(ck+i+j−1) are different since i has
been chosen to be minimal. Let (q, x) = ρ(ck+i) = ρ(ck+i+j) and assume
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that δ′(p, a, g) = (q, op,  , 0) is the transition leading from ck+i−1 to ck+i and
δ′(p′, a, g′) = (q, op′,  , 0) is the transition leading from ck+i+j−1 to ck+i+j .
By assumption, op and op′ are either pop- or top-transitions. If one of them
is a pop-transition then (a,  ) has to be different from (a,  ) in order to be
reversible, a contradiction. If both transitions are top-transitions (a,  , g) has
to be different from (a,  , g′). However, since both transitions are top-transitions
we have g = x = g′, a contradiction.

Therefore, any sequence of consecutive stationary transitions starts with at
most |Q| · |Γ| pop- or top-moves. If there are at least |Q| · |Γ| + 1 subsequent
push-moves, the computation runs into an infinite loop with stationary tran-
sitions and, thus, M ′ does not halt. If, otherwise, there are strictly less than
|Q| · |Γ|+ 1 push-moves, the length of the whole sequence of stationary transi-
tions is bounded by the constant m = 2 · |Q| · |Γ| that depends on M ′ only.
�

The next goal is to perform all constantly many stationary transitions in a
sequence together with a non-stationary transition at once. To this end, the
problem that the initial state can be reachable in stationary moves has to be
overcome. Otherwise, the reversibility can not be guaranteed since the initial
configuration and some configuration that leads to the initial configuration may
have a common successor configuration.

Lemma 3 Every length-preserving reversible DPDT whose initial state is
reachable by stationary transitions can be converted into an equivalent length-
preserving reversible DPDT of the same type that never performs more than m
consecutive stationary moves in any halting computation, where m ≥ 0 is a
constant, and that never enters an initial configuration again.

Proof. Let M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 be a length-preserving reversible
DPDT. By Lemma 2 we may assume that M satisfies the first condition.
Since M is reversible an inspection of the transition function shows whether q0
is reachable by stationary transitions. If not, nothing has to be done.

Now assume that q0 is reachable by stationary transitions. Due to the re-
versibility, it is reachable only by stationary transitions. The idea of the con-
struction of an equivalent length-preserving reversible DPDT of the same type
M ′ = 〈Q∪ {p0},Σ,Γ∪ {M},∆,C,⊥,  , δ′, p0, F 〉 with the required second prop-
erty is as follows. A new pushdown symbol M is used that acts similar as the
bottom-of-pushdown symbol. Whenever the initial state is entered by a top

or pop transition, now a new state p0 is entered that tests if the pushdown is
‘empty’. If so, it pushes a new copy of M and changes to state q0. In this way,
the initial configuration at the beginning of the computation is unique since it
is the only one with ⊥ on the top of the pushdown. Accordingly, the transition
function δ is modified as follows.

First, in all transitions the bottom-of-pushdown symbol is replaced by M.
This preserves the reversibility. Next, it is observed that, for any input symbol a,
transitions of the form δ(p, a, g) = (q0, top,  , 0) and transitions of the form
δ(p, a, g) = (q0, pop,  , 0) cannot exist at the same time. If both types would
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exist, the fact (a,  ) = (a,  ) would violate the reversibility. Now the new initial
state p0 is involved by adding the transitions

(1) δ′(p0, a,⊥) = (q0, push(M),  , 0),
(2) δ′(p0, a,M) = (q0, push(M),  , 0), and
(3) δ′(p0, a, g) = (q0, top,  , 0),

for all a ∈ Σ and g ∈ Γ. Transitions of the form δ(p, a,M) = (q0, top,  , 0)
are replaced by (4) δ′(p, a,M) = (p0, top,  , 0), and transitions of the form
δ(p, a, g) = (q0, pop,  , 0) are replaced by (5) δ′(p, a, g) = (p0, pop,  , 0) (recall
that only transitions of one of the forms may exist).

The construction clearly does neither change the transduction computed,
nor does it change the type of the transducer. It remains to be shown that
the construction preserves reversibility. Transitions (1) and (2) are reversible
since the predecessor state is p0 in both cases. Since M 6= g, transitions (1)
and (3) are reversible, as well as transitions (2) and (3). Further transitions
entering state q0 must be push-transitions that push symbols different from ⊥
and M. So, the reversibility is preserved with respect to these transitions as well.
The transitions entering state p0, namely transitions of the form (4) or (5), are
present in δ where they enter state q0. Since M is reversible, the modified
transitions do not violate the reversibility either. We conclude that M ′ satisfies
the required properties, is equivalent to M , and is of the same type as M . �

To conclude the consideration of stationary transitions we present the result
that every length-preserving reversible DPDT can be transformed into an equiv-
alent reversible one that moves at least one head in every but possibly the last
step of a computation. The basic idea of the proof of the next proposition is to
simulate a possibly empty sequence of stationary transitions and one following
non-stationary transition at once.

Proposition 4 Every length-preserving reversible DPDT can be converted into
an equivalent length-preserving reversible DPDT of the same type that always
halts and moves its input head or emits an output symbol in every but possibly
the last step of a computation.

Proof. Let M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 be a REV-DPDT. By Lemma 3
we may assume that M performs at most m consecutive stationary transitions
in any halting computation, where m is a constant, and that never enters an
initial configuration again.

Since M is reversible, any state is reached solely by stationary transitions
or solely by non-stationary transitions. To figure out which case applies to a
certain state it is sufficient to inspect the transition function. Moreover, to check
whether a sequence of stationary transitions starting from a given configuration
is finite, we have to simulate at most m+ 1 steps of M .

In order to construct an equivalent length-preserving reversible DPDT of the
same type with the properties claimed, basically, the idea is to simulate a pos-
sibly empty sequence of stationary transitions and one following non-stationary
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transition at once. If M runs into an infinite loop of stationary transitions or
performs stationary transitions on the endmarker, then the sequence of station-
ary transitions is simulated without a following non-stationary transition.

The DPDT M ′ = 〈Q′,Σ,Γ′,∆,C,⊥,  , δ′, q′0, F ′〉 is constructed as follows.
Recall that M ′ simulates at most some m+ 1 steps of M at once during which
it has access to no more than the topmost m + 1 pushdown symbols. On the
other hand, it cannot push more than m + 1 symbols onto the store. So, we
add a register to the states in which M ′ can store up to 2m pushdown symbols
of M (the topmost ones), and consider every string of m+ 1 pushdown symbols
of M to be a single pushdown symbol of M ′. Let F+ = { q+ | q ∈ F } be a copy
of F . Then define

Q′ = (Q ∪ F+)× Γ≤2m, Γ′ = Γm+1,
q′0 = (q0, λ), F ′ = (F ∪ F+)× Γ≤2m.

Given (p, xixi−1 · · ·x1) ∈ Q×Γ≤2m, a ∈ ΣC, and zm+1zm · · · z1 ∈ Γ′, the transi-
tion δ′((p, xixi−1 · · ·x1), a, zm+1zm · · · z1) is defined if and only if p is reached by
non-stationary transitions in M . In this case, it is defined by the computation
of M starting in configuration c0 = (λ, p, a, xixi−1 · · ·x1zm+1zm · · · z1, λ).

First assume that the computation starts with a possibly empty sequence
of stationary transitions followed by a non-stationary transition. That is, the
computation is c0 ` c1 ` · · · ` cn, where n ≤ m+ 1. We distinguish two cases:
If the last step moves the input head we have cn = (a, q, λ, yjyj−1 · · · y1, d) and
define δ′((p, xixi−1 · · ·x1), a, zm+1zm · · · z1) = ((q, γ), op, d′, 1), where d′ =  if
d = λ and d′ = d otherwise, and

γ = yjyj−1 · · · y1, op = pop if 0 ≤ j ≤ 2m,
γ = yjyj−1 · · · ym+2, op = top if 2m+ 1 ≤ j ≤ 3m+ 1,
γ = yjyj−1 · · · y2m+3, op = push(y2m+2 · · · ym+2) if 3m+ 2 ≤ j ≤ 4m+ 2.

Note that in the second and third alternatives, M could not modify the symbols
zm+1zm · · · z1 and, therefore, ym+1ym · · · y1 = zm+1zm · · · z1.

The second case is similar. If the last step emits an output symbol without
moving the input head we have cn = (λ, q, a, yjyj−1 · · · y1, d) with d ∈ ∆ and
define δ′((p, xixi−1 · · ·x1), a, zm+1zm · · · z1) = ((q, γ), op, d, 0), where γ and op

are as for the first case.
Next, assume that the computation of M starts with a sequence of stationary

transitions and halts without performing a non-stationary transition. Then we
have cn = (λ, q, a, yjyj−1 · · · y1, λ) and δ′((p, xixi−1 · · ·x1), a, zm+1zm · · · z1) re-
mains undefined for a 6= C or q /∈ F . If a = C and q ∈ F we define the transition
δ′((p, xixi−1 · · ·x1),C, zm+1zm · · · z1) = ((q+, xixi−1 · · ·x1), top,  , 0).

Finally, if the computation of M is an infinite sequence of stationary tran-
sitions then δ′((p, xixi−1 · · ·x1), a, zm+1zm · · · z1) remains undefined. Moreover,
the transition function δ′ remains undefined for states whose first component
belongs to F+.

If the initial state q0 of M is reached by non-stationary moves, the initial
configuration of M ′ does not need to be treated in any special way. However,
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if q0 is reached by stationary moves, we proceed as follows. First, all transitions
of δ′ defined so far are checked whether they are based on a computation c0 `
c1 ` · · · ` cn of M that includes an initial configuration. If yes, the transition
is undefined again. This can safely be done since by assumption the initial
configuration only appears at the beginning of any computation of M . Next,
the transition δ′((q0, λ), a,⊥) is defined as above, for any input symbol a.

Finally, the completion of the definition of δ′ for the situations in which
the bottom-of-pushdown symbol is the topmost symbol is straightforward. This
concludes the construction of M ′.

Given an input w, the computation of M is unambiguously split into se-
quences of steps each of which is performed by M ′ at once. If M accepts, so
does M ′. Conversely, every step of M ′ corresponds to a sequence of steps of M .
So, we have T (M) = T (M ′).

To give evidence that M ′ is reversible we argue with configurations. Ex-
cept for possibly the initial configuration and halting configurations on the end-
marker, any configuration of M ′ includes a state of M that is reachable with
non-stationary moves. The unique predecessor configuration is determined by
running M backwards until either the initial configuration appears or another
configuration with a state of M that is reachable with non-stationary moves is
reached. So, the reversibility of M ′ follows from the reversibility of M . Since
by assumption the initial configuration of M never occurs again, also the steps
involving the initial configuration of M ′ are reversible. Finally, also the con-
figurations including states from F+ have a unique predecessor that can be
determined by running M backwards as above. �

In particular, the normalization result eliminates stationary moves from re-
versible computations. This implies the first comparison between families under
consideration.

Theorem 5 The families T (REV-M-DPDT) and T (REV-s-DPDT) coincide.

Proof. The inclusion T (REV-M-DPDT) ⊆ T (REV-s-DPDT) follows from
the definition. Conversely, applying Proposition 4 to a given REV-s-DPDT
yields a REV-M-DPDT. We conclude T (REV-M-DPDT) ⊇ T (REV-s-DPDT)
and, thus, T (REV-M-DPDT) = T (REV-s-DPDT). �

However, the equivalence of both transduction families gets lost if irreversible
computations are allowed.

Theorem 6 There is a strict inclusion between the families T (M-DPDT) and
T (s-DPDT).

Proof. The inclusion T (M-DPDT) ⊆ T (s-DPDT) follows from the definition.
To define the transduction that witnesses the properness of the inclusion we first
consider the function f : {a, b}+ × {a, b}+ → {a, b, c}+ which is defined by

f(x1x2 · · ·xn, y1y2 · · · ym) =

{
xnxn−1 · · ·xn−m+1 if m < n,

xnxn−1 · · ·x1cm−n if m ≥ n.
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We note that |f(x, y)| = |y| for all x, y ∈ {a, b}+. Then, consider transductions

τ1 = { (u#v$1w, u#v$1f(u,w)) | u, v, w ∈ {a, b}+ },
τ2 = { (u#v$2w, u#v$2f(v, w)) | u, v, w ∈ {a, b}+ },

and their union τ = τ1 ∪ τ2. We now claim that τ can be realized by an
s-DPDT, but not by any M-DPDT. For the first claim we now describe an
s-DPDT M for τ . Basically, M reads and emits every symbol of the prefix u#v
up to the symbol $1 or $2. Additionally, u#v is pushed on the pushdown store.
In case of a separating symbol $1, M remains on $1 and removes vR# from the
pushdown store. Then, the remaining input is read and for every symbol read
one symbol from uR is popped from the pushdown store and emitted. If the
remaining input is shorter than uR then only a prefix of uR is emitted, otherwise
additional symbols c are emitted if needed. In case of a separating symbol $2,
the remaining input is read and for every symbol read one symbol from vR is
popped from the pushdown store and emitted. Again, if the remaining input
is shorter than vR then only a prefix of vR is emitted, otherwise additional
symbols c are emitted if needed. Clearly, M is an s-DPDT that realizes τ .

Now, we assume that τ is realized by an M-DPDT M ′. Since M ′ reads
and emits a symbol in every step, it is possible to consider M ′ as a realtime
DPDA A that works over an alphabet of paired symbols where the left symbol
is the input read and the right symbol is the output written. Hence, A accepts
the language { (x1, y1)(x2, y2) · · · (xn, yn)C | (x1x2 · · ·xn, y1y2 · · · yn) ∈ T (M) }
in real time. Next, we intersect L(A) with the regular language

(a, a)+(#, #)(a, a)+{($1, $1), ($2, $2)}(a, a)+(a, c)C

and obtain that language

L = { (a, a)n(#, #)(a, a)m($1, $1)(a, a)n(a, c)C | m,n ≥ 1 } ∪
{ (a, a)n(#, #)(a, a)m($2, $2)(a, a)m(a, c)C | m,n ≥ 1 }

is realtime deterministic context free. However, it is shown in [22] by using
a particular pumping lemma for realtime deterministic context-free languages
that { anbman | n,m ≥ 1 } ∪ { anbmcm | n,m ≥ 1 } is not realtime deterministic
context free. A similar argument can be applied to L and shows that L(A) is not
realtime deterministic context free which gives a contradiction and concludes the
proof of the theorem. �

We would like to note that the input part of the witness transduction τ used
in the above proof is a regular language which is clearly accepted by DPDAs as
well as by realtime DPDAs. Thus, the separation of the families T (M-DPDT)
and T (s-DPDT) relies in fact on the power of the different types of pushdown
transducers and not on the different computational power of the underlying
pushdown automata.
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3.2. Bounded Delay versus Strongly Length-Preserving

We turn to examine the computational capacity gained in the possibility
of having the input head and output head asynchronous but not too far from
each other. Their distance has to be bounded by a constant. For any alpha-
bet Σ with a ∈ Σ and such that |Σ| ≥ 2, we consider the witness transduction
lRotate = { (aw,wa) | w ∈ Σ∗ }.

Proposition 7 The transduction lRotate is realized by a REV-bd-DPDT.

Proof. We first informally describe a bd-DPDT T realizing lRotate. Actu-
ally T does not use the pushdown, it is basically the identity transducer (one
state with self-loops on every input letter copying this letter to the output) to
which a preliminary step (from the initial state) and a final step (to the unique
final state) are added: from the initial state reading the input letter a, the trans-
ducer enters the central looping state without producing an output symbol and
moves its input head; symmetrically, from the central looping state reading the
endmarker, the transducer enters the unique final state and emits the output
symbol a.

Next, we transform T into a REV-bd-DPDT without changing the delay.
First, the self-loops are divided into two steps, in order to satisfy the head move
constraints required by the definition of reversibility (1). Second, we use the
pushdown to save information about the history of the computation, namely, the
pushdown contains the number of times the loops have been taken (in unary).
In this way, in a backward computation, the device is able to detect the first
time the central strongly connected component was entered.

Formally, we define the REV-bd-DPDT T ′ as follows (see Figure 2):

T ′ = 〈{q, s, t, f} ,Σ, {a} ,∆,C,⊥,  , δ, q, {f}〉

where the alphabets Σ and ∆ are equal and contain the symbol a, and, for all
σ ∈ Σ, the transition function δ is defined by:

δ(q, a,⊥) = (s, top,  , 1)
δ(s, σ, a) = δ(s, σ,⊥) = (t, top, σ, 0)
δ(t, σ, a) = δ(t, σ,⊥) = (s, push(a),  , 1)
δ(s,C, a) = δ(s,C,⊥) = (f, top, a, 0)

�

The next result yields the separation. The transduction lRotate is not
even realized by an irreversible s-DPDT.

Proposition 8 The transduction lRotate cannot be realized by any s-DPDT.

Proof. By contradiction, assume that lRotate is realized by some s-DPDT T .
Suppose that in the successful computation of T on input ab, the first non-
stationary step is δ(p, a, g) = (q, op, d, 1), for some states p and q, g ∈ Γ⊥,
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a,⊥ |  ,→
top

σ, | σ,↓
top

σ, |  ,→
push(a)

C, | a,↓
top

Figure 2: A REV-bd-DPDT realizing the transduction lRotate. The symbol σ represents
any symbol of the input alphabet.

and d ∈ ∆ . Since T is strongly length-preserving, we have d 6=  and further-
more d is the first symbol emitted. So, d = b, since the output associated to ab
is ba. Since T is deterministic, a computation on input aa will have the same
first non-stationary step and, therefore, a b is emitted during the computation.
This is a contradiction since the output aa associated to the input aa does not
contain the symbol b. �

Since the two inclusions T (REV-s-DPDT) ⊆ T (REV-bd-DPDT) and
T (s-DPDT) ⊆ T (bd-DPDT) follow from the definitions, Propositions 7 and 8
imply the following separations.

Theorem 9 The family T (REV-bd-DPDT) strictly includes the family
T (REV-s-DPDT), and the family T (bd-DPDT) strictly includes the family
T (s-DPDT).

3.3. Weakly Length-Preserving versus Bounded Delay

The most powerful variant of length-preserving transducers works weakly
length-preserving, where now the distance between input head and output head
may be arbitrary. We first show this yields strictly more computational capacity.
To this end, we use the transduction mSwap = { (am#bn, bn#am) | m,n ≥ 0 }.
Proposition 10 The transduction mSwap is realized by a REV-w-DPDT.

Proof. The transduction mSwap is realized by the REV-w-DPDT M depicted
in Figure 3 whose state set is {q, s, t, f}, where q is the initial state and f is the
sole final state. The transducer M uses only one pushdown symbol, denoted a,
meaning that it can be viewed as a counter transducer. The transition function δ
of M is defined as follows:

δ(q, a,⊥) = δ(q, a, a) = (q, push(a),  , 1)
δ(q, #,⊥) = δ(q, #, a) = (s, top,  , 1)
δ(s, b,⊥) = δ(s, b, a) = (t, top, b, 0)
δ(t, b,⊥) = δ(t, b, a) = (s, top,  , 1)
δ(s,C,⊥) = δ(s,C, a) = (f, top, #, 0)

δ(f,C, a) = (f, pop, a, 0)

So defined, the transducer M realizes mSwap. In fact, in any successful com-
putation on some input word am#bn, m,n ≥ 0, when the transducer performs

15



q s

t

f

a, |  ,→
push(a)

#, |  ,→
top

b, | b,↓
top

b, |  ,→
top

C, | #,↓
top

C, a | a,↓
pop

Figure 3: A REV-w-DPDT realizing mSwap.

the transition from q to s, the configuration becomes (am#, s, bnC, am⊥, λ). Sim-
ilarly, when it performs the transition from s to f , the configuration becomes
(am#bn, f,C, am⊥, bn#). Finally, since transducers are required to halt in order
to accept, M has to perform the self-loop around f until having emptied the
pushdown. Hence, when it halts, the configuration is (am#bn, f,C,⊥, bn#am).
For every such input word, the successful computation described above exists.
Thus, R realizes the transduction mSwap. Moreover, it is immediately verified
that R is reversible. �

The next result yields the separation: the transduction mSwap is not even
realized by an irreversible bd-DPDT.

Proposition 11 The transduction mSwap is not realizable by any bd-DPDT.

Proof. By contradiction, suppose that a bd-DPDT T realizes mSwap, and let
the delay be bounded by some k ≥ 0. Consider the input words in ak+1#b∗,
which are all valid inputs for the transduction. On each of these words, by the
determinism of T , when the input head reaches the (k + 1)st symbol a at least
one symbol of the output has been written (otherwise, the output head is more
than k cells delayed). If the first output letter produced so far is a or #, we get
a contradiction for the input ak+1#b whose associated output begins by b. If
it is b, then we get a contradiction for the input word ak+1#, whose associated
output begins by #. Hence, no bd-DPDT realizes mSwap. �

Since the two inclusions T (REV-bd-DPDT) ⊆ T (REV-w-DPDT) and
T (bd-DPDT) ⊆ T (w-DPDT) follow from the definitions, Propositions 10
and 11 imply the following separations.

Theorem 12 The family T (REV-w-DPDT) strictly includes the family
T (REV-bd-DPDT), and the family T (w-DPDT) strictly includes the family
T (bd-DPDT).

3.4. Irreversibility versus Reversibility

In the previous sections we have established the finite hierarchies dependent
on the modes of transductions for reversible as well as general devices. Here
we compare the computational capacities of general and reversible classes with
each other. A witness transduction is

aOccur = { (an#w#an, an#a|w|#an) | n ≥ 0, w ∈ {a, b}+, |w|a ≥ 1 }.
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It is not hard to see that aOccur is realized even by the weakest not neces-
sarily reversible device in question, that is, by some M-DPDT. However, even
reversible pushdown transducers with bounded delay cannot realize it.

Proposition 13 The transduction aOccur cannot be realized by any revers-
ible bounded-delay pushdown transducer.

Proof. Assume that a REV-bd-DPDT M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 real-
izes aOccur, and let the delay be bounded by some k ≥ 0. By Proposition 4 we
may safely assume that M always halts and never performs a stationary move
in every but possibly the last step of a computation.

First, we look at the initial parts of the computations on input prefixes an,
where n is large enough, and we want to show that the pushdown contents
have to be different after the processing of infinitely many different prefixes an.
By contradiction, we assume that there are only a finite number of pushdown
contents that appear after processing the prefixes an, for all n ≥ 0. Since the
delay is bounded, there are only finitely many possible delays. The number of
states is finite as well. So, there must be two numbers n1 and n2 such that
the delay of the output head, the current state, and the pushdown contents
are identical after processing an1 and an2 . Then, for the suffix #a#an1 both
computations would continue successfully. From this contradiction we conclude
that the pushdown contents have to be different after the processing of infinitely
many different prefixes an.

We conclude that the pushdown height grows with n. Therefore, M eventu-
ally runs through cycles that increase the pushdown height, say,

(λ, q0, a
n#,⊥, λ) `∗ (ai, q, an−i#, γ0, β0)

`∗ (ai+j , q, an−i−j#, γ1γ0, β0β1) `∗ (ai+2j , q, an−i−2j#, γ1γ1γ0, β0β1β1),

for j > 0 and γ1 6= λ. Here, we may safely assume that M moves its in-
put head when it enters the state q. On prefixes an with n from the set
N = { i+ xj | x ≥ 0 } the transducer M runs through complete cycles.

Second, we look at the computations on the input factors between the #

symbols. To this end, we choose some fixed number m ≥ k+ 1, only numbers n
from the set N , and let ` ≥ 1 be large enough. Then we consider factors (bma)`

whose processing starts in configurations (an, q, #(bma)`, γ, β) where γ is of the
form γ∗1γ0. Since the computations are on cyclic input factors (bma)∗ and start
with cyclic topmost pushdown contents γ∗1 , the computations themselves will
be cyclic. We can always unroll the cycle such that it matches the bma blocks.
That is,

(an, q, #(bma)`, γ, β) `∗ (an#(bma)i, p, (bma)`−i, γ′0, β
′
0)

`∗ (an#(bma)i+j , p, (bma)`−i−j , γ′1, β
′
1)

`∗ (an#(bma)i+2j , p, (bma)`−i−2j , γ′2, β
′
2),

where β′0, β′1, and β′2 are of the form an#a+.
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We now want to obtain that the pushdown height during a cycle on the input
factor between the # symbols remains constant. To this end, we show by way of
contradiction that the pushdown height neither decreases nor increases during
such a cycle. For the first case, we assume that the pushdown height decreases
during such a cycle, that is, |γ′2| < |γ′1| < |γ′0| and γ′1 = γ̂γx1 γ0, γ′2 = γ̂γy1γ0
with y < x. Then there are two numbers n1 < n2 from the set N , two numbers
r1 < r2, and two numbers s1, s2 ≥ 1 such that

(an1 , q, #(bma)`, γ, β) `∗ (an1#(bma)i+r1j , p, (bma)`−i−r1j , γ̂γx1 γ0, a
n1#as1)

and

(an2 , q, #(bma)`, γ̄, β̄) `∗ (an2#(bma)i+r2j , p, (bma)`−i−r2j , γ̂γx1 γ0, a
n2#as2).

This implies the halting computation

(an1 , q, #(bma)`−(r2−r1)j#an2C, γ, β)

`∗ (an1#(bma)i+r1j , p, (bma)`−i−r2j#an2C, γ̂γx1 γ0, an1#as1)

`∗ (an1#(bma)`−(r2−r1)j#an2 , p+,C, γf , an1#as#an2)

for some accepting state p+ and some s ≥ 1. We conclude from the contradiction
that the pushdown height does not decrease during a cycle on the input factor
between the # symbols.

For the second case, we assume that the pushdown height increases during
such a cycle, that is, |γ′2| > |γ′1| > |γ′0| and γ′1 = γ2γ̂γ

x
1 γ0, γ′2 = γ1+z2 γ̂γy1γ0

with z ≥ 1. Then there are two numbers n1 < n2 from the set N (recall that
` is large enough), a number r ≥ 0, two numbers x1, x2 ≥ 1, and two numbers
s1, s2 ≥ 1 such that

(an1 , q, #(bma)`, γ, β) `∗ (an1#(bma)i+rj , p, (bma)`−i−rj , γt2γ̂γ
x1
1 γ0, a

n1#as1)

and

(an2 , q, #(bma)`, γ̄, β̄) `∗ (an2#(bma)i+rj , p, (bma)`−i−rj , γt2γ̂γ
x2
1 γ0, a

n2#as2),

where we safely may assume t > 2(n2 + 2) + k, since r can be large enough
since ` is large enough. Since M does not perform stationary moves, on input
an1#(bma)i+rj#an2 there are at most 2(n2 + 2) +k steps left until the end of the
computation. During these steps at most the topmost t pushdown symbols can
be accessed. So, as before, we derive a contradiction since there is a successful
computation with prefix an1# and suffix #an2 . We conclude that the pushdown
height also does not increase during a cycle on the input factor between the #

symbols, that is, it remains constant in a cycle.
So, we have γ′1 = γ̃γx1 γ0 = γ′2. Finally, we consider the configurations

when M moves its input head on an a in the factor between the # symbols.
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Eventually, this happens within the cycle:

(an#bm, p1, a(bma)`−1, γ, β) `∗ (an#(bma)ibm, p2, a(bma)`−i−1, γ̃0, β̃0)

`∗ (an#(bma)i+jbm, p2, a(bma)`−i−j−1, γ̃0, β̃1)

`∗ (an#(bma)i+ijbm, p2, a(bma)`−i−ij−1, γ̃0, β̃2).

Since M is reversible, from the second configuration we uniquely can run it
backwards for i(m + 1) steps in which the input head is moved. This yields
the configuration (an#bm, p1, a(bma)`−1, γ, β). Since M is of bounded delay,
the suffixes of β̃0 and β̃2 are of the form a+ and are long enough. Therefore,
running M backwards for i(m+ 1) steps in which the input head is moved from
the fourth configuration, must be the same backwards computation as running
backwards from the second configuration. So, running backwards from the
fourth configuration yields (an#(bma)ijbm, p1, a(bma)`−ij−1, γ, β̃3) and, thus, p1
appears in the cycle. Since an#(bma)ijbm#an is successfully transduced so is
an#bm#an, a contradiction. We conclude that the transduction aOccur is not
realized by any reversible bounded-delay pushdown transducer. �

Since any reversible transducer is a special case of a general one of the same
type and the transduction aOccur is realized by an M-DPDT, we have the
following inclusions.

Theorem 14 The family T (bd-DPDT) strictly includes the family
T (REV-bd-DPDT), and the families T (s-DPDT) and T (M-DPDT) strictly
include the family T (REV-s-DPDT) = T (REV-M-DPDT).

To compare the transducers working in weak mode, we use a variant of the
transduction mSwap without center marker, that is, we define the transduction
Swap = { (ambn, bnam) | m,n ≥ 0 }.

Proposition 15 The transduction Swap is realized by a w-DPDT.

Proof. A w-DPDT realizing Swap starts to read the leading a’s and stores
them onto the pushdown without emitting symbols. Then it reads and emits the
following b’s without changing the pushdown content. Finally, on the endmarker
it emits the a’s from the pushdown. A precise construction is shown in Figure 4.

�

We can show that the transduction swap is not realizable by a reversible
transducer.

Proposition 16 The transduction swap cannot be realized by any reversible
pushdown transducer.

Proof. In contrast to the assertion, assume that there exists a REV-w-DPDT
M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 which realizes Swap. By Proposition 4 we
may safely assume that M always halts and never performs a stationary move
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p q r

C, |  ,↓
top

a, |  ,→
push(a)

b, |  ,↓
top

C, |  ,↓
top

b, | b,→
top

C, a | a,↓
pop

Figure 4: A w-DPDT realizing the transduction Swap.

in every but possibly the last step of a computation. Later we modify M and
have to preserve reversibility. In order to simplify matters concerning this pos-
sibly last step on the endmarker, we do the following. Let F ′ be the primed
copy of F . Then we add F ′ to the state set of M and exchange F by F ′.
Whenever δ(p,C, g) is undefined, state p belongs to F , and state p is reached
by a non-stationary transition, we define δ(p,C, g) = (p′, top,  , 0). When-
ever δ(q,C, g) = (p, op,  , 0) is defined and state p belongs to F , we redefine
δ(q,C, g) = (p′, op,  , 0). In the former case we have added one stationary
transition that becomes the last transition in a successful computation which
previously ended with a non-stationary step. In the latter case we have replaced
the stationary last step in a successful computation by a stationary transition
that leads to a primed copy of the accepting state. Since there are no outgoing
transitions from the new final states from F ′, this modification neither violates
the reversibility nor the transduction realized.

After this preparation, we observe that the transitions performed during any
successful computation of M satisfy:

δ(p, a, g) = (q, op, d,m) =⇒ d =  (1)

δ(p, b, g) = (q, op, d,m) =⇒ d 6= a (2)

δ(p, x, g) = (q, op, a,m) =⇒ x = C (3)

where p, q are states, g ∈ Γ⊥, m ∈ {0, 1}, and d ∈ {a, b} . Indeed, if M would
not satisfy (1) then it would fail, since it might produce a symbol before having
checked the existence of a symbol b in the suffix of the input. Similarly, M
would fail if it does not satisfy (2) because it might emit a symbol a before
having completely emitted the b’s, which should form a prefix of the output.
Lastly, (3) is implied by (1) and (2).

Next, we turn to show how to obtain a reversible pushdown automaton A
that accepts the language { anbn | n ≥ 0 } fromM . Since no reversible pushdown
automaton can recognize this language [10, Lemma 6], we obtain a contradiction
that shows the theorem.

The first step of the construction of A is to modify M such that it only
accepts inputs from a∗ while preserving all the properties seen above as well as
reversibility. To this end, it is sufficient to remove every transition reading or
emitting a b from δ. By the properties above there is no transition that reads
an a and emits a b or vice versa. So, this construction step can safely be done
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without changing anything for the computations on inputs from a∗. Let M ′

be the transducer obtained in this way. It is reversible, since we only removed
transitions from M . Moreover, its transitions still satisfy the three conditions
given above.

In particular, on input a∗ transducer M ′ first reads the a’s without emitting
anything. When the endmarker is reached, M ′ emits the a’s read and halts in an
accepting state from F . The next step is to construct the reversible pushdown
automaton A = 〈Q, {a, b},Γ,C,⊥, δ′, q0, F 〉 from M ′. The transition function
δ′ is defined as follows:

δ′(p, a, g) = (q, op, 1) ⇐⇒ δ(p, a, g) = (q, op,  , 1)
δ′(p, b, g) = (q, op, 1) ⇐⇒ δ(p,C, g) = (q, op, a, 0)
δ′(p,C, g) = (q, op, 0) ⇐⇒ δ(p,C, g) = (q, op,  , 0)

for each p, q ∈ Q, g ∈ Γ⊥, and op ∈ {push(x) | x ∈ Γ} ∪ {top, pop}.
In this way, A simulates M ′, but whenever M ′ emits an a while reading

the endmarker, A reads a b. So, for each successful transduction of M ′ on an
input an, we obtain an accepting computation of A on input anbn, and vice
versa. Hence, A accepts the language { anbn | n ≥ 0 }.

Finally, it is not hard to verify that A is reversible since M ′ is reversible and
the construction of δ′ does not violate reversibility.

It is worth mentioning that A moves its input head in any but a possible last
step on the endmarker. The pushdown automata considered in [10] do not have
an input endmarker. However, the proof that the language { anbn | n ≥ 0 }
is not accepted by any reversible pushdown automaton does not rely on the
endmarker. It literally applies in this case as well. �

So, we have shown the following theorem.

Theorem 17 The family T (w-DPDT) strictly includes T (REV-w-DPDT).

The next goal is to develop a witness transduction that shows the missing
incomparability results, that is, it should be realizable by some M-DPDT but
not by any REV-w-DPDT. To this end, let Lbin = ((aa+a)(bb+b))∗(aa+a+λ)
be a regular language and define the transduction

3Occur = { (an#w#an, an#a|w|#an) | n ≥ 0, w ∈ Lbin }.

As for the transduction aOccur it is not hard to see that 3Occur is real-
ized by the weakest not necessarily reversible device in question, that is, by
some M-DPDT. In order to show that 3Occur cannot be realized by any
REV-w-DPDT we will use Kolmogorov complexity and incompressibility argu-
ments. General information on Kolmogorov complexity and the incompressibil-
ity method can be found, for example, in [23]. Let w ∈ {0, 1}+ be an arbitrary
binary string. The Kolmogorov complexity C(w) of w is defined to be the min-
imal size of a binary program describing w. The following key argument for
the incompressibility method is well known. There are binary strings w of any
length so that |w| ≤ C(w).
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Next, we encode words w ∈ {0, 1}+ as follows. From left to right the digits
are represented alternating by a’s and b’s so that a 0 is represented by a single
letter and a 1 by a double letter. For example, the word 010110 is encoded as
abbabbaab. Let t(w) denote the code of w. Clearly, for any word w ∈ {0, 1}+,
its code t(w) belongs to the regular language Lbin .

Proposition 18 There exists no REV-w-DPDT that realizes the transduction
3Occur.

Proof. In contrast to the assertion, assume that there exists a REV-w-DPDT
M = 〈Q,Σ,Γ,∆,C,⊥,  , δ, q0, F 〉 which realizes 3Occur. By Proposition 4 we
may safely assume that M always halts and never performs a stationary move
in every but possibly the last step of a computation.

First, we consider successful computations ofM on input prefixes an, where n
is large enough. On these input prefixes, no combination of state and pushdown
content may appear twice. If otherwise

(λ, q0, a
n#w#anC,⊥, λ) `∗ (am1 , q1, a

n−m1#w#anC, γ1, β1)

`+ (am1+m2 , q1, a
n−m1−m2#w#anC, γ1, β2)

is the beginning of a successful computation, then so is

(λ, q0, a
n−m2#w#anC,⊥, λ) `∗ (am1 , q1, a

n−m1−m2#w#anC, γ1, β1),

but there is no pair in 3Occur whose first component is an−m2#w#an, a con-
tradiction.

We conclude that the pushdown height grows with n. Therefore, M eventu-
ally runs through cycles that increase the pushdown height, say,

(λ, q0, a
n#,⊥, λ) `∗ (at1 , q1, a

n−t1#, γ1, β1)

`+ (at1+c1 , q1, a
n−t1−c1#, γ2γ1, β2) `+ (at1+2c1 , q1, a

n−t1−2c1#, γ2γ2γ1, β3),

for t1 ≥ 0, c1 > 0, and γ2 6= λ.
Next, we turn to the input suffixes. For all n ≥ 0, we define the mapping

hn : {a, b}∗ → N as follows. If on input an#w#an the pushdown content of M
after processing the prefix an# is γ then hn maps w to the number of symbols at
the bottom of the pushdown that are no more seen in the remaining computation
on suffix w#an. Clearly, if all symbols from γ are touched during the remaining
computation then hn maps to zero.

We now want the show that hn(w) < |γ2γ1| for all n large enough and all
w ∈ Lbin . By contradiction, we assume that for some n large enough there
exists a w ∈ Lbin such that hn(w) ≥ |γ2γ1|. Since the computation

(λ, q0, a
n#w#anC,⊥, λ) `∗ (at1+c1 , q1, a

n−t1−c1#w#anC, γ2γ1, β2)

`∗ (an#w#an, qf ,C, γ, β)
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is successful and hn(w) ≥ |γ2γ1|, the computation

(λ, q0, a
n+c1#w#anC,⊥, λ) `∗ (at1+c1 , q1, a

n−t1#w#anC, γ2γ1, β2)

`∗ (at1+2c1 , q1, a
n−t1−c1#w#anC, γ2γ2γ1, β3) `∗ (an+c1#w#an, qf ,C, γ, β′)

is successful as well, a contradiction.
We conclude that, for all n large enough and all w ∈ Lbin , hn(w) < |γ2γ1|.
The next step is to show that there is some constant k such that the value

of hn(w) is reached for the last time, that is, the height of the pushdown is
hn(w) for the last time, when the input head is scanning one of the last k input
symbols. By way of contradiction, we distinguish two cases, namely, the input
head is scanning some symbol of the factor w# or the input head is scanning some
symbol a of the suffix an and the distance to the end of input is larger than k.
In the first case, we assume that the input head is scanning some symbol of the
factor w#, say in a configuration (an#u, p1, v#a

nC, γ, β), where w = uv and |γ| =
hn(w). Note that the computation continues from this configuration successfully
and, by definition, u belongs to Lbin . We consider the input an#u#an and, thus,
the computation continuing in configuration (an#u, p1, #a

nC, γ, β). Assume the
configuration after the next move of the input head is (an#u#, p2, a

nC, γ′, β′).
We derive |γ′| ≤ hn(w) + 1. Since the remaining computation is on unary
input an, a rough estimation gives that there are at most |Γ||γ′| · |Q| different
possibilities for the topmost |γ′| pushdown symbols and a state. Since n has been
chosen large enough, the computation continues in cycles with respect to the
state and the topmost |γ′| pushdown symbols. The maximal length of the cycle
solely depends on |Q| and |Γ|. So, there are at least two different numbers n1
and n2 such that the computations on inputs an#u#an1 and an#u#an2 are both
successful, a contradiction that concludes the first case.

In the second case, we assume that the value of hn(w) is reached for the last
time when the input head is scanning some symbol a of the suffix an, say in
a configuration (an#w#as1 , p1, a

s2C, γ, β), where n = s1 + s2 and |γ| = hn(w).
Again, the computation continues from this configuration successfully. Since
hn(w) < |γ2γ1| the value of hn(w) is bounded from above by a constant k0 that
depends solely on |Q| and |Γ|. As in the first case the remaining computation is
on unary input as2 and, thus, there are at most |Γ|k0 ·|Q| different possibilities for
the topmost |γ| pushdown symbols and a state. This number of possibilities is
also a constant, say k, that depends solely on |Q| and |Γ|. Assume now s2 ≥ k.
Then the argument of the first case applies that says that the computation
continues in cycles with respect to the state and the topmost k0 pushdown
symbols, where the length of the cycle is at most k. So, extending the suffix an by
as many symbols a as are read during a cycle, yields a successful computation on
an input that is not the first component of any pair in 3Occur, a contradiction.

Summarizing so far, we conclude that, for all n large enough and all w ∈ Lbin ,
hn(w) < |γ2γ1| and the value of hn(w) is reached for the last time when the
input head is scanning one of the last k input symbols, where k is some constant.

The last step in the proof is to apply incompressibility arguments to obtain
a contradiction to the assumption that the REV-w-DPDT M realizes 3Occur.
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To this end, we choose a (long enough) word w ∈ {0, 1}∗ with C(w) ≥ |w|,
consider a successful computation of M on a|t(w)|#t(w)#a|t(w)|, and show that w
can be compressed via M .

First, we describe a program P which reconstructs w from a description
of M , the length |t(w)|, the last two letters z1z2 of t(w) as well as the state p1,
the number s2 of remaining input symbols, and the pushdown content γ of the
configuration in which the value of hn(w) is reached for the last time.

The program P first simulates the remaining computation of M beginning in
the configuration in which the value of hn(w) is reached for the last time. That
is, it simulates the computation (λ, p1, a

s2C, γ, λ) `∗ (as2 , qf ,C, γ′, β), where M
halts accepting in the latter configuration. Next, P enumerates all words x of
length |t(w)| from Lbin whose last two letters are z1z2 and simulates M on each
candidate a|t(w)|#x#a|t(w)|. If the simulation halts accepting in state qf with
pushdown content γ′ and output a|t(w)|#a|t(w)|#a|t(w)| we have x = t(w) and,
thus, reconstructed w.

In order to show the correctness of the reconstruction, assume contrarily
that there is another input y 6= t(w) in Lbin ending with z1z2, for which the
simulation ofM halts accepting in state qf with pushdown content γ′ and output
a|t(w)|#a|t(w)|#a|t(w)|. Let n = |t(w)| and x = x1x2 · · ·xn and y = y1y2 · · · yn.
From the accepting configurations, run M backwards (using the reversibility
of M) for as long as the suffixes of x and y are identical. This eventually
reaches configurations

(an#x1x2 · · ·xi−1, p, xixi+1 · · ·xn#anC, γ1, β1)

and
(an#y1y2 · · · yi−1, p, yiyi+1 · · · yn#anC, γ1, β1)

differing only in their inputs, such that xj = yj for i ≤ j ≤ n, and xi−1 6= yi−1.
Since x and y both end with z1z2, we have i ≤ n − 1, and since x 6= y, we
have i ≥ 2.

Now, xi is either a or b, say b. That is, xi = yi = b and xi−1 6= yi−1. This
implies that precisely one of xi−1 and yi−1 is b, say, xi−1 = b and yi−1 = a.

The word y1y2 · · · yib belongs to Lbin . Moreover, it can be extended to some
word y1y2 · · · yiby′i+2 · · · y′n that belongs to Lbin as well. Since M is deterministic
we obtain the computation

(λ, q0, a
n#y1y2 · · · yiby′i+2 · · · y′n#anC,⊥, λ)

`∗ (an#y1y2 · · · yi−1, p, yiby′i+2 · · · y′n#anC, γ1, β1)

that must continue successfully. Therefore, the computation

(λ, q0, a
n#x1x2 · · ·xiby′i+2 · · · y′n#anC,⊥, λ)

`∗ (an#x1x2 · · ·xi−1, p, xiby′i+2 · · · y′n#anC, γ1, β1)

must continue successfully as well. However, since xi−1 = xi = b the word
x1x2 · · ·xi−1xiby′i+2 · · · y′n contains the factor bbb and, thus, does not belong
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to Lbin , a contradiction. We conclude that program P , in fact, reconstructs t(w)
and, thus, the word w.

Finally, we determine the Kolmogorov complexity C(w) of w. Recall that P
reconstructs w from a description of M , the length |t(w)|, the last two let-
ters z1z2 of t(w) as well as the state p1, the number s2 of remaining input
symbols, and the pushdown content γ of the configuration in which the value
of hn(w) is reached for the last time. So, C(w) is given by the length of the
binary representation of these ingredients. Let |P | be the constant size of the
program P , and |M | be the constant size of M . The length of t(w) can be
written with O(log(|w|)) bits and the last two letters z1z2 with O(2 · log(|Σ|))
bits. For the state p1, O(log(|Q|)) bits are sufficient. Since s2 ∈ O(|w|), it is
represented by O(log(|w|)) bits. Finally, recall that the length of the pushdown
content γ is bounded from above by the constant k0. So, O(k0 · log(|Γ|)) bits
are sufficient to represent γ. In total, we obtain

C(w) ∈ |P |+ |M |+O(log(|w|))+O(2 · log(|Σ|))+O(log(|Q|))+O(k0 · log(|Γ|))
= O(log(|w|)) ⊆ o(|w|).

We conclude C(w) < |w|, for w long enough, contradicting that C(w) ≥ |w|.
Therefore, M cannot realize 3Occur. �

The relations between the families of transductions shown are summarized
in Figure 5.

T (M-DPDT) T (s-DPDT) T (bd-DPDT) T (w-DPDT)

T (REV-M-DPDT) T (REV-s-DPDT) T (REV-bd-DPDT) T (REV-w-DPDT)

Figure 5: Relations between the families of transductions discussed, where an arrow denotes
a proper inclusion. All families which are not linked by a path are pairwise incomparable.
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