
HAL Id: hal-04093621
https://hal.science/hal-04093621

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remaining cycle time prediction with Graph Neural
Networks for Predictive Process Monitoring

Le Toan Duong, Louise Travé-Massuyès, Audine Subias, Christophe Merle

To cite this version:
Le Toan Duong, Louise Travé-Massuyès, Audine Subias, Christophe Merle. Remaining cycle time
prediction with Graph Neural Networks for Predictive Process Monitoring. 8th International Con-
ference on Machine Learning Technologies (ICMLT 2023), Mar 2023, Stockholm, Sweden. 7 p.,
�10.1145/3589883.3589897�. �hal-04093621�

https://hal.science/hal-04093621
https://hal.archives-ouvertes.fr

Remaining cycle time prediction with Graph Neural Networks for
Predictive Process Monitoring

Le Toan Duong∗
LAAS-CNRS, Université Fédérale de

Toulouse, CNRS, INSA
ANITI, Université Fédérale Toulouse

Midi Pyrénées
Vitesco Technologies France SAS

Toulouse, France
ltduong@laas.fr

Louise Travé-Massuyès
Audine Subias

LAAS-CNRS, Université Fédérale de
Toulouse, CNRS, INSA

ANITI, Université Fédérale Toulouse
Midi Pyrénées

Toulouse, France

Christophe Merle
ANITI, Université Fédérale Toulouse

Midi Pyrénées
Vitesco Technologies France SAS

Toulouse, France

ABSTRACT
Predictive process monitoring is at the intersection of machine
learning and process mining. This subfield of process mining lever-
ages historical data generated from process executions to make
predictions about the ongoing process. One of the predictive pro-
cess monitoring tasks with high interest is predicting the remaining
cycle time of process instances. Recently, deep neural networks,
particularly long short-term memory, have attracted much atten-
tion due to their ability to learn relevant features automatically
and predict with high accuracy. While these models require data
defined in the Euclidean space, graph neural networks have the
advantage of handling data that can be represented as graphs. This
paper proposes the use of graph neural network models to predict
the remaining cycle time, which has not yet been studied in the
literature. The proposed models are evaluated on real-life event
logs and compared to a state-of-the-art long short-term memory
model. The results show that graph neural network models can
improve prediction accuracy, particularly for complex processes.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Machine
learning approaches→ Neural networks.

KEYWORDS
Predictive process monitoring, Remaining cycle time prediction,
Machine learning, Graph neural networks

ACM Reference Format:
Le Toan Duong, Louise Travé-Massuyès, Audine Subias, and Christophe
Merle. 2023. Remaining cycle time prediction with Graph Neural Networks
for Predictive Process Monitoring. In Proceedings of Make sure to enter
the correct conference title from your rights confirmation emai (Conference

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

acronym ’XX). ACM, New York, NY, USA, 7 pages. https://doi.org/XXXXXX
X.XXXXXXX

1 INTRODUCTION
Predictive Process Monitoring (PPM) is a subfield of process mining
that refers to a family of techniques that try to predict the outcome
or the future properties of an ongoing process case. For this purpose,
historical data on process executions stored in event logs are used as
input. Then, depending on the specific needs, a predictive model is
built and trained to predict the relevant information of the current
process. Several PPM problems have been addressed and solved.
Among them, Rama-Maneiro et al. [23] have formalized the most
common ones. The first one is the prediction of attributes, i.e.,
activity and timestamp related to the next event. The second one is
predicting the sequence of events and their attributes until the end
of the case. The third problem consists in predicting the outcome of
an event prefix [12, 30]. For example, in an order-to-cash process,
the outcome of a case may be the level of customer satisfaction or
the risk of delay. In a manufacturing process, it may be the quality
of the final product, i.e., whether the product will be returned or
not by the customer. Another PPM problem that has emerged in
recent years, which is the focus of our study, is the prediction of
the remaining cycle time (RCT).

Especially given an event prefix of a running case, the RCT
prediction model seeks to forecast the time until the completion of
the case. The results can be used to prevent process instances with
long cycle times and support process managers in making resource
allocation decisions or adjusting process behavior. Several studies
have been conducted on this problem [16, 20, 22, 35]. There are
two main approaches to predicting the RCT of a running process.
The first consists of recursively predicting the next activity and its
timestamp until the end of a process. In this case, the RCT is derived
by simply summing the time between all intermediate activities.
The second approach is to directly predict the RCT from the prefix.
This approach learns from historical data a function Ω from the
prefix space toR. A systematic review of the state-of-the-art models
is presented in Section 2. Whereas for the recursive approach, the
model developed for predicting the next event is reused to predict
the RCT, the direct approach must build its own model. However,
the disadvantage of the recursive method is that many intermediate
prediction steps have to be performed to obtain the final result.
Consequently, the error can accumulate through these steps and
become significant for the final outcome. This problem is apparent

https://orcid.org/0000-0001-9901-8363
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY L.T. Duong et al.

when the model has to handle long processes with many events and
especially processes with a lot of duplicated activities [26]. Some
experimental results that confirm this intuition are presented in
Section 4. In this paper, we focus mainly on the development of
models for the direct approach. The paper presents the first use of
Graph Neural Networks (GNN) for RCT prediction. The motivation
of the study is that the precedence relationships between activities
in a process can be represented as graphs. Hence, using GNN could
help leverage this information in prediction. Two GNNmodels have
been evaluated and compared with the Long Short-Term Memory
(LSTM) model in public datasets and a real manufacturing process.
The results show the GNN model’s effectiveness in predicting the
remaining cycle time.

The paper is organized as follows. Section 2 presents preliminar-
ies and the related work. The different predictive models studied
in this work are presented in Section 3. In Section 4, we present
the prediction results obtained with GNN and the comparison, and
Section 5 concludes the work.

2 RELATEDWORK
Several researches have been conducted on the topic of PPM. These
can be categorized into different classes depending on the PPM prob-
lems, the application domains, the prediction model, etc. In [15], the
authors classify the approaches into two families, process-aware
and non-process-aware methods. Di Francescomarin et al. [6] re-
view existing methods for the PPM based on prediction type, input
data required, tool support, the validity of the algorithm, and the
family of algorithms to help industries select the method that best
suits their problem. The authors in [10] focus only on deep learning
approaches based on Recurrent Neural Networks (RNN), LSTM,
and Stacked Autoencoder. A complete review of the state-of-the-art
deep learning methods in the PPM is presented in [17, 23].

Regarding the RCT prediction problem, as in the PPM, the ap-
proaches are classified into process-aware and non-process-aware
methods. Process awareness means whether or not the approach
uses a process model as input to make the prediction. Most process-
aware methods discover process models from event logs because
the model is not always known and may be different from the real
behavior. In general, a transition system [2, 20, 21, 31] or a Petri net
[35] is constructed and used to predict the remaining time. Mean-
while, Verenich et al. [38] make a prediction based on the process
tree obtained from historical traces. Non-process-aware approaches
usually apply machine learning algorithms to learn a model from la-
beled training data, i.e., supervised learning [37]. Several regression
models can be used such as linear regression [1], random forest [32],
XGBoost [25] and neural networks [3, 8, 11, 14, 16, 26, 28, 29, 39].
In [5], the authors propose a framework that uses both process and
non-process-awaremethods for the RCT prediction. They combined
the prediction given by a transition system-based model with the
prediction from a multiple linear regression model to make the final
results. The approach proposed in our paper is non-process-aware
as it does not use any process model. It takes only the process state
represented in the prefixes to make the prediction.

In recent years, deep learning has been widely exploited in the
PPM, particularly in the RCT prediction, due to its promising results

against classical methods [23]. The authors in [37] present a sys-
tematic review and a benchmark of the existing methods for RCT
prediction. The results show that LSTM-based models achieve the
best accuracy in terms of Mean Absolute Error (MAE) at the time
the benchmark is performed. Recently more sophisticated mod-
els based on deep learning have been proposed. Wang et al. [40]
present a remaining time predictor with reinforcement learning.
Taymouri et al. [27] propose a Generative Adversarial Net (GAN)
for the suffix and the RCT prediction. Over the last few years, GNNs
have been used to solve PPM problems. Philipp et al. [18] present
the first use of GNN to predict the amount of disbursement per
area regarding a process of application request. They develop a
model that contains two graph convolutional layers followed by
one linear layer. Venugopal et al. [36] presents a comparison of
Graph Convolutional Network (GCN) with the Convolutional Neu-
ral Networks (CNN) and LSTM models along with a Multi-Layer
Perceptron (MLP) for the next activity and timestamp prediction.
In addition, a Gated Graph Neural Network (GGNN) is used in
[41]. The authors in [24] build a process model in the form of a
Petri net, then feed it to a model that integrates GCNs and RNNs.
Whiorrini et al. [4] develop a GNN model that performs well in the
event log with a high presence of parallelism. However, all of these
works focus only on the problem of predicting the next activity and
timestamp. There have been no studies so far about GNN on the
RCT prediction. In this paper, we present the first use of the GNN
model and compare its performance with the LSTM model of [26].
We choose this latter model as a baseline because it shows the most
promising results of the benchmark in [37].

According to input data, all studies process the event log with at
least one case ID, activity, and timestamp. Many methods use addi-
tional event attributes, and case attributes to enrich the prediction
models [21, 34]. Others use contextual information to obtain more
accurate predictions [9, 25]. The goal of this study is to evaluate a
new family of models, GNN, for the RCT prediction. Since then, we
only use mandatory attributes, case ID, activity, and timestamp to
keep the approach generalized and applicable to all event logs.

3 METHODOLOGY
3.1 Problem statement
This section provides necessary concepts and notations for the for-
malization of the studied problem. To illustrate the above concepts,
Table 1 presents an example of event log. Each row in the table
corresponds to an event.

Let E be the event universe and𝐴𝑁 be the set of attribute names.
For any event 𝑒 ∈ E and attribute name 𝑛 ∈ 𝐴𝑁 , #𝑛 (𝑒) is the value
of attribute 𝑛 for event 𝑒 .

Definition 3.1 (Event). An event 𝑒 is represented by a tuple of
attributes (#𝑐 (𝑒), #𝑎 (𝑒), #𝑡 (𝑒), #𝑑1 (𝑒), ..., #𝑑 𝑗

(𝑒), ..., #𝑑𝑚 (𝑒)), where 𝑐
is the case ID, 𝑎 is the activity, 𝑡 is the timestamp and 𝑑 𝑗 is the 𝑗𝑡ℎ

additional attribute of the event.

The additional attributes may be the resource (e.g., person in
charge of the task) or the associated cost, etc. Let E∗ be the set of
all finite subsets of E.

Remaining cycle time prediction with Graph Neural Networks for Predictive Process Monitoring Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Example of an event log

Event ID Case ID Activity Timestamp

𝑒1 1 a 2022-01-30 08:20:07
𝑒2 1 b 2022-02-08 08:58:46
𝑒3 1 b 2022-02-08 09:59:05
𝑒4 1 c 2022-02-11 17:27:35
𝑒5 1 d 2022-02-15 09:45:20
𝑒6 2 a 2022-01-30 08:38:54
𝑒7 2 b 2022-02-07 09:30:07
𝑒8 2 c 2022-02-10 15:12:25
𝑒9 2 a 2022-02-10 17:15:08
𝑒10 2 d 2022-02-12 16:31:20

Definition 3.2 (Trace). A trace is a finite, non-empty sequence of
events 𝜎 ∈ E∗ \ {∅}, 𝜎 = ⟨𝑒1, ..., 𝑒 |𝜎 | ⟩ such that for 1 ≤ 𝑖 < 𝑗 ≤ |𝜎 | :
#𝑐 (𝑒𝑖) = #𝑐 (𝑒 𝑗).

Definition 3.3 (Event log). An event log 𝐿 is a set of complete
traces, i.e., traces representing the execution from the beginning to
the end of a case.

Definition 3.4 (Prefix). A prefix is the head of a trace 𝜎 with a
length 0 < 𝑘 < |𝜎 |. It is denoted as ℎ𝑑𝑘 (𝜎) = ⟨𝑒1, ..., 𝑒𝑘 ⟩.

For example of the trace 𝜎 = ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5⟩ associated with
case ID number 1 in Table 1, ℎ𝑑2 (𝜎) = ⟨𝑒1, 𝑒2⟩ and ℎ𝑑3 (𝜎) =

⟨𝑒1, 𝑒2, 𝑒3⟩.

The RCT prediction takes as input the prefix of a running case
and outputs time remaining until the end of that case.

A RCT prediction model is a function Ω such that Ω(ℎ𝑑𝑘 (𝜎)) =
#𝑡 (𝑒 |𝜎 |) − #𝑡 (𝑒𝑘), with 𝑘 ∈ 1..(|𝜎 | − 1).

3.2 Prefix encoding
One of the challenges when working with event log data is that
it requires a lot of feature engineering, especially when using ma-
chine learning algorithms that take input as numerical tensors,
e.g., vectors or matrices. However, a trace representing a process
instance’s behavior is a sequence of events. Each event contains
numerical data such as cost and duration and text data such as ac-
tivity and resource. Hence, events must be encoded into numerical
vectors. The prefix encoding method may affect the performance of
the prediction task. Figure 1 shows the methods used in this study,
described in the following paragraphs.

3.2.1 Event encoding. We use the event encoding technique pre-
sented in [26]. Especially each event is represented by a vector
which is a concatenation of its attributes. In this study, we use only
two mandatory attributes in all event logs to keep the work as gen-
eralized as possible: activity and timestamp. Categorical attributes
such as activity are converted to numeric by one hot encoding
method due to its simplicity. This is also known as dummy coding.
The method creates a dummy variable for each level of a categorical
variable which is equal to 1 if the level is present and 0 if it is absent.
According to the timestamp, we create four time-based features for

each event which are the time from the previous event in the same
case, the time from the start of its case, the time within the day, and
the day within the week.

3.2.2 Prefix encoding. In the task of prediction of the RCT, inputs
are prefixes with variable lengths. One solution is to train multiple
predictors by dividing all prefix traces into several buckets. Each
bucket contains prefixes of a specific length. The disadvantage
of this approach is that it requires a lot of models and training,
especially when working with long traces. The other solution is to
combine all the prefix traces and use a single model to learn them.
We used the latter for the presented study. In this case, a prefix
encoding step is required to obtain relevant inputs for the model.
Two prefix encoding techniques are used in this paper.

• Prefixes padded [23]: This type of encoding, which is used
in the LSTM model, consists of fixing the prefix’s maximum
length. Then, shorter prefixes are padded with zeros. In this
study, we take the length of the longest trace as themaximum
prefix length. An example of this technique is presented in
Figure 1, top table. In this example, we suppose that the
maximum length is 5, which is the length of the trace. Then,
the prefix of length three is padded with two rows of zeros.

• Prefixes flexible: This technique encodes all events present
in the prefix without using any padding method. Therefore,
the length of the feature matrix is equal to the length of the
prefix length. It is designed explicitly for the GGNN because
this model can handle graphs of different sizes. Indeed, there
is a pooling operation at the output of the GGNN to map
graphs with different sizes into graphs embedding of the
same size. Figure 1, bottom table, presents an example of
prefixes flexible technique. We notice that the event 𝑒2 and
𝑒3 refer to the same activity 𝑏. Hence, they have similar
activity representations. However, the time-based features
are different since they do not occur at the same time. The
number of lines is dictated by the number of events in the
prefix.

Figure 1: Example of prefix encoding methods used in this
paper. The prefixes padded encoding is used in the LSTM
model. The GGNN model uses the prefixes flexible encoding.
The three first time-based features are computed in seconds.
They are normalized usingmin-max normalization during
the training phase.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY L.T. Duong et al.

3.3 Graph Neural Networks for the RCT
prediction

Figure 2: Architecture of GGNN model for the RCT predic-
tion.

This section presents the GGNN model we propose to compare
with the baseline (LSTM). We do not present the architecture of the
LSTM model used in [26] because this model is well-known. The
GGNN model is proposed by Li et al. [13]. The model is constituted
of two phases (see Figure 2). The input graph whose node features
are initialized by the prefix encoding method presented in Figure
1 first goes through a message aggregation phase in which each
node 𝑖 aggregates information from its neighboring nodes N(𝑖).

𝑚𝑙+1
𝑖 =

∑︁
𝑗∈N(𝑖)

𝑒 𝑗𝑖 × Θ × ℎ𝑙𝑗 (1)

where 𝑙 is used to identify the iteration (layer),𝑚𝑙+1
𝑖

is the message
associated to node 𝑖 at iteration 𝑙 + 1, 𝑒 𝑗𝑖 is the edge weight and
Θ is the trainable parameters. Then, the hidden state ℎ𝑖 of node
𝑖 is updated by an update function 𝑈 . In the case of GGNN, the
function𝑈 is a Gated Recurrent Unit (GRU) cell.

ℎ𝑙+1𝑖 = 𝐺𝑅𝑈 (𝑚𝑙+1
𝑖 , ℎ𝑙𝑖) (2)

This message-passing process is repeated 𝐿 times so that the infor-
mation from one node is propagated to all other nodes in the graph.
The hyper-parameter 𝐿 is similar to the number of convolution
layers in the CNN. The GGNN model is used in [41] to predict the
next activity. In this study, we applied the model to resolve the RCT
prediction problem. The input prefix is considered as a graph whose
nodes are events presented in the prefix, and the edges represent
the precedence relations between the events. Furthermore, edges
are distinguished into three types:

• Forward: edges from one to a new activity within a case, e.g.,
⟨𝑒1, 𝑒2⟩ in case 1 of Table 1. This edge is showed in blue in
Figure 2.

• Backward: edges from one to an activity that has been per-
formed in a case, e.g., ⟨𝑒8, 𝑒9⟩ in case 2.

• Repeat: edges between two events associated with the same
activity, e.g., ⟨𝑒2, 𝑒3⟩ in case 1. This edge is the red one in
Figure 2.

At the output of the GGNN block, we obtain the node embeddings.
They are then passed through a readout function to get the graph
embedding. We use the global mean pooling function to do this.
Finally, the graph embedding goes through fully connected layers
with the activation function ReLU to make a prediction.

4 EVALUATION
4.1 Datasets
In this study, we use three event log datasets.

• Helpdesk contains event logs from a ticketing management
process of the help desk of an Italian software company. The
logs are available at [19].

• BPIC20 contains events pertaining to two years of travel
expense claims [33].

• EMS3141 dataset presents a real manufacturing process for
assembling electronic boards in the automotive company
Vitesco Technologies.

Table 2: Statistics of event logs used in the study

Event
log

Num.
ac-
tiv-
i-
ties

Avg.
case
len.

Max.
case
len.

Avg.
case
du-
ra-
tion
(days)

Max.
case
du-
ra-
tion
(days)

Min.
case
du-
ra-
tion
(days)

Variants

Helpdesk 10 4.66 15 40.85 59.99 30.64 207
BPIC20 15 5.49 24 11.62 368.19 1.06 64
EMS3141 35 28.76 44 7.01 80.87 0.69 296

All datasets were preprocessed, and only complete traces were
extracted. Table 2 presents the statistics of the processed event logs.
The datasets are then split into two sets according to the start time
of each case. The first 2/3 of traces are used to train the model and
the last 1/3 of traces as the test set. Regarding the input for the RCT
prediction problem, only prefixes with a minimum length of two
are considered because the GGNN model requires a graph input
that contains at least two nodes.

4.2 Experimental setup
Our experiment, which is implemented with Pytorch, consists of
two tasks. The first is to compare the performance of the direct
and recursive approaches in predicting the RCT. The second task
is to evaluate the performance of the GGNN model against the
baseline model (LSTM). Regarding the training step, we use 20%
of the training set for the validation. In addition, we add dropout
layers and use the early stopping technique to prevent the over-
fitting problem. The dropout percentage is a hyperparameter that
is fine-tuned during the training phase. Other hyperparameters
we consider in the tuning process are the batch size, the learning
rate, the number of layers, and the dimension of hidden layers.
We use Bayesian optimization for quick tuning. Once optimized
hyperparameters are found, the model is retrained. This process
is repeated 5 times in order to have consistent results against the
randomness of neural networks. Regarding the loss function and
the metric to assess the model performance, we use the well-known
metric Mean Absolute Error (MAE). More details about the hyper-
parameter tuning and the training process are presented at https:
//github.com/duongtoan261196/RemainingCycleTimePrediction.

https://github.com/duongtoan261196/RemainingCycleTimePrediction
https://github.com/duongtoan261196/RemainingCycleTimePrediction

Remaining cycle time prediction with Graph Neural Networks for Predictive Process Monitoring Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4.3 Direct vs recursive approaches for the RCT
prediction

This section presents an experiment to compare the performance of
recursive and direct approaches in the RCT prediction problem. For
that, we use the LSTM model from [26], which was developed in
the recursive approach. Then, we build a direct approach of LSTM
to compare with. The architecture of the LSTM-direct model is
presented in Figure 3. The model includes 𝑘 layers of LSTM with
the dropout layer to prevent over-fitting. 𝑘 is a hyperparameter,
and 𝑐0, ℎ0 are the initial cell and hidden states.

Figure 3: LSTM model for the RCT prediction.

Table 3 presents the average prediction errors over different pre-
fix lengths of the LSTM-recursive and LSTM-direct models on two
public datasets Helpdesk and BPIC20. The table shows that LSTM-
direct gives a better prediction for both datasets. The last column
shows the percentage of error we could reduce by applying the
direct approach instead of the recursive approach. These results
confirm our initial arguments in Section 1. Moreover, we observe
from the experiment that the recursive approach takes more time
to predict than the direct one. This is because, on the one hand, the
recursive model must predict the next event until a stopping crite-
rion is reached. On the other hand, the direct model predicts in one
shot. For the next experiments, we test only the direct approaches.

Table 3: Average MAE (days) over all prefix lengths of the
prediction by the LSTM-recursive and LSTM-direct model

Dataset LSTM recursive LSTM-direct Gain in %

Helpdesk 5.783 5.666 2.02
BPIC20 3.431 3.269 4.72

4.4 GGNN vs LSTM for the RCT prediction
The main contribution of this study is the use of graph neural net-
works for RCT prediction. This section compares the performance
of the GGNN presented in Figure 2 and the LSTM model in Figure
3. Table 4 shows that the GGNN model outperforms the LSTM
for the Helpdesk dataset. Concerning the BPIC20 dataset, the two
models perform nearly the same, with only 0.18% difference in the
MAE. Figure 4 shows the prediction error for each prefix length.
The figure does not show prefix lengths for which the number of
samples is very small. It can be seen from Figure 4a that the pre-
diction errors reduce when the prefix length increases. This result
is reasonable because the longer prefix gives more information to
predict the RCT. However, this seems not to be the case for the
BPIC20 dataset (Figure 4b). Indeed, the error goes up for prefixes of
length 6. Actually, in the BPIC20 dataset, the number of samples for

prefixes from the length of 6 is much lower than those for shorter
prefixes. Hence, the model is trained less for these prefixes. Overall,
these results indicate that the GGNN model may be applied to the
RCT prediction problem to achieve better prediction.

Table 4: Average MAE (days) over all prefix lengths of the
prediction by the LSTM and GGNN model

Dataset LSTM GGNN Gain in %

Helpdesk 5.666 5.345 5.67
BPIC20 3.269 3.275 -0.18

(a) (b)

Figure 4: MAE values (days) of different prefix lengths for
two public event logs: Helpdesk (a), BPIC20 (b). The error bars
at the top of each bar represent the standard deviations of
the metric.

4.5 Application of RCT prediction in a real
manufacturing process

After comparing the two models on public datasets, we apply them
to a real-life process of the automotive company Vitesco Technolo-
gies. The process is composed of different steps to assemble elec-
tronic boards from printed circuit boards (PCBs). Figure 5 presents
the process related to the product family EMS3141 by a directly-
follows graph. The assembly process consists of two consecutive
phases: Front-end (FE) in blue and Back-end (BE) in yellow. More
details about this process can be found in [7]. The dataset cannot
be shared for confidentiality reasons. Compared to the two public
datasets, the EMS3141 dataset is more complex in terms of the num-
ber of activities, case length, and the number of variants (see Table
2). For the RCT prediction problem, we only consider products that
have completed the FE phase and are currently in the BE phase.
Because products that have completed the FE phase are stocked
in an intermediate area while waiting to be processed in the BE
phase, and the waiting time varies significantly depending on the
production status and several other factors. This uncertainty can
therefore degrade the performance of predictive models.

Figure 6 presents the prediction error for each prefix length
between the LSTM and the GGNN model. The results clearly show
that the GGNN model outperforms the LSTM. The average error
over all prefix lengths is 1.267 hours for LSTM and 0.339 hours for
GGNN, respectively. That is 73.2% reduction on the prediction error

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY L.T. Duong et al.

Figure 5: Directly follows graph generated for the EMS3141
logs. The FE phase is in blue, and the BE is in yellow. The
label on each edge represents the number of products that
have taken the corresponding transition. Operation IDs in
nodes are anonymized for confidentiality reasons.

of GGNN versus LSTM. This outperformance is clearly superior
compared to the results obtained with Helpdesk and BPIC20. This
also shows that the GGNN model works better with more complex
processes.

Figure 6: MAE values (hours) of different prefix lengths for
the EMS3141 dataset. The error bars at the top of each bar
represent the standard deviations of the metric.

5 CONCLUSION AND FUTUREWORKS
This paper presents the first use of GNN to predict the RCT from a
given prefix of an ongoing process instance. The paper first demon-
strates through experimentation that the direct approach is more

efficient than the recursive approach regarding prediction errors
and computation time. Then, we compare the GGNN model with
the existing LSTM approach, which is the best performing so far
for this task [37]. Results on two public event logs and a real-life
process show that GGNN outperforms the LSTM model in most
scenarios. In particular, the GGNN works a lot better with highly
complex processes.

For future research, we intend to develop more GNN variations
for the RCT prediction problem. Moreover, we will also focus on
the task of prefix encoding and event encoding to improve the
prediction. Regarding the training process, the relative error, i.e.,
Mean Absolute Percentage Error (MAPE), can be used to train and
evaluate the performance of prediction models.

All source code and public datasets that can be used to reproduce
the reported results are available at https://github.com/duongtoan
261196/RemainingCycleTimePrediction.

ACKNOWLEDGMENTS
This project is supported by ANITI through the French “Investing
for the Future – P3IA” program under the Grant agreement n𝑜ANR-
19-P3IA-0004.

REFERENCES
[1] Ahmad Aburomman, Manuel Lama, and Alberto Bugarín. 2019. A Vector-Based

Classification Approach for Remaining Time Prediction in Business Processes.
IEEE Access 7 (2019), 128198–128212. https://doi.org/10.1109/ACCESS.2019.2939
631

[2] Alfredo Bolt and Marcos Sepúlveda. 2014. Process Remaining Time Prediction Us-
ing Query Catalogs. In Business Process Management Workshops, Niels Lohmann,
Minseok Song, and Petia Wohed (Eds.). Springer International Publishing, Cham,
54–65.

[3] Manuel Camargo, Marlon Dumas, and Oscar González-Rojas. 2019. Learning
Accurate LSTM Models of Business Processes. In Business Process Management,
Thomas Hildebrandt, Boudewijn F. van Dongen, Maximilian Röglinger, and Jan
Mendling (Eds.). Springer International Publishing, Cham, 286–302.

[4] Andrea Chiorrini, Claudia Diamantini, Alex Mircoli, and Domenico Potena. 2022.
Exploiting Instance Graphs and Graph Neural Networks for Next Activity Pre-
diction. In Process Mining Workshops, Jorge Munoz-Gama and Xixi Lu (Eds.).
Springer International Publishing, Cham, 115–126.

[5] Alexandre Checoli Choueiri, Denise Maria Vecino Sato, Edson Emilio Scalabrin,
and Eduardo Alves Portela Santos. 2020. An extended model for remaining
time prediction in manufacturing systems using process mining. Journal of
Manufacturing Systems 56 (2020), 188–201. https://doi.org/10.1016/j.jmsy.2020.
06.003

[6] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and Fredrik
Milani. 2018. Predictive Process Monitoring Methods: Which One Suits Me Best?.
In Business Process Management, Mathias Weske, Marco Montali, Ingo Weber,
and Jan vom Brocke (Eds.). Springer International Publishing, Cham, 462–479.

[7] Le Toan Duong, Louise Travé-Massuyès, Audine Subias, and Nathalie Barbosa
Roa. 2021. Assessing product quality from the production process logs. The
International Journal of Advanced Manufacturing Technology 117, 5 (2021), 1615–
1631.

[8] Weiguang Fang, Yu Guo, Wenhe Liao, Karthik Ramani, and Shaohua Huang. 2020.
Big data driven jobs remaining time prediction in discrete manufacturing system:
a deep learning-based approach. International Journal of Production Research 58,
9 (2020), 2751–2766.

[9] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. 2012. Discovering
Context-Aware Models for Predicting Business Process Performances. In On
the Move to Meaningful Internet Systems: OTM 2012, Robert Meersman, Hervé
Panetto, TharamDillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani
Pearson, Alois Ferscha, Sonia Bergamaschi, and Isabel F. Cruz (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 287–304.

[10] Nitin Harane and Sheetal Rathi. 2020. Comprehensive Survey on Deep Learning
Approaches in Predictive Business Process Monitoring. Springer International
Publishing, Cham, 115–128. https://doi.org/10.1007/978-3-030-38445-6_9

[11] Muhammad Asjad Khan, Hung Le, Kien Do, Truyen Tran, Aditya Ghose,
Khanh Hoa Dam, and Renuka Sindhgatta. 2018. Memory-Augmented Neu-
ral Networks for Predictive Process Analytics. CoRR abs/1802.00938 (2018).
arXiv:1802.00938 http://arxiv.org/abs/1802.00938

https://github.com/duongtoan261196/RemainingCycleTimePrediction
https://github.com/duongtoan261196/RemainingCycleTimePrediction
https://doi.org/10.1109/ACCESS.2019.2939631
https://doi.org/10.1109/ACCESS.2019.2939631
https://doi.org/10.1016/j.jmsy.2020.06.003
https://doi.org/10.1016/j.jmsy.2020.06.003
https://doi.org/10.1007/978-3-030-38445-6_9
https://arxiv.org/abs/1802.00938
http://arxiv.org/abs/1802.00938

Remaining cycle time prediction with Graph Neural Networks for Predictive Process Monitoring Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[12] Wolfgang Kratsch, Jonas Manderscheid, Maximilian Röglinger, and Johannes
Seyfried. 2021. Machine learning in business process monitoring: a comparison
of deep learning and classical approaches used for outcome prediction. Business
& Information Systems Engineering 63, 3 (2021), 261–276.

[13] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. ICLR 117 (2016).

[14] AndreasMetzger, Philipp Leitner, Dragan Ivanović, Eric Schmieders, Rod Franklin,
Manuel Carro, Schahram Dustdar, and Klaus Pohl. 2015. Comparing and
Combining Predictive Business Process Monitoring Techniques. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems 45, 2 (2015), 276–290. https:
//doi.org/10.1109/TSMC.2014.2347265

[15] Alfonso Eduardo Márquez-Chamorro, Manuel Resinas, and Antonio Ruiz-Cortés.
2018. Predictive Monitoring of Business Processes: A Survey. IEEE Transactions
on Services Computing 11, 6 (2018), 962–977. https://doi.org/10.1109/TSC.2017.2
772256

[16] Nicolo Navarin, Beatrice Vincenzi, Mirko Polato, and Alessandro Sperduti. 2017.
LSTM networks for data-aware remaining time prediction of business process
instances. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, Honolulu, HI, USA, 1–7. https://doi.org/10.1109/SSCI.2017.8285184

[17] Dominic A Neu, Johannes Lahann, and Peter Fettke. 2022. A systematic literature
review on state-of-the-art deep learning methods for process prediction. Artificial
Intelligence Review 55, 2 (2022), 801–827.

[18] Patrick Philipp, Rafael X. Morales Georgi, Jürgen Beyerer, Sebastian Robert, and
Jürgen Beyerer. 2019. Analysis of Control Flow Graphs Using Graph Convolu-
tional Neural Networks. In 2019 6th International Conference on Soft Comput-
ing & Machine Intelligence (ISCMI). IEEE, Johannesburg, South Africa, 73–77.
https://doi.org/10.1109/ISCMI47871.2019.9004296

[19] M Polato. 2017. Dataset belonging to the help desk log of an Italian Company.
University of Padova, Padova 1 (2017). https://doi.org/10.4121/uuid:0c60edf1-
6f83-4e75-9367-4c63b3e9d5bb

[20] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano de Leoni.
2014. Data-aware remaining time prediction of business process instances. In 2014
International Joint Conference on Neural Networks (IJCNN). IEEE, IEEE, Beijing,
China, 816–823.

[21] Mirko Polato, Alessandro Sperduti, Andrea Burattin, and Massimiliano de Leoni.
2018. Time and activity sequence prediction of business process instances. Com-
puting 100, 9 (2018), 1005–1031.

[22] Mahsa Pourbafrani, Shreya Kar, Sebastian Kaiser, andWilM. P. van der Aalst. 2022.
Remaining Time Prediction for Processes with Inter-case Dynamics. In Process
Mining Workshops, Jorge Munoz-Gama and Xixi Lu (Eds.). Springer International
Publishing, Cham, 140–153.

[23] Efrén Rama-Maneiro, Juan Vidal, and Manuel Lama. 2021. Deep learning for pre-
dictive business process monitoring: Review and benchmark. IEEE Transactions
on Services Computing 1 (2021), 1–1.

[24] Efrén Rama-Maneiro, Juan C Vidal, and Manuel Lama. 2021. Embedding Graph
Convolutional Networks in Recurrent Neural Networks for PredictiveMonitoring.
arXiv preprint arXiv:2112.09641 1 (2021).

[25] Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin Jorbina,
and Fabrizio Maria Maggi. 2017. Intra and Inter-case Features in Predictive
Process Monitoring: A Tale of Two Dimensions. In Business Process Management,
Josep Carmona, Gregor Engels, and Akhil Kumar (Eds.). Springer International
Publishing, Cham, 306–323.

[26] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. 2017. Predic-
tive Business Process Monitoring with LSTM Neural Networks. In Advanced
Information Systems Engineering, Eric Dubois and Klaus Pohl (Eds.). Springer
International Publishing, Cham, 477–492.

[27] Farbod Taymouri and Marcello La Rosa. 2020. Encoder-decoder generative
adversarial nets for suffix generation and remaining time prediction of business
process models. arXiv preprint arXiv:2007.16030 1 (2020).

[28] Farbod Taymouri and Marcello La Rosa. 2020. Encoder-Decoder Genera-
tive Adversarial Nets for Suffix Generation and Remaining Time Predication
of Business Process Models. CoRR abs/2007.16030 (2020). arXiv:2007.16030
https://arxiv.org/abs/2007.16030

[29] Farbod Taymouri, Marcello La Rosa, and SarahM. Erfani. 2021. ADeep Adversarial
Model for Suffix and Remaining Time Prediction of Event Sequences. Proceeding of
SIAM, Virtual conference, 522–530. https://doi.org/10.1137/1.9781611976700.59
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611976700.59

[30] Irene Teinemaa, Marlon Dumas, Marcello La Rosa, and Fabrizio Maria Maggi.
2019. Outcome-Oriented Predictive Process Monitoring: Review and Benchmark.
ACM Trans. Knowl. Discov. Data 13, 2, Article 17 (mar 2019), 57 pages. https:
//doi.org/10.1145/3301300

[31] Wil MP Van der Aalst, M Helen Schonenberg, and Minseok Song. 2011. Time
prediction based on process mining. Information systems 36, 2 (2011), 450–475.

[32] Sjoerd van der Spoel, Maurice van Keulen, and Chintan Amrit. 2013. Process
Prediction in Noisy Data Sets: A Case Study in a Dutch Hospital. In Data-Driven
Process Discovery and Analysis, Philippe Cudre-Mauroux, Paolo Ceravolo, and
Dragan Gašević (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 60–83.

[33] Boudewijn van Dongen. 2020. BPI Challenge 2020: Domestic Declarations.
4TU.ResearchData. fDataset. BPI Challenge 2020 1 (2020). https://doi.org/
10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5

[34] B. F. van Dongen, R. A. Crooy, and W. M. P. van der Aalst. 2008. Cycle Time Pre-
diction: When Will This Case Finally Be Finished?. In On the Move to Meaningful
Internet Systems: OTM 2008, Robert Meersman and Zahir Tari (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 319–336.

[35] Jarne Vandenabeele, Gilles Vermaut, Jari Peeperkorn, and Jochen De Weerdt.
2022. Enhancing Stochastic Petri Net-based Remaining Time Prediction using
k-Nearest Neighbors. arXiv preprint arXiv:2206.13109 1 (2022).

[36] Ishwar Venugopal, Jessica Töllich, Michael Fairbank, and Ansgar Scherp. 2021. A
Comparison of Deep-Learning Methods for Analysing and Predicting Business
Processes. In 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, IEEE, Shenzhen, China, 1–8.

[37] Ilya Verenich, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, and Irene
Teinemaa. 2019. Survey and Cross-Benchmark Comparison of Remaining Time
Prediction Methods in Business Process Monitoring. ACM Trans. Intell. Syst.
Technol. 10, 4, Article 34 (jul 2019), 34 pages. https://doi.org/10.1145/3331449

[38] Ilya Verenich, Hoang Nguyen, Marcello La Rosa, and Marlon Dumas. 2017. White-
Box Prediction of Process Performance Indicators via Flow Analysis. In Proceed-
ings of the 2017 International Conference on Software and System Process (Paris,
France) (ICSSP 2017). Association for Computing Machinery, New York, NY, USA,
85–94. https://doi.org/10.1145/3084100.3084110

[39] Nur AhmadWahid, Taufik Nur Adi, Hyerim Bae, and Yulim Choi. 2019. Predictive
business process monitoring–remaining time prediction using deep neural net-
work with entity embedding. Procedia Computer Science 161 (2019), 1080–1088.

[40] Qiqi Wang, Hongjie Zhang, Cheng Qu, Yu Shen, Xiaohui Liu, and Jing Li.
2021. RLSchert: An HPC Job Scheduler Using Deep Reinforcement Learning
and Remaining Time Prediction. Applied Sciences 11, 20 (2021), 2076–3417.
https://doi.org/10.3390/app11209448

[41] Sven Weinzierl. 2021. Exploring gated graph sequence neural networks for
predicting next process activities. In International Conference on Business Process
Management. Springer, Springer International Publishing, Cham, 30–42.

https://doi.org/10.1109/TSMC.2014.2347265
https://doi.org/10.1109/TSMC.2014.2347265
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/10.1109/SSCI.2017.8285184
https://doi.org/10.1109/ISCMI47871.2019.9004296
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://arxiv.org/abs/2007.16030
https://arxiv.org/abs/2007.16030
https://doi.org/10.1137/1.9781611976700.59
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976700.59
https://doi.org/10.1145/3301300
https://doi.org/10.1145/3301300
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://doi.org/10.1145/3331449
https://doi.org/10.1145/3084100.3084110
https://doi.org/10.3390/app11209448

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem statement
	3.2 Prefix encoding
	3.3 Graph Neural Networks for the RCT prediction

	4 Evaluation
	4.1 Datasets
	4.2 Experimental setup
	4.3 Direct vs recursive approaches for the RCT prediction
	4.4 GGNN vs LSTM for the RCT prediction
	4.5 Application of RCT prediction in a real manufacturing process

	5 Conclusion and Future Works
	Acknowledgments
	References

