
HAL Id: hal-04093540
https://hal.science/hal-04093540v1

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Weight-reducing Turing machines
Bruno Guillon, Giovanni Pighizzini, Luca Prigioniero, Daniel Průša

To cite this version:
Bruno Guillon, Giovanni Pighizzini, Luca Prigioniero, Daniel Průša. Weight-reducing Turing ma-
chines. Information and Computation, 2023, 292, pp.105030. �10.1016/j.ic.2023.105030�. �hal-
04093540�

https://hal.science/hal-04093540v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Weight-Reducing Turing Machines?

Bruno Guillona, Giovanni Pighizzinib,1,∗, Luca Prigionierob, Daniel Průšac,2

aLIMOS, Université Clermont-Auvergne, France
bDipartimento di Informatica, Università degli Studi di Milano, Italy

cFaculty of Electrical Engineering, Czech Technical University, Prague

Abstract

It is well known that one-tape Turing machines running in linear time are

no more powerful than finite automata; namely they recognize exactly the

class of regular languages. We prove that it is not decidable if a one-tape

machine runs in linear time, even if it is deterministic and restricted to use

only the portion of the tape that initially contains the input. This motivates

the introduction of a constructive variant of one-tape machines, called a

weight-reducing machine, and the investigation of its properties. We focus

on the deterministic case. In particular, we show that, paying a polynomial

size increase only, each weight-reducing machine can be turned into a halting

one that runs in linear time. Furthermore each weight-reducing machine

can be converted into equivalent nondeterministic and deterministic finite

automata by paying an exponential and doubly-exponential increase in size,

?This work contains, in an extended form, some material and results that were previ-
ously presented in a preliminary form in conference papers [1] and [2].

∗Corresponding author
Email addresses: bruno.guillon@uca.fr (Bruno Guillon),

pighizzini@di.unimi.it (Giovanni Pighizzini), prigioniero@di.unimi.it (Luca
Prigioniero), prusapa1@cmp.felk.cvut.cz (Daniel Průša)

1Partially supported by Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM).
2Supported by the Czech Science Foundation, grant 19-21198S.

Preprint submitted to Elsevier May 10, 2023

respectively. These costs cannot be reduced in the worst case.

Keywords: one-tape Turing machines, descriptional complexity, Hennie

machines

1. Introduction

The characterization of classes of languages in terms of recognizing devices

is a classical topic in formal languages and automata theory. The bottom

level of the Chomsky hierarchy, i.e., the class of type 3 or regular languages, is

characterized in terms of deterministic and nondeterministic finite automata

(dfas and nfas, respectively). The top level of the hierarchy, i.e., type 0

languages, can be characterized by Turing machines (in both deterministic

and nondeterministic versions), even in the following restricted case: there

is only a single (infinite or semi-infinite) tape, which initially holds only the

input, and whose contents can be rewritten by the finite control.

Considering machines that make a restricted use of space or time, it is

possible to characterize other classes of the hierarchy. On the one hand,

if the available space is restricted only to the portion of the tape that ini-

tially contains the input and nondeterministic transitions are allowed, the

resulting model, known as linear-bounded automaton, characterizes type 1 or

context-sensitive languages [3]. On the other hand, when the length of the

computations, i.e., the time, is linear in the input length, one-tape Turing

machines are no more powerful than finite automata; namely they recognize

only regular languages, as proved by Hennie in 1965 [4].3

3Actually, the model considered by Hennie was deterministic. Several extensions of

this result, including that to the nondeterministic case and greater time lower bounds for

2

recursively enumerable (type 0)

regular (type 3)
context-sensitive (type 1)

dete
rminist

ic cont
ext-s

ensit
ive

weight-reducing dHms (wrdHms)

deterministic Hennie machines (dHms) halting wrdTms

end-marked dTms linear-time dTms weight-reducing dTms (wrdTms)

one-tape deterministic Turing machines (dTms)

Figure 1: Variants of one-tape deterministic Turing machines and their expressive power

confronted with the Chomsky hierarchy. In particular, end-marked dTms are known as

deterministic linear bounded automata in the literature, and recognize the so-called deter-

ministic context-sensitive languages, a subclass of context-sensitive languages; see [10]. It

is still unknown if this inclusion is strict. Each line, from top to bottom, connects a model

with one of its special cases.

The main purpose of this paper is the investigation of some fundamental

properties of several variants of one-tape Turing machines running in linear

time. We now give an outline of the motivation for this investigation and

of the results we present. (Figure 1 summarizes the models we are going to

discuss and their relationships.)

A natural question concerning models that share the same computational

power is the comparison of the sizes of their descriptions. In this respect,

one could be interested in comparing one-tape Turing machines running in

linear time with equivalent finite automata.

Here, we prove that there exists no recursive function bounding the size

nonregular language recognition, have been stated in the literature [5, 6, 7, 8, 9].

3

blowup resulting from the conversion from one-tape Turing machines running

in linear time into equivalent finite automata. Hence, one-tape linear-time

Turing machines can be arbitrarily more succinct than equivalent finite au-

tomata. Furthermore, the problem of deciding whether a given one-tape

Turing machine runs in linear time is undecidable, in general.4 These results

remain true in the restricted case of end-marked machines—namely, one-tape

deterministic Turing machines that do not have any extra space, other than

the tape portion that initially contains the input. Deterministic end-marked

machines running in linear time will be called Hennie machines.

To overcome the above-mentioned “negative” results, we consider a syn-

tactical restriction on one-tape deterministic Turing machines, thus intro-

ducing weight-reducing Turing machines. This restriction aims to force the

machine to run in linear time, by making any tape cell rewriting decreasing

according to some fixed partial order on the tape alphabet. However, due

to the unrestricted amount of available tape space, these devices can have

non-halting computations. Nevertheless, they run in linear time as long as

they are halting. Indeed, we prove that each computation either halts within

a time that is linear in the input length, or is infinite. In the paper we show

that it is possible to decide whether a weight-reducing Turing machine is

halting. As a consequence, it is also possible to decide whether such a ma-

chine runs in linear time. Furthermore, with a polynomial size increase, any

such machine can be made halting, and hence forced to run in linear time.

Our main result is that the tight size cost of converting a weight-reducing

4For the sake of completeness, we mention that it is decidable whether a machine makes

at most cm+ d steps on input of length m, for any fixed c, d > 0 [11].

4

Turing machine into a dfa is double exponential. This cost reduces to a

simple exponential when the target device is an nfa.

Considering end-marked Turing machines satisfying the weight-reducing

syntactic restriction, we obtain weight-reducing Hennie machines. These

devices do not allow infinite computations, and hence always run in linear

time. The above-stated double exponential blowup is easily extended to

them.

The paper is organized as follows. Section 2 presents the fundamental

notions and definitions, including those related to the computational models

we are interested in. Section 3 is devoted to prove the above-mentioned un-

decidability and non-recursive trade-off results concerning Hennie machines.

In Section 4, after proving that it can be decided if a deterministic Turing

machine is weight-reducing, we describe a procedure that, given a linear-time

machine together with the coefficient of its linear bound on time, turns it into

an equivalent weight-reducing machine. Furthermore, we present a simula-

tion of weight-reducing machines by finite automata, studying its size cost.

In Section 5 we show how to decide if a weight-reducing machine halts on

any input and if it runs in linear time. We also prove that with a polynomial

increase in size, each weight-reducing machine can be transformed into an

equivalent one that always halts and runs in linear time.

2. Preliminaries

In this section we recall some basic definitions and notation. We also

describe the main computational models considered in the paper.

We assume the reader familiar with notions from formal languages and

5

automata theory (see, e.g., [12]). For a set S, its cardinality is denoted

by #S and 2S is the family of all its subsets. Given an alphabet Σ, the

length of a string w ∈ Σ∗ is denoted |w|, the i-th symbol of w is denoted wi,

i = 1, . . . , |w|, and ε denotes the empty string.

The main computational model we consider is the deterministic one-tape

Turing machine (dTm). Such a machine is a tuple 〈Q,Σ,Γ, δ, q0, F 〉 where

• Q is the set of states ,

• Σ is the input alphabet ,

• Γ is the tape alphabet including symbols of Σ and the special blank

symbol , denoted by 6 b, with 6 b /∈ Σ, that cannot be written by the

machine,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states , and

• δ : Q × Γ → Q × (Γ \ {6 b}) × {−1,+1} is the partial deterministic

transition function.5

In one step, depending on its current state p and on the symbol σ read by

the head, a dTm changes its state to q, overwrites the corresponding tape

5For technical reasons, our Turing machines cannot write the blank symbol. Hence,

when the machine scans a blank, it overwrites the contents of the cell with another symbol

in Γ\{6 b}. It is possible to notice that these machines have the same computational power

as machines that can write the blank symbol on the tape. In fact, each machine that can

write blanks can be replaced by a machine that writes an auxiliary symbol different than

blank. In this way it can be proved that the power of these machines does not change.

6

cell with τ and moves the head one cell to the left or to the right according

to d = −1 or d = +1, respectively, if δ(p, σ) = (q, τ, d). Since δ is partial,

it may happen that no transition can be applied. In this case, we say that

the machine halts . At the beginning of computation the input string w

resides on a segment of a bi-infinite tape, called the initial segment , and the

remaining infinitely many cells contain the blank symbol. The computation

on input w starts in the initial state with the head scanning the leftmost

symbol of w, if w 6= ε, or a blank tape cell, otherwise. The input is accepted

if the machine eventually halts in a final state. The language accepted by a

dTm A is denoted by L (A).

Let A = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. A configuration of A is given by

the current state q, the tape contents, and the position of the head. If the

head is scanning a non-blank symbol, we describe it by zqu where zu ∈ Γ∗

is the finite non-blank contents of the tape, u 6= ε, and the head is scanning

the first symbol of u. Otherwise, we describe it by q6 bz or zq according to

whether the head is scanning the first blank symbol to the left or to the right

of the non-blank tape contents z, respectively. If the device may enter a

configuration z′q′u′ from a configuration zqu in one step, we say that z′q′u′

is a successor of zqu, denoted zqu ` z′q′u′. A halting configuration is a

configuration that has no successor. The reflexive and transitive closure of `

is denoted by ∗̀. On an input string w ∈ Σ∗, the initial configuration is q0w.

An accepting configuration is a halting configuration zqfu such that qf is a

final state of the machine. A computation is a (possibly infinite) sequence of

successive configurations. It is accepting if it is finite, its first configuration

7

is initial, and its last configuration is accepting. Therefore,

L (A) = {w ∈ Σ∗ | q0w
∗̀ zqfu, where qf ∈ F and zqfu is halting}.

In the paper we consider the following restrictions of dTms (see Figure 1).

End-marked machines. We say that a dTm is end-marked , if at the begin-

ning of the computation the input string is surrounded by two special

symbols belonging to Γ, B and C respectively, called the left and the

right endmarkers, which can never be overwritten, and that prevent

the head to leave the portion of the tape that initially contains the

input. Moreover, B and C can never be written by the machine. For-

mally, for each transition δ(p, σ) = (q, τ, d), τ = B (resp., τ = C) if

and only if σ = B (resp., σ = C); furthermore, this implies d = +1

(resp., d = −1). For end-marked machines, the initial configuration on

input w is q0BwC. We point out that end-marked machines are the de-

terministic restriction of the well-known linear-bounded automata [3].

Notice that any machine without endmarkers can simulate an end-

marked machine by overwriting the first blank to the left and to the

right of the input word with special symbols representing the left and

the right endmarker, respectively. Hence, end-marked machines can be

seen as particular cases of machines without endmarkers.

Weight-reducing Turing machines. A dTm is weight-reducing (wrdTm),

if there exists a partial order < on Γ such that each rewriting is de-

creasing, i.e., δ(p, σ) = (q, τ, d) implies τ < σ, for σ, τ /∈ {B,C}. By

this condition, in a wrdTm the number of visits to each tape cell is

8

bounded by a constant. However, a wrdTm could have non-halting

computations that therefore must visit infinitely many tape cells.

Linear-time Turing machines. A dTm is said to be linear-time if for each

input w, its computation halts within O(|w|) steps.

Hennie machines. A Hennie machine (dHm) is a linear-time dTm that is,

furthermore, end-marked.

Weight-Reducing Hennie machines. By combining previous conditions,

weight-reducing Hennie machines (wrdHms) are defined as particular

dHms, for which there exists a partial order< over Γ such that δ(p, σ) =

(q, τ, d) implies τ < σ, for τ, σ /∈ {B,C}. Observe that each end-

marked wrdTm can execute a number of steps that is at most linear

in the length of the input. Hence, end-marked wrdTms are necessarily

weight-reducing Hennie machines.

We also consider finite automata. We briefly recall their definition. A nonde-

terministic finite automaton (nfa) is a computational device equipped with

a finite control and a finite read-only tape that is scanned by an input head in

a one-way fashion. Formally, it is defined as a quintuple A = 〈Q,Σ, δ, q0, F 〉,

where

• Q is a finite set of states ,

• Σ is a finite input alphabet ,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of final states , and

9

• δ : Q× Σ→ 2Q is a nondeterministic transition function.

At each step, according to its current state p and the symbol σ scanned by

the head, A enters one nondeterministically-chosen state from δ(p, σ) and

moves the input head one position to the right. The machine accepts the

input if there exists a computation starting from the initial state q0 with the

head on the leftmost input symbol, and ending in a final state q ∈ F after

having read the whole input with the head to the right of the rightmost input

symbol. The language accepted by A is denoted by L (A). An nfa A is said

to be deterministic (dfa) whenever #δ(q, σ) ≤ 1, for any q ∈ Q and σ ∈ Σ.6

The notions of configurations, successors, computations, and halting con-

figurations, previously introduced in the context of dTms, naturally transfer

to nfas.

The size of a machine is given by the total number of symbols used to

write down its description. Therefore, the size of a one-tape Turing machine is

bounded by a polynomial in the number of states and of tape symbols. More

precisely, the device is fully represented by its transition function. Hence,

having a suitable encoding of the sets Q and Γ, since each element of a set A

can be represented in size Θ(log #A), to specify the value δ(q, σ), for q ∈ Q,

σ ∈ Γ, size Θ(log(#Q · #Γ)) can be used. So, since we have to specify

the image of each element of the domain Q × Γ, the size of the machine is

Θ(#Q · #Γ · log(#Q · #Γ)). With the same argument, the size of a dfa

is Θ(#Σ ·#Q · log #Q).

6Note that we allow dfas to have partial transition functions.

10

3. Hennie Machines: Undecidability and Non-Recursive Trade-

Offs

In this section we investigate some basic properties of dTms. First of

all, we prove that it cannot be decided whether an end-marked dTm runs

in linear time. As a consequence, it cannot be decided if a dTm is a Hennie

machine. Since linear-time dTms accept only regular languages [4], it is

natural to investigate the size cost of their conversion into equivalent finite

automata. Even in the restricted case of deterministic Hennie machines we

obtain a “negative” result, by proving a non-recursive trade-off between the

size of Hennie machines and that of the equivalent finite automata.

Let us start by proving the following undecidability result.

Theorem 1. It is undecidable whether an end-marked dTm runs in linear

time.

Proof. We show that the problem of deciding if a dTm T = 〈Q,Σ,Γ, δ, q0, F 〉

with a semi-infinite tape halts on the empty word ε reduces to this problem.

From T we can construct an end-marked Turing machineH with input alpha-

bet {a} as follows. Given an input v ∈ a∗, the device H starts to simulate T

over ε; namely, the transitions of T on the blank symbol are simulated by

moves of H on the symbol a. The portion of the tape storing the word v cor-

responds to the maximum amount of space that H is allowed to use for the

simulation of T . If, during the simulation, H reaches the right endmarker,

then it stops the simulation and performs additional Θ(|v|2) computation

steps.7 Otherwise, H continues the simulation of T and halts if T halts.

7This can be achieved, for example, by a sequence of steps that overwrites every tape cell

11

One can verify that the construction yields the following properties:

• If T halts on ε in t steps visiting s tape cells, then H performs O(t)

computation steps on any input of length greater than s, while it per-

forms O(t2) steps on shorter inputs. In both cases, the time is bounded

by a constant in the input length.

• If T does not halt on ε, then for any input v either the simulation

reaches the right endmarker and then H performs further Θ(|v|2) com-

putation steps, or it does not halt because T enters an infinite loop,

without reaching such a tape cell. In both cases H is not a linear-

time dTm.

This allows to conclude that H is a linear-time dTm if and only if T halts

on input ε, which is known to be undecidable. �

We now show that the size trade-off from linear-time dTm to finite au-

tomata is not recursive. More precisely, we obtain a non-recursive trade-off

between the sizes of Hennie machines and finite automata.

Theorem 2. For any recursive function f and arbitrarily large integers n,

of the initial segment with a special marker] /∈ Γ, moving the head to the right endmarker

after each rewriting. More precisely, from the cell containing the right endmarker, H moves

its head to the preceding cell and overwrites the contents with the special marker. After

that, it moves its head to the right endmarker, then moves it backward to the rightmost

cell not containing the special marker and writes], thus repeating the procedure until

all tape cells but those containing the endmarkers have been overwritten with the special

marker.

12

there is a dHm with O(n) states and a fixed tape alphabet whose equivalent

finite automata require at least f(n) states.

Proof. We recall that a busy beaver is, among all possible n-state deter-

ministic Turing machines with a two-symbol tape alphabet that start the

computation over a blank tape, one that halts after writing on the tape the

maximum possible number Σ(n) of (not necessarily consecutive) 1’s. The

function Σ(n) is known to be not bounded by any recursive function, i.e., it

grows asymptotically faster than any computable function [13].

Here we consider a modification of the busy beaver that operates on a

semi-infinite tape (instead of bi-infinite) and starts the computation on the

leftmost cell, according to [14]. This variant defines a different function Σ(n)

that is also not bounded by any recursive function. As a consequence, the

amount of the space s(n) used by this modified version of an n-state busy

beaver is also not bounded by any recursive function.

For each n > 0, let wn = as(n) and let Ln = {wn}. This language

is accepted by an end-marked dTm Hn with O(n) states and O(1) tape

symbols that simulates a given n-state busy beaver (n-BB) and accepts an

input w ∈ a∗ if and only if the space used by n-BB equals |w|. The dTm Hn

simulates the moves of n-BB on 6 b with moves on a. When n-BB uses more

than |w| space, at some point during the simulation the right endmarker is

reached. At that point the simulation is aborted and the machine rejects.

Furthermore, the simulation of n-BB does not depend on the input. Hence,

it is made in constant time. This allows to conclude that, with respect to

the input length, Hn runs in linear time, so it is a Hennie machine.

By summarizing, Ln is accepted by a dHm with O(n) states, so it is of

13

size O(n log n). On the other hand, since the only string in Ln is as(n), the

minimum dfa accepting it requires s(n)+1 states, so its size is Θ(s(n) log s(n)).

Since s(n) is not bounded by any recursive function, this completes the proof.

�

4. Weight-Reducing Machines: Decidability, Expressiveness and

Descriptional Complexity

In Section 3 we proved that it cannot be decided whether an end-marked

dTm runs in linear time. In this section we show that it is possible to

decide whether dTms are weight reducing. Furthermore, every linear-time

dTm T with the length of each computation bounded by Kn + C, where

K,C are constants and n denotes the input length, can be transformed into

an equivalent weight-reducing machine whose size is bounded by a recursive

function of K and the size of T .

We also present a simulation of weight-reducing machines by finite au-

tomata, thus concluding that weight-reducing machines express exactly the

class of regular languages. From such a simulation, we will obtain the size

trade-off between weight-reducing machines and finite automata that, hence,

is recursive. This contrasts with the non-recursive trade-off from Hennie

machines to finite automata, proved in Section 3.

Proposition 1. It is decidable whether a dTm is weight-reducing.

Proof. Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. To decide if there is any

order < on Γ proving that T is weight-reducing, it suffices to check whether

14

the directed graph G = 〈Γ, E〉, with

E = {(τ, σ) | ∃p, q ∈ Q ∃d ∈ {−1,+1} : δ(p, σ) = (q, τ, d)},

is acyclic (each topological ordering of G acts as the required order <). �

We now study how linear-time dTms can be made weight-reducing. To

this end, we use the fact that each dTm running in linear time makes a

constant number of visits to each tape cell. This property is stated in the

following lemma, which derives from [4, Proof of Theorem 3].

Lemma 1. Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. If there exist two con-

stants K and C such that every computation of T has length bounded by

Kn + C, where n denotes the input length, then T never visits a tape cell

more than 2K · (#Q)K +K times.

The following lemma, which will be used in this section to study trade-offs

between the computational models we are investigating and finite automata,

presents a transformation from linear-time Turing and Hennie machines into

equivalent weight-reducing ones.

Lemma 2. Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm such that, for any input,

T performs at most k computation steps on each tape cell. Then there is

a wrdTm A accepting L(T) with the same set of states Q as T and tape

alphabet of size O(k · #Γ). Furthermore, on each input A uses the same

space as T , and if T is linear time or end-marked then so is A.

Proof. To obtainA, we incorporate a counter into the tape alphabet of T . For

each scanned cell, the counter records the maximum number of visits A can

15

perform during the remaining computation steps over the cell. More formally,

letting Σ6 b denote the alphabet Σ ∪ {6 b}, we define A = 〈Q,Σ,Γ′, δ′, q0, F 〉

with Γ′ = Σ6 b ∪ ((Γ \ Σ6 b)× {0, . . . , k − 1}) and, for all q, q′ ∈ Q, a, a′ ∈ Γ,

d ∈ {−1,+1} where δ(q, a) = (q′, a′, d), δ′ fulfils the conditions

δ′ (q, a) = (q′, (a′, k − 1) , d) , if a ∈ Σ6 b ,

δ′ (q, (a, i)) = (q′, (a′, i− 1) , d) , otherwise, for i = 1, . . . , k − 1.

Using an ordering < on Γ′ such that

(a, i) < b for a ∈ Γ \ Σ6 b , b ∈ Σ6 b , i = 0, . . . , k − 1, and

(a, i) < (b, j) for a, b ∈ Γ \ Σ6 b , i, j = 0, . . . , k − 1, i < j,

it is easy to see that A is a wrdTm equivalent to T . Furthermore, there

is a natural bijection between computations of T and those of A, which

preserves time (length of computations) and space (cells visited during the

computation). Thus, if T is linear time then so is A.

In the case T is end-marked, we can slightly modify the above construc-

tion of A, taking into account that, by definition of end-marked devices,

the dTm T does not use the blank symbol and does not overwrite the end-

markers. The tape alphabet ofA is Γ′ = Σ∪{B,C}∪((Γ \ (Σ ∪ {B,C}))× {0, . . . , k − 1})

and, for all q, q′ ∈ Q, a, a′ ∈ Γ, d ∈ {−1,+1} where δ(q, a) = (q′, a′, d), δ′

fulfils the conditions

δ′ (q, a) = (q′, (a′, k − 1) , d) , if a ∈ Σ,

δ′ (q, a) = (q′, a, d) , if a ∈ {B,C} ,

δ′ (q, (a, i)) = (q′, (a′, i− 1) , d) , otherwise, for i = 1, . . . , k − 1.

16

The ordering < on Γ′ is defined as

(a, i) < b for a ∈ Γ \ (Σ ∪ {B,C}), b ∈ Σ, i = 0, . . . , k − 1, and

(a, i) < (b, j) for a, b ∈ Γ \ (Σ ∪ {B,C}), i, j = 0, . . . , k − 1, i < j.

�

By combining the above lemmas, we obtain a procedure to convert linear-

time Turing machines into equivalent linear-time weight-reducing machines,

as soon as a linear-time bound for the simulated device is explicitly given.

Theorem 3. Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. If there exist two con-

stants K and C such that every computation of T has length bounded by

Kn+C, where n denotes the input length, then there is an equivalent linear-

time wrdTm with the same set of states Q as T and tape alphabet of size

O(k ·#Γ), where k = 2K · (#Q)K +K.

Proof. Direct consequence of Lemmas 1 and 2. �

We now investigate the transformation of weight-reducing machines into

equivalent finite automata and its cost.

Theorem 4. For every wrdTm T = 〈Q,Σ,Γ, δ, q0, F 〉 there exist an nfa

and a dfa accepting L(T) with 2O(#Γ·log(#Q)) and 22O(#Γ·log(#Q)) states, respec-

tively.

Proof. Assume T always ends each accepting computation with the head

scanning a blank cell to the right of the initial segment. This can be ob-

tained, at the cost of introducing one extra symbol in the tape alphabet,

17

by modifying the transition function in such a way that when T enters a

final state it starts to move its head to the right, ending when a blank cell is

reached. Let n = #Q and m = #Γ.

We describe an nfa A = 〈Q′,Σ, δ′, qI, F
′〉 that accepts L(T), working

on the principle of guessing the time-ordered sequences of states in which,

in accepting computations, T scans each of the tape cells storing the input.

This is a variant of the classical crossing sequence argument. In this case, for

a tape cell C, we consider the sequence of states in which the cell is scanned

during a computation, while a crossing sequence is defined as the sequence

of states of the machine when the border between two adjacent tape cells

is crossed by the head. In addition, in our simulation, together with the

sequence of states, the input symbol is also guessed for the next cell.

Suppose that the time-ordered sequence of states in which a cell C is

scanned in a computation ρ is (q1, . . . , qk). Due to the weight-reducing prop-

erty, there are k or k + 1 different contents of C in ρ, depending on whether

the computation stops in qk. Since the tape alphabet consists of m symbols,

we can conclude that k ≤ m.

The set of states Q′ thus consists of a special initial state qI, a special

final state qF, and all sequences of the form (a, q1, . . . , qk) where a ∈ Σ∪{6 b},

1 ≤ k ≤ m, and qi ∈ Q, for i = 1, . . . , k.

Let w ∈ L(T) be a non-empty input accepted by T . Let τl, τin and τr

denote the portion of T ’s tape that initially stores the blank symbols pre-

ceding w, the input w, and the blank symbols to the right of w, respectively.

Let ρ = (C0, C1, . . .) be the accepting computation of T over w. Let q(j)

denote the state of T in configuration Cj. Similarly, let a(j) denote the

18

symbol scanned by T in Cj. For a tape cell C in τin, let Cj1 , . . . , Cjk , where

j1 < · · · < jk, be the sequence of all configurations in which T scans C. Ob-

serve that a(j1) and q(j1), . . . , q(ji−1) determine a(ji) for all i = 2, . . . , k. For

each configuration Cji , it is also clear from which direction the head entered

C and in which direction it moves out of it (Cj1 is always entered from the

left neighboring cell, unless it is the initial configuration; for i > 1, Cji is

entered from the same direction as Cji−1
was left, namely, from the opposite

direction than Cji−1+1 was entered). For this reason, we can determine for two

neighboring cells C1 and C2 of τin whether two sequences of states assigned

to them are consistent with T in the sense that the rightward head move-

ments outgoing from C1 have corresponding incoming leftward movements to

C2 and vice versa. Similarly, we can determine whether a sequence of states

assigned to the first and last cell of τin is consistent with the computation of

T performed over the cells of τl and τr, respectively.

We now formalize these ideas.

Given (a, q1, . . . , qk), (b, p1, . . . , p`) ∈ Q′, with a, b ∈ Σ, let

• a0 = a and, for i = 1, . . . , k, δ(qi, ai−1) = (q′i, ai, di), q′i ∈ Q, ai ∈ Γ,

di ∈ {−1,+1};

• b0 = b and, for i = 1, . . . , `, δ(pi, bi−1) = (p′i, bi, ei), p′i ∈ Q, bi ∈ Γ,

ei ∈ {−1,+1}.

We say that (b, p1, . . . , p`) is consistent with (a, q1, . . . , qk) when there are

indices i1, i2, . . . , it, h1, h2, . . . , ht, for some odd integer t ≥ 1, with 1 ≤ i1 ≤

i2 ≤ · · · ≤ it = k, 1 = h1 ≤ h2 ≤ · · · ≤ ht ≤ `, such that for j = 1, . . . , t the

following holds:

19

a b

q1

q2

q3

p1

p2

p3

p4

p5

Figure 2: An example where (b, p1, . . . , p5) is consistent with (a, q1, q2, q3). Notice that

t = 3, i1 = 2, i2 = i3 = 3, h1 = 1, h2 = 3, h3 = 4.

• if j is odd then q′ij = phj
, dij = +1, and, when j < t, ij < ij+1,

• if j is even then p′hj
= qij , ehj

= −1, and hj < hj+1,

while di = −1 for i /∈ {i1, . . . , it}, and eh = +1 for h /∈ {h1, . . . , ht}.

Notice that, for any odd j, in the transition from qij to phj
the head

crosses the border between the two adjacent cells by moving from left to

right, while for any even j in the transition from phi
to qji the head crosses

the same border by moving in the opposite direction. Furthermore, the

conditions t odd, it = k, h1 = 1, derive from the fact that, in each accepting

computation of T , each cell of the initial segment is entered from the left

(with the exception of the leftmost one) and is finally exited by moving the

head to the right. (See Figure 2 for an example).

In a similar way, we are going to identify the sequences from Q′ that

can occur on the rightmost cell of the initial segment in an accepting com-

putation (remember that we suppose that when τ reaches a final state it

starts to move its head to the right, ending when a blank cell is reached).

20

Using the above notation, we say that the blank tape segment is consistent

with (a, q1, . . . , qk) ∈ Q′ when there are indices 1 ≤ i1 < i2 < · · · < it = k,

and strings γ0 = ε, γ1, . . . , γt ∈ Γ∗, such that:

• dij = +1, for j = 1, . . . , t, while di = −1 for i /∈ {i1, . . . , it}; namely,

the indices ij correspond to transitions moving the head to the right.

• For j = 1, . . . , t − 1, T in the state qij with the head scanning a tape

cell C containing aij−1 and the string γj−1 written on the non-blank

cells to the right of C, moves to the right and makes a finite sequence

of moves, which ends when the cell C is re-entered. At this point the

state qij+1 and the string written on the non-blank cells to the right

of C is γj.

• From qit = qk the machine T moves its head to the right and, at some

point, reaches a blank cell in a final state, without re-entering the cell C

in between.

Let Q′R denote the set of states (a, q1, . . . , qk) ∈ Q′ such that the blank tape

segment is consistent with (a, q1, . . . , qk).

Finally, we now identify the sequences from Q′ that are consistent with τl,

namely sequences that could occur, in accepting computations, on the tape

cell that initially contains the leftmost input symbol.

Given (a, q1, . . . , qk) ∈ Q′, with a ∈ Σ and, as before, a0 = a and,

for i = 1, . . . , k, δ(qi, ai−1) = (q′i, ai, di), q′i ∈ Q, ai ∈ Γ, di ∈ {−1,+1},

let 1 ≤ i1 < i2 < · · · < it < k be the indices corresponding to transitions

moving the head to the left, i.e., {i1, i2, . . . , it} = {i | di = −1}. We say

21

that (a, q1, . . . , qk) is consistent with the blank tape segment when there are

strings γ0 = ε, γ1, . . . , γt ∈ Γ∗, such that:

• q1 coincides with the initial state of T ,

• for j = 1, . . . , t, T in the state qij with the head scanning a tape cell C

containing aij−1 and the string γj−1 written on the non-blank cells to

the left of C, moves to the left and makes a finite sequence of moves,

up to re-enter C. At that point the state is qij+1 and the string written

on the non-blank cells to the left of C is γj.

Let Q′L denote the set of states from Q′ that are consistent with the blank

tape segment.

At this point we have developed all the tools to define the automaton A =

〈Q′,Σ, δ′, qI, F
′〉.

• The set of states is

Q′ = {qI, qF}∪{(a, q1, . . . , qk) | a ∈ Σ∪{6 b}, 1 ≤ k ≤ m+1, qi ∈ Q, i = 1, . . . , k}

as already mentioned.

• The initial state is qI.

• The transition function is defined, for (a, q1, . . . , qk) ∈ Q′, c ∈ Σ, as

22

follows:

δ′((a, q1, . . . , qk), c) =

{(b, p1, . . . , p`) | (b, p1, . . . , p`) is

consistent with (a, q1, . . . , qk)}, if c = a and (a, q1, . . . , qk) /∈ Q′R
{(b, p1, . . . , p`) | (b, p1, . . . , p`) is

consistent with (a, q1, . . . , qk)} ∪ {qF}, if c = a and (a, q1, . . . , qk) ∈ Q′R
∅, otherwise.

The transitions from the initial state qI are defined, for a ∈ Σ, as

follows:

δ′(qI, a) =
⋃

(a,q1,...,qk)∈Q′L

δ′((a, q1, . . . , qk), a) ,

while there are no transitions from qF; namely δ′(qF, a) = ∅, for a ∈ Σ.

• The set of final states is

F ′ =

 {qF} if ε /∈ L(T)

{qI, qF}, otherwise.

By summarizing, the nfa A simulates T as follows:

• In the initial state qI, reading an input symbol a, the automaton A

implicitly guesses a sequence (a, q1, . . . , qk) ∈ Q′L, i.e., a sequence con-

sistent with the left tape segment, and a sequence (b, p1, . . . , p`) con-

sistent with (a, q1, . . . , qk), where b is supposed to be the symbol in the

cell immediately to the right. If (a, q1, . . . , qk) ∈ Q′R is consistent with

the right blank segment, then the one-symbol string a is accepted by T .

Hence in this case the final state qF can be also guessed.

23

• When scanning an input cell containing a symbol a, in a state (a, q1, . . . , qk) ∈

Q′, the machine A guesses a sequence (b, p1, . . . , p`) consistent with it.

If the next input symbol is b, then the simulation can continue in the

same way, otherwise it stops because of an undefined transition.

Furthermore, when (a, q1, . . . , qk) ∈ Q′R, the device A can also guess to

have reached the last input symbol, so entering the final state qF. If

the end of the input is effectively reached then A accepts.

The number of states of A is 2 + (#Σ + 1)
∑m

i=1 n
i = 2O(m logn). If A

is in turn transformed to an equivalent dfa, using the classical powerset

construction, the resulting automaton has 22O(m log n) states. �

As a direct consequence of Theorem 4, we get that wrdTms recognize

exactly the class of regular languages.

Corollary 1. A language is regular if and only if it is accepted by some wrdTm.

Theorem 4 gives a double exponential upper bound for the size cost of

the simulation of wrdTms by dfas. We now also prove a double exponential

lower bound.

To this end, for each integer n ≥ 0, we consider the language Bn over

{0, 1, $} consisting of strings v1$v2$ · · · $vk, where k > 2, v1, v2, . . . , vk ∈

{0, 1}∗, |vk| ≤ n, |vi| ≥ |vk| for i = 1, . . . , k − 1, and there exists j < k such

that vj = vk. Informally, every string in Bn is a sequence of binary blocks

separated by the symbol $, where the last block is of length at most n and

it is a copy of one of the preceding blocks, which all are at least as long as

the last one. For example,

v1$v2$v3$v4$v5$v6 = 0011$0101110$011$0011$001$011 ∈ B4

24

since |v6| ≤ 4, |vi| ≥ |v6| for i = 1, . . . , 5, and v3 = v6.

Lemma 3. For every integer n ≥ 0, the language Bn is accepted by a wrdHm

with O(1) states and O(n) tape symbols.

Proof. Let Σ = {0, 1, $}. We first describe an end-marked dTm T accepting

the union of all Bi’s, for i ≥ 0; then we show how T can be modified in order

to recognize Bn, for any fixed integer n, by bounding the number of visits to

each cell, thus obtaining a wrdHm with the desired properties. Let us define

the tape alphabet of T as Γ = {0, 1, $, x, f,6 b}.

Let w ∈ Σ∗ be an input string of the form w = v1$v2$ · · · $vk, where v1, . . . , vk ∈

{0, 1}∗, and vk = a1 · · · a`, with ai ∈ {0, 1} for i = 1, . . . , `. The machine T

performs ` iterations. In each iteration it moves the head from the left end-

marker to the right endmarker and back, thus visiting each input cell twice.

It also rewrites some of the tape cells during this movement. The aim of

the i-th iteration is comparing the i-th rightmost symbol of the last block

with the i-th rightmost symbol of any other block. This is implemented as

follows. Within the first iteration, T memorizes a` in the states, rewrites it

by the symbol x, and moves the head leftwards. Whenever it encounters the

symbol $ and enters the right end of a block vj, it checks if its last symbol

equals a`. If so, T overwrites the cell contents with x; otherwise it writes f .

During the i-th iteration, T memorizes a`+1−i (which is in the rightmost in-

put cell not containing the symbol x) in its finite control, overwrites the cell

containing it by x and checks whether the i-th rightmost symbol of each vj,

with j < k, matches a`+1−i (if so, it overwrites the symbol with x; if not it

writes f). Notice that, at the beginning of the i-th iteration, i > 1, the i-th

25

rightmost symbol of a block is located immediately to the left of a nonempty

factor consisting only of the symbols x and f . However, it could happen that

for some j < k there is no i-th rightmost symbol in the factor vj—namely

the block vj is shorter than vk. In this case the machine halts and rejects.

The input w is accepted by T if and only if, after some iteration, all symbols

of vk have been overwritten with x and there is some vj with all symbols also

rewritten to x (this ensures vj = vk).

It can be noticed that, for any fixed integer n, a word belongs to Bn if

and only if it is accepted by T within the first n iterations. Hence, as each

iteration yields exactly two visits to each input cell, by bounding the number

of visits to each cell by 2n, we can restrict T to accept words from Bn only.

This can be obtained by using a construction similar as those used for proving

Lemma 2. We thus obtain a halting wrdHm H accepting Bn that has the

same number of states as T , hence a number that does not depend on n,

and O(n) tape symbols. �

Lemma 4. Each dfa accepting Bn has at least 22n states.

Proof. Let S be the family of all subsets of {0, 1}n. Given a subset S =

{w1, . . . , wk} ∈ S, where w1 < · · · < wk in the lexicographical order, consider

the string w(S) = w1$w2$ · · · $wk. Let S1 and S2 be two different elements

of S and let u ∈ {0, 1}n be a string that is in S1 but not in S2 (or vice

versa). Then, w(S1)$u ∈ Bn and w(S2)$u /∈ Bn (or vice versa), hence $u is a

distinguishing extension. Therefore, the set w(S), such that S ∈ S, is a set

of pairwise distinguishingable strings. By the Myhill-Nerode Theorem, each

26

dfa accepting Bn has at least as many states as the cardinality of such a set.

Hence, it is #S = 22n . �

From Theorem 4 and Lemmas 3 and 4, we obtain that the size trade-offs

from wrdTms and wrdHms to dfas are double exponential:

Corollary 2. For every wrdTm (resp., wrdHm) T = 〈Q,Σ,Γ, δ, q0, F 〉 there

exists a dfa accepting L(T) with 22O(#Γ·log(#Q)) states. In the worst case, this

double exponential gap is also necessary.

As shown in Theorem 2, by dropping the weight-reducing assumption for

machines, the size trade-offs in Corollary 2 become not recursive. However,

provided an explicit linear bound on computation lengths, we obtain the

following result. Note that Corollary 3 is stated for Turing machines, and

since this is the most general model among the ones we studied (cf. Figure 1),

the same holds for Hennie machines as well.

Corollary 3. Let T = 〈Q,Σ,Γ, δ, q0, F 〉 be a dTm. If there exist two con-

stants K and C such that every computation of T has length bounded by

Kn + C, where n denotes the input length, then there exist an nfa and

a dfa accepting L(T) with 2O(k·#Γ·log(#Q)) and 22O(k·#Γ·log(#Q)) states, respec-

tively, where k = 2K · (#Q)K +K.

Proof. Consequence of Theorems 3 and 4. �

5. Weight-Reducing Machines: Space and Time Usage, Halting-

ness

Weight-reducing Turing machines generalize weight-reducing end-marked

Turing machines (that are necessarily Hennie machines) by allowing the use

27

of additional tape cells that initially do not contain the input and to which

we refer as initially-blank cells . In particular, this extension allows infinite

computations. For instance, a wrdTm can perform forward moves forever,

rewriting each blank cell with some symbol. We now show that, however,

due to the weight-reducing property, the number of initially-blank cells that

are really useful, i.e., that is visited in halting computations, is bounded by

some constant that can be computed from the size of the wrdTm and does

not depend on the input string. This allows us to transform any wrdTm into

an equivalent halting machine of polynomial size, which therefore operates

in linear time. Notice that Theorem 4 already gave a simulation of wrdTms

by a halting and linear-time computational model.

Lemma 5. Let be T a wrdTm. If in a computation of T two initially-blank

tape cells, both located to the right of the initial segment, are visited in the

same sequence of states, then the computation is infinite. The same result

holds if the two cells are both located to the left of the initial segment.

Proof. For ease of exposition, we index the cell positions by integers, starting

with the leftmost cell of the initial segment, whose index is 1, and we identify

each cell with its position. Let us fix the computation of T on a given input.

The rough idea is that, due to the fact that T is deterministic, given a

tape cell c to the right of the initial segment, the parts of computation that

visit the cells to the right of c are completely determined by the sequence of

states q0, q1, . . . , qk−1 in which c is visited. Hence, for each h > 0, the sequence

of states in which any cell c+h is visited also only depends on q0, q1, . . . , qk−1,

and h. As a consequence, if for some h the cell c + h is visited in the same

28

sequence of states q0, q1, . . . , qk−1 in which c is visited, then even the cell c+2h

is visited in the same sequence of states, and so on, thus implying that the

computation is infinite.

Going more into details, suppose that the computation visits the tape

cell c in configurations C0, C1, . . . , Ck−1, k ≥ 1. Let qi and γi be the state and

the non-blank content of the right part of the tape that starts from cell c,

respectively, in configuration Ci, i = 0, . . . , k− 1. We observe that, since c is

located to the right of the initial segment, γ0 = ε and, for i = 1, . . . , k − 1,

due to the fact that T is deterministic, qi and γi are completely determined

by qi−1 and γi−1, thus implying that, being γ0 fixed, qi and γi depend only

on q0, q1, . . . , qi−1.8

Let us now consider a cell c+h for h > 0. Let P be the sequence of states

in which this cell is visited in the computation under consideration. Due to

the fact that T is weight reducing, P is finite. Our aim is to prove that P

only depends on q0, q1, . . . , qk−1, and h.

Since the cell c + h cannot be visited before the cell c, namely before

configuration C0, the sequence P can be decomposed as P = P1P2 · · ·Pk

where, for i = 1, . . . , k, Pi is the sequence of states that are reached when

the head is visiting the cell c+ h after the configuration Ci−1 and, for i < k,

before the configuration Ci.

Again using the fact that T is deterministic, we observe that Pi is com-

pletely determined by qi−1, γi−1, and h. Since, in turn, γi−1 is completely de-

termined by q0, q1, . . . , qi−1, we conclude that Pi only depends on q0, q1, . . . , qi−1,

8Notice that if the part of computation between Ci−1 and Ci only visits cells to the left

of c, then γi−1 and γi differ only in the first symbol, namely the symbol in the cell c.

29

and h. This allows us to conclude that the sequence P = P1P2 · · ·Pk of states

reached at the cell c+h depends only on the sequence of states q0, q1, . . . , qk−1

reached at the cell c and on h, as we claimed.

Suppose now that P coincides with the sequence q0, q1, . . . , qk−1 of states

visited at the cell c. By iterating the previous argument, the sequence of

states that are reached in any cell c + hj, j > 0, is q0, q1, . . . , qk−1, thus

implying that the computation is infinite. This completes the proof when

there are two cells that are visited in the same sequence of states and are

both located to the right of the initial segment. With a similar argument,

the result can be proved if the two cells are both located to the left of the

initial segment. �

Lemma 6. Let T be an n-state wrdTm that uses g tape symbols. A com-

putation of T is infinite if and only if it visits at least (n + 1)g consecutive

initially-blank cells, i.e., tape cells to the left or to the right of the initial

segment.

Proof. Since T is weight reducing, the number of visits to each tape cell is

bounded by a constant that, in turn, is bounded by g. Thus, each infinite

computation must visit infinitely many tape cells, hence at least (n + 1)g

consecutive initially-blank cells.

To prove the converse, let us consider a halting computation ρ of T over

an input word of length `. By Lemma 5, ρ cannot visit two tape cells, lying

at the same side of the initial segment, in the same sequence of states. Since

there are less than (n + 1)g nonempty distinct sequences of states of length

30

at most g, we conclude that the number of consecutive initially-blank cells

visited during the computation is less than (n+ 1)g. �

As a consequence of the above result, we obtain the following dichotomy

of computations of wrdTms.

Proposition 2. Let T be an n-state wrdTm that uses g tape symbols and

let ρ be a computation of T . Then, either ρ consists of a number of steps

that is linear in the input length and it visits less than (n+1)g initially-blank

cells to the left and less than (n + 1)g initially-blank cells to the right of the

initial segment, or ρ is infinite and visits infinitely many tape cells.

Proof. If the amount of tape cells visited by ρ is k, for some finite k, then, as

a cell cannot be visited more than g times by the weight-reducing property, ρ

is finite and has length bounded by gk. Furthemore, by Lemma 6, ρ visits less

than (n+ 1)g initially-blank cells to the left (resp., to the right) of the initial

segment. Thus, k < 2(n + 1)g − 1 + |w|, where w is the input. Hence, the

total number of steps of ρ is bounded by gk < g(2(n+1)g−1+ |w|) ∈ O(|w|),

i.e., it is linear in the length of the input. Conversely, if ρ visits infinitely

many tape cells then it is necessarily infinite. �

Proposition 3. By a polynomial size increase, each wrdTm can be trans-

formed into an equivalent linear-time wrdTm.

Proof. From an n-state wrdTm T with a tape alphabet of cardinality g, we

can build an equivalent halting wrdTm T ′ that works as follows. After an

initial phase during which T ′ marks (n + 1)g initially-blank cells to the left

31

and to the right of the initial segment, it performs a direct simulation of T

while ensuring that no further cells than those initially marked and those of

the initial segment are used.

The initial phase is implemented using a counter in basis (n+ 1), stored

on g consecutive tape cells, which is incremented up to (n+ 1)g and shifted

along the tape. We shall describe a procedure marking the (n + 1)g cells to

the left of the initial segment. A similar procedure is repeated at the right

of the initial segment.

At each step, the counter contains the number of marked cells minus one.

Hence, at the beginning, it is initialized to value g − 1 (in basis n + 1) by

writing the corresponding digits onto the g cells immediately to the left of

the initial segment, the least significant digit being on the rightmost of these

cells. Then the counter is incremented and shifted leftward by updating

each digit, from right to left, namely starting from the least significant one.

Let d be the digit scanned by the head. The value d′ = d + 1 mod (n + 1)

is stored in the state control, along with a boolean variable c, for carry

propagation. Then the head is moved one cell to the left, d′ is written on

the tape and its value updated according to the previous contents of the

cell just overwritten and the value of c. In the case the previous symbol on

such a cell was the blank, then all the g digits have been updated. Hence,

the head is moved g positions to the right (on the least significant digit)

and the counter is incremented again. This procedure stops when, moving

rightward to reach the least significant digit, all the g scanned cells contain

the symbol n. We now estimate the number of states used to implement

this procedure. First, we notice that O(g) states are sufficient to initialize

32

the g cells to the left of the initial segment and to move the head from the

most to the least significant digit of the counter, before each increment. Also

checking if all the g cells of the counter contain the symbol n, i.e., if the

counter has reached the maximum value, can be done within the same state

bound. During the phase that increments and shifts the counter, it is enough

to remember the above-mentioned values d′ and c; it is not necessary to count

the positions in the counter because, as explained above, the end of this phase

is recognized when a cell containing 6 b is overwritten. Hence, this phase can

be implemented using O(n) states. By summing up, this entire procedure

can be implemented using O(g+n) states. We also observe that the number

of visits to each initially-blank cell is bounded by 2g because every cell is

visited at most twice when containing the i-th digit of the current counter

value, for i = 1, . . . , g.

Once the space is marked, T ′ simulates T , stopping and rejecting if the

simulation reaches a blank cell.

From Lemma 6, we can easily conclude that each halting computation

of T is simulated by an equivalent halting computation of T ′, while each

infinite computation of T is replaced in T ′ by a computation that reaches a

blank cell and then stops and rejects.

To complete the proof we have to show how to convert T ′ into a weight-

reducing equivalent machine of size polynomial in the size of T . We remind

the reader that T has n states and a tape alphabet of g symbols. Since

it is weight-reducing, it can visit each tape cell no more than g times. To

mark the cells in the initial phase T ′ uses O(g + n) states and an alphabet

of n+ 1 symbols; hence the total number of states of T ′ is O(g + n) and the

33

total number of symbols is O(g + n). By the previous analysis, we notice

that during the initial phase marking the space, each marked cell is visited 2g

times. Furthemore, since after marking cells to the left of the input, the head

is moved to the right until the first blank to mark the portion to the right

of the input, and then back to first cell of the input to start the simulation

of T , T ′ can visit each cell two more times. By summing up, we conclude

that in each computation of T ′ each tape cell is visited O(g) times. Hence,

applying Lemma 2 we can convert T ′ into a weight-reducing machine T ′′,

with O((g + n)g) states and a tape alphabet of O((g + n)g) symbols. This

completes the proof.

For the sake of completeness, we mention that, with a finer analysis, it

can be shown that the size of the tape alphabet of the final machine can be

reduced to O(gn) symbols. To this aim, instead of applying Lemma 2 to

the whole machine T ′, we can directly build T ′ introducing only transitions

satisfying the weight-reducing property. For the transitions used in the pre-

liminary phase, marking initially-blank cells to the left and to the right of the

input, we use an alphabet of O(gn) symbols, encoding suitable counters for

visits, together with the n+1 digits. Furthermore, the original alphabet of T

is extended with 2g symbols that are used for the two extra visits that T ′

can make to each tape cell before simulating T . �

Using Lemma 6 and Proposition 3, we prove the following property.

Theorem 5. It is decidable whether a wrdTm halts on each input string.

Proof. From any given wrdTm T , we construct a halting wrdTm T ′ that,

besides all the strings accepted by T , accepts all the strings on which T does

34

not halt. To this end, we can slightly modify the construction used to prove

Proposition 3, in such a way that when the head reaches a blank cell outside

the initial segment and the initially marked space, the machine stops and

accepts. Hence, the given wrdTm T halts on each input string if and only if

the finite automata that are obtained from T and T ′ according to Theorem 4

are equivalent. �

By Proposition 2, the number of steps of any halting computation of a

wrdTm is linear in the input length. Hence, from Theorem 5 we obtain:

Corollary 4. It is decidable whether a wrdTm runs in linear time.

6. Conclusion

In this work, we investigated deterministic one-tape Turing machines run-

ning in linear time. Although these devices are known to be equivalent to

finite automata [4], one cannot decide whether a given Turing machine is

linear-time even in the case of end-marked devices, as we showed in Theo-

rem 1. Furthermore, there is no recursive function bounding the size blowup

of the conversion of dHms into dfas (Theorem 2). To avoid these negative

results, we introduced a weight-reducing restriction, which forces one-tape

Turing machines to run in linear time as long as they halt. Indeed, we proved

that each computation of a wrdTm either is infinite or halts within a linear

number of steps in the input length (Proposition 2). The weight-reducing

restriction is syntactic and can be checked (Proposition 1). Furthermore, we

proved in Theorem 4 that each wrdTm can be converted into an nfa (resp.,

dfa) whose size is exponential (resp., doubly-exponential) with respect to

the size of the converted device. These costs are tight (Corollary 2).

35

Weight-reducing Turing machines are not restrictions of linear-time ma-

chines. Indeed, they allow infinite computations. However, whether a wrdTm

halts on all inputs can be decided (Theorem 5). Furthermore, with a polyno-

mial increase in size, each weight reducing machine can be made halting and

linear-time (Proposition 3). Still, halting wrdTms are not particular dHms

as they allow the use of extra space besides the initial segment contrary to

dHms that are end-marked. We do not know at the time of writing whether

this extra space usage is useful for representing regular languages concisely.

In other words, we leave open the question of the size cost of turning wrdTms

into equivalent wrdHms.

In a related paper [15], we investigate the computational models consid-

ered here by focusing on the Sakoda and Sipser question about the size cost

of the determinization of two-way finite automata [16]. We indeed propose

a new approach to this famous open problem, which consists in converting

two-way nondeterministic automata into equivalent deterministic extensions

of two-way finite automata, paying a polynomial increase in size only. The

considered extensions are variants of linear-time deterministic Turing ma-

chines, including wrdHms and dHms.

References

[1] D. Průša, Weight-reducing Hennie machines and their descriptional com-

plexity, in: A. Dediu, C. Martín-Vide, J. L. Sierra-Rodríguez, B. Truthe

(Eds.), Language and Automata Theory and Applications - 8th Inter-

national Conference, LATA 2014, Madrid, Spain, March 10-14, 2014.

36

Proceedings, Vol. 8370 of Lecture Notes in Computer Science, Springer,

2014, pp. 553–564.

[2] B. Guillon, G. Pighizzini, L. Prigioniero, D. Průša, Two-way automata

and one-tape machines - read only versus linear time, in: M. Hoshi,

S. Seki (Eds.), Developments in Language Theory - 22nd International

Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceed-

ings, Vol. 11088 of Lecture Notes in Computer Science, Springer, 2018,

pp. 366–378.

[3] S. Kuroda, Classes of languages and linear-bounded automata, Informa-

tion and Control 7 (2) (1964) 207–223.

[4] F. C. Hennie, One-tape, off-line Turing machine computations, Infor-

mation and Control 8 (6) (1965) 553–578.

[5] B. A. Trakhtenbrot, Turing machine computations with logarithmic de-

lay, (in Russian), Algebra I Logica 3 (1964) 33–48.

[6] J. Hartmanis, Computational complexity of one-tape Turing machine

computations, J. ACM 15 (2) (1968) 325–339.

[7] P. Michel, An NP-complete language accepted in linear time by a one-

tape Turing machine, Theor. Comput. Sci. 85 (1) (1991) 205–212.

[8] G. Pighizzini, Nondeterministic one-tape off-line Turing machines, Jour-

nal of Automata, Languages and Combinatorics 14 (1) (2009) 107–124.

[9] K. Tadaki, T. Yamakami, J. C. H. Lin, Theory of one-tape linear-time

Turing machines, Theor. Comput. Sci. 411 (1) (2010) 22–43.

37

[10] D. A. Walters, Deterministic context-sensitive languages: Part II, Inf.

Control. 17 (1) (1970) 41–61.

[11] D. Gajser, Verifying time complexity of Turing machines, Theor. Com-

put. Sci. 600 (2015) 86–97.

[12] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-

guages and Computation, Addison-Wesley, 1979.

[13] T. Radó, On non-computable functions, Bell System Technical Journal

41 (3) (1962) 877–884.

[14] T. R. S. Walsh, The busy beaver on a one-way infinite tape, SIGACT

News 14 (1) (1982) 38–43.

[15] B. Guillon, G. Pighizzini, L. Prigioniero, D. Průša, Converting nonde-

terministic two-way automata into small deterministic linear-time ma-

chines, Information and Computation (2022) 104938.

[16] W. J. Sakoda, M. Sipser, Nondeterminism and the size of two way fi-

nite automata, in: R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P.

Friedman, A. V. Aho (Eds.), Proceedings of the 10th Annual ACM Sym-

posium on Theory of Computing, May 1-3, 1978, San Diego, California,

USA, ACM, 1978, pp. 275–286.

38

	Introduction
	Preliminaries
	Hennie Machines: Undecidability and Non-Recursive Trade-Offs
	Weight-Reducing Machines: Decidability, Expressiveness and Descriptional Complexity
	Weight-Reducing Machines: Space and Time Usage, Haltingness
	Conclusion

