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Abstract

The paper studies a higher-order diffusion model of Maxwell–Stefan
kind. The model is based upon higher-order moment equations of
kinetic theory of mixtures, which include viscous dissipation in the
model. Governing equations are analyzed in a scaled form, which
introduces the proper orders of magnitude of each term. In the so-
called diffusive scaling, the Mach and Knudsen numbers are assumed
to be of the same small order of magnitude. In the asymptotic limit
when the small parameter vanishes, the model exhibits a coupling
between the species’ partial pressure gradients, which generalizes the
classical model. Scaled equations also lead to a higher-order model
of diffusion with correction terms in the small parameter. In that
case, the viscous tensor is determined by genuine balance laws.
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1 Introduction

Macroscopic description of diffusion usually relies on two well-known models,
the Fick and Maxwell–Stefan ones. They are both based upon the mass
conservation of species, but differ in the way diffusion mechanism is described,
and thus the system closed. In the Fick model, the diffusion fluxes are
determined by constitutive relations of phenomenological nature – they are
linearly related to the gradients of species’ chemical potentials/densities [1].
In the Maxwell–Stefan model, diffusion is regarded as a source of momentum
exchange between the species, which is balanced by the gradients of partial
pressures [2, 3]. The system is thus closed through a kind of momentum
balance equations for the species. While the Fick model fits well into linear
thermodynamics of irreversible processes [4], the Maxwell–Stefan model fits in
the framework of classical cross-diffusion models [5, 6].

It is remarkable that both diffusion models mentioned above may be
derived starting from a more sophisticated model—the Boltzmann equations
of the kinetic theory of mixtures. To derive the Fick model, one has to
apply the Chapman–Enskog method, i.e perform the asymptotic expansion
of the velocity distribution function and the conservation laws derived from
the Boltzmann equations, using the Knudsen number as small parameter [7–
9]. This amounts to a hydrodynamic limit of kinetic equations and inherits
a physical assumption that the process occurs in the neighborhood of local
equilibrium state.

On the other hand, to derive the Maxwell–Stefan model, one has to extend
the system of moment equations and include the momentum balances for the
species. The Maxwell–Stefan relations are then obtained as an asymptotic
limit of the momentum balance laws in so-called diffusive scaling [10, 11].
The diffusive scaling reflects the assumption that macroscopic velocities
in diffusion processes are small compared to molecular velocities, while
asymptotic limit amounts to neglecting inertia terms and convective fluxes in
species’ momentum balance laws.

In either approach, the diffusion is a dissipative process in the sense that it
is compatible with the entropy inequality. It contributes to the entropy balance
law through an entropy production [2, 4]. Nevertheless, other dissipative
mechanisms could also be included in the analysis, viscous dissipation being
the most prominent one. In the framework of irreversible thermodynamics,
it is incorporated in the same manner as Fick diffusion – by means of linear
constitutive relation for the viscous stress tensor. However, in the case of
Maxwell–Stefan model, such a generalization is less straightforward. It is
usually included by assumption, and modeled by means of classical constitutive
relations for Newtonian fluids [12, 13].

The aim of this study is to include the viscous dissipation into the
Maxwell–Stefan model by a systematic application of the moment method
and diffusive scaling at the same time. The starting point is be the system
of Boltzmann equations for non-reactive monatomic species. It is used to
build up a corresponding system of moment equations, which consists of mass,
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momentum and momentum flux balance laws for the species, and the energy
conservation law for the mixture. In fact, the momentum flux balance laws
are the key ingredient which brings viscous dissipation into the model. Since
our goal is to generalize the Maxwell–Stefan model of diffusion, all equations
are transformed into a scaled (dimensionless) form, which inherits the already
mentioned assumption on diffusion processes. The scaling formally ascribes a
proper order of magnitude to each term appearing in the moment equations.
Even more, it facilitates the systematic derivation of the higher-order model
of diffusion, which inherits viscous dissipation, without the use of ad hoc
assumptions.

The rest of the paper is organized as follows. Section 2 contains necessary
information about kinetic modelling of mixtures, while Section 3 introduces the
diffusive scaling into the modelling process. Section 4 is devoted to a derivation
of the approximate velocity distribution function in the scaled form, which is
needed for the closure of moment equations. Indeed, the usual ansatz used for
the classical Maxwell–Stefan model cannot be generalized in a straightforward
way. Therefore, the maximum entropy principle is used as a tool for derivation
of a proper approximation of the velocity distribution function in Theorem 2.
Section 5 contains the main results of the paper. The closed set of scaled higher-
order moment equations are given in Theorem 4 and Proposition 5, whereas
the asymptotic limit of the higher-order model is given in Theorem 6. We also
provide a compatibility condition which restricts the form of the equation of
state in Proposition 7. Finally, the higher-order diffusion model is provided in
Proposition 8. The paper ends with appropriate conclusions and outlook to
possible further studies.

2 Kinetic modelling of mixtures

In this section, the basics of mixture modelling in kinetic theory will be
presented. This will serve as a reference for further study of the scaled
equations and the maximum entropy principle.

2.1 Boltzmann equations for mixtures

Consider a mixture of gases consisted of S identifiable species. The state of each
species is determined by the velocity distribution function f i(t,x,v) ≡ f i(v),
i = 1, . . . , S. If the external forces are negligible, the behavior of a non-reactive
mixture is described by the system of Boltzmann equations:

∂tf
i + v · ∇xf

i =

S∑
j=1

Qij(f i, f j)(v), 1 ≤ i ≤ S, (1)

where for any 1 ≤ i, j ≤ S, Qij(f i, f j)(v) is the collision operator which
determines the rate of change of distribution functions due to particle collisions
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of species i and j. It has the form:

Qij(f i, f j)(v) =

∫
R3

∫
S2

[
f i(v′)f j(v′∗)− f i(v)f j(v∗)

]
Bij(v,v∗,σ) dσ dv∗,

(2)
where Bij(v,v∗,σ) are the collision cross sections. These cross sections are
assumed for simplicity to correspond to Maxwell molecules, meaning that

Bij(v,v∗, σ) = bij(cos θ). (3)

The collision operators can be written under a weak form as follows. For
any φ(v) such that the following integrals make sense, we have for any
1 ≤ i, j ≤ S∫

R3

Qij(f i, f j)(v)φ(v) dv

=

∫
R3

∫
R3

∫
S2
bij(cos θ)f i(v)f j(v∗)(φ(v′)− φ(v)) dσ dv∗ dv. (4)

Choosing φ(v) = 1, we obtain the obvious conservation property∫
R3

Qij(f i, f j)(v) dv = 0. (5)

2.2 Moment equations and moments

The moment method is one of the standard methods of analysis of the
Boltzmann equations. It is based upon solving a finite number of transfer
equations for the moments of the velocity distribution function, the so-called
moment equations, instead of solving the Boltzmann equation itself. In other
words, the solution of the Boltzmann equations is approximated by solving the
corresponding set of moment equations.

The moment equations are derived from the Boltzmann equations and
actually correspond to their weak formulation. Starting from the Boltzmann
equations (1), after multiplication with a test function ψi(v) and integration
over velocity space, one obtains the set of moment equations for any 1 ≤ i ≤ S

∂t

∫
R3

ψi(v)f i dv+∇x ·
∫
R3

vψi(v)f i dv =

S∑
j=1

∫
R3

ψi(v)Qij(f i, f j)(v) dv. (6)

The moments of the velocity distribution function
∫
R3 ψ

i(v)f i dv may
correspond to the densities of observable macroscopic quantities, but they
could also be tensorial quantities which may or may not have apparent physical
meaning.

Choice of the moments/densities which will be taken into account is
crucial for the modelling and the accuracy of approximation. In a standard
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way, physically motivated moments for species i are the partial mass ρi,
momentum ρiuik, 1 ≤ k ≤ 3 and energy ρiEi densities

ρi(t,x) :=

∫
R3

mif
i dv,

ρi(t,x)uik(t,x) :=

∫
R3

mivkf
i dv,

ρi(t,x)Ei(t,x) :=

∫
R3

1

2
mi|v|2f i dv. (7)

For higher-order models, higher-order moments have to be taken as densities.
To this end, for any species i, partial momentum fluxes P ik` and their
corresponding fluxes P ik`n, 1 ≤ k, `, n ≤ 3 will be introduced as follows

P ik`(t,x) :=

∫
R3

mivkv`f
i dv,

P ik`n(t,x) :=

∫
R3

mivkv`vnf
i dv. (8)

By defining the peculiar velocities cik := vk − uik we may observe the following
relations:

ρiEi =
1

2
ρi|ui|2 + ρiεi,

P ik` = ρiuiku
i
` + pik`,

P ik`n = ρiuiku
i
`u
i
n + uikp

i
`n + ui`p

i
nk + uinp

i
k` + pik`n, (9)

where the partial pressures pi, partial pressure tensors pik` and partial non-
convective fluxes of the momentum fluxes are defined as follows:

3pi(t,x) :=

∫
R3

mi|ci|2f i dv,

pik`(t,x) :=

∫
R3

mic
i
kc
i
`f
i dv,

pik`n(t,x) :=

∫
R3

mic
i
kc
i
`c
i
nf

i dv. (10)

Note that the partial pressures pi are related to the trace of partial pressure
tensors pik` by

pi =
1

3

3∑
k=1

pikk. (11)

In the case of monatomic gases, we have the following relation between the
partial internal energy densities and the partial pressures

3pi = 2ρiεi.
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For further computations, it will be useful to split the partial pressure
tensors into a sum of spherical part, proportional to identity tensor, and
deviatoric part pi〈k`〉:

pik` = piδk` + pi〈k`〉, (12)

where δk` is the Kronecker delta. This has the obvious consequence that∑3
k=1 p

i
〈kk〉 = 0.

2.3 Kinetic approach to the Maxwell–Stefan model

Let us give a brief summary of the existing results about the Maxwell–
Stefan diffusion model, obtained from the moment equations (6). To derive
the classical Maxwell–Stefan diffusion model, one has to use moment equations
for the mass densities ρi and for the momentum densities ρiuik [10]. For
derivation of the non-isothermal Maxwell–Stefan model, with or without
chemical reactions, apart from moment equations for mass and momentum
densities, one has to include the moment equations for energy densities ρiEi

[5, 14, 15]. More precisely, in the standard approximation (the so-called
asymptotic limit, to be presented in the sequel), it is sufficient to use the energy
conservation equation for the whole mixture.

All the approximations mentioned above assume that the velocity
distribution functions are in the form of a Maxwellian, i.e. in some kind of local
equilibrium in which dissipative effects (viscous and thermal) are neglected.
However, if one takes them into account, higher-order moments and their
corresponding transfer equations have to be exploited. Our study of higher-
order Maxwell–Stefan models will be limited to the extension which takes
into account only viscous dissipation through moment equations for partial
momentum fluxes P ik`.

3 Diffusive scaling

In the analysis of particular processes, not all the terms in the governing
equations have equal importance, i.e. some of them may be neglected. Such
simplifications require insight into the features of the process which is analyzed
and appropriate order-of-magnitude estimates. A usual way to reach that goal
is to put the governing equations into dimensionless/scaled form. This leads to
a reduction of the number of parameters in the model, and yields an estimate
of the order of magnitude of particular terms.

Diffusion processes in gaseous mixtures possess two important features:
(i) they occur in the hydrodynamic setting, in which the characteristic
macroscopic length scale is much larger than the mean free path of the
particles, and (ii) the characteristic macroscopic velocity is much smaller than
the reference molecular velocity, which is of the order of the speed of sound.
A scaling of the governing equations which reflects these features is called
diffusive scaling.
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3.1 Boltzmann equations in diffusive scaling

The dimensionless form of the Boltzmann equations (1) is obtained by means
of scaling variables similarly as in [16]. To this end, the macroscopic time
and length scales are introduced, denoted τ and L respectively, as well as
the reference kinetic temperature T0. They imply two independent velocity
scales: u0 = L

τ , which is the speed of macroscopic transport of the gas over

distance L in time τ , and c0 =
(

5
3
kB
m0
T0

)1/2

, which is the speed of sound in a

monatomic gas, with m0 being the average atomic mass of the mixture and kB
the Boltzmann constant. Using τ , L and c0 as reference time, space and velocity
scales, respectively, one may introduce the following dimensionless quantities:

t̂ =
t

τ
, x̂ =

x

L
, v̂ =

v

c0
, f̂ i(v̂) =

L3c30
N

f i(v),

B̂ij(v̂, v̂∗, σ̂) =
1

c04πr2
Bij(v,v∗,σ),

Q̂ij(f̂ i, f̂ j)(v̂) =

(
L3c30
N

)2
1

c04πr2

1

c30
Qij(f i, f j)(v),

where N is the number of gas molecules in a volume L3 and r is the average
radius of the molecules. In such a way, equations (1) acquire the following
dimensionless form:

Ma∂t̂f̂
i + v̂ · ∇x̂f̂

i =
1

Kn

S∑
j=1

Q̂ij(f̂ i, f̂ j)(v̂), (13)

where

Ma =
u0

c0
, Kn =

mean free path

macroscopic length scale
=

L3

N × 4πr2
× 1

L
=

L2

4πr2N
,

are the Mach and the Knudsen numbers, respectively.
In this paper, we focus on the diffusive scaling, which is a particular form

of dimensionless Boltzmann equations (13) in which the Mach and Knudsen
numbers are assumed to be of the same small order of magnitude

Ma = Kn = α� 1. (14)

With this assumption, we obtain the Boltzmann equations in diffusive scaling:

α∂tf
i + v · ∇xf

i =
1

α

S∑
j=1

Qij(f i, f j)(v), (15)

where we now dropped the hats for readability. The factor 1/α on the right-
hand side is typical for a hydrodynamic limit of the Boltzmann equations,
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while multiplication of the time derivative with α implies that the processes
are slow.

3.2 Moment equations in diffusive scaling

Starting from the Boltzmann equations in the diffusive scaling (15), after
multiplication with a test function ψi(v) and integration over the velocity
space, one obtains the (dimensionless) moment equations in diffusive scaling:

α∂t

∫
R3

ψi(v)f i dv+∇x ·
∫
R3

vψi(v)f i dv =
1

α

S∑
j=1

∫
R3

ψi(v)Qij(f i, f j)(v) dv.

(16)
The choice of the moments, i.e. of the test functions, determines the state
space on which the Boltzmann equations are projected and their solution
is approximated. To close the system of moment equations (16) one has
to approximate the velocity distribution function. Grad [17] originally used
Hermite polynomial expansions as an approximation, but it was shown by
Kogan [18] that equivalent results may be obtained by means of a variational
approach, the so-called maximum entropy principle.

4 The maximum entropy principle

The maximum entropy principle (MEP) is a constrained variational
formulation which determines the approximate velocity distribution [19–21].
The functional to be maximized is the kinetic entropy H(t,x), defined as:

H(t,x) :=

S∑
i=1

Hi(t,x), Hi(t,x) := −kB

∫
R3

f i log(bif i) dv, (17)

where bi is a dimensional constant used to make dimensionless the argument
of the log function. The constraints are taken to be the moments/macroscopic
variables which determine the state space. To derive the Maxwell–Stefan model
of diffusion it is sufficient to choose the partial mass, momentum and energy
densities as constraints. This implies the approximate velocity distribution
functions to be the local Maxwellians. In this study we extend the usual state
space to include the pressure tensor in it. Such an extension will provide us
with a more detailed insight into dissipation, other than diffusion, which may
occur in the system.

In the sequel we shall follow the procedure given in [16] and exploit the

diffusive scaling to derive properly scaled velocity distribution functions f̂ i. To
that end we introduce the following dimensionless (scaled) variables:

Ĥi =
L3

kBN
Hi, b̂i =

N

L3c30
bi, m̂i =

mi

m0
, ρ̂i =

L3

m0N
ρi, ûi =

ui

u0
,
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ĉi =
ci

c0
, Êi =

Ei

c20
, T̂ =

T

T0
,

P̂ ik` =
L3

m0Nc20
P ik`, p̂ik` =

L3

m0Nc20
pik`, P̂ ik`n =

L3

m0Nc30
P ik`n, (18)

and we again drop the hats in further computations for convenience. With
these, equations (7) and (8) are the same, except for the substitution uik 7→
αuik, whereas the scaled kinetic entropy (17) reads:

H(t,x) =

S∑
i=1

Hi(t,x), Hi(t,x) = −
∫
R3

f i log(bif i) dv. (19)

The MEP can now be formulated as a variational problem with constraints in
diffusive scaling.

For the completeness of the study we shall firstly recover the local
equilibrium velocity distribution functions, and then derive their higher-order
approximations which comprise the partial pressure tensors.

4.1 The local equilibrium approximation

The MEP for the local equilibrium approximation consists in finding the
velocity distribution functions f i(t,x,v) maximizing the kinetic entropy (17)
subject to the following constraints:

ρi =

∫
R3

mif
i dv,

αρiuik =

∫
R3

mivkf
i dv,

α2ρi|ui|2 + 2ρiεi =

∫
R3

mi|v|2f i dv. (20)

In (20) we dropped (t,x) dependence of macroscopic variables.

Theorem 1 The velocity distribution functions which maximize the entropy (17)
with constraints (20) have the following form:

f i(t,x,v) =
ρi

mi

(
3

4πεi

)3/2

exp

(
−3|v − αui|2

4εi

)
. (21)

Proof Although the proof follows the same steps as in [16], we shall briefly repeat
them. Let us define the following extended functional∫

R3
L
(
v, f i,∇vf

i
)

dv :=
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∫
R3

S∑
i=1

(
f i log(bif i) + λiρmif

i +

3∑
k=1

λiuk
mivkf

i + λiεmi|v|2f i
)

dv,

where λiρ(t,x), λiuk
(t,x), λiε(t,x) ∈ R are the unknown multipliers. Taking into

account that L is independent of∇vf
i, the necessary condition for extremum reduces

to ∂L/∂f i = 0, i = 1, . . . , S, yielding S uncoupled equations whose solutions read
for any 1 ≤ i ≤ S

f i =
1

bi
exp

[
−

(
1 +miλ

i
ρ +mi

3∑
k=1

λiuk
vk +miλ

i
ε|v|2

)]
.

By inserting these results into the constraints (20) and with rather straightforward
computations the following relations are obtained:

λiε =
3

4miεi
,

λiuk

2λiε
= −αuik,

mi

bi
exp

(
−1− λiρ

)
exp

(
mi

4λiε

3∑
k=1

(
λiuk

)2
)(

π

miλ
i
ε

)3/2

= ρi.

Returning these expressions into the form of f i, one obtains (21), which completes
the proof. �

4.2 The higher-order approximation

Higher-order approximations of the velocity distribution functions aim at
extending the state space and capturing non-equilibrium effects. To that end,
the kinetic entropy (17) remains the same, whereas the constraints have the
following form:

ρi =

∫
R3

mif
i dv, (22)

αρiuik =

∫
R3

mivkf
i dv, (23)

α2ρiuiku
i
` + pik` =

∫
R3

mivkv`f
i dv. (24)

In the sequel it will be more convenient to use the peculiar velocities cik =
vk − αuik and formulate the MEP for the constraints:

ρi =

∫
R3

mif
i dc,

0 =

∫
R3

mic
i
kf

i dc,

pik` =

∫
R3

mic
i
kc
i
`f
i dc. (25)

Note that dv = dc holds.
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The extended functional for the constraints (22)-(24) is

∫
R3

S∑
i=1

(
f i log(bif i) + λiρmif

i +

3∑
k=1

λiuk
mivkf

i

+

3∑
k,`=1

λiPk`
mivkv`f

i

 dv. (26)

The same extended functional written for uik = 0, i = 1, . . . , S, corresponds to
MEP for the constraints (25):

H =

∫
R3

S∑
i=1

(
f i log(bif i) + λ̃iρmif

i +

3∑
k=1

λ̃iuk
mic

i
kf

i

+

3∑
k,`=1

λ̃ipk`
mic

i
kc
i
`f
i

 dc, (27)

but with different multipliers. However, since (26) and (27) must have the same
value due to Galilean invariance, comparison leads to the following relations
between the multipliers:

λiρ = λ̃iρ − α
3∑
k=1

λ̃iuk
uik + α2

3∑
k,`=1

λ̃ipk`
uiku

i
`,

λiuk
= λ̃iuk

− 2α

3∑
`=1

λ̃ipk`
ui`,

λiPk`
= λ̃ipk`

= λ̃ip`k . (28)

Therefore, the whole analysis of the higher-order approximation can be based
upon the MEP for the constraints (25), and expressed afterwards in terms of
(22)-(24) if needed.

Theorem 2 The velocity distribution functions which maximizes the entropy (17)
with constraints (25) have the following form:

f i(t,x, c) =
ρi

mi

(
ρi

2π

)3/2
1

(detpi)1/2
exp

(
−ρ

i

2
ci
T

(pi)−1ci
)
, (29)

where pi =
{
pik`

}3

k,`=1
is the partial pressure tensor, and superscript T stands for

the transpose of the vector.
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Proof The strategy of the proof is the same as in Theorem 1. Here, it will be based
upon the extended functional (27) which we shall briefly denote as:

H =

∫
R3
L
(
c, f i,∇cf

i
)

dc.

Since L is independent of ∇cf
i, the necessary condition for extremum reduces to

∂L/∂f i = 0, i = 1, . . . , S, implying S uncoupled equations whose solutions are

f i =
1

bi
exp

−
1 +miλ̃

i
ρ +mi

3∑
k=1

λ̃iuk
cik +mi

3∑
k,`=1

λ̃ipk`
cikc

i
`

 . (30)

To determine the multipliers, we have to compute the moments (25), but their direct
computation using (30) is cumbersome. Therefore, the proof will be completed in
two steps.

First, let us prove that λ̃iuk
= 0, i = 1, . . . , S, k = 1, 2, 3. To this end, we shall

first rewrite (30) as

f i =
1

bi
exp

[
−
(

1 +miλ̃
i
ρ +miλ̃

iT
u c

i +mic
iT λ̃

i
pc
i
)]
, (31)

where λ̃
i
u =

{
λ̃iuk

}3

k=1
is the vector of momentum multipliers and λ̃

i
p =

{
λ̃ipk`

}3

k,`=1

is the matrix of pressure tensor multipliers. Since λ̃
i
p is a real symmetric matrix, it can

be diagonalized by means of an orthogonal matrix R satisfying RTR = RRT = I.
Let us introduce the orthogonal transformation in the space of peculiar velocities

Ci = Rici ⇒ ci = RiTCi. (32)

This implies

ciT λ̃
i
pc
i = CiTRiλ̃

i
pRiTCi = CiT Λ̃

i
pCi =

3∑
k=1

Λ̃ik(Cik)2, (33)

where we introduced the transformed diagonal matrix of multipliers

Λ̃
i
p = Riλ̃

i
pRiT = diag

{
Λ̃ik

}3

k=1
.

Further, by means of same transformation, we obtain

λ̃
iT
u c

i = λ̃
iT
u RiTCi = L̃iTu Ci =

3∑
k=1

L̃ikC
i
k, (34)

where we introduced the transformed vector of multipliers

L̃iu = Riλ̃
i
u =

{
L̃ik

}3

k=1
. (35)

Taking into account (33) and (34), the velocity distributions (31) may be finally
transformed into

f i =
1

bi
exp

[
−

(
1 +miλ̃

i
ρ +mi

3∑
k=1

L̃ikC
i
k +mi

3∑
k=1

Λ̃ik(Cik)2

)]

=
1

bi
exp

[
−
(

1 +miλ̃
i
ρ

)] 3∏
k=1

exp
[
−mi

(
L̃ikC

i
k + Λ̃ik(Cik)2

)]
. (36)
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For the computation of constraints (25) we have to take into account that dci =
dCi, since Jacobian of the transformation (32) is |J| = |RiT | = 1. In what follows,
we shall compute the constraints (25)2. Applying (32)2 in component form, cin =∑3
j=1R

i
jnC

i
j , and taking advantage of (36) which facilitates a simple application of

Fubini’s theorem, after straightforward computation we obtain

0 = −mi

bi
exp

[
−
(

1 +miλ̃
i
ρ

)]( π

mi

)3/2
 3∑
j=1

Rijn
L̃ij

2Λ̃ij


×

3∏
k=1

1√
Λ̃ik

exp

[
mi(L̃

i
k)2

4Λ̃ik

]
.

The only possibility to satisfy these constraints is to impose

3∑
j=1

Rijn
L̃ij

2Λ̃ij
= 0,

which amounts to a homogeneous system of linear algebraic equations. Since |RiT | =
|Ri| = 1, the matrix of coefficients is non-singular and there exists only a trivial
solution

L̃ij

2Λ̃ij
= 0 ⇒ L̃ij = 0. (37)

Using (35) and (37), by applying the same regularity arguments we arrive to

L̃iu = Riλ̃
i
u = 0 ⇒ λ̃

i
u = 0,

which is equivalent to λ̃iuk
= 0. This result implies a simplified form of the velocity

distribution functions (30)

f i =
1

bi
exp

−
1 +miλ̃

i
ρ +mi

3∑
k,`=1

λ̃ipk`
cikc

i
`

 . (38)

The second step consists in computation of the constraints (25)1 and (25)3 using
(38), which leads to

ρi =
mi

bi
exp

(
−1−miλ̃

i
ρ

)( π

mi

)3/2 (
det λ̃

i
p

)−1/2
, (39)

pik` =
1

2bi
exp

(
−1−miλ̃

i
ρ

)( π

mi

)3/2

adj
(
λ̃
i
p

)
k`

(
det λ̃

i
p

)−3/2
, (40)

where adj (A) denotes the classical adjoint of a matrix A. Using (39) and taking into
account that

adj
(
λ̃
i
p

)
k`

(
det λ̃

i
p

)−1
=
(
λ̃
i
p

)−1

k`
,

we can reduce (40) to

pik` =
1

2

ρi

mi

(
λ̃
i
p

)−1

k`
⇔ pi =

1

2

ρi

mi

(
λ̃
i
p

)−1
, (41)

or, equivalently

λ̃
i
p =

1

2

ρi

mi

(
pi
)−1

. (42)

Using (39) and (42) in (38), after some direct computations one easily obtains (29),
which completes the proof. �
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Remark 1 The result of Theorem 2 presents a generalization of the 10 moments
approximation of the velocity distribution function given in [22] to the case of
mixtures. We here provide the computations in the scaled form with a more detailed
proof.

Theorem 2 implies a simpler structure of the flux of momentum fluxes P ik`n.
Indeed, if the velocity distribution function f i has the form (29), since pik`n is
given by (10)3, a simple parity argument implies that pik`n = 0. We thus have
the following corollary.

Corollary 3 For the velocity distribution function determined by the higher-order
approximation (29), the scaled total flux of the momentum fluxes reads:

P ik`n = α3ρiuiku
i
`u
i
n + α

(
uikp

i
`n + ui`p

i
nk + uinp

i
k`

)
. (43)

5 Higher-order Maxwell–Stefan model

In what follows, we shall derive the higher-order Maxwell–Stefan model
of diffusion. It will be based upon higher-order moment equations in
dimensionless form, keeping up the scaling provided by the general form (16).
They will provide a clear order of magnitude estimate for all the ingredients in
moment equations, and thus make further approximations formally consistent.
Our aim is to include viscous dissipation by means of moment equations for
the momentum fluxes, and analyze different levels of approximation which may
be used to describe diffusion processes.

5.1 The moment equations

The set of moment equations which we need for generalization of the Maxwell–
Stefan model consists of the mass, momentum, momentum flux and energy
balance laws for the species (Theorem 4). In the so-called asymptotic limit,
relevant to the derivation of Maxwell–Stefan equations in usual form, we shall
need only the energy conservation law for the mixture (Proposition 5), rather
than balance laws for each species.

Theorem 4 The Boltzmann equations (15) formally lead to the following set of
moment equations, consisting for each species in

• the mass conservation equations

α
(
∂tρ

i +
3∑
k=1

∂xk (ρiuik)
)

= 0, 1 ≤ i ≤ S. (44)

• the momentum balance laws

α2

[
∂t(ρ

iui`) +

3∑
k=1

∂xk (ρiuiku
i
`)

]
+

3∑
k=1

∂xkp
i
k`
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=

S∑
j=1

2π‖bij‖L1

mi +mj
ρiρj(uj` − u

i
`), 1 ≤ ` ≤ 3, 1 ≤ i ≤ S. (45)

• the momentum flux balance laws

∂t(α
3ρiuiku

i
` + αpik`)

+

3∑
n=1

∂xn(α3ρiuiku
i
`u
i
n + α(uikp

i
`n + ui`p

i
nk + uinp

i
k`))

=

S∑
j=1

(
2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

j(αρiuiku
i
` +

1

α
pik`)

+miαρ
iρj(uiku

j
` + ui`u

j
k) +mjρ

i(αρjujku
j
` +

1

α
pjk`)

}
+

mjAk`
(mi +mj)2

(
αρiρj |ui − uj |2 +

3

α
ρjpi +

3

α
ρipj

))
,

1 ≤ k, ` ≤ 3, 1 ≤ i ≤ S. (46)

Moreover, the balance laws (46) imply the following energy balance law for each
species

∂t(α
3ρi|ui|2 + 3αpi)

+

3∑
n=1

∂xn(α3ρi|ui|2uin + α(2

3∑
k=1

uikp
i
kn + 3uinp

i))

=

S∑
j=1

2π‖bij‖L1

(mi +mj)2

{ 1

α

(
−6miρ

jpi + 6mjρ
ipj
)

+ αρiρj
[
−2mi|ui|2 + 2(mi −mj)u

i · uj + 2mj |uj |2
]}

,

1 ≤ i ≤ S. (47)

Proof We prove each of the balance laws separately, by taking moments of the
Boltzmann equations.
• In a very standard way, mass balances are obtained for each species from (16)
with ψi(v) = mi, using the moments of the distribution functions (22)-(23) and the
conservation properties of the collision kernel (5) to obtain (44).

• For the momentum balances, the computations are again standard [23]. We choose
ψi(v) = miv` in (16) for any 1 ≤ ` ≤ 3, and use (23)-(24), which leads to

α∂t(αρ
iui`) +

3∑
k=1

∂xk (α2ρiuiku
i
` + pik`) =

1

α

S∑
j=1

∫
R3
miv`Q

ij(f i, fj)(v) dv.

Let us compute the term in the right hand side of this last equation. Using the weak
form (4) with φ(v) = miv`, we obtain

Mij
` :=

∫
R3
miv`Q

ij(f i, fj)(v) dv
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=
mimj

mi +mj

∫
R3

∫
R3
f i(v)fj(v∗)(v∗` − v`) dv∗ dv

∫
S2
bij(cos θ) dσ

+
mimj

mi +mj

∫
R3

∫
R3
f i(v)fj(v∗)|v − v∗|dv∗ dv

∫
S2
bij(cos θ)σ` dσ,

since
v′` − v` =

mj

mi +mj
(v∗` − v`) + |v − v∗|σ`.

The two integrals in σ are computed using spherical coordinates [23], and it leads to

Mij
` =

2π

mi +mj
‖bij‖L1

∫
R3

∫
R3
mif

i(v)mjf
j(v∗)(v∗` − v`) dv∗ dv

= α
2π

mi +mj
‖bij‖L1(ρiρjuj` − ρ

jρiui`).

The momentum balance laws thus become (45).

• To compute the momentum flux balances we choose ψi(v) = mivkv`. From (16)
for any 1 ≤ k, ` ≤ 3, using (24)-(43), one obtains:

α∂t(α
2ρiuiku

i
` + pik`) +

3∑
n=1

∂xn(α3ρiuiku
i
`u
i
n + α(uikp

i
`n + ui`p

i
nk + uinp

ik`))

=
1

α

S∑
j=1

∫
R3
mivkv`Q

ij(f i, fj)(v) dv.

Again, let us focus on the computation fo the source term, using again the weak
form (4) with φ(v) = mivkv`

Qijk` :=

∫
R3
mivkv`Q

ij(f i, fj)(v) dv

=

∫
R3

∫
R3

∫
S2
mib

ij(cos θ)f i(v)fj(v∗)(v
′
kv
′
` − vkv`) dσ dv∗ dv

=

∫
R3

∫
R3

∫ 2π

0

∫ π

0
mif

i(v)fj(v∗)(v
′
kv
′
` − vkv`)b

ij(cos θ) sin θ dθ dϕ dv∗ dv (48)

where the last equality is the change to spherical coordinates. Using the collision
rules, the term v′kv

′
` becomes

v′kv
′
` =

1

(mi +mj)2
(mivk+mjv∗k+mj |v−v∗|σk)(miv`+mjv∗`+mj |v−v∗|σ`)

=
1

(mi +mj)2

{
m2
i vkv` +mimj(vkv∗` + v`v∗k) +m2

jv∗kv∗`

+mj |v − v∗|
(
mivkσ` +mjv∗kσ` +miv`σk +mjv∗`σk

)
+m2

j |v − v∗|
2σkσ`

}
(49)

Let us first show that by parity arguments, the terms of the last but one line in the
previous expression are all zero when integrated as in (48). Indeed, since all terms
involving the velocities do not depend on θ nor ϕ, we have to handle terms of the
form ∫ 2π

0

∫ π

0
bij(cos θ) sin θσ` dθ dϕ.
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These terms can be computed for ` = 1, 2, 3, with σ1 = sin θ cosϕ, σ2 = sin θ sinϕ
and σ3 = cos θ. The terms for ` = 1, 2 are obviously zero, because of the periodicity
of trigonometric functions in the integration in ϕ. For ` = 3, we use the change of
variables η = cos θ to obtain∫ 2π

0

∫ π

0
bij(cos θ) sin θ cos θ dθ dϕ = 2π

∫ 1

−1
ηbij(η) dη = 0,

since the function bij is even.
Now, let us handle the integration of the last term in (49). The only terms

depending on σ are of the form

Ak` :=

∫ 2π

0

∫ π

0
bij(cos θ) sin θσkσ` dθ dϕ.

With the same argument as before, the integration in ϕ leads to zero for the terms
with k 6= `. It remains to handle the terms Akk. We have, using trigonometry relations
and the same change of variables as before

A11 =

∫ π

0
bij(cos θ) sin3 θ dθ

∫ 2π

0
cos2 ϕdϕ

=

∫ π

0
bij(cos θ) sin3 θ dθ

∫ 2π

0

1 + cos(2ϕ)

2
dϕ

= π

∫ 1

−1
bij(η)(1− η2) dη = π

(
‖bij‖L1 −Bij

)
,

where we defined Bij :=
∫ 1
−1 η

2bij(η) dη. With the same reasoning, we can prove

that A22 = π
(
‖bij‖L1 −Bij

)
. For A33, we have, using again the same change of

variables

A33 =

∫ π

0
bij(cos θ) sin θ cos2 θ dθ

∫ 2π

0
dϕ = 2π

∫ 1

−1
η2bij(η) dη = 2πBij .

Therefore, we may summarize:

Ak` =


π
(
‖bij‖L1 −Bij

)
, k = ` = 1, 2;

2πBij , k = ` = 3;

0, k 6= `.

(50)

It remains to handle the terms involving only the velocities in (49). They all have
a common multiplicative factor∫ π

0
bij(cos θ) sin θ dθ

∫ 2π

0
dϕ = 2π‖bij‖L1 .

Thus, (48) becomes

Qijk` =
2π‖bij‖L1

(mi +mj)2

∫
R3

∫
R3
mif

i(v)fj(v∗)

×
(
m2
i vkv` +mimj(vkv∗` + v`v∗k) +m2

jv∗kv∗` − (mi +mj)
2vkv`

)
dv∗ dv

+
m2
j

(mi +mj)2

∫
R3

∫
R3
mif

i(v)fj(v∗)(|v|2 + |v∗|2 − 2v · v∗)Akkδk` dv∗ dv
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Now, in each term, the variables v and v∗ can be separated. Combined with the
moments (22)-(24) of the distribution functions, it leads to

Qijk` =
2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

j(α2ρiuiku
i
` + pik`)

+miα
2ρiρj(uiku

j
` + ui`u

j
k) +mjρ

i(α2ρjujku
j
` + pjk`)

}
+

mj

(mi +mj)2
Ak`

(
ρj(α2ρi|ui|2 +

3∑
n=1

pinn) + ρi(α2ρj |uj |2 +

3∑
n=1

pjnn)

− 2α2ρiρjui · uj
)

This can also be rewritten as

Qijk` =
2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

j(α2ρiuiku
i
` + pik`)

+miα
2ρiρj(uiku

j
` + ui`u

j
k) +mjρ

i(α2ρjujku
j
` + pjk`)

}
+

mj

(mi +mj)2
Ak`

(
α2ρiρj |ui − uj |2 + 3ρjpi + 3ρipj

)
Finally, this leads to the balance law (46).

• Finally, to derive the energy balance laws we shall take into account the assumption
that all the species are monatomic gases, and that relations (10)1 hold. Thus, energy
equations will be derived starting from the balance laws (46), taking into account∑3
k=1 p

i
kk = 3pi, choosing ` = k and summing (46) over k to obtain:

∂t(α
4ρi|ui|2 + 3α2pi)

+

3∑
n=1

∂xn(α4ρi|ui|2uin + α2(2

3∑
k=1

uikp
i
kn + 3uinp

i))

=

S∑
j=1

3∑
k=1

Qijkk =

S∑
j=1

2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

j(α2ρi|ui|2 + 3pi)

+ 2miα
2ρiρjui · uj +mjρ

i(α2ρj |uj |2 + 3pj)

+mj

(
α2ρiρj |ui − uj |2 + 3ρjpi + 3ρipj

)}
, (51)

where we used that
∑3
k=1Akk = 2π‖bij‖L1 .

Let us now compute the term inside the brace in the right-hand side of the
previous relation.

− (2mi +mj)ρ
j(α2ρi|ui|2 + 3pi) + 2miα

2ρiρjui · uj +mjρ
i(α2ρj |uj |2 + 3pj)

+mj

(
α2ρiρj |ui − uj |2 + 3ρjpi + 3ρipj

)
= α2ρiρj

[
−2mi|ui|2 + 2(mi −mj)u

i · uj + 2mj |uj |2
]

− 6miρ
jpi + 6mjρ

ipj .

This implies the balance law (47). �
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The energy conservation law for the mixture is a consequence of the energy
balances (47) and the properties of the collision operator. However, to write it
in a form more similar to the usual macroscopic equations, one needs to define
appropriate mixture variables [24, 25]. To that end, we define the mass density
ρ, momentum density ρuk, internal energy density ρε, pressure tensor pkn and
internal energy flux qn, 1 ≤ k, n ≤ 3 of the mixture in dimensionless form:

ρ :=

S∑
i=1

ρi, ρuk :=

S∑
i=1

ρiuik,

ρε :=

S∑
i=1

ρiεi + α2
S∑
i=1

1

2
ρi|ui − u|2,

pkn :=

S∑
i=1

pikn + α2
S∑
i=1

ρi(uik − uk)(uin − un),

qn :=

S∑
i=1

(
ρiεi + α2 1

2
ρi|ui − u|2

)
(uin − un) +

S∑
i=1

3∑
k=1

pikn(uik − uk). (52)

We can the state the energy conservation law for the mixture.

Proposition 5 The energy balance law (47) also implies a conservation law for the
whole mixture

α3∂t

(
S∑
i=1

1

2
ρi|ui|2

)
+ α∂t

(
3

2

S∑
i=1

pi
)

+ α3
3∑

n=1

∂xn

(
S∑
i=1

1

2
ρi|ui|2uin

)

+ α

3∑
n=1

∂xn

(
S∑
i=1

3∑
k=1

uikp
i
kn +

3

2

S∑
i=1

uinp
i

)
= 0. (53)

It can be rewritten under the following form

∂t
(
α3ρ|u|2 + 2αρε

)
+

3∑
n=1

∂xn

{[
α3ρ|u|2 + 2αρε

]
un + 2α

3∑
k=1

pknuk + 2αqn

}
= 0. (54)

Proof From the computation of the source term Qijk`, we can deduce the following
relations using symmetry with respect to i and j

3∑
k=1

Qiikk = 0,

3∑
k=1

Qijkk +

3∑
k=1

Qjikk = 0.

Therefore, summation of (47) over i annihilates the right-hand side and one ends up
with the energy conservation law for the mixture (53). To recast the conservation
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law (54), we use appropriate macroscopic mixture variables (52). Having in mind the
relation 3pi = 2ρiεi, the energy density of the mixture may be written as:

α3
S∑
i=1

ρi|ui|2 + 3α

S∑
i=1

pi = α3ρ|u|2 + 2αρε. (55)

On the other hand, the energy flux of the mixture may be transformed to

α3
S∑
i=1

ρi|ui|2uin + α

(
2

S∑
i=1

3∑
k=1

uikp
i
kn + 3

S∑
i=1

uinp
i

)

=
[
α3ρ|u|2 + 2αρε

]
un + 2α

3∑
k=1

pknuk + 2αqn.

In such a way energy conservation law (53) becomes (54).
�

5.2 Asymptotic limit

We formally consider the asymptotic limit α → 0 of the scaled moment
equations. In the case of local equilibrium approximation, one obtains the
classical Maxwell–Stefan equations or their non-isothermal counterpart. Our
aim is to formally analyze the asymptotic limit for the higher-order system of
moment equations. First, an isothermal model will be analyzed to underline
the difference between the standard Maxwell–Stefan model and the higher-
order one. After that, an appropriate non-isothermal extension without heat
conduction will be discussed.

Theorem 6 Formally, when the scaling parameter α tends to zero, the macroscopic
quantities for each species ρi, uik and pik` = piδk` + pi〈k`〉 defined by (22)-(24) satisfy
the following system

∂tρ
i +
∑3
k=1 ∂xk (ρiuik) = 0,

∂x`

(
pi``

)
=
∑S
j=1

2π‖bij‖L1

mi+mj
ρiρj(uj` − u

i
`), 1 ≤ ` ≤ 3

pi〈k`〉 = 0, 1 ≤ k 6= ` ≤ 3

pi〈``〉 = [M−1β``]i, 1 ≤ ` ≤ 3,

(56)

where [M−1β``]i is the i-th component of the product of the S×S matrix M defined
by

Mij =


2π‖bij‖L1

(mi +mj)2
mjρ

i, if j 6= i,

2π‖bii‖L1

4m2
i

miρ
i −

S∑
j=1

2π‖bij‖L1

(mi +mj)2
(2mi +mj)ρ

j , if j = i,

and the vector β`` defined by

β``i =

S∑
j=1

π

(mi +mj)2
×
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[
‖bij‖L1

(
(mj − 4mi)ρ

jpi + 5mjρ
ipj
)
− 3mjB

ij
(
ρjpi + ρipj

)]
, if ` = 1, 2

2
[
‖bij‖L1

(
− (2mi +mj)ρ

jpi +mjρ
ipj
)

+ 3mjB
ij
(
ρjpi + ρipj

)]
, if ` = 3.

In this system, the partial pressures pi for each species have to be given as functions
of ρi by an equation of state.

Proof The first relation of (56) is obvious, and comes straightforwardly from (44). Let
us start with the proof of the last two relations of (56). At order α0, the momentum
flux balance law (46) gives

S∑
j=1

2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

jpik` +mjρ
ipjk`

}
+

3mjAkkδk`
(mi +mj)2

(
ρjpi + ρipj

)
= 0

Using the decomposition of the pressure into its diagonal and traceless part, we obtain

S∑
j=1

2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

jpi〈k`〉 +mjρ
ipj〈k`〉

}
+δk`

{ 2π‖bij‖L1

(mi +mj)2

(
−(2mi+mj)ρ

jpi+mjρ
ipj
)

+
3mjAkk

(mi +mj)2

(
ρjpi+ρipj

)}
= 0

(57)

For fixed k, `, observe that these relations, for any 1 ≤ i ≤ S, constitute a linear
system for the unknowns pi〈k`〉. Indeed, if we introduce the vector of pressures for all

species P〈k`〉 = (p1
〈k`〉, p

2
〈k`〉, · · · , p

S
〈k`〉)

T , equations (57) can be rewritten as

MP〈k`〉 = δk`β
``.

Let us prove that the matrix M is invertible, by proving that its transpose is
diagonally dominant, i.e. that for any 1 ≤ i ≤ S, |Mii| >

∑
j 6=i |Mji|. To this end, let

us split the sum over j into the sum for j 6= i and the term for j = i in Mii to rewrite

Mii = −
(π‖bii‖L1

mi
ρi +

∑
j 6=i

2π‖bij‖L1

(mi +mj)2
(2mi +mj)ρ

j
)
.

Since all coefficients in the matrix M are non-negative, we can compute

|Mii| −
∑
j 6=i
|Mji| =

π‖bii‖L1

mi
ρi +

∑
j 6=i

2π‖bij‖L1

(mi +mj)2
(mi +mj)ρ

j ,

which is positive as soon as one ρi is positive. This proves the invertibility of the
matrix M . We thus obtain that for any 1 ≤ i ≤ S and 1 ≤ k 6= ` ≤ 3, pi〈k`〉 = 0.

Further, the values pi〈11〉 = pi〈22〉 and pi〈33〉 are non-identically zero for all species

1 ≤ i ≤ S, and can be obtained through the inverse of M and β`` as

P〈``〉 = M−1β``, 1 ≤ ` ≤ 3. (58)

Thus, the pressure tensor is diagonal, and

pik` = (pi + pi〈kk〉)δk`, 1 ≤ i ≤ S, 1 ≤ k, ` ≤ 3. (59)
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We can now obtain the second relation in (56). The formal limit of the momentum
balance law (45) at order α0 gives

3∑
k=1

∂xkp
i
k` =

S∑
j=1

2π‖bij‖L1

mi +mj
ρiρj(uj` − u

i
`)

Using (58) and (59) in the previous equation, we obtain

∂x`

(
pi + pi〈``〉

)
=

S∑
j=1

2π‖bij‖L1

mi +mj
ρiρj(uj` − u

i
`), 1 ≤ ` ≤ 3. (60)

Moreover, observe that if we sum over i, the right-hand side cancels, and it leads to

∂x`

(
pi +

S∑
i=1

pi〈``〉

)
= 0, 1 ≤ ` ≤ 3.

�

Theorem 6 inherits a compatibility condition which restricts the structure
of partial pressures pi, which is summarized in the following Proposition.

Proposition 7 In order for the system (56) to have a solution, the equation of state
giving the pressures pi has to satisfy the following compatibility condition

mi
pi

ρi
= θ(t, x), 1 ≤ i ≤ S. (61)

This condition is in particular satisfied by the scaled ideal gas law:

pi(t,x) =
5

3
ρi(t,x)

T (t,x)

mi
, (62)

where T is the common temperature of the species.

Proof In equations (57), choosing k = ` and summing over k cancels the terms
involving pi〈kk〉, and for any 1 ≤ i ≤ S, it leads to

S∑
j=1

6π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

jpi +mjρ
ipj +mj(ρ

jpi + ρipj)
}

=

S∑
j=1

12π‖bij‖L1

(mi +mj)2

(
−miρ

jpi +mjρ
ipj
)

= 0,

since
∑3
k=1Akk = 2π‖bij‖L1 . This means that

S∑
j=1

‖bij‖L1

(mi +mj)2

(
mjρ

ipj −miρ
jpi
)

= 0, i = 1, . . . , S. (63)

These S equations are linearly dependent, since the sum of all these relations is zero.
Moreover, we can prove that they imply the compatibility condition (61). Indeed, let

ζi := mi
pi

ρi
−mS

pS

ρS
. Then, we can replace pi in (63) for 1 ≤ i ≤ S − 1, which gives

ρi
S∑
j=1

‖bij‖L1

(mi +mj)2
ρj
(
ζj +mS

pS

ρS

)
− ρi

(
ζi +mS

pS

ρS

)
S∑
j=1

‖bij‖L1

(mi +mj)2
ρj = 0,
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and for i = S

ρS
S∑
j=1

‖bij‖L1

(mi +mj)2
ρj
(
ζj +mS

pS

ρS

)
− ρSmS

pS

ρS

S∑
j=1

‖bij‖L1

(mi +mj)2
ρj = 0.

This last equation implies that

‖bij‖L1

(mi +mj)2
ρjζj = 0,

which in turns implies in the previous relations, for 1 ≤ i ≤ S − 1

ρi
S∑
j=1

‖bij‖L1

(mi +mj)2
ρjmS

pS

ρS
−ρiζi

S∑
j=1

‖bij‖L1

(mi +mj)2
ρj+ρimS

pS

ρS

S∑
j=1

‖bij‖L1

(mi +mj)2
ρj = 0,

which means that for any 1 ≤ i ≤ S − 1

ζi
S∑
j=1

‖bij‖L1

(mi +mj)2
ρj = 0.

This implies that ζi = 0 for any 1 ≤ i ≤ S − 1, which completes the proof. �

The main outcome of Theorem 6 (and Proposition 7), describing the
higher-order Maxwell–Stefan model in the asymptotic limit, is that momentum
exchange between the species is not balanced solely by the gradients of partial
pressures. One must take into account the diagonal terms of the traceless part
of the pressure tensor, determined by the set of algebraic relations.

In Theorem 6, the system (56) is a closed one when the partial pressures
pi are solely determined by the densities, meaning that the quantity θ in (61)
is a known constant. This corresponds to the isothermal case. In the non-
isothermal case, the temperature varies and is an additional unknown of the
system. In order to close the system, we need an additional equation, which is
given by the asymptotic limit of the energy conservation for the mixture (53)

∂t

(
3

2

S∑
i=1

pi

)
+

3∑
n=1

∂xn

(
S∑
i=1

3∑
k=1

uikp
i
kn +

3

2

S∑
i=1

uinp
i

)
= 0.

5.3 Higher-order diffusion model

In the final step of higher-order description of diffusion, a more general model
than the one obtained in the asymptotic limit is proposed. To motivate the
forthcoming analysis, let us mention that in the mixture models relevant for
diffusion, governing equations consist of the balance laws of masses and the
balance laws of momenta for the species. They can be derived either in a
systematic way [26–28], or in an ad hoc manner [12]. In the latter case, even
viscous dissipation is introduced by assumption.

Our analysis will be based upon scaled moment equations given in Theorem
4 and Proposition 5, i.e. mass balances (44), momentum balances (45),
momentum flux balances (46) and energy conservation (53). They provide
a clear insight into the order of magnitude of all terms needed for the
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construction of generalized diffusion models. In particular, to build up the
model which inherits the inertia terms in the momentum balance equations
(45) one has to keep all the O(α2) terms. This corresponds to the models of
diffusion proposed in [12, 27]. If we want to expand this to higher order models,
we have to determine the order of magnitude of terms which will be kept in
the governing equations. The model we propose here will be limited to the
O(α2) terms in all equations.

Proposition 8 The higher-order diffusion model which inherits up to O(α2) terms
consists of the following set of equations:

α∂tρ
i + α

3∑
k=1

∂xk (ρiuik) = 0, (64)

α2

[
∂t(ρ

iui`) +

3∑
k=1

∂xk (ρiuiku
i
`)

]
+

3∑
k=1

∂xkp
i
k` =

S∑
j=1

2π‖bij‖L1

mi +mj
ρiρj(uj` − u

i
`), (65)

α∂tp
i
k` + α

3∑
n=1

∂xn(uikp
i
`n + ui`p

i
nk + uinp

i
k`)

= α

S∑
j=1

2π‖bij‖L1

(mi +mj)2
ρiρj

{
− (2mi +mj)u

i
ku
i
` +mi(u

i
ku
j
` + ui`u

j
k) +mju

j
ku
j
`

}

+ α

S∑
j=1

mjAk`
(mi +mj)2

ρiρj |ui − uj |2

+
1

α

S∑
j=1

2π‖bij‖L1

(mi +mj)2

{
− (2mi +mj)ρ

jpik` +mjρ
ipjk`

}

+
1

α

S∑
j=1

mjAk`
(mi +mj)2

(
3ρjpi + 3ρipj

)
, (66)

α∂t

(
3

2

S∑
i=1

pi
)

+ α

3∑
n=1

∂xn

(
S∑
i=1

3∑
k=1

uikp
i
kn +

3

2

S∑
i=1

uinp
i

)
= 0. (67)

Proof The mass balances (64) and the momentum balances (65) are the exact
moment equations (44) and (45), respectively. The momentum flux balances (66)
and the energy conservation (67) are obtained from the moment equations (46) and
(53), respectively, by neglecting the terms O(α3). �

It must be emphasized that the model (64)-(67) is independent of the
higher-order Maxwell–Stefan model obtained in the asymptotic limit. In
particular, O(α−1) terms in equation (66) (or in equation (46)) vanish in the
asymptotic limit, and determine the higher-order corrections to the Maxwell–
Stefan model as a solution of the system of algebraic equations (see Theorem
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6). However, one cannot discard the same terms in equation (66), since these
are now the genuine balance laws, i.e. the rate type equations, which determine
the behavior of pressure tensors pik`.

Remark 2 The generalized Maxwell–Stefan model (64)-(67) is non-isothermal by
assumption. In the non-isothermal models of previous works [16, 29], all the species
bear the same temperature T . Nevertheless, it is a natural question whether the
multi-temperature assumption is more appropriate in a generalized setting. Because
of the terms of order O(α) in (66), the same reasoning as in Proposition 7 would
lead to (61) with a correction of order O(α2). However, since pi ∼ T i, it turns
out that O(α2) terms in T i will eventually bring O(α3) contributions to the energy
conservation (67), and can thus be neglected in this approximation. As a conclusion,
single-temperature assumption is still appropriate in the generalized Maxwell–Stefan
model when limited to O(α2) terms.

6 Conclusion

In this study, the higher-order Maxwell–Stefan diffusion model is derived
starting from the kinetic theory of mixtures. It was based upon moment
equations for mass, momentum and momentum flux of the species in isothermal
case, adjoined with energy conservation law for the mixture in non-isothermal
case. All the equations were analyzed in the diffusive scaling. They were
closed by the use of an approximate form of the velocity distribution function,
obtained by means of maximum entropy principle. The aim was to incorporate
the viscous dissipation in the model, in a consistent way, through a proper
asymptotic analysis.

The higher-order model was derived in two different forms. The first form
was obtained in the asymptotic limit. It generalizes the classical Maxwell–
Stefan model by including the diagonal terms of deviatoric part of the partial
stress tensors, which turn out to be linear functions of partial pressures
(Theorem 6). In such a way, the coupling in Maxwell–Stefan relations does not
occur only through diffusion fluxes, but also through the gradients of partial
pressures.

The second form was obtained when terms of order O(α2) were retained in
moment equations, and higher-order terms were neglected (Theorem 8). This
results in a set of equations containing complete balance laws of mass and
momentum of species, and truncated balance laws of momentum fluxes. On one
hand, such a model includes complete partial pressure tensors and determines
their behavior through the rate-type equations. On the other hand, it presents
a consistent generalization of the diffusion model with respect to the order of
magnitude of terms which appear in governing equations.

The higher-order model presented in this study opens several possible paths
for further analysis. First, it relies on the moment method applied to the set
of Boltzmann equations, and the viscous dissipation is included through the
balance laws. It would be of interest to recover the approximation of partial
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stress tensors for Newtonian fluids. Second, the generalization obtained in the
asymptotic limit leads to stronger coupling of equations. It is interesting to
see the implications of this coupling through some numerical simulations and
to compare the obtained results with a classical Maxwell–Stefan model.
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[13] Chen, X., Jüngel, A.: Analysis of an incompressible Navier-Stokes-
Maxwell-Stefan system. Comm. Math. Phys. 340(2), 471–497 (2015).
https://doi.org/10.1007/s00220-015-2472-z
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